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Structural and thermodynamic properties of diamond: A path-integral Monte Carlo study
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Path-integral Monte Carlo simulations in the isothermal-isobaric ensemble have been carried out to study
structural and thermodynamic properties of diamond, as a function of temperature and hydrostatic pressure.
Atomic nuclei were treated as quantum particles interacting through a Tersoff-type potential. The obtained
lattice parameter, heat capacity, thermal expansion coefficient, and bulk modulus show an overall agreement
with the experimental data. The importance of anharmonicity and quantum effects on the properties derived
from the quantum simulations has been assessed by comparison with results obtained in classical simulations
with the same interatomic potential, as well as with those derived from a quasiharmonic approximation. An
increase in the lattice parameter by 1.731022 Å and a decrease in the bulk modulus by about 5% is found at
low temperatures, as a consequence of the zero-point motion of the C atoms.
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I. INTRODUCTION

Due to the interest of the solid phases of carbon in scie
and technology, many properties of its crystalline and am
phous phases have been studied by theoretical techniq
including ab initio methods,1–7 as well as Monte Carlo8–11

and molecular dynamics~MD! simulations.12–14 In particu-
lar, the high-pressure properties of diamond are of enorm
interest due to the importance of the diamond anvil cell
high-pressure physics.15,16

Ab initio methods such as the density-functional theo
accurately predict several structural and dynamical prope
of solids. For diamond, in particular, the lattice parame
bulk modulus, and phonon-dispersion curves have been
culated by several authors.1,4,7,17Quantitative calculations o
phenomena associated to the anharmonicity of the in
atomic potential cannot, however, be carried out with suc
degree of accuracy. Some progress in this line has been m
in the last decade by combiningab initio electronic-structure
calculations with the quasiharmonic approximati
~QHA!.6,17–19However, the validity range of these kinds
calculations is not clear, in particular for situations in whi
the anharmonicity cannot be treated as a small perturba
on the harmonic solid, which happens at high temperatu
~e.g., thermal expansion coefficient!.

A different approach to studying finite-temperature pro
erties of condensed-matter systems is based on Monte C
~MC! or MD simulations. A basic point in these simulation
is the model assumed for the microscopic interaction
tween atoms in the material. From a computational poin
view, a feasible approach is based on the use of phenom
logical potentials that describe the potential energy of
system as a function of the nuclear coordinates. Never
less, independently of the complexity of the approach e
ployed to describe the interatomic interaction, it is interest
to study finite-temperature properties by methods that exp
itly treat the quantum character of the nuclei. This is es
cially important for those properties that depend directly
the anharmonicity of the interaction potential~e.g., thermal
expansion, isotopic effects!. In this context, the Feynma
0163-1829/2000/63~2!/024103~10!/$15.00 63 0241
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path-integral~PI! approach to quantum statistical mechan
is a convenient method to study finite-temperature proper
of quantum systems. The combination of Monte Carlo~MC!
simulations with path integrals~the so-called PI MC method!
is now a well-established method to study many-body pr
lems in condensed matter.20,21

PI MC investigations on structural and dynamical prop
ties of diamond-type semiconductors, such as silicon22,23and
germanium,24 have been already carried out. Since the c
bon mass is smaller than that of Si and Ge, one expects
quantum effects associated to the anharmonicity of the in
atomic potential will be more important in diamond than
the previously studied semiconductors. Classical simulati
of solid phases of carbon have been carried out by us
empirical interatomic potentials, such as that developed
Tersoff.8,9 This potential was employed to study diamon
and amorphous carbon,8 as well as crystalline silicon,25 C-Si
and Si-Ge systems.26 Further applications of this interatomi
potential include Monte Carlo simulations of amorphous s
con carbide.27 In the context of PI MC simulations, the Ter
soff potential has been used previously to study the quan
delocalization of C nuclei in fullerenes.28

An alternative to the use of empirical potentials in ma
rials simulations consists of deriving the system energy
standard electronic structure methods, as in the C
Parrinello approach.29 Such first-principles MD simulations
have been carried out to study amorphization transitions
laser melting in diamond-type semiconductors.30,31Although
the original version of this method considered the atom
nuclei as particles evolving in time according to the laws
classical physics, new approaches that take into accoun
quantum character of both electrons and nuclei have
peared in recent years. Thus,ab initio path-integral MD
simulations have become feasible for small molecules,32 and
they begin now to be applied to condensed-ma
problems.33 These techniques constitute a promising tool
study, in the near future, the influence of anharmonic effe
in solids.

