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Structural and thermodynamic properties of diamond: A path-integral Monte Carlo study
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Path-integral Monte Carlo simulations in the isothermal-isobaric ensemble have been carried out to study
structural and thermodynamic properties of diamond, as a function of temperature and hydrostatic pressure.
Atomic nuclei were treated as quantum particles interacting through a Tersoff-type potential. The obtained
lattice parameter, heat capacity, thermal expansion coefficient, and bulk modulus show an overall agreement
with the experimental data. The importance of anharmonicity and quantum effects on the properties derived
from the quantum simulations has been assessed by comparison with results obtained in classical simulations
with the same interatomic potential, as well as with those derived from a quasiharmonic approximation. An
increase in the lattice parameter by .70 2 A and a decrease in the bulk modulus by about 5% is found at
low temperatures, as a consequence of the zero-point motion of the C atoms.
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[. INTRODUCTION path-integral(Pl) approach to quantum statistical mechanics
is a convenient method to study finite-temperature properties
Due to the interest of the solid phases of carbon in sciencef quantum systems. The combination of Monte C&KtL)
and technology, many properties of its crystalline and amorsimulations with path integralshe so-called PI MC method
phous phases have been studied by theoretical techniquas,now a well-established method to study many-body prob-
including ab initio methods:™’ as well as Monte Carfo!*  lems in condensed matt&?!
and molecular dynamicgMD) simulations:?~**In particu- PI MC investigations on structural and dynamical proper-
lar, the high-pressure properties of diamond are of enormouses of diamond-type semiconductors, such as sifitétand
interest due to the importance of the diamond anvil cell ingermaniun?* have been already carried out. Since the car-
high-pressure physics:!® bon mass is smaller than that of Si and Ge, one expects that
Ab initio methods such as the density-functional theoryquantum effects associated to the anharmonicity of the inter-
accurately predict several structural and dynamical propertiestomic potential will be more important in diamond than in
of solids. For diamond, in particular, the lattice parameterthe previously studied semiconductors. Classical simulations
bulk modulus, and phonon-dispersion curves have been cabf solid phases of carbon have been carried out by using
culated by several authot$:”!’ Quantitative calculations of empirical interatomic potentials, such as that developed by
phenomena associated to the anharmonicity of the inteffersoff®® This potential was employed to study diamond
atomic potential cannot, however, be carried out with such @nd amorphous carbdras well as crystalline silicofr, C-Si
degree of accuracy. Some progress in this line has been madad Si-Ge systentS.Further applications of this interatomic
in the last decade by combiniralp initio electronic-structure potential include Monte Carlo simulations of amorphous sili-
calculations with the quasiharmonic approximationcon carbidé’ In the context of PI MC simulations, the Ter-
(QHA).®"~1®However, the validity range of these kinds of soff potential has been used previously to study the quantum
calculations is not clear, in particular for situations in which delocalization of C nuclei in fullerenés.
the anharmonicity cannot be treated as a small perturbation An alternative to the use of empirical potentials in mate-
on the harmonic solid, which happens at high temperaturesals simulations consists of deriving the system energy by
(e.g., thermal expansion coefficignt standard electronic structure methods, as in the Car-
A different approach to studying finite-temperature prop-Parrinello approacf’ Such first-principles MD simulations
erties of condensed-matter systems is based on Monte Cart@ave been carried out to study amorphization transitions and
(MC) or MD simulations. A basic point in these simulations laser melting in diamond-type semiconductdts! Although
is the model assumed for the microscopic interaction bethe original version of this method considered the atomic
tween atoms in the material. From a computational point ohuclei as particles evolving in time according to the laws of
view, a feasible approach is based on the use of phenomenolassical physics, new approaches that take into account the
logical potentials that describe the potential energy of theqguantum character of both electrons and nuclei have ap-
system as a function of the nuclear coordinates. Neverthezeared in recent years. Thuab initio path-integral MD
less, independently of the complexity of the approach emsimulations have become feasible for small molectfes)d
ployed to describe the interatomic interaction, it is interestinghey begin now to be applied to condensed-matter
to study finite-temperature properties by methods that explicproblems®® These techniques constitute a promising tool to
itly treat the quantum character of the nuclei. This is espestudy, in the near future, the influence of anharmonic effects
cially important for those properties that depend directly onin solids.
the anharmonicity of the interaction potentialg., thermal In the present work, we report on results for several equi-
expansion, isotopic effegtsin this context, the Feynman librium properties of diamond, as derived from Pl MC simu-
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lations in the isothermal-isobaridNPT) ensemble. The C 3.58 r r T
atoms were treated as quantum particles interacting through
an effective Tersoff-type potential. Furthermore, the simula-
tion results have been analyzed by comparison with those
yielded by a quasiharmonic approximation with the same
interatomic potential. This study has been performed in a
temperature range between 50 and 3000 K, and for hydro-
static pressures up to 6000 kbar.

