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Coulomb gap in a model with finite charge-transfer energy
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The Coulomb gap in a donor-acceptor model with finite charge-transfer energyD describing the electronic
system on the dielectric side of the metal-insulator transition is investigated by means of computer simulations
on two- and three-dimensional finite samples with a random distribution of equal amounts of donor and
acceptor sites. Rigorous relations reflecting the symmetry of the model presented with respect to the exchange
of donors and acceptors are derived. In the immediate neighborhood of the Fermi energym, the single-particle
density of statesg(«) is determined solely by finite size effects, andg(«) further away fromm is described by
an asymmetric power law with a nonuniversal exponent, depending on the parameterD.
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I. INTRODUCTION

Doping of solids might lead to drastic qualitative chang
in their properties. The metal-insulator transition~MIT ! is a
spectacular manifestation of this. The understanding of
driving forces of the MIT is a long-standing problem. In th
early seventies, the prediction1 was made that on the dielec
tric side of the MIT the long-range Coulomb interactio
deplete the single-particle density of states~SPDOS! g(«)
near the Fermi energym. Further, analytical calculations o
g(«) with Coulomb correlation taken into consideration ha
been performed on the metallic side of the MIT. Altshu
and Aronov2 showed that for the metallic caseg(«) in three
dimensions has a cusplike dependenceg(«);u«2mu1/2 near
m. This was later confirmed in electron tunneling expe
ments for amorphous alloys3 and granular metals.4

On the insulating side of the MIT, charge transport occ
via inelastic electron tunneling hopping between states lo
ized on the impurity sites with one-electron energies clos
m. Mott5 demonstrated that at low temperatures electr
seek accessible energy states by hopping distances be
the localization length, leading to a temperature~T! depen-
dence of the hopping conductivitys(T);exp(2T0 /T)n with
T0 being a characteristicT depending on localization lengt
and with the hopping exponentn51/4 for the noninteracting
case in three dimensions. Efros and Shklovskii6 ~ES! argued
that in the ground state of a system with long-range Coulo
interactions,g(«) ~when«→m) has the symmetric shape

g~«!;u«2muD21 ~1!

with the universalexponentD21 (D is the dimensionality
of the system!. Becauseg(«) vanishes only at«5m, this is
called a ‘‘soft’’ Coulomb correlation gap with a width6 D«
;e3(N0 /x3)1/2 (N0 is the SPDOS far away fromm, x the
dielectric constant ande the electron charge!. Equation~1!
gives7 for D53 a hopping exponentn51/2 at low T and,
indeed, the transition (n51/4)→(n51/2) with lowering of
temperature was observed in experiments.8

The intriguing hypothesis about the universality of t
exponent in Eq.~1! @henceforth referred to as the universal
0163-1829/2000/63~2!/024201~8!/$15.00 63 0242
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hypothesis~UH!# has stimulated further theoretical researc
both analytical9 and numerical.10–15 To establish the UH,
Efros16 used the ground-state stability conditions for loc
ized electrons with respect to charge transfer

« j2« i2
e2

xr i j
.0, ~2!

where« i and « j are the single-particle energies~SPE! of a
neutral donor (d0) on a sitei and of a charged donor (d1) on
a sitej, respectively, andr i j is the distance between the site
i andj. The conditions~2! were used to heuristically derive
nonlinear integral equation forg(«),16–19 and then
asymptotic analysis of this equation leads16 to Eq. ~1!.

Localized electrons have been studied using the so-ca
classical donor-acceptor (d-a) model ~see, e.g., Ref. 17!.
Within this model, the system considered is modeled b
continuous sample with randomly distributedk3N (k<1)
acceptor~a! andN donor ~d! sites. Eacha site is negatively
charged whereas out ofN only k3N donors ared1 which
leads to a large number of configurations, each of wh
must obey not only conditions~2! but also more complicated
conditions related to many-particles excitations~e.g., charge
transfer involving four, six, etc. sites!. The conjecture of
Efros about theuniversality implies thatg(«) does not de-
pend on peculiarities of the particular model and, as a c
sequence, further theoretical studies of localiz
electrons10,12–14 were confined to alattice d-a model pro-
posed in Ref. 16. In this model,N donors are localized on al
the sites of aD-dimensional lattice and the negative char
of k3N acceptors is uniformly smeared over the lattice si
so that each sitei has a chargee(ni2k), whereni51(0) for
d1 (d0). Disorder in this model is ensured by introducin
randomly distributed on-site potentials. Monte Carlo~MC!
simulations13 on very large specimens of the latticed-a
model atT50, however, have given rise to doubts about t
universality of theg(«) behavior. Further, studies20 of the
Coulomb gap atTÞ0 have revealed significant deviations
the exponent in Eq.~1! from the predicted universal value.

