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Coulomb gap in a model with finite charge-transfer energy

S. A. Basylko! P. J. Kundrotag;? V. A. Onischouk!? E. E. Tornaw?* and A. Rosengrén
LJoint Institute of Chemical Physics of Russian Academy of Sciences, 117 977 Kosygin Street 4, Moscow, Russia
°Department of Physics/Theoretical Physics, Royal Institute of Technologyl,0BE4 Stockholm, Sweden
3Faculty of Physics, Vilnius University, Sauletekio al. 9, LT-2040, Vilnius, Lithuania
4Semiconductor Physics Institute, Gasto 11, LT-2600 Vilnius, Lithuania
(Received 17 March 2000; revised manuscript received 29 June 2000; published 12 Decemper 2000

The Coulomb gap in a donor-acceptor model with finite charge-transfer ededgpscribing the electronic
system on the dielectric side of the metal-insulator transition is investigated by means of computer simulations
on two- and three-dimensional finite samples with a random distribution of equal amounts of donor and
acceptor sites. Rigorous relations reflecting the symmetry of the model presented with respect to the exchange
of donors and acceptors are derived. In the immediate neighborhood of the Fermi gnéngysingle-particle
density of stateg(e) is determined solely by finite size effects, ag@) further away fromu is described by
an asymmetric power law with a nonuniversal exponent, depending on the parameter
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[. INTRODUCTION hypothesigUH)] has stimulated further theoretical research,
both analytical and numerical®!® To establish the UH,
Doping of solids might lead to drastic qualitative changesEfros:16 used the ground-state stability conditions for local-
in their properties. The metal-insulator transitivIT) is a  ized electrons with respect to charge transfer
spectacular manifestation of this. The understanding of the
driving forces of the MIT is a long-standing problem. In the
early seventies, the predictibwas made that on the dielec-
tric side of the MIT the long-range Coulomb interactions
deplete the single-particle density of stat&PDOS g(e) wheree; ande; are the single-particle energi¢SPB of a
near the Fermi energy. Further, analytical calculations of neutral donor ¢°) on a sitei and of a charged donod() on
g(e) with Coulomb correlation taken into consideration havea sitej, respectively, and;; is the distance between the sites
been performed on the metallic side of the MIT. Altshuleri andj. The conditiong2) were used to heuristically derive a
and Arono¥ showed that for the metallic caggzs) in three  nonlinear integral equation forg(s),**™*° and then
dimensions has a cusplike dependegte) ~|e — u|“2near  asymptotic analysis of this equation lefti® Eq. (1).
w. This was later confirmed in electron tunneling experi- Localized electrons have been studied using the so-called
ments for amorphous alloysind granular metafs. classical donor-acceptord{a) model (see, e.g., Ref. 17
On the insulating side of the MIT, charge transport occursWithin this model, the system considered is modeled by a
via inelastic electron tunneling hopping between states localontinuous sample with randomly distribut&k N (k=<1)
ized on the impurity sites with one-electron energies close t@cceptori@) andN donor (d) sites. Eacla site is negatively
w. Mott® demonstrated that at low temperatures electronsharged whereas out ®f only kx N donors ared™ which
seek accessible energy states by hopping distances beyole@ds to a large number of configurations, each of which
the localization length, leading to a temperat(fe¢ depen- must obey not only condition®) but also more complicated
dence of the hopping conductivity(T) ~exp(—Ty/T)” with  conditions related to many-particles excitatidesy., charge
T, being a characteristit depending on localization length transfer involving four, six, etc. sitesThe conjecture of
and with the hopping exponent= 1/4 for the noninteracting Efros about theuniversalityimplies thatg(e) does not de-
case in three dimensions. Efros and Shklo¥siiS) argued  pend on peculiarities of the particular model and, as a con-
that in the ground state of a system with long-range Coulomisequence, further theoretical studies of localized
interactionsg(e) (whene— ) has the symmetric shape  electrond®*2~**were confined to dattice d-a model pro-
posed in Ref. 16. In this modeW donors are localized on all
g(e)~le—pu|P1t (1)  the sites of aD-dimensional lattice and the negative charge
of kX N acceptors is uniformly smeared over the lattice sites
with the universalexponentD —1 (D is the dimensionality so that each sitehas a charge(n; —k), wheren;=1(0) for
of the system Becausay(e) vanishes only at=p, thisis  d* (d®). Disorder in this model is ensured by introducing
called a “soft” Coulomb correlation gap with a width\ & randomly distributed on-site potentials. Monte CafldC)
~e3(Ng/x%)Y? (N, is the SPDOS far away from, y the  simulations® on very large specimens of the latticka
dielectric constant ané the electron charge Equation(1) model atT=0, however, have given rise to doubts about the
gives for D=3 a hopping exponent=1/2 at lowT and,  universality of theg(e) behavior. Further, studi&bof the
indeed, the transitiony=1/4)— (v=1/2) with lowering of = Coulomb gap al # 0 have revealed significant deviations of
temperature was observed in experiménts. the exponent in Eq(1) from the predicted universal value.
The intriguing hypothesis about the universality of the Another hint about possible nonuniversal behavior of
exponent in Eq(1) [henceforth referred to as the universality g(¢) has come from the intriguing and still not completely
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decided problem of whether the so-called spin-glass phasaccording to the Poisson distribution with a dengity N
does exist in the classicdta model(see, e.g., Refs. 21-p3 XL P. Hereafter, all expressions will be written in dimen-
Grannan and Y& studied the classicaD=3 d-a model sionless unitsn™*P for length, andEy,=e’n*P/y for en-
with k= 0.5 but with the total acceptor charge uniformly dis- ergy. A microscopic state of a particular spatial arrangement
tributed overd sites as in the latticd-a model. In this case, of thed anda sites(henceforth referred to as the samplg

