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We study the transport properties of a finite three-dimensional disordered conductor, for both weak and
strong scattering on impurities, employing the real-space Green function technique and related Landauer-type
formula. The dirty metal is described by a nearest-neighbor tight-binding Hamiltonian with a sioddéal
per site and random on-site potenti@éinderson modgl We compute exactly the zero-temperature conduc-
tance of a finite-size sample placed between two semi-infinite disorder-free leads. The resistivity is found from
the coefficient of linear scaling of the disorder-averaged resistance with sample length. This “quantum”
resistivity is compared to the semiclassical Boltzmann expression computed in both Born approximation and
multiple scattering approximation.
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Ever since Anderson’s seminal papex,prime model for  classical regimeD;— D, =uv,l /3. The diffusivityD, dimin-
the theories of the disorder induced metal-insulator, oiishes as\\V/t) 2 in Boltzmann theory. As$/a approaches a
localization-delocalizaticn(LD), transition in noninteracting minimum value (1), D; decreases towar® ,;,=ta%%,
electron systems has been the tight-binding Hamiltoniawhich can be regarded as a minimum metallic diffusivity
(TBH) on a hypercubic lattice below which localization sets in. But there is a wide range of
W/t over whichD;=D,;, and yet the Boltzmann scaling
D~ (t/W)? is approximately right. In this regime single par-
ticle eigenstate$i) are neither ballistically propagating nor
are they localized. There is a third category: intrinsically
with nearest-neighbor hopping matrix elemérttetweens  diffusive® A wave packet built from such states has zero
orbitals (r|m)=(r —m) on adjacent atoms located at sitesrange of ballistic motion but an infinite range of diffusive
m of the lattice. The disorder is simulated by taking randompropagation. Such states are found not only in a narrow
on-site potential such that,, is uniformly distributed in the crossover regime but over a wide range of parameters physi-
interval [-W/2,W/2]. This is commonly called the “Ander- cally accessible in real materials and mathematically acces-
son model.” There are many numerical studie$ the LD  sible in models like the Anderson modeln this regime,
transition, which occurs in three dimensiof@D) for a half-

H=§ smlm><ml+t<§]> Im)(nl, 1)

filled band at the critical disorder strengti,~16.%. Ex- s,

periments on real metals with strong scattering or strong cor- :5/10 ) P v T
relations often yield resistivities which are hard to analyze. o‘flol F y
Theory gives guidance in two extreme regim@s:the semi- 8 . | T
classical case where quasiparticles with defikiteector jus- 210 f B 1
tify a Boltzmann approach and “weak localizatior(\WL) §10’1 —ee

correction> and (b) a scaling regim&near the LD transition

to “strong localization.” Lacking a complete theory it is
often assumed that the two limits join smoothly with nothing
between. Experiments, however, are very often in neither
extreme limit. The middle is wide and needs more attention. g

Here we give a 3D numerical analysis focused not on the
transition itself but instead on the resistivity for<V/t

=P i 2

<W.,/t; specifically we ask how rapidly does the resistivity
p(W) deviate from the values predicted by the usual Boltz-
mann theory valid whekllV<t. It has long been assumed that
“loffe-Regel condition”” |~ 1/ke~a (I being the mean-free
path, anda being the lattice constangives the criterion for
sufficient disorder to drive the metal into an Anderson insu- 5 ¢ Resistivity p at Ez=0 (lower panel and Ep=2.4

lator. Figure 1 shows that this is wrong. BY/t~6, wherel  iqdie panel, from a sample of cross sectidh= 2252, normal-
is close toa, there is little sign of a divergence away from the j;eq g the semiclassical Boltzmann resistiviy calculated in the
semiclassical extrapolation, and the LD transition is postgorm approximation. Also plotted are the ratiosgf to the Boltz-
poned to much larger values Wf/t. mann resistivityp obtained using & matrix for multiple scatter-

