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Spatial inhomogeneities in disorderedd-wave superconductors
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We study a short coherence lengthd-wave superconductor with a finite density of unitary scatterers using the
Bogoliubov-deGennes technique. We find that the low-energy density of states is reduced, the superfluid
stiffness is significantly larger, and off-diagonal long-range order is more robust than the conventional self-
consistentT-matrix prediction. These results are a consequence of the inhomogeneous pairing amplitude in the
ground state and of the low-lying excitations formed by hybridized impurity resonances. This inhomogeneous
response accounts for the insensitivity of high-Tc superconductors to impurities.
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One of the important puzzles in high-Tc superconductors
~SC! is to understand why these materials are so insens
to the effects of disorder, despite the fact that conventio
theories would suggest that impurities are pair breaking
d-wave SC. In this paper we show that theinhomogeneous
responseof short-coherence length SC to an impurity pote
tial allows the system to maintain long-range phase coh
ence up to much higher disorder than one would have
pected based on conventionalT-matrix calculations.

Another motivation for the present study comes from
cent progress on the understanding of the response of h
Tc superconductors to a single impurity atom. A unitary sc
terer was predicted by Balatsky and coworkers1 to lead to a
low-energy resonance with a characteristic fourfold symm
ric wave function about the impurity site. This was recen
observed in a scanning tunnel microscope~STM! study2 of a
Zn-doped cuprate. TheT-matrix approximation used in Ref
1 is adequate for the one-impurity problem, and the ord
parameter suppression near the impurity, which it negle
does not lead to any qualitative changes. On the other h
the problem of a finite density of unitary scatterers is m
subtle.3

There is a large body of theoretical work using the se
consistentT-matrix approximation leading to very interestin
predictions.4–7 However, theassumptionof a homogeneous
ground state in the disordered SC in this approach,
others8 that go beyond it, ignores the nontrivial spatial stru
tures that arise in a short coherence length (j0) SC in re-
sponse to the disorder potential.

We use the Bogoliubov-deGennes~BdG! approach to
study these effects, and to understand how they affect
low-energy properties of the system such as the one-par
density of states~DOS! N(v) and the superfluid stiffnes
Ds . Our main results can be summarized as follows:~1! The
low-energy DOS is considerably reduced relative to
T-matrix result. The low-lying excitations, generated by t
interference of individual impurity resonances are found
have nontrivial spatial structure.~2! We find that off-
diagonal long-range order~ODLRO! and finiteDs survive to
impurity concentrations much higher than the critical co
centration of theT-matrix approximation. We show how th
inhomogeneity of the pairing amplitude on the scale ofj0 in
response to a random potential is responsible for this rela
insensitivity to impurities. In contrast, conventional a
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proaches assume a uniform amplitude which then gets
bally suppressed to zero at a critical disorder.

Several authors have previously used the BdG appro
for dirty d-wave systems.Tc reduction, superfluid density
and localization of excitations was studied in Ref. 9 a
more recently the density of states has been studied in R
10 and 11. Our calculations differ from these in several
pects: choice of Hamiltonian, parameters, particle-h
asymmetry, working at fixed density rather than fixed chem
cal potential, and inclusion of inhomogeneous Hartree-F
shifts. While our results are broadly consistent with tho
obtained previously, here our emphasis is on understan
the BdG results forN(v), Ds , and ODLRO in terms of two
different effects:~a! the inhomogeneity in the local pairin
amplitude in the disordered ground state, and~b! the spatial
structures characterizing the low-lying excitations in the d
ordered system. This provides a deeper insight into our
sults.

We model the two-dimensional~2D! disorderedd-wave
SC by the HamiltonianH5K1Hint1Hdis. The kinetic en-
ergy K52t(^ i j &,a(cia

† cj a1H.c.) describes electrons, wit
spin a at site i created bycia

† , hopping between neares
neighbors^ i j & on a square lattice. The interaction term12

Hint5J(^ i j &(Si•Sj2ninj /4)1U( ini↑ni↓ is chosen to lead to
a d-wave SC ground state in the disorder-free system. T
spin operatorSi

a5cia
† sab

a cib , where thesa are Pauli matri-
ces, and the densitynia5cia

† cia with ni5ni↑1ni↓ . Finally,
Hdis5( i@V( i )2m#ni wherem is the chemical potential and
the disorder potentialV( i ) is an independent random var
able at each site which is either1V0, with a probabilitynimp
~impurity concentration!, or zero. We believe that such
simple model is adequate to describe the strongly-correla
cuprates at low temperatures because their SC state has
quasiparticle excitations.