the classicald-a model is equivalent to a model of Ising is determined by a set of occupation numbers,,(4)
spins, localized on randomly distributed sites, with pairwise={n,(i),nq4(k), i,k=1,2,... N} with ny(i)=1(0) for
Coulomb interactions, a model in which a transition into thea™ (a®) and ny(k)=1(0) for d°(d*). We investigate the
spin-glass state was fouffdto occur atT#0. It was then case of strictly localized electrons, wheg<1 (ag is the
concluded that such a transition should exisalind-a mod-  localization length of the electron on don@nd the energy
els (with or without smearing of negative charge, defined onof the sample then is

a lattice or on a continuous samplas well because of the

UH. Vojta and Schreiber® however, have shown that the 1 na(ina(j)
spin glass transition does not exist in the lattiza model*® E(NaN)=5 2 ———

277 a2
Besides, in recent work by one of it was unequivocally

ij

demonstrated that the ground state of the clasgi@amodel 1 (1—ng(k))(L—ny(l))

and that of the model studied in Ref. 21 are qualitatively + 2 kE# d—d

different. An analysis of histogram&([Q,z] for overlaps M
Qalgz(l/N)Eia(nf“,niﬁ) (here a and B refer to different (1-ng(k))n,(i)

lowest-energy statgfias revealed that, indeed, for the model - % —AY, nyi), (3
studied in Ref. 21H[Q,;] has a maximum &Q,;=0, i.e., Lk Fik i

a large number of microscopically different I_owest—ener_g_),/where indices,j andk,| numbera andd sites, respectively,
states 4d0¢s' exist in the_model and a_ccordlng to Parisi ia}fa, rd 9, andrd 9 are the distances between the accep-
theory?* this implies the existence of a spin-glass state at |OW[0rS between the donors, and between the acceptor and the
temperatures. Further MC simulatihst T+ 0 revealed the donor. correspondinaly. . When  charge transfer occurs
typical finite-size scaling of the spin-glass susceptibility. InE(n n ) changes byg y: 9 '
the classicatl-a model, howeverH[ Q,z] has its maximum a’d

atQ,z=1 which means that all lowest-energy states are the

same from a microscopical point of view. SE(Na.ng)= 2 eali)dng(i)+ 2 eq(k)dng(k)
Therefore, it is highly desirable to study the properties of ' K

not only the classicatl-a model, but of its various modifi- ; ; :

cations as well. In the present work we consider a modified + 5na(|£:d(k) i > w

classicald-a model (MCDAM) in which acceptors can be Lk Fik 2 17 Fij

neutral, so the energ¥ of the charge transfer from a donor

to an acceptord®+a’—d* +a~, has to be finite. The clas- " 1 D na(k) ong(1) 4

sical d-a model might then be viewed as the limit of the 2 7 rg @ ’

MCDAM as A—». We have investigated the shape of the
Coulomb gap in two- and three-dimensional MCDAMs atWherée
T=0 and found that the behavior gf¢) is in strong con-

a(i) is the SPE for the acceptors

tradiction to the UH of Efros. The paper is organized as . (i)= 5E(na,.nd) => Na(}) -> 1-ny(k) —A
follows. In Sec. Il we introduce the MCDAM and arrive at a ong(i) Fiorgr X ra-d ’
some rigorous results which follow from a symmetry of the (5)