The paper is organized as follows. In Sec. Il we describe
briefly the computational method and give some technical
details. In Sec. Ill we present and discuss the results of our
MC simulations, which are given in different subsections
dealing with the internal energy, heat capacity, bulk modu- 4 — classical
lus, crystal volume, and thermal expansion. The paper closes , . ,
with a summary(Sec. V). 0 3000 6000 9000 12000
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Il. COMPUTATIONAL METHOD FIG. 1. Lattice parameter of diamond, as derived from Pl MC

In the path-integral formulation of statistical mechanicssimulations aff =400 and 1000 K as a function of the prodiidt,
(i.e., at finite temperaturgsthe partition function of a quan- with L the Trotter number. Black symbols indicate the results of
tum system is evaluated through a discretization of the derflassical MC simulationsL(=1). Dotted lines are guides to the
sity matrix along cyclic paths, composed of a finite number Y€
(Trotter number of “imaginary-time” steps® In the nu- .
merical simulations, each quantum particle is described by §cales as the inverse temperature. In fact, we have taksn
set of L “beads,” forming a cyclic chain. Thus, the imple- the integer number closest fw./(kgT), with w.~3wp
mentation of the PI MC method is based on an isomorphisni@p . Debye frequency of diamondwhich is enough for
between the actual quantum system and a classical one, ofenvergence of the results. This meang=4200 cm*,
tained by replacing each quantum partidleere, atomic Which translates into a produtfl=6000 K, i.e.,L=20 at
nucleu$ by a chain ofL classical particlegbead$. This T=300 K. We have checked the convergence with the Trot-
means that a simulation ®f quantum particles is equivalent ter number of several quantities derived from the PI MC
to one ofNL classical particles. This isomorphism is exact in Simulations. In Fig. 1 we show the convergence of the equi-
the limit L— o, but convergence of the interesting quantities!ibrium lattice parameter of diamond, as a functiorLofThe

is obtained for relatively lowL values. Extensive descrip- results presented in this figure correspond to atmospheric
tions of this computational method can be foundPressure and two different temperatur&s: 400 and 1000

elsewhere?2123 K. The resulting lattice parameter increases with rising
Equilibrium properties of diamond have been calculatedstarting from the classical value corresponding to each tem-
by PI MC simulations, in the isothermal-isobaric ensembleperature(indicated in the figure by black symbaglsvhich is
These simulations have been performed oKX 2 super- obtained forL=1. For LT~6000 K, the lattice parameter
cell of the diamond face-centered-cubic cell including 64 cconverges to a platedthe quantum valuefor each tempera-
atoms, with periodic boundary conditions. We have checkedure. In general, the results of the PI MC simulations con-
that using larger supercells does not change appreciably ar¥grge at high temperature3 ¢ ©p) to those corresponding
of the results presented below. In particular, we have carrietP classical simulations witih =1. At lower temperatures,
out PI MC simulations on a 83x 3 supercell at three dif- the CPU time required to carry out the quantum simulations
ferent temperatures, and found that the results coincidéicreases as T/ proportional to the Trotter numbér. This
(within error bar$ with those obtained for the’22x2 su- ~ means, for example, that at=300 K our PI MC simula-
percell. The C nuclei were treated as quantum particles intions require a CPU time 20 times longer than that corre-
teracting through a Tersoff-type potentidf We have used sponding to a classical simulation with the same interatomic
the original parameters given by Tersbffjith the exception ~ potential.
of A=1387.3 eV and8=348.3 eV, which give for the lat- For simulations in the isothermal-isobaric ensemble, the
tice parameter derived from PI MC simulations an agreementolume of the simulation celf2, is allowed to change. If we
with experimental results, better than the origimaandB  call V=({), then the mean-square fluctuation in the vol-
parameters in Ref. 8. For given temperature and pressure, wéne,A?=(0?)—V?, is given by
generated in our Pl MC simulations<3L0* quantum paths
per atom for system equilibration, anck8.0° paths per atom
for the calculation of ensemble average properties. More de-
tails on the actual application of this method are given in
Ref. 23. whereB= —V/(dP/dV)+ is the isothermal bulk modulus of
To keep a constant precision for the results at differenthe material. In Fig. 2 we present the normalized fluctuations
temperatures, we have considered a Trotter nurhbthvat  (A/V)?, as obtained from our PI MC simulations at different