In the present work, we report on results for several eq
librium properties of diamond, as derived from PI MC sim
©2000 The American Physical Society03-1
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CARLOS P. HERRERO AND RAFAEL RAMI´REZ PHYSICAL REVIEW B63 024103
lations in the isothermal-isobaric~NPT! ensemble. The C
atoms were treated as quantum particles interacting thro
an effective Tersoff-type potential. Furthermore, the simu
tion results have been analyzed by comparison with th
yielded by a quasiharmonic approximation with the sa
interatomic potential. This study has been performed i
temperature range between 50 and 3000 K, and for hy
static pressures up to 6000 kbar.

The paper is organized as follows. In Sec. II we descr
briefly the computational method and give some techn
details. In Sec. III we present and discuss the results of
MC simulations, which are given in different subsectio
dealing with the internal energy, heat capacity, bulk mo
lus, crystal volume, and thermal expansion. The paper clo
with a summary~Sec. IV!.

II. COMPUTATIONAL METHOD

In the path-integral formulation of statistical mechan
~i.e., at finite temperatures!, the partition function of a quan
tum system is evaluated through a discretization of the d
sity matrix along cyclic paths, composed of a finite numbeL
~Trotter number! of ‘‘imaginary-time’’ steps.35 In the nu-
merical simulations, each quantum particle is described b
set of L ‘‘beads,’’ forming a cyclic chain. Thus, the imple
mentation of the PI MC method is based on an isomorph
between the actual quantum system and a classical one
tained by replacing each quantum particle~here, atomic
nucleus! by a chain ofL classical particles~beads!. This
means that a simulation ofN quantum particles is equivalen
to one ofNL classical particles. This isomorphism is exact
the limit L→`, but convergence of the interesting quantiti
is obtained for relatively lowL values. Extensive descrip
tions of this computational method can be fou
elsewhere.20,21,23

Equilibrium properties of diamond have been calcula
by PI MC simulations, in the isothermal-isobaric ensemb
These simulations have been performed on a 23232 super-
cell of the diamond face-centered-cubic cell including 64
atoms, with periodic boundary conditions. We have chec
that using larger supercells does not change appreciably
of the results presented below. In particular, we have car
out PI MC simulations on a 33333 supercell at three dif-
ferent temperatures, and found that the results coinc
~within error bars! with those obtained for the 23232 su-
percell. The C nuclei were treated as quantum particles
teracting through a Tersoff-type potential.8,25 We have used
the original parameters given by Tersoff,8 with the exception
of A51387.3 eV andB5348.3 eV, which give for the lat-
tice parameter derived from PI MC simulations an agreem
with experimental results, better than the originalA and B
parameters in Ref. 8. For given temperature and pressure
generated in our PI MC simulations 33104 quantum paths
per atom for system equilibration, and 53105 paths per atom
for the calculation of ensemble average properties. More
tails on the actual application of this method are given
Ref. 23.

To keep a constant precision for the results at differ
temperatures, we have considered a Trotter numberL that
02410
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scales as the inverse temperature. In fact, we have takenL as
the integer number closest to\vc /(kBT), with vc;3vD
(vD , Debye frequency of diamond!, which is enough for
convergence of the results. This means:vc54200 cm21,
which translates into a productLT56000 K, i.e.,L520 at
T5300 K. We have checked the convergence with the Tr
ter number of several quantities derived from the PI M
simulations. In Fig. 1 we show the convergence of the eq
librium lattice parameter of diamond, as a function ofL. The
results presented in this figure correspond to atmosph
pressure and two different temperatures:T5400 and 1000
K. The resulting lattice parameter increases with risingL,
starting from the classical value corresponding to each t
perature~indicated in the figure by black symbols!, which is
obtained forL51. For LT;6000 K, the lattice paramete
converges to a plateau~the quantum value! for each tempera-
ture. In general, the results of the PI MC simulations co
verge at high temperatures (T.QD) to those corresponding
to classical simulations withL51. At lower temperatures
the CPU time required to carry out the quantum simulatio
increases as 1/T, proportional to the Trotter numberL. This
means, for example, that atT5300 K our PI MC simula-
tions require a CPU time 20 times longer than that cor
sponding to a classical simulation with the same interato
potential.