MCDAM with respect to the exchange of donor and acceptor,

sites. Further, the algorithm of energy minimization for the‘;?](l()i)[lzn t(r}f)] ?j%rr:?)fep):?ﬁénghaipg oIOtLetgicudoar:i%rr? nﬁ”mq
MCDAM, including a discussion about inherent finite size, 2 d g P

effects, is presented in Sec. lll. Section IV is devoted to aber on thea (d) s¢e. If a microscopic statenﬁ_,nd_) Is the
description of the main results obtained. In Sec. V we dis_ground state of this sample, then for any excitation the rela-
cuss possible causes of universality violation in thetIon
MCDAM, analyze experimental data available in the litera- SE(n?,n%=0 (6)
ture, and predict possible experimental situations in which ard

the nonuniversal behavior af(¢) might be observed. Fi- holds. The specific appearance of the conditi@slepends

nally, a summary is presented in Sec. VI. on what excitations are allowed in the model system consid-
ered.
We investigate the simplest case with only pairs of sites
Il. BACKGROUND involved in the charge transfer which can occur in four dif-
del ferent ways, each of them denoted by a unique set of
A. Mode {8n,(i),0n4(j), ong(K), dng(1)}: (i) via electron hops be-

We consider aD-dimensional system of volumeP, in  tween acceptor§—1,1,0,0; (i) via electron hops between
which an equal numbeN of a and d sites are allocated donors{0,0,—1,1}; (iii) via ionization{1,0,—1,0 and (iv)
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via recombinatio{ —1,0,1,3. From Eq.(4) one obtains the Then, the energies of any pair of microscopic statesif)
ground-state stability relation fd): and (h; ,n}) for a sampleR and its “mirror” reflection R*
(when the donor and acceptor sites exchange places keeping
) . the spatial arrangement of sites unchange® equal under
0 1
eall) —eall)— r_a;azo’ () the following conditions:
1
where £2()(i) denotese,(i) if n(i)=1(0). The stability gali)+eg(i)=eq(k)+ei(k)=—A (13
conditions for(ii)—(iv) are obtainable in a similar manner.

The pair @°,a7)[(d°d*)] might be located on any dis- and
tance and therefore in the thermodynamic limitfor the n* () =M1=n«(i)1 n*(K) =[1-=n.(k 14
acceptors[donorg (i.e., an energy level which separates a ()=l o] g (0 =[ a(k)] (14
earq @andegq) is determined as The stability relationg7) for the ground statenC,ng) of the
o 1 sampleR transform into stability relations for the ground
Meapd) = Min{e g (1)} =maXegq (i)}, (8)  state 0% ,nJ*) of the sampleR* through the relationél3),
and the stability relations with respect to the ionization an0(14) as well.

Since averaging over samples includes all possible pairs

recombination lead to . )
R and R*, it follows from the symmetry relationél3) and

La= =K. (9) (14) along with the definitior(11) thatg,(e) can be mapped
to gq4(e) using the relation
Despite the finite size of samples we investigated, the rela-
tion (9) with (g calculated from Eq(8) is valid within the Od(e)=0a(—e—A). (15

limits of accuracy of our calculations.
A macroscopic state of the sampiReis characterized by =~ The symmetry of the model imposes also a relation be-
the degree of acceptor ionization tween the Fermi energy [Egs.(8), (9)] and the parameter
A of the model. Expressing,q(i[k]) in terms of the

1 _ Heaviside's step functionsi,q = 0(u— &4 (i[K])), the
Ca(R)= N EI Na(), (10 guantity C, can be written in the form
by the SPDOS for acceptors u *
y P Ca:f ga(s)d‘g:f gq(e)de. (16)
1 _ o :
a(ea,R)= N Z 0(e —&4(i)), (1) The symmetry relatiofi15) transforms Eq(16) into an inte-
gral relation

and by the corresponding SPD@g(e4,R) for the donors.
Note, that for the finite samplegspecially for the relative f“’
small systems we were able to investigaig(R),g.(e.,R),

and gq4(eq,R) depend to a large extent dR (if a sample

would be big enough all quantities would be self-averaging Which has a meaning only if

Therefore, in order to obtain reliable results, one has to work

with the quantitiesC,=(C,(R)),ga(g)=(ga(¢a,R)) and A (18)
da(e)=(gq4(eq4,R)), where( . . .) denotes the average over '
a number ofR’s. Note, that the valueg,q)(&aw) R)de
obtained for independer’s are scattered according to the
Gaussian distribution with meag,)(e)de and standard
deviation yg,(q)(g)de. In the region of the Coulomb gap,
ga(d)(s)ds~10‘4 and the dispersion is several orders of
magnitude larger than the mean. Therefore, in order to re- . METHOD

duce the statistical noise in the fing})(s) dependences, A. Algorithm of energy minimization
an average is needed over a sufficient large amount of inde-

pendent samplegve performed calculations with up to40 Ve start from a random allocation bfd andN asites in
samples the continuousD-dimensional system with the density

=1, and then generate an initial microscopic stdMS)
(na,ng) of the sampleR by charging randomly chose@,
XN both donors and acceptofasually we takeC,=0.7).
The system investigated is electrically neutral, i.e., for anyFurther, we search for such a microscopic sta’né,lﬁg)
sample which obeys the stability conditiond). We used an algo-
rithm which is an extension of the algorithm proposed in
; Ref. 10 to the cas@& #o and which consists of the three
ny(i)= 1-—ny(k)). 12
2 (=2 (1-ng(K)) a2 o steps.

gg(e)de= f " ga(e)de, 17
—A “

—u

Thus, the Fermi energy of our model system in the thermo-
dynamic limit is a fundamental quantity depending only on
the energy of charge transfer from an acceptor to a donor.

