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We study a short coherence lengthivave superconductor with a finite density of unitary scatterers using the
Bogoliubov-deGennes technique. We find that the low-energy density of states is reduced, the superfluid
stiffness is significantly larger, and off-diagonal long-range order is more robust than the conventional self-
consisteniT-matrix prediction. These results are a consequence of the inhomogeneous pairing amplitude in the
ground state and of the low-lying excitations formed by hybridized impurity resonances. This inhomogeneous
response accounts for the insensitivity of highsuperconductors to impurities.
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One of the important puzzles in highs superconductors proaches assume a uniform amplitude which then gets glo-
(SO is to understand why these materials are so insensitivbally suppressed to zero at a critical disorder.
to the effects of disorder, despite the fact that conventional Several authors have previously used the BdG approach
theories would suggest that impurities are pair breaking in dor dirty d-wave systemsT. reduction, superfluid density
d-wave SC. In this paper we show that tihomogeneous and localization of excitations was studied in Ref. 9 and
responseof short-coherence length SC to an impurity poten-more recently the density of states has been studied in Refs.
tial allows the system to maintain long-range phase coherlO and 11. Our calculations differ from these in several as-
ence up to much higher disorder than one would have expects: choice of Hamiltonian, parameters, particle-hole
pected based on conventionamatrix calculations. asymmetry, working at fixed density rather than fixed chemi-
Another motivation for the present study comes from re-cal potential, and inclusion of inhomogeneous Hartree-Fock
cent progress on the understanding of the response of higishifts. While our results are broadly consistent with those
T. superconductors to a single impurity atom. A unitary scat-obtained previously, here our emphasis is on understanding
terer was predicted by Balatsky and coworkerslead to a  the BdG results foN(w), Ds, and ODLRO in terms of two
low-energy resonance with a characteristic fourfold symmetdifferent effects:(a) the inhomogeneity in the local pairing
ric wave function about the impurity site. This was recentlyamplitude in the disordered ground state, @ndthe spatial
observed in a scanning tunnel microsc¢f& M) stud;} ofa  structures characterizing the low-lying excitations in the dis-
Zn-doped cuprate. Th&matrix approximation used in Ref. ordered system. This provides a deeper insight into our re-
1 is adequate for the one-impurity problem, and the ordersults.
parameter suppression near the impurity, which it neglects, We model the two-dimensionaRD) disorderedd-wave
does not lead to any qualitative changes. On the other han&C by the Hamiltoniari{= K+ H;,+ Hgis. The kinetic en-
the problem of a finite density of unitary scatterers is moreergy K= —t2<ij>,a(cfacja+ H.c.) describes electrons, with
subtle® spin « at sitei created byciTa, hopping between nearest
There is a large body of theoretical work using the self-neighbors(ij) on a square lattice. The interaction téfm
consistenfT-matrix approximation leading to very interesting Hine=JZijy(S - S§—nin;/4)+UZ;n;;n; | is chosen to lead to
predictions!™’" However, theassumptiorof a homogeneous a d-wave SC ground state in the disorder-free system. The
ground state in the disordered SC in this approach, angpin Operatosf‘zcrao-zﬁci , where thes? are Pauli matri-
other$ that go be_yond it, ignores the nontrivial spat_lal struc-ces, and the density,,=c/,c;, with n;=n;;+n;, . Finally,
tures that arise in a short co_herence lengh) (SC in re- Hye=Si[V(i)— u]n; wherep is the chemical potential and
sponse to the disorder potential. the disorder potentiaV/(i) is an independent random vari-
We use the Bogoliubov-deGennéBAG) approach 10 gpe at each site which is eitherVo, with a probabilityny,
study these effects, and to understand how they affect thgy ity concentration or zero. We believe that such a
low-energy properties of the system such as the one-particlgmpie model is adequate to describe the strongly-correlated

density of state§DOS) N(w) and the superfluid stiffness ¢,nrates at low temperatures because their SC state has sharp
Dg. Our main results can be summarized as follo@@s:The quasiparticle excitations.