A cleaner discussion is possible using Kubo theory, whiching on a single impurity. The upper panel shows putative mean-free
does not defing but allows a definition of the diffusivit{; paths obtained frompg (labeled by B or p; (labeled byT). Error
of an eigenstatéi ), as shown below in Eq3). In the semi-  bars at smalW/t are smaller than the size of the dot.
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there is not a simple scaling parameter nor a universal bealloys, and close to the largest resistivity normally seen in
havior. But the behavior is quite insensitive to a changes irdirty “good” metals. Figure 1 plotsp/pg versus W/t)2.
Fermi energyEr or kgT, and scales smoothly wittV/t. Even forW=10t there is less than a factor of 2 deviation
The traditional tool for computation op has been the from the (unwarrantegl extrapolation of the Boltzmann
Kubo formula® originally derived for a system in the ther- theory into the regim&V>t. Boltzmann theory can be “im-
modynamic limit. In a basis of an exact single particle elec-Proved” by including multiple scattering from single impu-
tron stateli) of energye; , this can be written as rities, that is, replacing the impurity potential by thematrix
Tm(2)=em/[1-en9(2)] where g(z)=(1NJ)Z(z— ) *
1 e? of _ is the free particle Green functiomN¢ is the number of lat-
=0 EI (‘ 0_.) D;=e’N(Eg)D, (2)  tice sites. To next order the mean squaFematrix is

) . . - W2 2
whereQ |§ thg sample volumd, |§ the equilibrium Earm| —|Tm(z)|2 -5 1+ (9g* +9g+g*g*)+ ... |,
Dirac distribution,N(Eg) the density of states &, D the 20
mean diffusivity, and state diffusivity is given by ()
where the first term is the Born approximati_on and the coef-
D= wﬁz (i Iﬁxlj Y28(ei— €), 3) ficient of the correctiofi~O(W*)] changes sign from nega-
J

tive to positive a: moves from 0 to 2.4 As shown in Fig.

- 1, the resistivity does not behave liK& ,(z)|%; multiple
wherev is the velocity operator. These formulas, while cor- scattering with interference from pairs of impurities is at
rect, are hard to use numericalfy'” Thanks to the recent |east equally important, and the “exacp(W) is less sensi-
advances in mesoscopic physfes is now apparent that the  tive to details likeEg than is theT-matrix approximation.
Landauer scattering approdth(or, equivalent, “mesos- The rest of the paper presents the method of calculation and
copic” Kubo reformulation for the finite-size systetfspro-  describes a bit of mesoscopic physics of very dirty metals.
vides superior numerical efficiency when computing the The central linear transport quantity in the mesoscopic
transport properties of finite disordered conductors. It relategiew? as well as in the scaling theory of localizatibris
the conductance of a sample to its quantum-mechanic&onductanceG rather than conductivityr(L)=L2"9G(L)
transmission properties. This formalism emphasizes the infthe bulk conductivity is an intensive material constant
portance of taking into account the interfaces between th@efined only in the thermodynamic limit, o
sample and the rest of the circtitTransport in the sample =lim, .. L279G(L)]. We use a Landauer-type formula to
is phase coherettie., effectively occurring at zero tempera- get the exact quantum conductar@ef finite samples with
ture); the diSSipation and thus thermalization of eleCtronSdisorder Configurations Chosen by a random number genera_
(necessary for the establishment of steady stales place tor. Finite-size samples permit exact solutions for any
in other parts of the circuit. strength of disorder. Similar to other recent wotks? the