B. Acceptor-donor symmetry
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In order to save computer time, first we look for pairs gre-w)
a’—a (d°-d™) for which the “crude” stability relation
Aszsg(d)—s;(dpo is violated. Then, the energy of the
system is decreased by transferring an electron between suc
a pair of sites for whichAe has its minimal nonpositive
value. This process is repeated until a state is reached, i
which Ae >0 for all possiblea®—a~ andd®—d™ pairs(step
[). In a similar manner, we further minimize the energy of
the system with respect to the “true” stability relatiofi® 0.0002
for the charge transfer between ti®-a~ andd®—d™ pairs
(step ). And, finally, in step Il we diminish the energy of
the system with respect to the stability relations for ioniza-
tion and recombination processes. Since ionization and re
combination processes change the de@@gef the system
ionization, each time after one of these processes takes plac
during calculations, we go back to step Il. Repeating steps Il
and IIl, we finally arrive at a microscopic statag(,ng) for
which all four stability conditions are fulfilled. We name this ~ FIG. 1. g(e —u) for D=2 with N=1500 atA=0 (circles, 2
procedure (,a,nd)_)(ng,ng) “a single descent.” (squares 4 (diamond$, and 10(triangles averaged over 10 000

It should be noted, however, that the statd (9) is not ~ (A=0), 5100 &=2), 3700 @=4), and 2200 4 =10) samples.
necessarily the ground state of samje since for the Insgrt shows double logarithmic plot g{e —u) for e>pu in the

. . . regione — u=<0.05.
ground state, in general, not only the simplest relatighs
with only pairs of sites included, but more complicated rela- 4
tions involving quadruplets, sextets, etc. of sites have to be le—p[<(2LX VD)~ (19)

. 0
fulfiled. Therefore, the staten,n) (after Ref. 10 hereaf-  1pe relation(19) gives the estimation of how close todata

ter will be referred to as the pseudo—ground st®€S of 4, the energy spectrum are, in principle, obtainable from the
the sampleR. In order to check how the “erroneousness” of ~5|culations on finite samples.

PGS influences the outcome of our calculations, we also per- Secondly, » for finite samples does differ, in general

formed an analysis.of grounq states obtained by means %om sample to sample. A straightforward averaging 6f)
mrrank descent which comprises a sequence of the singigjue to the symmetry relatiofls) hereafter we consider
descents on the same sample with different IMS when Calg(s)zga(s) only] over different samples might thus lead to

culations are stopped after the lowest observed PGS energyisiortion of theg(e) shape especially in the region where

repeatsm times. We find thag,(e) andgqy(e) obtained for e coulomb gap is observed. In order to avoid this undes-

the PGS'’s generated by the single descents and by descegjs effect, we added togetheg(s) for the same values of
with m=10, say, do not differ within the limits of statistical

— u(R) rather than for the same values ofwith u(R
errors. Note, that in thd-a models studied befor€;*g(s) &~ (R) #(R)

, L ) calculated as
decreasesleaving qualitative behavior unchanged, though
when many-particle excitations are taken into account. This 1
is not the case in MCDAM where even the simplest stability n(R)= E(min{sg(i)}erax{s;(i)}). (20
conditions give good-quality PGS. We think this is due to the
ionization and recombination processes included in our cal- Finally, we remark that all the data presented below were
culations. So, we conclude, that reliable results can be ob-

tained by means of sinale descents already. thereby savin obtained for the open boundary condition. In order to ensure
. y : Ing y: Y SaViNGifat results obtained are not determined by the type of the
lot of computer time and resources.

boundary conditions used in calculations, we performed cal-

culations of theD=2 MCDAM at A=0 with different

boundary conditions and found that behaviorg¢t) is not

governed by the boundary conditions used. For example,
Due to constraints in computer resources, the largesj(s)’s for D=2 system withN=500 and open boundary

samples we were able to deal with, comprise upNo conditions and witiN=2000 and periodic boundary condi-

=2000 donor and\N=2000 acceptor sitesL(~45 for D tions do not differ within the limits of statistical errors for

=2 andL~12 for D=3). Such relatively small sizes of the anye calculated.