For simulations in the isothermal-isobaric ensemble,
volume of the simulation cell,V, is allowed to change. If we
call V5^V&, then the mean-square fluctuation in the vo
ume,D25^V2&2V2, is given by

D25
V

B
kBT, ~1!

whereB52V(]P/]V)T is the isothermal bulk modulus o
the material. In Fig. 2 we present the normalized fluctuatio
(D/V)2, as obtained from our PI MC simulations at differe

FIG. 1. Lattice parameter of diamond, as derived from PI M
simulations atT5400 and 1000 K as a function of the productLT,
with L the Trotter number. Black symbols indicate the results
classical MC simulations (L51). Dotted lines are guides to th
eye.
3-2
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STRUCTURAL AND THERMODYNAMIC PROPERTIES OF . . . PHYSICAL REVIEW B 63 024103
temperatures, and for three hydrostatic pressures~squares,
1 atm; circles, 1000 kbar; triangles, 4000 kbar!. Dotted lines
are linear fits to the low-temperature (T<1000 K) MC data.
The fluctuations in the cell volume decrease as pressure r
due to an increase in the bulk modulus of the mate
~see below!. At T52000 K andP51 atm, the relative fluc-
tuation in the simulation-cell volume,D/V, amounts to
0.014. As expected from Eq.~1!, D2 increases approximatel
linearly with the temperature, with a slope proportional
B21. Nevertheless, deviations from linearity are evident
the results shown in Fig. 2, as a consequence of changesB
and V with the temperature, especially at low hydrosta
pressures.

In the following section, results of the PI MC simula
tions will be compared with those derived from a QHA. Th
approximation is based on a renormalization of t
phonon frequencies with volume, and for a given v
ume the solid is assumed to be harmonic.34,36 This vol-
ume dependence of phonon frequencies is usually
cribed by a mode-dependent Gru¨neisen parameter36 gn(q)
52] ln vn(q)/] lnV, wherevn(q) are the frequencies of th
nth mode in the crystal. For small volume changes this
rameter can be assumed to be constant for each mode
the QHA calculations presented here, we have emplo
the same supercell as for the PI MC simulations, i.e.
23232 supercell with periodic boundary conditions. Th
means that only theq50 modes in the Brillouin zone of the
supercell are included in the calculation, as modes witq
Þ0 violate the periodic boundary conditions. Then, the to
number of vibrational modes in the QHA is 189, i.e., thr
times the number of C atoms in the supercell minus th
translational degrees of freedom. The Gru¨neisen parameter
gn(q) were obtained by numerical differentiation of the v
brational frequenciesvn(q) calculated by diagonalization o
the dynamical matrix corresponding to two supercells, wh

FIG. 2. Mean-square fluctuations in the volume of the simu
tion cell, D25^V2&2^V&2, as derived from path-integral Mont
Carlo simulations at different hydrostatic pressures. These fluc
tions are shown normalized byV25^V&2. Squares,P51 atm;
circles, 1000 kbar; triangles, 4000 kbar. Dotted lines are linear
to the low-temperature results.
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lattice parameter deviated by 531024 Å from the equilib-
rium value. For each temperature, we calculated the free
ergy as a function of volume, with the corresponding ren
malized phonon frequencies. The lattice parameter w
changed in steps of 1024 Å, and from the free-energy curv
we obtained the equilibrium volume as a function of pre
sure.

III. RESULTS AND DISCUSSION

A. Internal energy

For given volume and temperature, the internal energy
the crystal,E(V,T), can be written as

E~V,T!5E01ES~V!1Ev ib~V,T!, ~2!

whereE0 is the minimum potential energy for the~classical!
crystal atT50, ES(V) is the elastic energy, andEv ib(V,T)
is the vibrational energy. With the parameters employ
here for the Tersoff potential, we findE052481.302 eV
per simulation cell~64 atoms!, which corresponds to a~clas-
sical! lattice parameteraC(0)53.5493 Å, to be compared
with aC(0)53.5656 Å obtained with the original Tersof
potential.8 That value forE0 translates into a cohesive en
ergy of 7.52 eV per atom.

In Fig. 3 we plot the temperature dependence of the in
nal energy~kinetic plus potential! obtained in the PI MC
simulations at atmospheric pressure~open squares!. In this
figure we have taken as zero the minimum of potential
ergy (E0). The solid line represents the internal energy in
QHA approximation with the same interatomic potential. F
comparison, we also present the result of a totally harmo
approximation~crystal volume independent of temperatur!
in the same temperature region~dashed line!. The harmonic
approximation may be viewed as a limiting case of the QH
when the Gru¨neisen parameters are set equal to zero. T

-

a-

ts

FIG. 3. Temperature dependence of the internal energyE per
simulation cell. Open squares: results of PI MC simulations; c
tinuous line: quasiharmonic approximation; dashed line: harmo
approximation with the volume and phonon frequencies atT50.
The zero of energy corresponds to the classical limit atT50.
3-3
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CARLOS P. HERRERO AND RAFAEL RAMI´REZ PHYSICAL REVIEW B63 024103
energy values derived in the QHA follow closely those fou
in the PI MC simulations, although the simulation results
slightly larger at temperatures higher than 2000 K. At 30
K, this difference amounts to 0.69 eV per simulation cell.
300 K, the internal energy found in the simulations
2467.76 eV, which corresponds to a cohesive energy
7.31 eV per atom, close to the experimental value of 7
eV.37 The internal energy shown in Fig. 3 corresponds ba
cally to the vibrational energyEv ib(V,T). For T→0 ~zero-
point motion! this energy amounts to 13.31 eV per simu
tion cell ~0.21 eV per atom!. The elastic energyES(V)
represents a small part of the internal energy, and amoun
0.10 and 1.43 eV per cell at 300 and 3000 K, respective