Another hint about possible nonuniversal behavior
g(«) has come from the intriguing and still not complete
©2000 The American Physical Society01-1
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decided problem of whether the so-called spin-glass ph
does exist in the classicald-a model~see, e.g., Refs. 21–23!.
Grannan and Yu21 studied the classicalD53 d-a model
with k50.5 but with the total acceptor charge uniformly di
tributed overd sites as in the latticed-a model. In this case
the classicald-a model is equivalent to a model of Isin
spins, localized on randomly distributed sites, with pairw
Coulomb interactions, a model in which a transition into t
spin-glass state was found21 to occur atTÞ0. It was then
concluded that such a transition should exist inall d-a mod-
els ~with or without smearing of negative charge, defined
a lattice or on a continuous sample! as well because of the
UH. Vojta and Schreiber,23 however, have shown that th
spin glass transition does not exist in the latticed-a model.16

Besides, in recent work by one of us,22 it was unequivocally
demonstrated that the ground state of the classicald-a model
and that of the model studied in Ref. 21 are qualitativ
different. An analysis of histogramsH@Qab# for overlaps
Qab5(1/N)( id(ni

a ,ni
b) ~here a and b refer to different

lowest-energy states! has revealed that, indeed, for the mod
studied in Ref. 21,H@Qab# has a maximum atQab50, i.e.,
a large number of microscopically different lowest-ener
states does exist in the model and according to Par
theory24 this implies the existence of a spin-glass state at
temperatures. Further MC simulations22 at TÞ0 revealed the
typical finite-size scaling of the spin-glass susceptibility.
the classicald-a model, however,H@Qab# has its maximum
at Qab51 which means that all lowest-energy states are
same from a microscopical point of view.

Therefore, it is highly desirable to study the properties
not only the classicald-a model, but of its various modifi-
cations as well. In the present work we consider a modifi
classicald-a model ~MCDAM ! in which acceptors can b
neutral, so the energyD of the charge transfer from a dono
to an acceptor,d01a0→d11a2, has to be finite. The clas
sical d-a model might then be viewed as the limit of th
MCDAM as D→`. We have investigated the shape of t
Coulomb gap in two- and three-dimensional MCDAMs
T50 and found that the behavior ofg(«) is in strong con-
tradiction to the UH of Efros. The paper is organized
follows. In Sec. II we introduce the MCDAM and arrive a
some rigorous results which follow from a symmetry of t
MCDAM with respect to the exchange of donor and accep
sites. Further, the algorithm of energy minimization for t
MCDAM, including a discussion about inherent finite si
effects, is presented in Sec. III. Section IV is devoted to
description of the main results obtained. In Sec. V we d
cuss possible causes of universality violation in t
MCDAM, analyze experimental data available in the liter
ture, and predict possible experimental situations in wh
the nonuniversal behavior ofg(«) might be observed. Fi-
nally, a summary is presented in Sec. VI.