samples investigated might influence the outcome of calcu-

lations. Detailed analysis of finite size effects on the results

obtained will be presented in Sec. IV, and here we want to

make two remarks about inherent finite size effects in the Figure 1 showg(e— u) in the vicinity of the Fermi en-

0.0004 -

0 I
-0.75 -0.5

B. Finite-size effects

IV. RESULTS

model system considered. ergy u obtained for theD=2 samples withN=1500 and
First, as follows from Eq.(7), for finite samples aff  various values ofA. As is seeng(e — u«) depends consider-
=0g,(e) =0 within the interval ably onA except for a narrow windowe — 1| <0.05, where
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g(s_u) T T T T T T g(g_p_)
0.0008
0.0004
~ 0 L L R 2 L
10 ! ! ! -0.75 -0.5 -0.25 0 0.25 0.5 0.75

0.01 0.03 0.1 0.3 0.01 0.03 0.1 0.3 e
le —ul
FIG. 3. g(e—u) for D=3 with N=1000 atA=0 (circles, 2
FIG. 2.9(e—u) fore>pu (a), (b) ande<w (c), (d) forD=2 at  (squarey 4 (diamond$, and 10(triangles averaged over 10 000
A=0 (a), (c) and 4(b), (d), with N=500 (curves numbered)l  samples. Inserts show double-logarithmic plotsg¢ — ) at A
1000 (2), and 1500(3) averaged over 10 000 sampl@xcept the =2, for N=500 (curves numbered)11000(2), and 2000(3), in
caseN= 1500 andA =4 with the average over 3700 samplehe  the regionse>pu (@) and fore<u (b). The dashed lines in the

dashed lines are least-squares power-law gits— u)~[e—u|”  inserts are least-squares power-law §(e — u) ~|e — u|” with y
with y=0.9 (a), 0.55(b), 0.98(c) and 0.78. =1.16(a), 1.29(b).

all data merge into some *“universal” curve symmetric with from the valueD —1 predicted by the hypothesi4) is ob-
respect tou, the curve which can be anticipated to obey theserved at all values of investigated except for the cade
Efros UH (1). However, a double-logarithmic plot of the =0 wheny~1 within the limits of statistical accuracy. Note
“universal” g(e—pu) (insert in Fig. 1, reveals thatg(e  that the deviation ofy from its predicted value grows mono-
—w) in the “universality” region is not even a power law. tonically with increasingd. At A=10 where the features of
The width of this “universality” region is comparable to the the MCDAM are expected to be nearly the same as those of
width of the region(19) (for the data presented in Fig.|&  the classicatl-a model with all the acceptors being ionized
—p|<0.011), so it is plausible to suggest that the “univer- (indeed, the degree of the acceptor ionizatiy- 0.9 for the
sal” behavior ofg(e —u) is governed by the finite-size ef- two-dimensional MCDAM atA =10, see Fig. 5 belowthe
fects. This is clearly demonstrated in Fig. 2 whagés deviation from the Efros exponent is very large.
—w) are shown for severd\l investigated. The main results forg(e—w) obtained for theD=3
The e window where finite size effects are severe, shrinksMCDAM are summarized in Figs. 3 and 4. It is seen that the
considerably with increasindy for all values ofA we inves-  behavior ofg(e—u) in three dimensions does not differ
tigated. For instanceg(e —u) for N=500 andN=1000 at  qualitatively from the behavior ofj(e —u) in two dimen-
A=0 [see Figs. @), 2(c)] merge whene—u|=0.2 while  sions. Some quantitative differences observed arise from the
corresponding curves fal=1000 andN=1500 are indis- fact that at givenN (the parameter which determines the
tinguishable already 4t — u|=0.1. The statistical noise ob- amount of computer memory needed for the calculajitims
served for the curves in Fig. 2 is quite small even closg to linear size of 8D =2 sample with a given density of sites is
and hence, the influence of insufficient large statistics on théarger than that of & =3 sample with the same density of
results obtained is excluded. Note that the “universal” be-sites, and thereby, the finite size effects =3 samples
havior ofg(e) in the vicinity of « obtained for the classical are more pronounced. For example, the lower boundary of
d-a model (see Fig. 3 in Ref. 1Ris most likely due to the the region wherey, (¢ —u«) can be described by the power
finite size effects as well. law |e —u|” shifts towards largefe — u|=0.4 values(see
In the region|e —u|=0.2, where the curves for all inserts in Fig. 3. Remarkably, the exponentdoes not reach
collapse into a single curv@nd where we believe the ther- the valueD—1 predicted by the UH1) even atA=0 (see
modynamic limit is reached g(e— ) is described by a upper curves in Fig. %
power law g(e—u)~|e—pu|?. The deviation from the Unlike g(e — u) in the vicinity of the Coulomb gapC,
power law observed far away from(|e — u|=0.7) is due to  describes the state of the entire sample and therefore reaches
the boundaries of the Coulomb gap which aré in units of  the thermodynamic limit much faster thay(e —u). This
Eq. One can see from a comparison of the data shown in Figallows us to obtain quite accurate results @yfrom data on
2, that the exponeny depends considerably ak. Further-  a relatively small amount of samples with=500 only. Fig-
more, values ofy in the regione > and those in the region ure 5 shows the variations &, with A both forD=2 and
e<u differ as well with this difference increasing with in- D=3. In D=3 almost all acceptors become ionized rather
creasingA. The data fory obtained for theD =2 MCDAM soon, while for two dimensions even for the largasinves-
are summarized in Fig. 4 where a significant deviationyof tigated, around 10% of the acceptors remain neutral. So, one
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3 TABLE I. The means; and standard deviationA . of the
15 I 115 Fermi energy calculated for the three-dimensional md@ghwith
¥ : .. — Y N=1000 and various\.
. g / —
PR S {11.0 A M Ap
P N [ IRt 3
0 —0.017 0.100
1.0 + s
% .. 2 —-1.016 0.187
AR S ‘7 e 108 4 ~2.0149 0.287
§ RS T * 6 ~3.016 0.392
T % 8 ~4.011 0.502
e 100 10 ~5.018 0.607
0.5 7\\§
§ ] o5 Coulomb gap, the exponent is considerably smaller than
§ that predicted by the UH both fdd=2 andD=3. More-
0 o 4 6 8 10 over, the exponeny depends significantly oA and is dif-
A ferent for the cases> u ande <. It is believed that infor-