A2= YT 1
B
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FIG. 2. Mean-square fluctuations in the volume of the simula- Fig. 3 Temperature dependence of the internal en&ger
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tion cell, A*=(Q%)—(2)*, as derived from path-integral Monte gjmjation cell. Open squares: results of PI MC simulations; con-

Carlo simulations at different hydrostatic pressures. These fluctuginous line: quasiharmonic approximation: dashed line: harmonic

7 H 2_ 2 — .

tions are shown normalized by*=(Q)". Squares,P=1 atm;  gnhroximation with the volume and phonon frequencied an.
circles, 1000 kbar; triangles, 4000 kbar. Dotted lines are linear f'tsl'he zero of energy corresponds to the classical limifa0.

to the low-temperature results.

temperatures, and for three hydrostatic press(sgsares, |attice parameter deviated byG10~* A from the equilib-

1 atm: circles, 1000 kbar; triangles, 4000 Kbaotted lines ~ "um value. For_each temperature, we calculated t_he free en-
are linear fits to the low-temperaturg€ 1000 K) MC data. €'Y as a function of volume, with the corresponding renor-

The fluctuations in the cell volume decrease as pressure riséd@lizeéd phonon frequencies. The lattice parameter was
due to an increase in the bulk modulus of the materiafhanged in steps of 18 A, and from the free-energy curve

(see beloy. At T=2000 K andP=1 atm, the relative fluc- W€ obtained the equilibrium volume as a function of pres-
tuation in the simulation-cell volumeA/V, amounts to SUré
0.014. As expected from E@l), A2 increases approximately
linearly with the temperature, with a slope proportional to lll. RESULTS AND DISCUSSION
B~ 1. Nevertheless, deviations from linearity are evident in
the results shown in Fig. 2, as a consequence of chands in ) )
and V with the temperature, especially at low hydrostatic FOr given volume and temperature, the internal energy of
pressures. the crystal E(V,T), can be written as

In the following section, results of the Pl MC simula- _
tions will be compared with those derived from a QHA. This E(V.T)=EotEs(V) +Euip(V,T), @)
approximation is based on a renormalization of thewhereE, is the minimum potential energy for thielassical
phonon frequencies with volume, and for a given vol-crystal atT=0, Eg(V) is the elastic energy, and,;,(V,T)
ume the solid is assumed to be harmotie® This vol- s the vibrational energy. With the parameters employed
ume dependence of phonon frequencies is usually desere for the Tersoff potential, we finHy,=—481.302 eV
cribed by a mode-dependent ®gisen paramet& y,(q) per simulation cel(64 atoms, which corresponds to @las-
=—dIn w,(q)/dInV, wherew,(q) are the frequencies of the sical) lattice parameteac(0)=3.5493 A, to be compared
nth mode in the crystal. For small volume changes this pawith ac(0)=3.5656 A obtained with the original Tersoff
rameter can be assumed to be constant for each mode. Footential® That value forE, translates into a cohesive en-
the QHA calculations presented here, we have employedrgy of 7.52 eV per atom.
the same supercell as for the PI MC simulations, i.e., a In Fig. 3 we plot the temperature dependence of the inter-
2X2X2 supercell with periodic boundary conditions. This nal energy(kinetic plus potential obtained in the Pl MC
means that only thq=0 modes in the Brillouin zone of the simulations at atmospheric pressyopen squares In this
supercell are included in the calculation, as modes with figure we have taken as zero the minimum of potential en-
#0 violate the periodic boundary conditions. Then, the totalergy (Eg). The solid line represents the internal energy in a
number of vibrational modes in the QHA is 189, i.e., threeQHA approximation with the same interatomic potential. For
times the number of C atoms in the supercell minus threeomparison, we also present the result of a totally harmonic
translational degrees of freedom. The @gisen parameters approximation(crystal volume independent of temperajure
vn(q) were obtained by numerical differentiation of the vi- in the same temperature regi¢ashed ling The harmonic
brational frequencie&,(q) calculated by diagonalization of approximation may be viewed as a limiting case of the QHA,
the dynamical matrix corresponding to two supercells, whosavhen the Groeisen parameters are set equal to zero. The

A. Internal energy
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FIG. 4. Pressure dependence of the internal endegyf dia- FIG. 5. Temperature dependence of the heat capadityof

”.‘0”? ?tT:?’IgO K.bOpen sqluareihare trt;asults ?)erllvgd frc_)rrE P(Ij thd'amond atP=1 atm. Open squares are results derived from Pl MC
simulations. EITor bars are 1ess than the symbol size. Ihe dasne,, aong by numerical differentiation of the enthalpy. The solid
line corresponds to the quasiharmonic approximation with th