II. BACKGROUND

A. Model

We consider aD-dimensional system of volumeLD, in
which an equal numberN of a and d sites are allocated
02420
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according to the Poisson distribution with a densityn5N
3L2D. Hereafter, all expressions will be written in dime
sionless units,n21/D for length, andE05e2n1/D/x for en-
ergy. A microscopic state of a particular spatial arrangem
of the d anda sites~henceforth referred to as the sampleR!
is determined by a set of occupation numbers (na ,nd)
[$na( i ),nd(k), i ,k51,2, . . . ,N% with na( i )51(0) for
a2(a0) and nd(k)51(0) for d0(d1). We investigate the
case of strictly localized electrons, whenaB!1 (aB is the
localization length of the electron on donor! and the energy
of the sample then is

E~na ,nd!5
1

2 (
iÞ j

na~ i !na~ j !

r i j
a2a

1
1

2 (
kÞ l

~12nd~k!!~12nd~ l !!

r kl
d2d

2(
i ,k

~12nd~k!!na~ i !

r ik
a2d

2D(
i

na~ i !, ~3!

where indicesi , j andk,l numbera andd sites, respectively,
r i j

a2a , r kl
d2d , and r ik

a2d are the distances between the acce
tors, between the donors, and between the acceptor and
donor, correspondingly. When charge transfer occu
E(na ,nd) changes by

dE~na ,nd!5(
i

«a~ i !dna~ i !1(
k

«d~k!dnd~k!

1(
i ,k

dna~ i !dnd~k!

r ik
a2d

1
1

2 (
iÞ j

dna~ i !dna~ j !

r i j
a2a

1
1

2 (
kÞ l

dnd~k!dnd~ l !

r kl
d2d

, ~4!

where«a( i ) is the SPE for the acceptors

«a~ i ![
dE~na ,nd!

dna~ i !
5(

j Þ i

na~ j !

r i j
a2a

2(
k

12nd~k!

r ik
a2d

2D,

~5!

«d( i ) is the corresponding SPE for the donors a
dna( i )@dnd(k)# denotes the change of the occupation nu
ber on thea ~d! site. If a microscopic state (na

0 ,nd
0) is the

ground state of this sample, then for any excitation the re
tion

dE~na
0 ,nd

0!>0 ~6!

holds. The specific appearance of the conditions~6! depends
on what excitations are allowed in the model system con
ered.

We investigate the simplest case with only pairs of si
involved in the charge transfer which can occur in four d
ferent ways, each of them denoted by a unique set
$dna( i ),dna( j ),dnd(k),dnd( l )%: ~i! via electron hops be-
tween acceptors$21,1,0,0%; ~ii ! via electron hops betwee
donors$0,0,21,1%; ~iii ! via ionization $1,0,21,0% and ~iv!
1-2
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via recombination$21,0,1,0%. From Eq.~4! one obtains the
ground-state stability relation for~i!:

«a
0~ j !2«a

1~ i !2
1

r i j
a2a

>0, ~7!

where «a
1(0)( i ) denotes«a( i ) if n( i )51(0). The stability

conditions for~ii !–~iv! are obtainable in a similar manner.
The pair (a0,a2)@(d0,d1)# might be located on any dis

tance and therefore in the thermodynamic limitm for the
acceptors@donors# ~i.e., an energy level which separat
«a[d]

0 and«a[d]
1 ) is determined as

ma[d]5min$«a[d]
0 ~ i !%5max$«a[d]

1 ~ i !%, ~8!

and the stability relations with respect to the ionization a
recombination lead to

ma5md5m. ~9!

Despite the finite size of samples we investigated, the r
tion ~9! with ma[d] calculated from Eq.~8! is valid within the
limits of accuracy of our calculations.

A macroscopic state of the sampleR is characterized by
the degree of acceptor ionization

Ca~R!5
1

N (
i

na~ i !, ~10!

by the SPDOS for acceptors

ga~«a ,R!5
1

N (
i

d„«2«a~ i !…, ~11!

and by the corresponding SPDOSgd(«d ,R) for the donors.
Note, that for the finite samples~especially for the relative
small systems we were able to investigate! Ca(R),ga(«a ,R),
and gd(«d ,R) depend to a large extent onR ~if a sample
would be big enough all quantities would be self-averagin!.
Therefore, in order to obtain reliable results, one has to w
with the quantitiesCa[^Ca(R)&,ga(«)[^ga(«a ,R)& and
gd(«)[^gd(«d ,R)&, where^ . . . & denotes the average ove
a number ofR’s. Note, that the valuesga(d)(«a(d) ,R)d«
obtained for independentR’s are scattered according to th
Gaussian distribution with meanga(d)(«)d« and standard
deviationAga(d)(«)d«. In the region of the Coulomb gap
ga(d)(«)d«;1024 and the dispersion is several orders
magnitude larger than the mean. Therefore, in order to
duce the statistical noise in the finalga(d)(«) dependences
an average is needed over a sufficient large amount of in
pendent samples~we performed calculations with up to 104

samples!.