mation aboug(e) might be directly obtained from tunneling
and photoemission experimeritsand recent experimerifs
on boron-doped silicon crystals have shown thét) at
higher energies obeys a power law with an exponent slightly
less than 0.5, which is in good agreement with our results for
D=3 and A=8. However, the nonmetallic samples show
can say, that th® =3 MCDAM at A=7 reduces already to around the Fermi energy a nearly quadratic Coulomb gap, so
the classicatl-a model. It is known that the classicBl=3  the question arises whether our results could be related to the
d-a model exhibits the so-called Coulomb fluctuational intermediate asymptotic behavior observed. Here we want to
catastrophé’ For calculations on finite samples it implies make three remarks concerning this question:
that statistical fluctuations gk(R) grow dramatically with First, the power law is valid above a valag(N) below
increasingA which is the case in our calculatiofsee Table which the finite size effects take ovéFigs. 2 and B It
). Therefore, in order to reduce the statistical noiseDin  seems from our results, that(N) —u whenN—x. In D
=3, the average of(¢ —u) over a much largetcompared =2 we were able to obtain size-independent results down to
to D=2) number of samples is needed. Note, (hdR) in 5 0.1, i.e., for~90% of the whole Coulomb gap.
both tvyo anq threg d|mgnS|ons are_scatter.ed accordmg to the Secondly, as follows from Eq2), the distancer;; be-
Gaussian distribution with the mean obeying the relation  tweend®, with e} <[—¢,0] [¢ here is the half-width of a
(18). narrow band aroundu=0 (Ref. 28] and d* with e?
V. DISCUSSION e[Q,s] 1should be not less th.an.HZTha't is, si'tes with en-
ergiese; €[ — ¢,0] cannot be inside &-dimensional sphere
Despite the fact thag(s — ) is indeed described by a of radius Rs,=1/2¢ and with the center in a site with the
power law in a wide range of inside the region of the energy:%<[0,6]. Assuming thatall such spheresio not
. . . ; . intersect the total volume occupied by the spheres is

FIG. 4. The exponenty as a function ofA for D=2, N
=1500(open symbols, left scaleandD =3, N=1000(filled sym-
bols, right scalg Circles represent the positive values of u
while diamonds the negative values of- n. Dashed lines are
guides to the eye.

C
@ 1 -
1\P e
Vsp=N><S(D)(Z) JO g(e’)de’, (21
09 1 where S(D) is the volume of aD-dimensional sphere with
the radius equal to unity. Sindé;, cannot exceed the total
volume V of a sample Y=N at n=1) we arrive at the
inequality
08 f
09(8 )de <3SD)" (22
0.7 which is valid for alle if
0 2 4 6 8 10 « 2D
A D-1

FIG. 5. C, as a function ofA for D=2 (circles and D=3 ) o ) .
(diamond$ with N=500 averaged over 1000 samples. The solidThe UH then is a limit case of E§23). The density of sites
lines are third-degree polynomial fits. with energieSEile[—s,O] indeed decreases when-0, so
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TABLE Il. Some donor-acceptor pairs for which the difference between the donor and acceptor energy
levels does not exceed 10 mek,, E,, andE. are, respectively, the energy gap, the top of the valence
band, and the bottom of the conductivity band. If the minimal/maximal concentrations of both donor and
acceptor are known, the paramekgy is calculated using the data for the less soluble of the pair.