Our principal result for the(quantum resistivity of  pylk resistivity is extracted from the disorder-averaged resis-
Anderson model, using Landauer-type approach, is shown igance(R) by finding the lineakOhmic) scaling ofR) versus
Fig. 1 for two different Fermi energieEr=0 (half-filled  the length of the sample at fixed cross sectioA (Fig. 2).
band and Er=2.4t (approximately 70% filled band but Two kinds of error§’ may arisei(@) The transition from the
falling somewhat a$V, and thus the band width, increases Ohmic regime to the localized regime occurs for length of
The linearized Boltzmann equation—eE-vdf/dex  the sampld.~ ¢ (¢ being the localization lengthwhich oc-
= (dF/dt)scan Serves as a reference theory. Hegeis the  cyrs for® G=(2e%/h). If L is made large enougi@ will
energy band forW=0, namely e,=2tX cosk,, fivk, IS always diminish to this magnitude. Therefore, we avoid us-
del ik, , andFy is the nonequilibrium distribution. The col- ing the sample sizes with too sm&l (b) Finite-size bound-
lision integral is ary conditions and nonspecular reflectibnause density of
states and scattering properties of the sample to be slightly
(d_F —_ 2_” 2 Vi |2(F—Fi) 8 ec— €r). () altered as compared to the true bulk. We expect these effects
dt foa T AT TR S e to be small for our samples whekés smaller than the trans-

_ _verse size/A.

The mean squared matrix element of the random potential A 1o probe measuring configuration is used for compu-
|Vigr|2, in Born approximation, is5,=W?/12, where( ...)  tation. The sample is placed between two disorder-fegg (
denotes average over probability distributioR(ey,)  =0) semi-infinite leads connected to macroscopic reservoirs
= (1MW) 6(W/2— |&,|). This equation assumes that quasipar-which inject thermalized electrons at electrochemical poten-
ticles propagate with mean-free pdtha between isolated tial ., (from the lefy or ug (from the righj into the system.
collision events. The equation is exactly solvable, yieldingThe electrochemical potential differenaV=pu —ug is

(for ksT<<t) lpg=e>7(n/m)eg, With (N/M)e=SvE,8(ex  measured between the reservoirs. The leads have the same
—Ep)/Q, and #/7=27N(Eg)W?/12. We have evaluated cross section as the sample. The hopping parameter in the
(n/m) ¢ and N(Eg) numerically. To within factors of order lead and the one which couples the lead to the sample are
one, the Boltzmann-Born answer for the semiclassical resisequal to the hopping parameter in the sample. Thus, extra
tivity is pg=(whale?)(W/4t)2. When W=3t and a  scattering(and resistandeat the sample-lead interface is
=3 A, pgis 125 uQ cm, typical of dirty transition metal avoided but transport at Fermi energj&s| greater than the

scatt
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o t=2vV-1m3, & V-Im3gq ®)
FIG. 2. Linear fit (Ry=C,+pL/A, (A=22%% for the
disorder-averaged resistan@®) in the band centeE-=0 and dif-  or transmission eigenvalu@s when the trace is evaluated in
ferent disorder strength/. The interceptC, is decreasing with ~a basis which diagonalizes'.
increasingW (i.e., it is not determined just by the contact resistance  For the case of two probe geometry the average transmis-
wh/147?) and becomes negative fiv=7t. The inset shows ex- sion in the semiclassical transport regine<(l<L<¢) is
amples of the distribution of resistand@s(R) (for L =15a) versus given by’l3 (T)=1ly/(lg+L), with I, being of the order of.

logR. The distribution broadens either by increasiwg or the Thus, the semiclassical limit of the Landauer formula
length of the sampl«.éthe. units on they axis are arbitrary and dif- o conductance(G) = (ezlwﬁ)M(T) (measured between
ferent for each distribution points deep inside the reservdiis the case of not too strong

scattering should have the form
clean-metal band edd&,|=6t cannot be studied! Hard g

wall boundary conditions are used in theandz directions. 1 L
The sample is modeled on a cubic lattice WM< N, XN, (G) _RC+pK' ©)
sites, whereN,=N,=15 and length& =Na are taken from
the setN €{5,10,15,20.