B. Acceptor-donor symmetry

The system investigated is electrically neutral, i.e., for a
sample

(
i

na~ i !5(
k

~12nd~k!!. ~12!
02420
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Then, the energies of any pair of microscopic states (na ,nd)
and (na* ,nd* ) for a sampleR and its ‘‘mirror’’ reflectionR*
~when the donor and acceptor sites exchange places kee
the spatial arrangement of sites unchanged! are equal under
the following conditions:

«a~ i !1«d* ~ i !5«d~k!1«a* ~k!52D ~13!

and

na* ~ i !5@12nd~ i !# nd* ~k!5@12na~k!#. ~14!

The stability relations~7! for the ground state (na
0 ,nd

0) of the
sampleR transform into stability relations for the groun
state (na

0* ,nd
0* ) of the sampleR* through the relations~13!,

~14! as well.
Since averaging over samples includes all possible p

R andR* , it follows from the symmetry relations~13! and
~14! along with the definition~11! thatga(«) can be mapped
to gd(«) using the relation

gd~«!5ga~2«2D!. ~15!

The symmetry of the model imposes also a relation
tween the Fermi energym @Eqs.~8!, ~9!# and the paramete
D of the model. Expressingna[d] ( i @k#) in terms of the
Heaviside’s step functionsna[d]5u„m2«a[d] ( i @k#)…, the
quantityCa can be written in the form

Ca5E
2`

m

ga~«!d«5E
m

`

gd~«!d«. ~16!

The symmetry relation~15! transforms Eq.~16! into an inte-
gral relation

E
2m2D

`

gd~«!d«5E
m

`

gd~«!d«, ~17!

which has a meaning only if

m52
D

2
. ~18!

Thus, the Fermi energy of our model system in the therm
dynamic limit is a fundamental quantity depending only
the energy of charge transfer from an acceptor to a dono

III. METHOD

A. Algorithm of energy minimization

We start from a random allocation ofN d andN a sites in
the continuousD-dimensional system with the densityn
51, and then generate an initial microscopic state~IMS!
(na ,nd) of the sampleR by charging randomly chosenCa
3N both donors and acceptors~usually we takeCa50.7).
Further, we search for such a microscopic state (na

0 ,nd
0)

which obeys the stability conditions~7!. We used an algo-
rithm which is an extension of the algorithm proposed
Ref. 10 to the caseDÞ` and which consists of the thre
main steps.
1-3
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In order to save computer time, first we look for pa
a02a2(d02d1) for which the ‘‘crude’’ stability relation
D«[«a(d)

0 2«a(d)
1 .0 is violated. Then, the energy of th

system is decreased by transferring an electron between
a pair of sites for whichD« has its minimal nonpositive
value. This process is repeated until a state is reached
which D«.0 for all possiblea02a2 andd02d1 pairs~step
I!. In a similar manner, we further minimize the energy
the system with respect to the ‘‘true’’ stability relations~7!
for the charge transfer between thea02a2 andd02d1 pairs
~step II!. And, finally, in step III we diminish the energy o
the system with respect to the stability relations for ioniz
tion and recombination processes. Since ionization and
combination processes change the degreeCa of the system
ionization, each time after one of these processes takes p
during calculations, we go back to step II. Repeating step
and III, we finally arrive at a microscopic state (na

0 ,nd
0) for

which all four stability conditions are fulfilled. We name th
procedure (na ,nd)→(na

0 ,nd
0) ‘‘a single descent.’’