The BdG equations are given by

S ĵ D̂

D̂* 2 ĵ*
D S un

vn
D 5EnS un

vn
D , ~1!

where ĵun( j )52(d(t1Wj )un( j 1d)1@V( j )2m̃ j #un( j )
and D̂un( j )5(dD( j 1d;d)un( j 1d), and similarly for
vn( j ). The pairing amplitude on a bond (j ;d), where d
56 x̂,6 ŷ, is defined by D( j ;d)52J^cj 1d↓cj↑
©2000 The American Physical Society05-1
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1cj↓cj1d↑&/2. The inhomogeneous Hartree-Fock shifts a

given by m̃ j5m2U^nj&/21J/4(d^nj 1d& and Wj

5J/2^cj ,2a
† cj 1d,2a&.

We numerically solve for the BdG eigenvaluesEn>0 and
eigenvectors (un ,vn) on a lattice ofN sites with periodic
boundary conditions. We then calculate the pairing am
tude D( j ;d)5J(n@un( j 1d)vn* ( j )1un( j )vn* ( j 1d)#/2 at T
50, the density^nj&52(nuvn( j )u2, and Fock shiftWj

5J(nvn( j 1d)vn* ( j ). These are fed back into the Bd
equation, and the process iterated until self-consistency14 is
achieved foreachof the ~local! variables defined on the site
and bonds of the lattice. The chemical potentialm is chosen
to obtain a given average density^n&5( i^ni&/N, and the
d-wave pairing amplitude is given byD( j )5@D( j ;1 x̂)
2D( j ;1 ŷ)1D( j ;2 x̂)2D( j ;2 ŷ)#/4.

We have studied the model for a range of parameters
lattice sizes. Here we focus onJ5U51.15, in units oft
51, with ^n&50.875 ~similar to the parameters used
Refs. 9 and 13! on systems of size up to 26326. For these
parameters, andnimp50, the noninteracting DOS at th
chemical potentialN0.0.21 andD0.0.077 corresponding
to a maximum gap of 0.31. For the impurity potential w
chooseV05100, close to the unitary limit. The results a
averaged over 15–40 different realizations of the rand
potential.

Let us first study the DOS N(v)5(1/
N) (n,i@ uun( i )u2d(v2En)1uvn( i )u2d(v1En)# ~where we
broaden the delta functions with a width comparable to
erage level spacing!. In Fig. 1 we plot N(v) for several
impurity concentrations on a small energy scale; for co
parison, the maximum energy gap in the disorder-free sys
is 0.31 and theT-matrix self-energy scale4 g5AnimpD/2N0
<0.25 for the parameters chosen; (D is theT-matrix gap!. In

FIG. 1. Density of states~DOS! on aN524324 system, with
J5U51.15t and ^n&50.875, averaged over 40 disorder realiz
tions at eachnimp . Note the sharp drop in the DOS nearv50 on a
scale much smaller than the energy gap of 0.31t in the pure system.
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the T-matrix theoryN(v) is a constant forv<g, while we
find a sharp dip in the DOS close to the chemical potent
consistent with Ref. 11. In fact, we foundN(0)50 for each
impurity configuration at every concentration that we stu
ied. The scale of the sharp dip at finite nimp was found to be
the same as the energy of an isolated impurity resonanc

It is very clear that the low-energy DOS in the BdG ca
culations is considerably smaller than that in theT-matrix
approximation@even though we do not have the spect
resolution to quantify the asymptotic form ofN(v) as v
→0]. To highlight this, we compare in Fig. 2 the finiteN(0)
of the T-matrix analysis15 with the BdGN̄(0), which is the
average ofN(v) over the ~arbitrarily chosen! range uvu
<0.05!g.

To gain further insight into this difference between t
T-matrix and BdG results, we study the wave functions
the low-lying excitations for individual disorder realization
The probability densityuun( i )u21uvn( i )u2 corresponding to
the lowest-energy states at various impurity concentrati
are plotted in the right-hand panels of Fig. 3.

The resonance for a single unitary impurity shows ch
acteristic powerlaw tails along diagonal directions.1,16 From
Fig. 3, and other low-lying excitations not shown here, w
see that for finitenimp these wave functions are generated
the hybridization of individual impurity resonances. The e
fects of constructive and destructive interference between
‘‘diagonal tails’’ of individual resonances are apparent. T
importance of such states was suggested in Ref. 3; howe
their analysis assumed that the resonance energies are
domly distributed over a scaleW@D0, which is not the case
in the physical situation obtained here.

We emphasize that excitations with such nontrivial spa
structures cannot be described byT-matrix theory, which
treats the scattering of quasiparticles in a homogeneous~im-

FIG. 2. BdG density of states~DOS! N̄(0), defined as the av-
erage ofN(v) over the rangeuvu<0.05, is much smaller than th
correspondingT-matrix result. The parameters are the same as
Fig. 1 and the normalizing factor is the pure system DOSN0

50.21.
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purity averaged! medium off a single impurity in a self
consistent fashion. The resulting constantN(0) then arises
from a constant broadeningg ~defined above! of states near
the d-wave nodes. In contrast, the low-energy DOS in
BdG theory comes from states arising out of hybridization
impurity resonances.