In Fig. 4 we present the pressure dependence of the in
nal energy atT5300 K. Open squares represent data o
tained from our PI MC simulations, whereas the dashed
is the result of the QHA. Differences between results of b
kinds of calculations are less than 0.5 eV in the whole pr
sure range considered here, and are not detectable a
scale of the figure. The vibrational energy at 300 K increa
from 13.4 eV per simulation cell atP51 atm, to 17.2 and
20.8 eV atP52000 and 6000 kbar, respectively. Thus, t
largest contribution to the internal energy,E(V,T)2E0, at
pressuresP*2000 kbar comes from the elastic ener
ES(V).

For comparison with our results, we also present in Fig
the pressure dependence of the zero-temperature interna
ergy predicted by the Murnaghan’s equation of state:38

E~V,0!5
B0V

B08
F ~V0 /V!B08

B0821
11G1C, ~3!

where C5E(V0,0)2B0V0 /(B0821) is a constant and th
subindex zero indicatesP50. This equation has been em

FIG. 4. Pressure dependence of the internal energy,E, of dia-
mond atT5300 K. Open squares are results derived from PI M
simulations. Error bars are less than the symbol size. The da
line corresponds to the quasiharmonic approximation with
Tersoff-type potential. The dotted line is the prediction of Mu
naghan’s law@see Eq.~3!# with B054.18 Mbar andB0853.97.
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ployed in the literature to fit the volume dependence of c
culated energies.17,39,40It was derived under the assumptio
that the bulk modulusB of the material is linear with the
pressure:B(P)5B01B08P, and in our case gives goo
agreement with the internal energy derived from MC a
QHA at P&2000 kbar. At higher hydrostatic pressures t
error in the linear assumption grows rapidly~see below!, and
the dashed line lies clearly below the simulation resu
Apart from this difference at high pressures, Eq.~3! is
strictly valid only atT50, but one expects that it will be a
good approximation at temperatures where the entropy c
tribution to the free energy is negligible versus the inter
energy. This seems to be the case here forT5300 K, a
temperature several times lower than the Debye tempera
of diamond.

B. Heat capacity

In Fig. 5 we show the heat capacityCP obtained from the
MC simulations atP51 atm as a numerical derivative of th
enthalpy,H5E1PV, with respect to the temperature. Th
solid line corresponds to a QHA with the Tersoff-type p
tential. For comparison, we also give the prediction of
classical harmonic approximation~dotted line!. Results of
the QHA coincide with those derived from the MC simul
tions atT,1000 K. At higher temperatures, the QHA pr
dicts CP values smaller than the simulation results. Th
could be expected from the trend of the internal energy
the temperature, as at highT the MC simulations give energy
values larger than the QHA~see Fig. 3!. The experimental
results41,42 are given as a dashed line. The calculated l
~MC and QHA! is about 70 K displaced to high temper
tures, as compared with the actual heat capacity of diamo

ed
e

FIG. 5. Temperature dependence of the heat capacityCP of
diamond atP51 atm. Open squares are results derived from PI M
simulations by numerical differentiation of the enthalpy. The so
line is the quasiharmonic prediction. The dashed line shows
experimental temperature dependence ofCP ~Refs. 41 and 42!. The
dotted line indicates theCP value corresponding to the classic
harmonic limit ~Dulong-Petit’s law!.
3-4
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STRUCTURAL AND THERMODYNAMIC PROPERTIES OF . . . PHYSICAL REVIEW B 63 024103
This is basically due to a shift toward higher frequencies
the optical phonons calculated with the Tersoff potential.8

At low temperatures, finite size effects are expected to
observed in the heat capacity derived from PI MC simu
tions. Due to the small dimensions of the simulation c
long-wavelength acoustic phonons~close to the center of the
Brillouin zone!, which are expected to contribute largely
the heat capacity at lowT, are truncated. This causes th
appearance of an effective energy gap for vibrational exc
tions in the simulated solid, that is not present in the act
material. In this manner, Mu¨ser et al.43 carried out detailed
PI MC simulations of Lennard-Jones solid systems, and
cussed the effect of size scaling on the specific heat of s
argon at low temperatures. In our simulations for diamo
this effect causes a decrease in the heat capacity de
from the MC simulations at temperatures lower than 300