The linear conductance is calculated using an expressi
obtained from the Keldysh technicfife

It describes thegclassical series addition of two resistors.
ohhe “contact” resistanc& Rc= 7#/€’M is nonzero, even
in the case of ballistic transport when the second term con-
taining the resistivityp= (7h/e?)AlloM vanishes. Herév
4¢? 5 A, ~ g ~k§A is the number of propagating transverse modds-at
G=_Tr(Im2 Gy ImZRGy)- (6)  also referred to as “channels.” A ballistic conductor with a
finite cross section can carry only finite curre(itse voltage
Here lmiL,R:(irl_ r—32 )/2i are self-energy matrices ( drop occurs at the lead-reservoir interfaddsing this simple
retarded,a advancedl which describe the coupling of the analysis for guidance, we plot average resistaritaken
sample to the leads, al{arlN, Aﬁu are Green function ma- over N¢on= 200 realization of disorderversusL in Fig. 2,

) ) A and fit with the linear function
trices connecting the layer 1 arld of the sample:G"?
=(E-A-3"®~1 (G2=[G"]"), with =3[ +3L (32 (R)y=C1+CoL,Cy=plA. (10
=[2']"). The self-energy matrices introduced by the leadsThe resistivityp in Fig. 1 is obtained from the fitted value of
are nonzero only on the end layers of the sample adjacent 10,. For very small values ofV the constanC, is approxi-
the leads. They are givEhby i[,R(Wm):tZé[ =(Ns,myg) mately equal tdRg= 7r7i/e’M (whereM = 147 is the number

i §.o(nm) being the surface Green functforne 3 DN TS 1 e band ceneTo our subrie,
bare semi-infinite lead between the sitesand mg in the y ' 9

end atomic layer of the leathdjacent to the correspondin tive aroundW=7t.
. yer ) e Tesp 9 The guantum conductand® fluctuates from sample to
sitesn andm inside the conductgr Positive definiteness of

- sample exhibiting universal conductance fluctuatidns
the operators—2ImX, r makes it possible to find their (UCF) AG=.VarG=e%=# in the semiclassical transport
square root and recast the expression under the trace of E@gimeGse? . The inset of Fig. 2 shows the distribution
(6) as a Hermitian operator. The expressi@j then looks  of resistanc® P, (R) for our numerically generated impurity
like the Landauer formula involving the transmission matrixensemble. The error bars, used as weights in thHaGjt are

t computed ass(R)= \VarR/N¢,+ We find thatAG is in-
5 > NN, deed independent of the site(of cubic samples but de-

G= e—Tr(ttT):e— 2 T (7) creases systematically by a factsi3 asW increases to the
wh mhoi=r " critical value W, (Fig. 3). On the other handAR, being
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similar to AG/G?, depends on sample size. Msapproaches netic field. The positive 1L term in Eqg.(11) provides a
W, G gets smaller unti(for our finite samplesAG/G~1.  Possible picture for our finding tha€; in Eq. (10) goes
At this point the distribution of resistanc&=1/G becomes negative adV increases. However, this picture is an extrapo-
very broad andR) begins to rise above d&). For L=15 lation from the semiclassical into the “middle” regime of
this happens wheliv=12t. At large W the conductance of intrinsically diffusive states, and therefore should be given
long samples Nl=20) becomes close te?/w# and devia- little weight. The negative values @, is better regarded as
tions from Ohmic scaling are expected. Therefore, we do noa numerical result from the mesoscopic dirty metal theory.
use these points in the fitting procedure wivée: 10t (keep- It is interesting to note that in mamyband intermetallic
ing the conductanc® of the fitted sample§>2e?/7#). compoundsp “saturates” at a constant valéerather than

We do not have a complete explanation for the deviatiorfollowing the semiclassical extrapolation, that is, increasing
of C; (10) from the quantum point contact resistaRg. In linearly with T at high T. High-T, materials and dopedg
the semiclassical regim@>e?/rr# there are corrections to metals, on the other hand, do not satufat&Vithin Boltz-
the Ohmic scalingG=L%"%. The Diffuson-Cooperon dia- mann theory, the static disorder measured W/t)2 plays
grammatic perturbation theory gives @egative WL  the same role as thermal disorder or squared lattice displace-
correctiort mentokgT. Our numerical results thus can be described as

2 1 e 1 “failing to saturaf[e.” Similar failure was seen in high-
- - (11) Monte Carlo studies by Gunnarsson and Ban.
mh2\2 L 7% 1] . . . . .
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