Sine is th ih i iction. Th hed li h h
Tersoff-type potential. The dotted line is the prediction of Mur- ine is the quasiharmonic prediction e dashed line shows the

, . - . experimental temperature dependenc€pf(Refs. 41 and 42 The
naghan’s lawsee Eq(3)] with Bo=4.18 Mbar andB,=3.97. dotted line indicates th€p value corresponding to the classical

. . harmonic limit(Dulong-Petit's law.
energy values derived in the QHA follow closely those found

in the PI MC simulations, although the simulation results are

slightly larger at temperatures higher than 2000 K. At 30000oned in the !itergé%e to fit the.volume dependence of_cal—
K, this difference amounts to 0.69 eV per simulation cell. Atculated energieS.>*It was derived l.md.er Fhe assymptlon
300 K, the internal energy found in the simulations iSthat the bulk modulu8 of the material is linear with the

—467.76 eV, which corresponds to a cohesive energy oP'€SSUre:B(P)=B,+B,P, and in our case gives good
7.31 eV per atom, close to the experimental value of 7.3¢dreement with the internal energy derived from MC and
V.37 The internal energy shown in Fig. 3 corresponds basiQHA at Ps?OOO kbar. At.hlgher hydrostatlc pressures the
cally to the vibrational energg,,(V,T). For T—0 (zero-  €rrorin the linear assumption grows rapidsee below, and
point motion this energy amounts to 13.31 eV per simula-the dashed line lies clearly below the simulation results.
tion cell (0.21 eV per atom The elastic energyE«(V) Ap.art from this difference at high pressures, E(t}) is
represents a small part of the internal energy, and amounts &fictly valid only atT=0, but one expects that it will be a
0.10 and 1.43 eV per cell at 300 and 3000 K, respectively. 900d approximation at temperatures where the entropy con-
In Fig. 4 we present the pressure dependence of the inteftibution to _the free energy is negligible versus the internal
nal energy aff =300 K. Open squares represent data ob-EN€rgy. This seems to be the case hereTer300 K, a
tained from our PI MC simulations, whereas the dashed lind€mperature several times lower than the Debye temperature
is the result of the QHA. Differences between results of bottPf diamond.
kinds of calculations are less than 0.5 eV in the whole pres-
sure range considered here, and are not detectable at the
scale of the figure. The vibrational energy at 300 K increases ] . ]
from 13.4 eV per simulation cell @=1 atm, to 17.2 and In Fig. 5 we show the heat capaciBp obtained from the
20.8 eV atP=2000 and 6000 kbar, respectively. Thus, theMC simulations aP=1 atm as a numerical derivative of the
largest contribution to the internal energg(V,T)—E,, at enthalpy,H=E+PV, with respect to the temperature. The
pressuresP=2000 kbar comes from the elastic energysolld line corresponds to a QHA with the Tersoff-type po-
Eg(V). tential. For comparison, we also give the prediction of a
For comparison with our results, we also present in Fig. £1assical harmonic approximatiofotted ling. Results of
the pressure dependence of the zero-temperature internal éR€ QHA coincide with those derived from the MC simula-

dicts Cp values smaller than the simulation results. This

B. Heat capacity

B[ (V. V)8 could be expected from the trend of the internal energy vs
E(V,0)= — VolV)™ +1l+c, (3)  the temperature, as at higfthe MC simulations give energy
By | Bo—1 values larger than the QH#see Fig. 3 The experimental

resultd'*? are given as a dashed line. The calculated line
where C=E(V,(,0)—BgV,/(B;—1) is a constant and the (MC and QHA is about 70 K displaced to high tempera-
subindex zero indicateB=0. This equation has been em- tures, as compared with the actual heat capacity of diamond.
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T T T T T early. At 1000 K and 3000 K, the MC simulations give a
decrease of about 3% and 12% with respect to The0
value, respectively.

We have also calculated the bulk modulusTatO from
the elastic energyeg(V) obtained for classical nuclei, as
Bc=V(0%E4(V)/3V?). This yieldsB.=4.37 Mbar, a value
clearly higher than that found when zero-point motion is
considered B=4.18 Mbar). The bulk modulus with the
original parameters of Tersoff, as obtained from the elastic
constants given in Ref. 8, iB=4.43 Mbar. This value is
very close to the bulk modulus found from experiments at
room temperature§=4.42 Mbar from Brillouin scatterirfj
and 4.43 Mbar from ultrasonics d&tg that the effective
interaction potential tried to reproduce. However, we see that
consideration of quantum effects changes the calculated low-
temperature bulk modulus byB= —0.19 Mbar. This ap-
Temperature (K) plies also taab initio calculations, in which the bulk modulus