C. Bulk modulus

The isothermal bulk modulusB is related with the mean
square fluctuations in the volumeV of the simulation cell by
Eq. ~1!. By using this relation, we have calculated the bu
modulus as a function of temperature and pressure from
volume fluctuationsD2 obtained in the MC simulations. In
Fig. 6 we present the temperature dependence ofB up to
3000 K and at atmospheric pressure. Open squares are re
derived from the simulations, and the dashed line through
data points is a guide to the eye. The continuous line sh
the result of a QHA with our Tersoff potential. The results
the QHA and MC coincide~within error bars of the MC
data! at low temperatures (T,1000 K). At higherT, as an-
harmonicity becomes more relevant, the bulk modulus p
dicted by the QHA is lower than that found in the MC sim
lations, and at 3000 K this difference is about 7% of the M
value. The calculated bulk modulus is rather constant up
300 K, and at higher temperatures it decreases roughly

FIG. 6. Temperature dependence of the bulk modulus of
mond, as derived from PI MC simulations~open squares!. A con-
tinuous line shows the result of a QHA. The dashed line through
data points is a guide to the eye.
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early. At 1000 K and 3000 K, the MC simulations give
decrease of about 3% and 12% with respect to theT50
value, respectively.

We have also calculated the bulk modulus atT50 from
the elastic energyES(V) obtained for classical nuclei, a
BC5V„]2ES(V)/]V2

…. This yieldsBC54.37 Mbar, a value
clearly higher than that found when zero-point motion
considered (B54.18 Mbar). The bulk modulus with the
original parameters of Tersoff, as obtained from the ela
constants given in Ref. 8, isB54.43 Mbar. This value is
very close to the bulk modulus found from experiments
room temperature (B54.42 Mbar from Brillouin scattering44

and 4.43 Mbar from ultrasonics data45!, that the effective
interaction potential tried to reproduce. However, we see
consideration of quantum effects changes the calculated
temperature bulk modulus bydB520.19 Mbar. This ap-
plies also toab initio calculations, in which the bulk modulu
is obtained from a second derivative of the internal ene
~at T50 and with classical nuclei! respect to the volume
With this in mind, the values calculated with thes
methods,1,3,17,46although close to the experimental value
B at room temperature, could not be considered more ac
rate than;60.2 Mbar~i.e., ;5%), asusually they do not
take into account the influence of quantum effects.
this line, Karch et al.19 have calculated the contributio
of quantum fluctuations to the bulk modulus of diamon
by density-functional perturbation theory, and founddB5
20.12 Mbar. The larger value ofdB520.19 Mbar ob-
tained in our simulations can be due to the neglect of high
order terms in the perturbative expansion of Ref. 19 and/o
differences in the interatomic potentials employed in bo
kinds of calculations. No answer to this question is availa
at this point.

This trend of quantum effects to reduce the bulk modu
seems to be general in solids. Nevertheless, the influenc
zero-point motion onB will depend on the atomic mass, an
for growing mass this effect is expected to become less
evant. Thus, for silicon a decrease of;0.03 Mbar was found
at low temperatures~about 3% of the actualB value!, when
quantum effects were considered.23 For diamond, it is worth-
while emphasizing that theB values obtained in classica
simulations are closer to the experimental data than th
derived from the quantum simulations. This is a conseque
of the fact that the employed potential was obtained by us
classical calculations to fit the actual bulk modulus. It
expected that the use of potentials derived from fir
principles calculations in PI MC simulations should fix th
problem.

In Fig. 7 we present the pressure dependence of the
modulus of diamond at 300 K. Symbols represent valu
derived from the PI MC simulations; squares correspond
values obtained by using Eq.~1!, and circles denote thos
found by numerical differentiation of the pressure-volum
curve ~see below!. Both procedures give results agreein
with each other~within error bars!, and also with the predic-
tion of our QHA ~continuous line!. The dashed line corre
sponds to the linear relationB5B01B08P with B0

54.18 Mbar andB0853.97, obtained with the Tersoff-typ
potential employed here. This value for the pressure der
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e
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CARLOS P. HERRERO AND RAFAEL RAMI´REZ PHYSICAL REVIEW B63 024103
tive B08 is larger than those calculated by functional-dens
theory calculations, which range from 3.24 in Ref. 46 to 3
in Refs. 4,17. From the pressure derivatives of the ela
moduli, measured by McSkimin and Andreatch45 at room
temperature, one findsB0854.060.7. At the scale of Fig. 7
B departs appreciably from the linear behavior at pressu
larger than 1000 kbar. At 3000 and 4000 kbar the chang
B due to higher powers ofP amounts to 14 and 18%, respe
tively.