It should be noted, however, that the state (na
0 ,nd

0) is not
necessarily the ground state of sampleR, since for the
ground state, in general, not only the simplest relations~7!
with only pairs of sites included, but more complicated re
tions involving quadruplets, sextets, etc. of sites have to
fulfilled. Therefore, the state (na

0 ,nd
0) ~after Ref. 10! hereaf-

ter will be referred to as the pseudo–ground state~PGS! of
the sampleR. In order to check how the ‘‘erroneousness’’
PGS influences the outcome of our calculations, we also
formed an analysis of ground states obtained by mean
m-rank descent which comprises a sequence of the si
descents on the same sample with different IMS when
culations are stopped after the lowest observed PGS en
repeatsm times. We find thatga(«) andgd(«) obtained for
the PGS’s generated by the single descents and by des
with m510, say, do not differ within the limits of statistica
errors. Note, that in thed-a models studied before,13,15 g(«)
decreases~leaving qualitative behavior unchanged, thoug!
when many-particle excitations are taken into account. T
is not the case in MCDAM where even the simplest stabi
conditions give good-quality PGS. We think this is due to t
ionization and recombination processes included in our
culations. So, we conclude, that reliable results can be
tained by means of single descents already, thereby sav
lot of computer time and resources.

B. Finite-size effects

Due to constraints in computer resources, the larg
samples we were able to deal with, comprise up toN
52000 donor andN52000 acceptor sites (L;45 for D
52 andL;12 for D53). Such relatively small sizes of th
samples investigated might influence the outcome of ca
lations. Detailed analysis of finite size effects on the res
obtained will be presented in Sec. IV, and here we wan
make two remarks about inherent finite size effects in
model system considered.

First, as follows from Eq.~7!, for finite samples atT
50ga(«)50 within the interval
02420
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u«2mu,~2L3AD !21. ~19!

The relation~19! gives the estimation of how close tom data
on the energy spectrum are, in principle, obtainable from
calculations on finite samples.

Secondly,m for finite samples does differ, in genera
from sample to sample. A straightforward averaging ofg(«)
@due to the symmetry relation~15! hereafter we conside
g(«)[ga(«) only# over different samples might thus lead
a distortion of theg(«) shape especially in the region whe
the Coulomb gap is observed. In order to avoid this und
ired effect, we added togetherg(«) for the same values o
«2m(R) rather than for the same values of« with m(R)
calculated as

m~R!5
1

2
~min$«a

0~ i !%1max$«a
1~ i !%!. ~20!

Finally, we remark that all the data presented below w
obtained for the open boundary condition. In order to ens
that results obtained are not determined by the type of
boundary conditions used in calculations, we performed c
culations of theD52 MCDAM at D50 with different
boundary conditions and found that behavior ofg(«) is not
governed by the boundary conditions used. For exam
g(«)’s for D52 system withN5500 and open boundar
conditions and withN52000 and periodic boundary cond
tions do not differ within the limits of statistical errors fo
any « calculated.

IV. RESULTS

Figure 1 showsg(«2m) in the vicinity of the Fermi en-
ergy m obtained for theD52 samples withN51500 and
various values ofD. As is seen,g(«2m) depends consider
ably onD except for a narrow windowu«2mu&0.05, where

FIG. 1. g(«2m) for D52 with N51500 atD50 ~circles!, 2
~squares!, 4 ~diamonds!, and 10~triangles! averaged over 10 000
(D50), 5100 (D52), 3700 (D54), and 2200 (D510) samples.
Insert shows double logarithmic plot ofg(«2m) for «.m in the
region«2m&0.05.
1-4
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all data merge into some ‘‘universal’’ curve symmetric wi
respect tom, the curve which can be anticipated to obey t
Efros UH ~1!. However, a double-logarithmic plot of th
‘‘universal’’ g(«2m) ~insert in Fig. 1!, reveals thatg(«
2m) in the ‘‘universality’’ region is not even a power law
The width of this ‘‘universality’’ region is comparable to th
width of the region~19! ~for the data presented in Fig. 1u«
2mu,0.011), so it is plausible to suggest that the ‘‘unive
sal’’ behavior ofg(«2m) is governed by the finite-size ef
fects. This is clearly demonstrated in Fig. 2 whereg(«
2m) are shown for severalN investigated.