FIG. 6. Temperature dependence of the bulk modulus of dialS obtained from a second derivative of the internal energy

mond, as derived from Pl MC simulatiofepen squarésA con- (at T=0 and with classical nucleirespect to the volume.

tinuous line shows the result of a QHA. The dashed line throughthéNIth th|83 1|7n46mmd’ the values CalCUIa'.[ed with these
data points is a guide to the eye. methods-*1"“®although close to the experimental value of

B at room temperature, could not be considered more accu-
rate than~ +0.2 Mbar(i.e., ~5%), asusually they do not
This is basically due to a shift toward higher frequencies okake into account the influence of quantum effects. In
the optical phonons calculated with the Tersoff poteritial. this line, Karchetall® have calculated the contribution
At low temperatures, finite size effects are expected to bef quantum fluctuations to the bulk modulus of diamond,
observed in the heat CapaCity derived from Pl MC Simula-by density-functiona] perturbation theory, and foudB=
tions. Due to the small dimensions of the simulation cell, —0.12 Mbar. The larger value 06B=—0.19 Mbar ob-
long-wavelength acoustic phonofwose to the center of the tained in our simulations can be due to the neglect of higher-
Brillouin zone), which are expected to contribute largely to order terms in the perturbative expansion of Ref. 19 and/or to
the heat capacity at lowW, are truncated. This causes the gifferences in the interatomic potentials employed in both
appearance of an effective energy gap for vibrational excitaginds of calculations. No answer to this question is available
tions in the simulated solid, that is not present in the actuakt this point.
material. In this manner, Mier et a|.43 carried out detailed This trend of quantum effects to reduce the bulk modulus
PI MC simulations of Lennard-Jones solid systems, and disseems to be general in solids. Nevertheless, the influence of
cussed the effect of size scaling on the specific heat of 50”§ero-point motion orB will depend on the atomic mass, and
argon at low tempel‘atures. In our simulations for diamondfor growing mass th|S effect iS expected to become IeSS re'_
this effect causes a decrease in the heat capacity derivedant, Thus, for silicon a decrease-60.03 Mbar was found
from the MC simulations at temperatures lower than 300 K gt |ow temperatureéabout 3% of the actud® value, when
quantum effects were consider&dzor diamond, it is worth-
while emphasizing that th& values obtained in classical
C. Bulk modulus simulations are closer to the experimental data than those
The isothermal bulk moduluB is related with the mean- derived from the quantum simulations. This is a consequence
square fluctuations in the voluneof the simulation cell by  of the fact that the employed potential was obtained by using
Eq. (1). By using this relation, we have calculated the bulkclassical calculations to fit the actual bulk modulus. It is
modulus as a function of temperature and pressure from thexpected that the use of potentials derived from first-
volume fluctuationsA? obtained in the MC simulations. In principles calculations in PI MC simulations should fix this
Fig. 6 we present the temperature dependenc® ap to  problem.
3000 K and at atmospheric pressure. Open squares are resultsIn Fig. 7 we present the pressure dependence of the bulk
derived from the simulations, and the dashed line through th&odulus of diamond at 300 K. Symbols represent values
data points is a guide to the eye. The continuous line showderived from the PI MC simulations; squares correspond to
the result of a QHA with our Tersoff potential. The results of values obtained by using E¢l), and circles denote those
the QHA and MC coincidgwithin error bars of the MC found by numerical differentiation of the pressure-volume
datg at low temperaturesT(< 1000 K). At higherT, as an-  curve (see below. Both procedures give results agreeing
harmonicity becomes more relevant, the bulk modulus prewith each othefwithin error barg, and also with the predic-
dicted by the QHA is lower than that found in the MC simu- tion of our QHA (continuous ling The dashed line corre-
lations, and at 3000 K this difference is about 7% of the MCsponds to the linear relatiorB=B,+B,P with B,
value. The calculated bulk modulus is rather constant up te=4.18 Mbar andB,=3.97, obtained with the Tersoff-type
300 K, and at higher temperatures it decreases roughly linpotential employed here. This value for the pressure deriva-

Bulk modulus (Mbar)