Donor Acceptor Concentration, ¢ Eq, meV Ej, meV A, meV
min max min max

Si(E,=1124 meVy=12)

Fe 1.2 106 4% 10 0.6 4 E.—796 8
Zn 2.3x10% 8x10'° E,+320

Ni 10% 108 12 <1 E,+ (160+190) 3.1-331
In 3x10Y 4x10'8 E,+156.9

Ge(Ey=740 meVy=15.9)

S no reliable data E.—296 4
Ni 4.8x 10 8x10% 1.5 1.8 E.—300
GaAsEy= 1520 meVy=12.5)
Ti 2x10'6 3.1 E.—1000 0
Fe E,+520

the assumptiori21) for the spheres witfiinite radii seems to  acceptor pairs with A<10 in the most common
be plausible. However, simultaneoudR;,—c and conse- semiconductors. The solubilities of these impurities are
guently the plausibility of the assumptié®l) and thereby of rather low, thereby reducing the temperature at which the
Eq. (1) becomes questionable. Coulomb gap with features described by the ma@glcan
Finally, Eq. (1) can be also obtained as the asymptoticbe observed. Fortunately, these temperatures are high enough
behavior of a nonlinear integral equation ffe) ase—0, (~10+20 K) for modern experimental techniques and
the equation which, in turn, is heuristically obtained from hence experimental observation of the Coulomb gap in the
Eq. (2). The derivation of this integral equatidgiven, for  semiconductors with deep impurities is possible to accom-
example, in Ref. 1pis based on the implicit assumption that plish.
the sites with charged donors are randomly distributed in
space according to the Poisson statistics. However, it was
unequivocally demonstrated in computer studies of the Cou-
lomb gap? that charged donor sites with energies closg to We have studied a model of impurities in semiconductors
tend to form cluster¢Ref. 12, Fig. 6. with infinite-range Coulomb interactions between donors,
We conclude thag(e — ) in the region of the Coulomb between acceptors, and between donors and acceptors. A
gap in model(3) has a power law behavior for all energies new parameter introduced in the model is the finite enérgy
down to u, and that the UH of Efrogl) is questionable. of charge transfer between donors and acceptors, a parameter
Note that our results are in contradiction not only to the UHwhich enables processes of ionization of neutral impurities
(1), but to the inequality23) as well (y<D—1). Up to now, and of recombination of charged impurities. In the particular
all exponents found are in good agreement with this inequalease of equal amounts of donor and acceptor impurities, we
ity. For example, in Ref. 13 specimens of 40000 andderived rigorous relations for the symmetry of the model
125000 sites for two- and three-dimensional samples werwith respect to exchange of donor and acceptor sites. We
investigated in the Efros’ lattice mod¥l,and it was found also extended the previously known algorithm to find the
there that ifg(e) follows a power law,y=1.2+0.1 andy  ground state including the stability relations with respect to
=2.6x=0.2 for two and three dimensions, respectively. ionization and recombination processes and performed com-
Energy levels of donofacceptoy impurities are usually puter studies of the model proposed at zero temperature on a
close to the bottonttop) of the conductionvalence band.  number of two- and three-dimensional samples with ran-
Since in the most common semiconductors the energy gagomly distributedN donors andN acceptors. We explored
Eg~104 K andEy~20 K,A>1, one may ask what physical the energy region around the Fermi energwhere the Cou-
relevance does the mod@) with a finite A<10 have, ex- lomb gap in the single-particle density of statgs) is ob-
cept for being a pure academic exercise? However, in theerved. The analysis of the calculated histogray(s) re-
case of deep impurities the energy levels for some donorvealed that the behavior ofj(¢) obtained from the
acceptor pairs are extremely close to each other, not exclugimulations on finite samples in the immediate neighborhood
ing even the caséA=0.2" Table Il shows some donor- of u is determined solely by the finite size effects. In the

VI. SUMMARY
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region where finite size effects become negligitdés) is  put forward possible experimental situations where one
described by a power law with an exponent considerablycould observe the Coulomb gap with the features being the
depending on the paramet&rand on the sign of — . Our ~ same as those of the model with a finite

findings challenge the Efros universality hypothesis. More-
over, our results are in contradiction to the main inequality
(23) of which Efros’ universality hypothesis is a particular
case. We have reexamined the heuristic derivation of the This research was supported by The Swedish Natural
Efros hypothesis and shown that some implicit assumptionScience Council and by The Swedish Royal Academy of
which lead to universality are questionable. From the analySciences. S.A.B. and V.A.O. were partially supported by
sis of experimental data on admixtures in semiconductors w&rant No. RFFR 00-15-97334.