low-energy DOS is considerably reduced relative to the Tpe BdG equations are given by
T-matrix result. The low-lying excitations, generated by the

interference of individual impurity resonances are found to & A u, u,
have nontrivial spatial structure(2) We find that off- . . ( ):En( ) @
diagonal long-range ord¢®ODLRO) and finiteD survive to N ALL Un

impurity concentrations much higher than the critical con- A . o~ .
centration of theT-matrix approximation. We show how the where @“(J): __25(t+wi)lf“(1 N 5)+[V(J)___'“J']un(1)
inhomogeneity of the pairing amplitude on the scalgpfin ~ @and Aug(j)=Z5A(j + 8;0)un(j+6), and similarly for
response to a random potential is responsible for this relativén(j). The pairing amplitude on a bond;¢), where &
insensitivity to impurities. In contrast, conventional ap-==*x,*y, is defined by A(j;8)=—J(cj.Cj

0163-1829/2000/62)/02050%4)/$15.00 63 020505-1 ©2000 The American Physical Society



RAPID COMMUNICATIONS

AMIT GHOSAL, MOHIT RANDERIA, AND NANDINI TRIVEDI PHYSICAL REVIEW B 63 02050%R)

1
|
—

LA L L B L LB VAL BB

0.4
0.3
0.2
0.1

0.8

0.4
0.3

N(w)

0.2

bg
(o]

LI R N S B B EN B B NN B B
~

0.1

0.4 ! —__. T—-Matrix

0.2

0.3 —_a_ BdG

Ghika ™

0.2

-+
5

<

[
©
o
&

[P TETTIPRTI L. FPPOT PUU VI FOUTIT. ROTI PP PP I |

0||||||||||||
0.05 0.1

n

0.1

i1
<

imp
-0.2 o /t 0.2 B
) ) FIG. 2. BdG density of statedOS) N(0), defined as the av-
FIG. 1. Density of state€DOS) on aN=24x24 system, with  grage ofN(w) over the rangdw|<0.05, is much smaller than the
J=U=1.18 and(n)=0.875, averaged over 40 disorder realiza- correspondingr-matrix result. The parameters are the same as in
tions at each;y,. Note the sharp drop in the DOS nea=0 on a Fig. 1 and the normalizing factor is the pure system DR
scale much smaller than the energy gap of DiBthe pure system. _qg o1,

+¢j,C+5)/2. The inhomogeneous Hartree-Fock shifts arethe T-matrix theoryN(w) is a constant fow=y, while we
; ~ _ find a sharp dip in the DOS close to the chemical potential,
iven b = u—Un)/2+ 3143 «n, and W, . .
g_J/2<CT yC.,u; 'L; (ny) oNj+2) I consistent with Ref. 11. In fact, we fou(0)=0 for each
- ]’,*C( j+6,—a/* . - - . - _
We numerically solve for the BdG eigenvalugs=0 and impurity configuration at every concentration that we stud

: . . . - ied. The scale of the sharp dip at finitg,§ was found to be
eigenvectors (,,v,,) on a lattice ofN sites with periodic . { .
the same as the energy of an isolated impurity resonance.

boundary conditions.'We th*eq calcul'ate* the pairing ampli- It is very clear that the low-energy DOS in the BdG cal-
tfge Aﬁj;5()12‘32”[””(1_252)”“(J).Jr;”(J)lé”(I:Hi)]/ﬁ.faw culations is considerably smaller than that in thenatrix
ol t € enS|£y<_nj)— alvn()l%, an ocK'S Itw; approximation[even though we do not have the spectral
=JIZwn(j+9)vn(j). These are fed back into the BdG eqqytion to quantify the asymptotic form of(w) as
equation, and the process iterated until self-consistérisy —.0]. To highlight this, we compare in Fig. 2 the finig0)
achieved foreachof the (local) variables defined on the sites of the T-matrix analysi& with the BdGW(O), which is the

and bonds of the lattice. The chemical potentiais chosen o
to obtain a given average densitgy==(n,)/N, and the average ofN(w) over the (arbitrarily choseh range |w|