The« window where finite size effects are severe, shrin
considerably with increasingN for all values ofD we inves-
tigated. For instance,g(«2m) for N5500 andN51000 at
D50 @see Figs. 2~a!, 2~c!# merge whenu«2mu*0.2 while
corresponding curves forN51000 andN51500 are indis-
tinguishable already atu«2mu*0.1. The statistical noise ob
served for the curves in Fig. 2 is quite small even close tom
and hence, the influence of insufficient large statistics on
results obtained is excluded. Note that the ‘‘universal’’ b
havior ofg(«) in the vicinity of m obtained for the classica
d-a model ~see Fig. 3 in Ref. 12! is most likely due to the
finite size effects as well.

In the region u«2mu*0.2, where the curves for allN
collapse into a single curve~and where we believe the the
modynamic limit is reached!, g(«2m) is described by a
power law g(«2m);u«2mug. The deviation from the
power law observed far away fromm(u«2mu*0.7) is due to
the boundaries of the Coulomb gap which are;1 in units of
E0. One can see from a comparison of the data shown in
2, that the exponentg depends considerably onD. Further-
more, values ofg in the region«.m and those in the region
«,m differ as well with this difference increasing with in
creasingD. The data forg obtained for theD52 MCDAM
are summarized in Fig. 4 where a significant deviation og

FIG. 2. g(«2m) for «.m ~a!, ~b! and«,m ~c!, ~d! for D52 at
D50 ~a!, ~c! and 4 ~b!, ~d!, with N5500 ~curves numbered 1!,
1000 ~2!, and 1500~3! averaged over 10 000 samples~except the
caseN51500 andD54 with the average over 3700 samples!. The
dashed lines are least-squares power-law fitsg(«2m);u«2mug

with g50.9 ~a!, 0.55 ~b!, 0.98 ~c! and 0.78.
02420
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from the valueD21 predicted by the hypothesis~1! is ob-
served at all values ofD investigated except for the caseD
50 wheng'1 within the limits of statistical accuracy. Not
that the deviation ofg from its predicted value grows mono
tonically with increasingD. At D510 where the features o
the MCDAM are expected to be nearly the same as thos
the classicald-a model with all the acceptors being ionize
~indeed, the degree of the acceptor ionizationCa;0.9 for the
two-dimensional MCDAM atD510, see Fig. 5 below! the
deviation from the Efros exponent is very large.

The main results forg(«2m) obtained for theD53
MCDAM are summarized in Figs. 3 and 4. It is seen that
behavior of g(«2m) in three dimensions does not diffe
qualitatively from the behavior ofg(«2m) in two dimen-
sions. Some quantitative differences observed arise from
fact that at givenN ~the parameter which determines th
amount of computer memory needed for the calculations! the
linear size of aD52 sample with a given density of sites
larger than that of aD53 sample with the same density o
sites, and thereby, the finite size effects forD53 samples
are more pronounced. For example, the lower boundary
the region wherega(«2m) can be described by the powe
law u«2mug shifts towards largeru«2mu*0.4 values~see
inserts in Fig. 3!. Remarkably, the exponentg does not reach
the valueD21 predicted by the UH~1! even atD50 ~see
upper curves in Fig. 4!.

Unlike g(«2m) in the vicinity of the Coulomb gap,Ca
describes the state of the entire sample and therefore rea
the thermodynamic limit much faster thang(«2m). This
allows us to obtain quite accurate results forCa from data on
a relatively small amount of samples withN5500 only. Fig-
ure 5 shows the variations ofCa with D both for D52 and
D53. In D53 almost all acceptors become ionized rath
soon, while for two dimensions even for the largestD inves-
tigated, around 10% of the acceptors remain neutral. So,

FIG. 3. g(«2m) for D53 with N51000 atD50 ~circles!, 2
~squares!, 4 ~diamonds!, and 10~triangles! averaged over 10 000
samples. Inserts show double-logarithmic plots ofg(«2m) at D
52, for N5500 ~curves numbered 1!, 1000 ~2!, and 2000~3!, in
the regions«.m ~a! and for «,m ~b!. The dashed lines in the
inserts are least-squares power-law fitsg(«2m);u«2mug with g
51.16 ~a!, 1.29 ~b!.
1-5
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can say, that theD53 MCDAM at D*7 reduces already to
the classicald-a model. It is known that the classicalD53
d-a model exhibits the so-called Coulomb fluctuation
catastrophe.17 For calculations on finite samples it implie
that statistical fluctuations ofm(R) grow dramatically with
increasingD which is the case in our calculations~see Table
I!. Therefore, in order to reduce the statistical noise inD
53, the average ofg(«2m) over a much larger~compared
to D52) number of samples is needed. Note, thatm(R) in
both two and three dimensions are scattered according to
Gaussian distribution with the meanm̄ obeying the relation
~18!.