D. Crystal volume

The temperature dependence of the equilibrium lattice
rameter,a, obtained in our MC simulations at atmosphe
pressure is displayed in Fig. 8. Results of the quantum si
lations with the Tersoff-type potential are in good agreem
with values derived from diffraction experiments41 ~bold
line!. For comparison, a dotted line shows the results
tained from PI MC simulations with the original Terso
potential.8 It lies about 1.731022 Å above the open square
in the entire temperature range from 0 to 2000 K. The m
reason for this shift in the lattice parameter,a, is that Tersoff
parameterized his potential by fitting the volume expec
in the T50 classical limit to the experimental volum
at T5300 K. The dashed line displays the lattice parame
obtained in a~quantum! QHA with the Tersoff-type potentia
employed here. This approximation yields values for
lattice parameter close to those derived from the M
simulations. However, forT.2000 K there appears a sy
tematic trend of the simulation results to lie lower th
the QHA values. At 3000 K, this difference amounts
3.131023 Å.

In the zero-temperature limit we find from the MC sim
lations a(0)53.5663(61024) Å, a value slightly lower

FIG. 7. Pressure dependence of the bulk modulus of diamon
T5300 K. Symbols indicate values derived from PI MC simu
tions by two different methods: by numerical differentiation of t
pressure-volume results~circles!, and from the volume fluctuation
by using Eq.~1! ~squares!. Error bars are less than the circle si
and of the order of the square size. The dashed line correspon
B5B01B08P, with B054.18 Mbar andB0853.97.
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than that found in the QHA@a(0)53.5667 Å#. Taking into
account that in the classical limit atT50 we haveaC(0)
53.5493 Å, the lattice expansion due to zero-point mot
and anharmonicity amounts toda51.731022 Å. This dif-
ference is much larger than the precision currently achie
in the determination of cell parameters from x-ray diffracti
techniques.47–49 This zero-point lattice expansion is equiv
lent to the effect of a hydrostatic pressure of261 kbar, and
is larger than that found in earlier simulations of diamon
type materials. For silicon and germanium, using PI M
simulations with Stillinger-Weber-type potentials, it wa
found da5731023 Å and 631023 Å, respectively.23,24,50

At room temperature, the PI MC simulations of diamo
give a53.5666 Å, vs the experimental valuea
53.5668 Å.41 The lattice expansion fromT50 to 300 K is
small, and amounts to;331024 Å, about 6 times smaller
than the zero-point expansion. This zero-point expansio
nearly the same as the thermal expansion from 0 to 1500
Similar quantum effects on the lattice parameter of Lenna
Jones solids have been studied earlier by PI MC.43

For comparison with the results of the quantum simu
tions, we have also displayed in Fig. 8 the temperature
pendence ofaC in the classical limit with the presen
Tersoff-type potential. Open circles are the results of cla
cal MC simulations and the dashed-dotted line displays th
of a classical QHA~the vibrational modes are considered
classical harmonic oscillators with frequencies renormaliz
for each volume!. As expected, both kinds of classical ca
culations yield atT50 the lattice parameter correspondin
to the minimum potential energy of the~classical! crystal. At
high temperatures, each one approaches its correspon
quantum calculation.

In Fig. 9 we display the pressure dependence of the c
tal volume at 300 K. Open squares are the results of the

at

to

FIG. 8. Temperature dependence of the lattice parametera. The
simulation results were derived atP51 atm within the quantum PI
approach~squares! and in the classical limit~circles!. Dashed and
dashed-dotted lines were obtained in a quantum and classical
siharmonic approach, respectively. The experimental results~Ref.
41! are given as a bold line. The dotted line was obtained from
MC simulations with the original Tersoff potential given in Ref.
3-6
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MC simulations, and the solid line corresponds to the QH
Both results coincide in the whole pressure range conside
up to 6000 kbar. This indicates that the QHA is accura
even for such large hydrostatic pressures. The dashed
shows the volume-pressure relation derived from M
naghan’s equation of state:38

P5
B0

B08
F S V0

V D B08

21G , ~4!

in which we have introduced theB0 and B08 values given
above. For pressures larger than;1000 kbar, this approxi-
mation predicts volumes larger than those found in the M
simulations, since the bulk modulus given by Murnagha
law is also larger~see Fig. 7!. However, this approach give
a good approximation to the results of the quantum simu
tions for pressures lower than 1000 kbar.