3.4 1 1 1 1 1

0 1000 2000 3000
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FIG. 7. Pressure dependence of the bulk modulus of diamond a&§mylation results were derived Bt=1 atm within the quantum Pl
T=300 K. Symbols indicate values derived from PI MC simula- approach(squaresand in the classical limitcircles. Dashed and
tions by two different methods: by numerical differentiation of the yashed-dotted lines were obtained in a quantum and classical qua-
pressure-volume resultsircles, and from the volume fluctuations  siharmonic approach, respectively. The experimental re¢iis.
by using Eq.(1) (squarep Error bars are less than the circle size 41 are given as a bold line. The dotted line was obtained from Pl
and of the orde_r of the square size. The dashed line corresponds fgc simulations with the original Tersoff potential given in Ref. 8.
B=By+BP, with By=4.18 Mbar andB{=3.97.
tive B is larger than those calculated by functional-density-than that foun_d in the QH./{\a(O-)=.3.5667 Al. Taking into
account that in the classical limit 8&i=0 we haveac(0)

theory calculations, which range from 3.24 in Ref. 46 to 3.5° . ; ; .
in Refs. 4,17. From the pressure derivatives of the elastic_ 3.5493 A, the lattice expansion due to zero-point motion

- - _ 72 . .
moduli, measured by McSkimin and Andredftiat room and anhgrmonlcny amounts @a= 1'7.><.10 A. This d'f'.
temperature, one find)=4.0+0.7. At the scale of Fig. 7, ference is much larger than the precision currently achieved

B departs appreciably from the linear behavior at pressur in the determination of cell parameters from x-ray diffraction

€S chni 7-49 T - : g :
“technique$’~*° This zero-point lattice expansion is equiva-
l;“(?fé :2?: %\%?O lg\?virré'agft?i(:r?guirt‘: téolo f ;:;rlg;f C:;ingi_'vent to the effect of a hydrostatic pressure-061 kbar, and
tively gherp 0. TESPEC- ig larger than that found in earlier simulations of diamond-

type materials. For silicon and germanium, using Pl MC
simulations with Stillinger-Weber-type potentials, it was

D. Crystal volume found sa=7x10"% A and 6x10°2 A, respectively?>?+%0

The temperature dependence of the equilibrium lattice paAt room temperature, the Pl MC simulations of diamond
rameter,a, obtained in our MC simulations at atmospheric give a=3.5666 A, vs the experimental valuea
pressure is displayed in Fig. 8. Results of the quantum simu=3.5668 A*! The lattice expansion fromi=0 to 300 K is
lations with the Tersoff-type potential are in good agreemensmall, and amounts te-3x 10 * A, about 6 times smaller
with values derived from diffraction experimefits(bold  than the zero-point expansion. This zero-point expansion is
line). For comparison, a dotted line shows the results obnearly the same as the thermal expansion from 0 to 1500 K.
tained from Pl MC simulations with the original Tersoff Similar quantum effects on the lattice parameter of Lennard-
potential® It lies about 1.% 1072 A above the open squares Jones solids have been studied earlier by PI‘MC.
in the entire temperature range from 0 to 2000 K. The main For comparison with the results of the quantum simula-
reason for this shift in the lattice parameterjs that Tersoff tions, we have also displayed in Fig. 8 the temperature de-
parameterized his potential by fitting the volume expectecpendence ofac in the classical limit with the present
in the T=0 classical limit to the experimental volume Tersoff-type potential. Open circles are the results of classi-
at T=300 K. The dashed line displays the lattice parametecal MC simulations and the dashed-dotted line displays those
obtained in gquantum QHA with the Tersoff-type potential of a classical QHAthe vibrational modes are considered as
employed here. This approximation yields values for theclassical harmonic oscillators with frequencies renormalized
lattice parameter close to those derived from the MCfor each volumg As expected, both kinds of classical cal-
simulations. However, folf >2000 K there appears a sys- culations yield afT=0 the lattice parameter corresponding
tematic trend of the simulation results to lie lower thanto the minimum potential energy of ttielassical crystal. At
the QHA values. At 3000 K, this difference amounts to high temperatures, each one approaches its corresponding
3.1x10 3 A, quantum calculation.

In the zero-temperature limit we find from the MC simu-  In Fig. 9 we display the pressure dependence of the crys-
lations a(0)=3.5663(10"%) A, a value slightly lower tal volume at 300 K. Open squares are the results of the PI
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FIG. 9. Pressure-volume equation-of-state for diamond at 300 FIG. 10. Differencea—ac between the lattice parameter of a
K. Open squares are results of PI MC. The continuous line wasquantum diamond crystal and that corresponding to the classical
obtained in the quasiharmonic approximation. The dashed line cofimit. Symbols represent data points derived from MC simulations
responds to Murnaghan'’s Iqwee Eq(4)] with B,=4.18 Mbar and at different temperatures: trianglesT=1000 K; circles, T
By=3.97.V, is the volume at zero pressure. =300 K; open and black squares, low-temperature lifgéte text
for detailg. Dashed lines indicate results obtained from a QHA with
MC simulations, and the solid line corresponds to the QHA the same Tersoff-type potential employed in the simulations.
Both results coincide in the whole pressure range considered,
up to 6000 kbar. This indicates that the QHA is accurate@ccurate for high temperatures, as anharmonic effects not
even for such large hydrostatic pressures. The dashed liricluded in the QHA should become more relevant. How-
shows the volume-pressure relation derived from Mur-ever, even forT=1000 K, the QHA gives results foa
naghan’s equation of staté: —ac very close to the PI MC simulations.
The decrease in the differenee-ac as pressure rises is