. . . . . N =0.05<v.
d-wave pairing amplitude is given by (j)=[A(j;+x) To gain further insight into this difference between the
—A(;+Y) A=) A —y) /4. T-matrix and BdG results, we study the wave functions of

We have studied the model for a range of parameters anghe low-lying excitations for individual disorder realizations.
lattice sizes. Here we focus ah=U=1.15, in units oft The probability densityu,(i)|?+|va(i)|? corresponding to
=1, with (n)=0.875 (similar to the parameters used in the lowest-energy states at various impurity concentrations
Refs. 9 and 1Bon systems of size up to 2@6. For these are plotted in the right-hand panels of Fig. 3.
parameters, anah;,,=0, the noninteracting DOS at the  The resonance for a single unitary impurity shows char-
chemical potentiaNy=0.21 andA,=0.077 corresponding acteristic powerlaw tails along diagonal directidrt8.From
to a maximum gap of 0.31. For the impurity potential we Fig. 3, and other low-lying excitations not shown here, we
chooseV=100, close to the unitary limit. The results are see that for finiten;y,, these wave functions are generated by
averaged over 15-40 different realizations of the randomhe hybridization of individual impurity resonances. The ef-
potential. fects of constructive and destructive interference between the

Let us first study the DOS N(w)=(1/ “diagonal tails” of individual resonances are apparent. The
N) Enyi[|un(i)|25(w— En)+|vn(i)]?8(w+E,)] (where we importance of such states was suggested in Ref. 3; however,
broaden the delta functions with a width comparable to avtheir analysis assumed that the resonance energies are ran-
erage level spacingIn Fig. 1 we plotN(w) for several domly distributed over a sca&> A, which is not the case
impurity concentrations on a small energy scale; for comdn the physical situation obtained here.
parison, the maximum energy gap in the disorder-free system We emphasize that excitations with such nontrivial spatial
is 0.31 and thel-matrix self-energy scafey= VNimpA/2Ny  structures cannot be described Bymatrix theory, which
=<0.25 for the parameters chosen; is theT-matrix gap. In  treats the scattering of quasiparticles in a homogenéous
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+ FIG. 4. T=0 (a) off-diagonal long-range order parameter and
& La® i (b) superfluid stiffnesgboth normalized by their values at zero
f 7 ¥ e 2 disordey, as a function of concentration of unitary scatterers, ob-
s : =" tained by the BdG method. Note thatwave superconductivity is
0= 0.04 much more robust than thiematrix prediction. Parameters used are
LI J . . ] J=U=1.1% and(n)=0.875, withN,=0.21 andD,=0.80, on an
! | ‘ B 2 ] =24x 24 system, averaged over isorder realizations.
, % N=24x24 d 15 disord |
' - d e and does not vanish up t,,=0.12 which is 50% larger
+ . k- than nﬁnp within the T-matrix approximation(We did not go
L " 1 " - to higher impurity concentrations because of the increase in

computational time to reach self-consistendy. any case,
FIG. 3. Left column: Evolution of the local pairing amplitude W€ expect that onc®s is sufficiently small, phase fluctua-
A(i) with impurity concentration. Dark regions in the gray-scale ions neglected within the BdG mean-field approach will
plot indicate suppressed pairing amplitude, and are correlated witdrive the transition to the nonsuperconducting ijémlfs IS
the impurity locations. Parameters used areU=1.1% and(n) left for a future investigation. Here we wish to gain insight
=0.875 on arN=24x 24 system. Right column: The correspond- into how the system manages to exhiBit>0, even when
ing probability density|u,(i)|?+|va(i)|? for the lowest excited T-matrix theory predicts it to be nonsuperconducting.
state f=1) wave function. Higher probability is indicated by a ~ One way to think about this is to correlabg andN(w).
darker shade. Each impurity location is marked by a dot. A smaller DOS for low-lying excitations in the BdG ap-
proach implies fewer “normal fluid” excitations and hence a
purity averagey medium off a single impurity in a self- larger superfluid density compared to thenatrix approxi-
consistent fashion. The resulting constat(0) then arises Mation. A complementary approach, which we find very il-
from a constant broadening (defined aboveof states near luminating, relates th® to the inhomogeneous pairing am-
the d-wave nodes. In contrast, the low-energy DOS in theblitude A(i) in the disordered ground state, shown in the left
BdG theory comes from states arising out of hybridization ofP@nels of Fig. 3. Notice that tritwave pairing amplitude is
impurity resonances. suppressed in the vicinity of an impurity on the scale of the