It is interesting to analyze the influence of quantum
fects on the lattice parameter, as a function of the app
pressure. This is presented in Fig. 10, where we show
differencea2aC between the lattice parameters correspo
ing to the quantum and classical approaches. Different s
bols correspond to results of MC simulations~quantum and
classical!, and dashed lines to those of the QHA at differe
temperatures: 1000 K~triangles!, 300 K ~circles!, and zero-
temperature limit~open and black squares!. Since PI MC
simulations cannot be carried out strictly atT50, squares
correspond to the differencea2aC with aC obtained from
classical MC simulations atT50, but with a calculated at
temperatures low enough to be close toa(0): 100 K ~black
squares! and 300 K~open squares!. The proximity of both
kinds of symbols for a given pressure indicates the conv
gence of the results. The QHA provides a very good desc
tion of the differencea2aC in the whole pressure rang
investigated here. This approximation is expected to be

FIG. 9. Pressure-volume equation-of-state for diamond at
K. Open squares are results of PI MC. The continuous line
obtained in the quasiharmonic approximation. The dashed line
responds to Murnaghan’s law@see Eq.~4!# with B054.18 Mbar and
B0853.97. V0 is the volume at zero pressure.
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accurate for high temperatures, as anharmonic effects
included in the QHA should become more relevant. Ho
ever, even forT51000 K, the QHA gives results fora
2aC very close to the PI MC simulations.

The decrease in the differencea2aC as pressure rises i
due basically to the increase in bulk modulus with pressu
This can be understood by expressing the lattice paramet
a function of the Gru¨neisen parameters in a QHA.36,51 For a
given pressure, one can expand the lattice parametera(T,P)
to first order ingn(q) ~for small volume changes as a fun
tion of T), as

a~T,P!5aC~0,P!1
1

3B~P!aC
2 ~0,P!

(
n,q

gn~q!En~q,T!,

~5!

where

En~q,T!5
1

2
\vn~q!cothS \vn~q!

2kBT D . ~6!

Here, B(P) is the bulk modulus at zero temperature a
pressureP, andaC(0,P) is the zero-temperature limit of th
classical lattice parameter. In this approximation, one fin

a~T,P!2aC~T,P!5
1

3B~P!aC
2 ~0,P!

3(
n,q

gn~q!@En~q,T!2kBT#, ~7!

indicating that, for givenT andP, the differencea2aC is, to
first order ingn(q), proportional toB(P)21. When pressure
is modified, the relative changes inaC(0,P) @which appears

0
s
r-

FIG. 10. Differencea2aC between the lattice parameter of
~quantum! diamond crystal and that corresponding to the class
limit. Symbols represent data points derived from MC simulatio
at different temperatures: triangles,T51000 K; circles, T
5300 K; open and black squares, low-temperature limit~see text
for details!. Dashed lines indicate results obtained from a QHA w
the same Tersoff-type potential employed in the simulations.
3-7
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in the denominator on the r.h.s. of Eq.~7!# are much smaller
than those inB(P). Thus, at any temperature,a2aC de-
creases as pressure is raised, sinceB(P) becomes larger
This is basically the trend found in the more precise cal
lations ~QHA and MC! shown in Fig. 10.

E. Thermal expansion

The linear coefficient of thermal expansion:

a5
1

a S ]a

]TD
P

, ~8!

has been obtained by numerical differentiation of the sim
lation results fora(T) at atmospheric pressure. Values ofa
derived by this method~squares! are compared in Fig. 11
with experimental data for diamond52 ~bold line!. The
dashed-dotted line through the MC data is a guide to the
Results of the QHA are given by a dashed line. This l
closely follows the results of the PI MC simulations up
;1000 K, and departs from them at higherT. At these tem-
peratures, the thermal expansion coefficient derived from
QHA is larger than that obtianed from PI MC, as expec
from the high-temperature results fora(T) shown in Fig. 8.
The dotted line in Fig. 11 shows results fora(T) derived by
Pavoneet al.17 from density-functional theory calculations i
a QHA. These theoretical results follow closely the expe
mental values forT&500 K, but seem to saturate to a co
stant valueaHT.4.331026 K21 at high temperatures. Suc
a saturation is expected in calculations employing exp
sions like that given fora(T) in Eq. ~5!, as in Ref. 17@see
also Ref. 18 for a similar calculation ofa(T) for silicon#. In

FIG. 11. Thermal expansion coefficient of diamond as a fu
tion of temperature at atmospheric pressure. Squares are re
derived from PI MC simulations by numerical differentiation of th
lattice parametera(T). The dashed line is the result of a QHA wit
the Tersoff-type potential employed here. The solid line shows
experimental results.~Ref. 52!. The dashed-dotted line through th
data points is a guide to the eye. The dotted line indicates res
found by Pavoneet al.17 from density-functional-theory calcula
tions in a QHA.
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fact, from Eq.~5! the QHA gives for the thermal expansio
coefficient@to first order ingn(q)#:

a~T,P!5
1

3B~P!V~0,P! (
n,q

gn~q!CV,n~q,T!, ~9!