Bo| [ Vo) B0 due basically to the increase in bulk modulus with pressure.
P=— (—) -1y, (4)  This can be understood by expressing the lattice parameter as
Bol\ V a function of the Groeisen parameters in a QHA>! For a

given pressure, one can expand the lattice pararna¢ieiP)

in which we have introduced thB, and B, values given o firt order iny, (q) (for small volume changes as a func-
above. For pressures larger thari000 kbar, this approxi- tion of T), as

mation predicts volumes larger than those found in the MC

simulations, since the bulk modulus given by Murnaghan’s

law is also largefsee Fig. 7. However, this approach gives a(T,P)zaC(O,P)+ ——— E Yn(DEn(q,T),

a good approximation to the results of the quantum simula- 3B(P)aZ(0,P)

tions for pressures lower than 1000 kbar. )
It is interesting to analyze the influence of quantum ef-yere

fects on the lattice parameter, as a function of the applied

pressure. This is presented in Fig. 10, where we show the wn(Q)

differencea—ac between the lattice parameters correspond- En(a,T)= ﬁwn(CI)COﬂ‘< ST )

ing to the quantum and classical approaches. Different sym- B

bols correspond to results of MC simulatiofggiantum and Here, B(P) is the bulk modulus at zero temperature and

classical, and dashed lines to those of the QHA at differentpressureP, andac(0,P) is the zero-temperature limit of the

temperatures: 1000 Kriangles, 300 K (circles, and zero- classical lattice parameter. In this approximation, one finds

temperature limit(open and black squanesSince Pl MC

simulations cannot be carried out strictly B0, squares

correspond to the differenca—ac with ac obtained from a(T,P)—ac(T,P)=

classical MC simulations af=0, but with a calculated at

temperatures low enough to be closea{®): 100 K (black

squares and 300 K(open squards The proximity of both an Yn(DLEn(a, T) —kgT],

kinds of symbols for a given pressure indicates the conver- a

gence of the results. The QHA provides a very good descripindicating that, for givem andP, the differencea—ac is, to

tion of the differencea—ac in the whole pressure range first order iny,(q), proportional toB(P) 1. When pressure

investigated here. This approximation is expected to be less modified, the relative changes & (0,P) [which appears

(6)

3B(P)aZ(0,P)
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FIG. 11. Thermal expansion coefficient of diamond as a func- FIG. 12. Thermal expansion coefficient of diamond as a func-
tion of temperature at atmospheric pressure. Squares are resutten of temperature at different pressures. Squares and the solid line
derived from PI MC simulations by numerical differentiation of the are simulation results and experimental dat®atl atm, as in Fig.
lattice parametea(T). The dashed line is the result of a QHA with 11. Other symbols correspond to results at several hydrostatic pres-
the Tersoff-type potential employed here. The solid line shows thesures: circles, 1000 kbar; triangles, 2000 kbar; diamonds, 4000
experimental resultgRef. 52. The dashed-dotted line through the kbar. Dotted lines are guides to the eye.
data points is a guide to the eye. The dotted line indicates results

found by Pavoneet all” from density-functional-theory calcula- fact, from Eq.(5) the QHA gives for the thermal expansion
tions in a QHA. coefficient[to first order iny,(q)]:

in the denominator on the r.h.s. of Eq)] are much smaller
than those inB(P). Thus, at any temperature,—ac de-
creases as pressure is raised, siB¢®) becomes larger.
This is basically the trend found in the more precise calcu-

i HA and MO shown in Fig. 10.
fations (QHA and MQ shown in Fig With  Cy n(q,T)=dE(q,T)/dT. Then, in the high-
temperature limit {>®p), one has

a(T,P)= (€)

3B(P)V(O,P) & Ya(d)Cyn(a,T),

E. Thermal expansion

The linear coefficient of thermal expansion: K
B

a(T,P)= 3B(PV(0P) & (), (10

_1
T a

Jda

o (8)

a

: and the thermal expansion coefficient should go to a con-
has been obtained by numerical differentiation of the simustant. Since the experimental result indicates thaicreases
lation results fora(T) at atmospheric pressure. Valuesof at highT (see Fig. 1}, that approximation should fail at high
derived by this methodsquares are compared in Fig. 11 T, irrespective of the interatomic potential employed in the
with experimental data for diamorrd (bold line. The calculations. When one considers the QHA, without the lin-
dashed-dotted line through the MC data is a guide to the eyearization assumed in E¢), « does not saturate to a con-
Results of the QHA are given by a dashed line. This linestant value at higfT, as shown by our calculationglashed
closely follows the results of the PI MC simulations up to line in Fig. 11).