We already see from Fig. 2 that at and beyond the criticafoherence lengtéip which is 3 to 4 lattice unitsiin addition,
concentration of thd-matrix approachn,,~0.08 for our & small extended-wave component, not shown, also devel-
choice of parameters, the BdG DOS doex approach the ops nearby The reglons“of ;uppresseq pairing amplltude
nondisordered valudly. This raises the questions: does scdive the appearance of “swiss chees¥at finite Ny, in
persist beyonahii,,, and if so, how? To address these issued 19 3 . .
we calculate the superfluid stiffness using the linear response In thgT—matr_lx approach the _order parametcer Is forced to
result: Dg/m=(—ky) — Ayy(dy=0d,—0,0=0). The dia- e spatially umform anq _|t vamsh_es fOF = Ny - HOW-
magnetic term(—k,) is half (in 2D) the kinetic energy ever, py allowing the pairing qmplltude to vary on the sgale
(—K), and the paramagnetic term,, is the long wave- of &, in response to the impurity potentfll, the BdG solution
length limit of the transverse current-current correlation avPermits a nonvanishing order parameterwhich is larger
eraged over disorder realizations. than that obtained withiff-matrix theory forall niy,; see

We see from Fig. @) that the superfluid stiffnesBg is  Fig. 4@). (A is formally defined in terms of the long distance
much larger than th&-matrix result, consistent with Ref. 9, behavior of the appropriate reduced two-particle density ma-
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trix). We note that botlA/A, andD4/Ds are linear func- Despite the quantitative results on finite systems and their

tions of ni,é5 for a substantial range of impurity concentra- detailed qualitative understanding, many questions remain
tion. open. The first one relates 1 suppression. While it is easy

o . . to calculate the “mean-field;,” ” a more reliable estimate
To qualitatively understand the superfluid stifineiSs should include the effect of both phase fluctuations and qua-

consider applying an external phase twist to the inhomogegjpariicles. Another important question is thermal trangport
neous ground state. Despite the fact that at largg there i the SC state. Why does it not reflect the low-energy struc-
are large regions where the amplitude vanishes, there are stilire of the DOS and why is it consistent with the universal
paths that permit phase information to be conveyed from oneehavior predicted by-matrix theory® when the superfluid
edge of the system to the other, thus leading to a nonvanisldensity® shows deviations from it. A full understanding of
ing Ds. Thus the spatial inhomogeneity of the pairing am-the asymptotic DOS of the low-energy excitations, their lo-
plitude, which is particularly important in short coherence Calization properties and the study of SC state transport on a
length superconductors, is crucial in understanding the reld?€twork of hybridized resonances are all topics for future

tive insensitivity of the system to unitary impurities, in that "€séarch.

the order parameter and superfluid stiffness are much larger we would like to thank A.V. Balatsky, P.J. Hirschfeld, A.
than one might have guessed from thenatrix approxima-  paramekanti, S.H. Pan, and G.P. Das for illuminating discus-
tion. This lack of sensitivity of the higfi cuprates to dis-  sjons. M.R. was supported in part by the Department of Sci-
order has been seen in numerous experimgnts. ence and Technology through the Swarnajayanti scheme.
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