V. DISCUSSION

Despite the fact thatg(«2m) is indeed described by
power law in a wide range of« inside the region of the

FIG. 4. The exponentsg as a function ofD for D52, N
51500~open symbols, left scale! andD53, N51000~filled sym-
bols, right scale!. Circles represent the positive values of«2m
while diamonds the negative values of«2m. Dashed lines are
guides to the eye.

FIG. 5. Ca as a function ofD for D52 ~circles! and D53
~diamonds! with N5500 averaged over 1000 samples. The so
lines are third-degree polynomial fits.
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Coulomb gap, the exponentg is considerably smaller than
that predicted by the UH both forD52 andD53. More-
over, the exponentg depends significantly onD and is dif-
ferent for the cases«.m and«,m. It is believed that infor-
mation aboutg(«) might be directly obtained from tunnelin
and photoemission experiments,25 and recent experiments26

on boron-doped silicon crystals have shown thatg(«) at
higher energies obeys a power law with an exponent slig
less than 0.5, which is in good agreement with our results
D53 and D*8. However, the nonmetallic samples sho
around the Fermi energy a nearly quadratic Coulomb gap
the question arises whether our results could be related to
intermediate asymptotic behavior observed. Here we wan
make three remarks concerning this question:

First, the power law is valid above a value«0(N) below
which the finite size effects take over~Figs. 2 and 3!. It
seems from our results, that«0(N)→m when N→`. In D
52 we were able to obtain size-independent results dow
«0;0.1, i.e., for;90% of the whole Coulomb gap.

Secondly, as follows from Eq.~2!, the distancer i j be-
tween d0, with « i

1P@2«,0# @« here is the half-width of a
narrow band aroundm50 ~Ref. 28!# and d1 with « j

0

P@0,«# should be not less than 1/2«. That is, sites with en-
ergies« i

1P@2«,0# cannot be inside aD-dimensional sphere
of radiusRsp51/2« and with the center in a site with th
energy « j

0P@0,«#. Assuming thatall such spheresdo not
intersect, the total volume occupied by the spheres is

Vsp5N3S~D !S 1

2« D DE
0

«

g~«8!d«8, ~21!

whereS(D) is the volume of aD-dimensional sphere with
the radius equal to unity. SinceVsp cannot exceed the tota
volume V of a sample (V5N at n51) we arrive at the
inequality

E
0

«

g~«8!d«8<
~2«!D

S~D !
, ~22!

which is valid for all« if

g~«!<
D32D

S~D !
u«uD21. ~23!

The UH then is a limit case of Eq.~23!. The density of sites
with energies« i

1P@2«,0# indeed decreases when«→0, so

TABLE I. The meansm̄ and standard deviationsDm of the
Fermi energy calculated for the three-dimensional model~3! with
N51000 and variousD.

D m̄ Dm

0 20.017 0.100
2 21.016 0.187
4 22.0149 0.287
6 23.016 0.392
8 24.011 0.502
10 25.018 0.607
1-6
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TABLE II. Some donor-acceptor pairs for which the difference between the donor and acceptor e
levels does not exceed 10 meV.Eg , Ev , andEc are, respectively, the energy gap, the top of the vale
band, and the bottom of the conductivity band. If the minimal/maximal concentrations of both dono
acceptor are known, the parameterE0 is calculated using the data for the less soluble of the pair.