~1000 K, and departs from them at higherAt these tem- Taking into a account the increase in bulk modulus as the
peratures, the thermal expansion coefficient derived from thpressure is raised, one expects thawill decreasd see Eq.
QHA is larger than that obtianed from Pl MC, as expected(9)]. This is in fact found in our PI MC simulations, and
from the high-temperature results fa¢T) shown in Fig. 8.  shown in Fig. 12. In this figure, open squares and the solid
The dotted line in Fig. 11 shows results f@(T) derived by line represent atmospheric-pressure results, as in Fig. 11. Re-
Pavoneet al’ from density-functional theory calculations in sults for « at different hydrostatic pressures are shown by
a QHA. These theoretical results follow closely the experi-different symbols: circle$1000 kbay, triangles(2000 kbay,
mental values folf =500 K, but seem to saturate to a con- and diamondg4000 kbaJ. Dotted lines are guides to the
stant valuex;1=4.3x 10 8 K1 at high temperatures. Such eye. At 300 K, a hydrostatic pressure of 1000 kbar reduces

a saturation is expected in calculations employing expanby about a factor of 2, and this factor is nearly unchanged
sions like that given foa(T) in Eg. (5), as in Ref. 17see  from room temperature up to 2000 K. For higher pressures, a
also Ref. 18 for a similar calculation of(T) for silicon]. In  further reduction ofw is found.
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IV. SUMMARY crease in the lattice parameter of 0.017&relative change
of 0.5% and a decrease in the bulk modulus by 5%. Note

In this paper, we have studied the influence of quantun%hat these values are of the same order of magnitude as the

effects on structural and thermodynamic properties of dlabrecision currently available by the besh initio electronic

m_o_nd by PI'MC simulations. These ql_Ja_mtum effe_cts are n(.)nétructure methods. This means that, at least for materials
trivial in the presence of anharmonicity. For situations in

which anharmonic effects can be treated perturbatigiedy, with light atoms, further improvements in the treatment of

. . the electronic structure cannot reduce the error bars in the
low temperatures the QHA gives a good description of the X . .
: " . . . calculation of structural observables, if the effects associated
studied quantities, but this approximation becomes less a

% the guantum nature of the atomic nuclei are not included

curate as temperature is raised. Quantum MC simulations .
P Q in the calculations.

with _the path-integral method_hav_e aIIowec_J us to Ch.ECk the We finally note that, in spite of the limitations associated
precision of the QHA approximation for diamond with an . . . - o
to employing empirical potentials originally optimized for

effective interaction potential. Results of this approximation . . .
. ) classical simulations, a reasonable agreement has been found
for several properties of diamond at room temperature ar .
etween Pl MC and experimental results for several thermo-

very close to those found from Pl MC simulations. This : . ) )
angzement is still valid at high pressures, of the order an&lynaml_c properties of diamond, as heat capacity and thermal
’ ' £xpansion coefficient. For the heat capacity, we have ob-

even larger, than those currently achieved in diamond anvi .

. : L tained values lower than the experimental ones, due to the
cells. At a microscopic scale, when pressure Is mcrea;ed .thr‘lagidity of the Tersoff potential, which gives a shift of the
atoms are forced to move towards shorter interatomic dis- honon frequencies to higher \;vave numbers. However. this
tance;, where the mteractl_on potentla[ IS comparatlvely m.orﬁgidity does not seem to affect directly the cal.culated va1lues
repulsive. Then, the .QHA IS at_>|e to give a goo_d descrlptlo_l}or the lattice parameter and thermal expansion. It is ex-
qf the_ therr_nodynamm_propertles of t_he materla_\l _for ConOII'pected that these limitations will be overcome in the near
tions in wh|ck_1 those high-energy regions are visited. HOW'future by the use oéb initio PI MC simulations, where the
ever, some differences between QHA and Pl MC are found '

at temperatures higher than 1000 K, in particular for the bul Interatomic interaction is derived from first-principles calcu-
. o . lations.
modulus, thermal expansion coefficient, and heat capacity.

This is a consequence of the enhancement of anharmonic

effects_at high temperatures, for which_ the quasihar_mo_nic ACKNOWLEDGMENTS
approximation can be considered to give only qualitative ]
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