We already see from Fig. 2 that at and beyond the crit
concentration of theT-matrix approach,nimp

c .0.08 for our
choice of parameters, the BdG DOS doesnot approach the
nondisordered valueN0. This raises the questions: does S
persist beyondnimp

c , and if so, how? To address these issu
we calculate the superfluid stiffness using the linear respo
result: Ds /p5^2kx&2Lxx(qx50,qy→0,v50). The dia-
magnetic term^2kx& is half ~in 2D! the kinetic energy
^2K&, and the paramagnetic termLxx is the long wave-
length limit of the transverse current-current correlation
eraged over disorder realizations.

We see from Fig. 4~b! that the superfluid stiffnessDs is
much larger than theT-matrix result, consistent with Ref. 9

FIG. 3. Left column: Evolution of the local pairing amplitud
D( i ) with impurity concentration. Dark regions in the gray-sca
plot indicate suppressed pairing amplitude, and are correlated
the impurity locations. Parameters used areJ5U51.15t and ^n&
50.875 on anN524324 system. Right column: The correspon
ing probability densityuun( i )u21uvn( i )u2 for the lowest excited
state (n51) wave function. Higher probability is indicated by
darker shade. Each impurity location is marked by a dot.
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and does not vanish up tonimp50.12 which is 50% larger
thannimp

c within theT-matrix approximation.~We did not go
to higher impurity concentrations because of the increas
computational time to reach self-consistency.! In any case,
we expect that onceDs is sufficiently small, phase fluctua
tions neglected within the BdG mean-field approach w
drive the transition to the nonsuperconducting state;17 this is
left for a future investigation. Here we wish to gain insig
into how the system manages to exhibitDs.0, even when
T-matrix theory predicts it to be nonsuperconducting.

One way to think about this is to correlateDs andN(v).
A smaller DOS for low-lying excitations in the BdG ap
proach implies fewer ‘‘normal fluid’’ excitations and hence
larger superfluid density compared to theT-matrix approxi-
mation. A complementary approach, which we find very
luminating, relates theDs to the inhomogeneous pairing am
plitudeD( i ) in the disordered ground state, shown in the l
panels of Fig. 3. Notice that thed-wave pairing amplitude is
suppressed in the vicinity of an impurity on the scale of t
coherence lengthj0 which is 3 to 4 lattice units.~In addition,
a small extendeds-wave component, not shown, also deve
ops nearby!. The regions of suppressed pairing amplitu
give the appearance of ‘‘swiss cheese’’18 at finite nimp in
Fig. 3.

In the T-matrix approach the order parameter is forced
be spatially uniform and it vanishes fornimp>nimp

c . How-
ever, by allowing the pairing amplitude to vary on the sca
of j0, in response to the impurity potential, the BdG soluti
permits a nonvanishing order parameterD̄ which is larger
than that obtained withinT-matrix theory forall n imp ; see
Fig. 4~a!. (D̄ is formally defined in terms of the long distanc
behavior of the appropriate reduced two-particle density m

ith

FIG. 4. T50 ~a! off-diagonal long-range order parameter a
~b! superfluid stiffness~both normalized by their values at zer
disorder!, as a function of concentration of unitary scatterers, o
tained by the BdG method. Note thatd-wave superconductivity is
much more robust than theT-matrix prediction. Parameters used a
J5U51.15t and^n&50.875, withN050.21 andDs,050.80, on an
N524324 system, averaged over 15 disorder realizations.
5-3
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trix!. We note that bothD̄/D0 and Ds /Ds,0 are linear func-
tions ofnimpj0

2 for a substantial range of impurity concentr
tion.

To qualitatively understand the superfluid stiffnessDs

consider applying an external phase twist to the inhomo
neous ground state. Despite the fact that at largenimp there
are large regions where the amplitude vanishes, there are
paths that permit phase information to be conveyed from
edge of the system to the other, thus leading to a nonvan
ing Ds . Thus the spatial inhomogeneity of the pairing a
plitude, which is particularly important in short coheren
length superconductors, is crucial in understanding the r
tive insensitivity of the system to unitary impurities, in th
the order parameter and superfluid stiffness are much la
than one might have guessed from theT-matrix approxima-
tion. This lack of sensitivity of the high-Tc cuprates to dis-
order has been seen in numerous experiments.18
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Despite the quantitative results on finite systems and t
detailed qualitative understanding, many questions rem
open. The first one relates toTc suppression. While it is eas
to calculate the ‘‘mean-fieldTc , ’’ 9 a more reliable estimate
should include the effect of both phase fluctuations and q
siparticles. Another important question is thermal transpo19

in the SC state. Why does it not reflect the low-energy str
ture of the DOS and why is it consistent with the univers
behavior predicted byT-matrix theory,6,4 when the superfluid
density18 shows deviations from it. A full understanding o
the asymptotic DOS of the low-energy excitations, their
calization properties and the study of SC state transport o
network of hybridized resonances are all topics for futu
research.
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