ACKNOWLEDGMENTS

IM. Pollak, Discuss. Faraday So60, 13 (1970; G. Srinivasan,
Phys. Rev. B4, 2581 (1971); V. Ambegaokar, B.J. Halperin,
and J.S. Langeibid. 4, 2612(1971).

2B.L. Altshuler and A.G. Aronov, Solid State Commu80, 115
(1979.

SW.L. McMillan and J. Mochel, Phys. Rev. Le#t6, 556 (1982);

bius, M.R. Richter, and B. Drittler, Phys. Rev. 45, 11 568
(1992.

14K. Tenelsen and M. Schreiber, Europhys. Létt, 697 (1993;
Phys. Rev. B49, 12 662(1994.

I5M. Chickon, M. Ortuno, and M. Pollak, Phys. Rev.38, 10 520
(1988.

16
G. Hertel, D.J. Bishop, E.G. Spencer, J.M. Rowell, and R.C.._A-L- Efros, J. Phys. @, 2021(1976.

Dynes,ibid. 50, 743(1983.

4y, Imry and Z. Ovadyahu, Phys. Rev. Le9, 841(1982; A.E.
White, R.C. Dynes, and J.P. Garno, Phys. Rev3B 1174
(1985.

SN.F. Mott, J. Non-Cryst. Solidg, 1 (1968.

SA.L. Efros and B.l. Shklovskii, J. Phys. 8, L49 (1975; B.I.
Shklovskii and A.L. Efros, Fiz. Tekh. Poluprovodi4, 825
(1980 [Sov. Phys. Semicond.4, 487 (1980 ].

"M.A. Pollak, J. Non-Cryst. Solid&1, 1 (1972; E.M. Hamilton,
Philos. Mag.26, 1043(1972.

8W. Schoepe, Z. Phys. B: Condens. Mati&t, 455 (1989; A.

7B |. Shklovskii and A. L. EfrosElectronic Properties of Doped

Semiconductor§Springer-Verlag, Berlin, 1984 p. 409.

18A.L. Burin, J. Low Temp. Phys100, 309 (1995.

19A A. Mogilyansky and M.E. Raich, Zh. I&p. Teor. Fiz95, 1870
(1989 [Sov. Phys. JETBS, 1081(1989].

20M. Sarvestani, M. Schreiber, and T. Vojta, Phys. Rev5B
R3820(1995; F. Epperlein, M. Schreiber, and T. Vojtdid.
56, 5890(1997.

2l R. Grannan and C.C. Yu, Phys. Rev. L&, 3335(1993.

22y/.N. Likhachev and V.A. Onishchouk, Phys. Lett. 244, 437
(1998.

23T Vojta and M. Schreiber, Phys. Rev. LetB, 2933(1994.

Andronard, A. Kouzoun, N. Cherradi, G. Marshal, and M. Gerl, 24M_ Mezard‘ G. Parisi‘ and M. A. Virasor(Spin Glasses Theory

Philos. Mag. B59, 207 (1989. i
93.D. Baranovskii, B.l. Shklovskii, and A.L. Efros, Zh.kép.
Teor. Fiz.78, 395(1980 [Sov. Phys. JETB1, 199(1980].

105 D. Baranovskii, A.L. Efros, B.I. Gelmont, and B.I. Shklovskii,

J. Phys. C12, 1023(1979.

1A L. Efros, N. van Lien, and B.I. Shklovskii, J. Phys.12, 1869
(1979; S.D. Baranovskii, A.A. Usakov, and A.L. Efros, Zh.
Eksp. Teor. Fiz.83, 756 (1982 [Sov. Phys. JETFS6, 422
(1982].

123 H. Davies, P.A. Lee, and T.M. Rice, Phys. Rev28 4260
(1984).

13A. Mobius and M.R. Richter, J. Phys. 2D, 539(1988; A. Mo-

and BeyondWorld Scientific, Singapore, 1987

25 E. White, R.C. Dynes, and J.P. Garno, Phys. Rev. [5§t532
(1986; J.G. Massey and M. Ledyid. 75, 4266(1995.

%M. Lee, J.G. Massey, V.L. Nguyen, and B.l. Shklovskii, Phys.
Rev. B60, 1582(1999.

27semiconductors: Impurities and Defects in Group IV Elements
and IlI-V CompoundsLandolt-Banstein New Series, v. 111/22,
edited by M. SchulZSpringer-Verlag, Berlin, 1989A. Bargys
and J. Kundrotasdandbook on Physical Properties of Ge, Si,
GaAs and InRScience and Encyclopedia Publ., Vilnius, 1994

28For the sake of simplicity, we took =0 in Egs.(21)—(23). In the
general cas@# 0, one should replace in Eq. (23) by u—e.

024201-8