with CV,n(q,T)5dEn(q,T)/dT. Then, in the high-
temperature limit (T.QD), one has

a~T,P!5
kB

3B~P!V~0,P! (
n,q

gn~q!, ~10!

and the thermal expansion coefficient should go to a c
stant. Since the experimental result indicates thata increases
at highT ~see Fig. 11!, that approximation should fail at high
T, irrespective of the interatomic potential employed in t
calculations. When one considers the QHA, without the l
earization assumed in Eq.~5!, a does not saturate to a con
stant value at highT, as shown by our calculations~dashed
line in Fig. 11!.

Taking into a account the increase in bulk modulus as
pressure is raised, one expects thata will decrease@see Eq.
~9!#. This is in fact found in our PI MC simulations, an
shown in Fig. 12. In this figure, open squares and the s
line represent atmospheric-pressure results, as in Fig. 11
sults for a at different hydrostatic pressures are shown
different symbols: circles~1000 kbar!, triangles~2000 kbar!,
and diamonds~4000 kbar!. Dotted lines are guides to th
eye. At 300 K, a hydrostatic pressure of 1000 kbar reducea
by about a factor of 2, and this factor is nearly unchang
from room temperature up to 2000 K. For higher pressure
further reduction ofa is found.

-
ults

e

lts

FIG. 12. Thermal expansion coefficient of diamond as a fu
tion of temperature at different pressures. Squares and the solid
are simulation results and experimental data atP51 atm, as in Fig.
11. Other symbols correspond to results at several hydrostatic p
sures: circles, 1000 kbar; triangles, 2000 kbar; diamonds, 4
kbar. Dotted lines are guides to the eye.
3-8
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IV. SUMMARY

In this paper, we have studied the influence of quant
effects on structural and thermodynamic properties of d
mond by PI MC simulations. These quantum effects are n
trivial in the presence of anharmonicity. For situations
which anharmonic effects can be treated perturbatively~i.e.,
low temperatures!, the QHA gives a good description of th
studied quantities, but this approximation becomes less
curate as temperature is raised. Quantum MC simulat
with the path-integral method have allowed us to check
precision of the QHA approximation for diamond with a
effective interaction potential. Results of this approximati
for several properties of diamond at room temperature
very close to those found from PI MC simulations. Th
agreement is still valid at high pressures, of the order,
even larger, than those currently achieved in diamond a
cells. At a microscopic scale, when pressure is increased
atoms are forced to move towards shorter interatomic
tances, where the interaction potential is comparatively m
repulsive. Then, the QHA is able to give a good descript
of the thermodynamic properties of the material for con
tions in which those high-energy regions are visited. Ho
ever, some differences between QHA and PI MC are fou
at temperatures higher than 1000 K, in particular for the b
modulus, thermal expansion coefficient, and heat capa
This is a consequence of the enhancement of anharm
effects at high temperatures, for which the quasiharmo
approximation can be considered to give only qualitat
trends.

We have shown that the zero-point lattice expansion~due
to anharmonicity of the zero-point vibrational motion! is a
nonnegligible effect. For diamond, this effect causes an
en

.
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02410
-
n-

c-
ns
e

re

d
il
he
s-
re
n
-
-
d
k
y.
ic

ic
e

-

crease in the lattice parameter of 0.017 Å~a relative change
of 0.5%! and a decrease in the bulk modulus by 5%. No
that these values are of the same order of magnitude as
precision currently available by the bestab initio electronic
structure methods. This means that, at least for mate
with light atoms, further improvements in the treatment
the electronic structure cannot reduce the error bars in
calculation of structural observables, if the effects associa
to the quantum nature of the atomic nuclei are not includ
in the calculations.

We finally note that, in spite of the limitations associat
to employing empirical potentials originally optimized fo
classical simulations, a reasonable agreement has been f
between PI MC and experimental results for several therm
dynamic properties of diamond, as heat capacity and ther
expansion coefficient. For the heat capacity, we have
tained values lower than the experimental ones, due to
rigidity of the Tersoff potential, which gives a shift of th
phonon frequencies to higher wave numbers. However,
rigidity does not seem to affect directly the calculated valu
for the lattice parameter and thermal expansion. It is
pected that these limitations will be overcome in the n
future by the use ofab initio PI MC simulations, where the
interatomic interaction is derived from first-principles calc
lations.
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