Donor Acceptor Concentration, cm23 E0, meV Ej , meV D, meV
min max min max

Si(Eg51124 meV,x512)

Fe 1.231016 431016 0.6 4 Ec2796 8
Zn 2.331016 831016 Ev1320

Ni 1018 1013 12 ,1 Ev1(1604190) 3.1 – 33.1
In 331017 431018 Ev1156.9

Ge(Eg5740 meV,x515.9)

S no reliable data Ec2296 4
Ni 4.831015 831015 1.5 1.8 Ec2300

GaAs(Eg51520 meV,x512.5)

Ti 231016 3.1 Ec21000 0
Fe Ev1520
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the assumption~21! for the spheres withfinite radii seems to
be plausible. However, simultaneouslyRsp→` and conse-
quently the plausibility of the assumption~21! and thereby of
Eq. ~1! becomes questionable.

Finally, Eq. ~1! can be also obtained as the asympto
behavior of a nonlinear integral equation forg(«) as«→0,
the equation which, in turn, is heuristically obtained fro
Eq. ~2!. The derivation of this integral equation~given, for
example, in Ref. 19! is based on the implicit assumption th
the sites with charged donors are randomly distributed
space according to the Poisson statistics. However, it
unequivocally demonstrated in computer studies of the C
lomb gap12 that charged donor sites with energies close tom
tend to form clusters~Ref. 12, Fig. 6!.

We conclude thatg(«2m) in the region of the Coulomb
gap in model~3! has a power law behavior for all energie
down to m, and that the UH of Efros~1! is questionable.
Note that our results are in contradiction not only to the U
~1!, but to the inequality~23! as well (g,D21). Up to now,
all exponents found are in good agreement with this ineq
ity. For example, in Ref. 13 specimens of 40 000 a
125 000 sites for two- and three-dimensional samples w
investigated in the Efros’ lattice model,16 and it was found
there that ifg(«) follows a power law,g51.260.1 andg
52.660.2 for two and three dimensions, respectively.

Energy levels of donor~acceptor! impurities are usually
close to the bottom~top! of the conduction~valence! band.
Since in the most common semiconductors the energy
Eg;104 K andE0;20 K,D@1, one may ask what physica
relevance does the model~3! with a finite D&10 have, ex-
cept for being a pure academic exercise? However, in
case of deep impurities the energy levels for some don
acceptor pairs are extremely close to each other, not exc
ing even the caseD50.27 Table II shows some donor
02420
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acceptor pairs with D&10 in the most common
semiconductors. The solubilities of these impurities a
rather low, thereby reducing the temperature at which
Coulomb gap with features described by the model~3! can
be observed. Fortunately, these temperatures are high en
(;10420 K) for modern experimental techniques a
hence experimental observation of the Coulomb gap in
semiconductors with deep impurities is possible to acco
plish.

VI. SUMMARY

We have studied a model of impurities in semiconduct
with infinite-range Coulomb interactions between dono
between acceptors, and between donors and acceptor
new parameter introduced in the model is the finite energD
of charge transfer between donors and acceptors, a param
which enables processes of ionization of neutral impurit
and of recombination of charged impurities. In the particu
case of equal amounts of donor and acceptor impurities,
derived rigorous relations for the symmetry of the mod
with respect to exchange of donor and acceptor sites.
also extended the previously known algorithm to find t
ground state including the stability relations with respect
ionization and recombination processes and performed c
puter studies of the model proposed at zero temperature
number of two- and three-dimensional samples with r
domly distributedN donors andN acceptors. We explored
the energy region around the Fermi energym where the Cou-
lomb gap in the single-particle density of statesg(«) is ob-
served. The analysis of the calculated histogramsg(«) re-
vealed that the behavior ofg(«) obtained from the
simulations on finite samples in the immediate neighborho
of m is determined solely by the finite size effects. In t
1-7
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region where finite size effects become negligible,g(«) is
described by a power law with an exponent considera
depending on the parameterD and on the sign of«2m. Our
findings challenge the Efros universality hypothesis. Mo
over, our results are in contradiction to the main inequa
~23! of which Efros’ universality hypothesis is a particul
case. We have reexamined the heuristic derivation of
Efros hypothesis and shown that some implicit assumpti
which lead to universality are questionable. From the ana
sis of experimental data on admixtures in semiconductors
,
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rl
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.
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put forward possible experimental situations where o
could observe the Coulomb gap with the features being
same as those of the model with a finiteD.
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