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Resistivity of a metal between the Boltzmann transport regime and the Anderson transition
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We study the transport properties of a finite three-dimensional disordered conductor, for both weak and
strong scattering on impurities, employing the real-space Green function technique and related Landauer-type
formula. The dirty metal is described by a nearest-neighbor tight-binding Hamiltonian with a singles orbital
per site and random on-site potential~Anderson model!. We compute exactly the zero-temperature conduc-
tance of a finite-size sample placed between two semi-infinite disorder-free leads. The resistivity is found from
the coefficient of linear scaling of the disorder-averaged resistance with sample length. This ‘‘quantum’’
resistivity is compared to the semiclassical Boltzmann expression computed in both Born approximation and
multiple scattering approximation.
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Ever since Anderson’s seminal paper,1 a prime model for
the theories of the disorder induced metal-insulator,
localization-delocalization2 ~LD!, transition in noninteracting
electron systems has been the tight-binding Hamilton
~TBH! on a hypercubic lattice

Ĥ5(
m

«mum&^mu1t (
^m,n&

um&^nu, ~1!

with nearest-neighbor hopping matrix elementt betweens
orbitals ^r um&5c(r2m) on adjacent atoms located at sit
m of the lattice. The disorder is simulated by taking rando
on-site potential such that«m is uniformly distributed in the
interval @-W/2,W/2#. This is commonly called the ‘‘Ander-
son model.’’ There are many numerical studies3 of the LD
transition, which occurs in three dimensions~3D! for a half-
filled band at the critical disorder strength4 Wc'16.5t. Ex-
periments on real metals with strong scattering or strong
relations often yield resistivities which are hard to analy
Theory gives guidance in two extreme regimes:~a! the semi-
classical case where quasiparticles with definitek vector jus-
tify a Boltzmann approach and ‘‘weak localization’’~WL!
correction,5 and~b! a scaling regime6 near the LD transition
to ‘‘strong localization.’’ Lacking a complete theory it i
often assumed that the two limits join smoothly with nothi
between. Experiments, however, are very often in neit
extreme limit. The middle is wide and needs more attenti

Here we give a 3D numerical analysis focused not on
transition itself but instead on the resistivity for 1,W/t
,Wc /t; specifically we ask how rapidly does the resistiv
r(W) deviate from the values predicted by the usual Bo
mann theory valid whenW!t. It has long been assumed th
‘‘Ioffe-Regel condition’’7 l;1/kF;a ( l being the mean-free
path, anda being the lattice constant! gives the criterion for
sufficient disorder to drive the metal into an Anderson in
lator. Figure 1 shows that this is wrong. ByW/t;6, wherel
is close toa, there is little sign of a divergence away from th
semiclassical extrapolation, and the LD transition is po
poned to much larger values ofW/t.

A cleaner discussion is possible using Kubo theory, wh
does not definel, but allows a definition of the diffusivityDi
of an eigenstateu i &, as shown below in Eq.~3!. In the semi-
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classical regime,Di→Dk5vkl k/3. The diffusivityDk dimin-
ishes as (W/t)22 in Boltzmann theory. Asl /a approaches a
minimum value (;1), Di decreases towardDmin5ta2/\,
which can be regarded as a minimum metallic diffusiv
below which localization sets in. But there is a wide range
W/t over which Di&Dmin and yet the Boltzmann scalin
D;(t/W)2 is approximately right. In this regime single pa
ticle eigenstatesu i & are neither ballistically propagating no
are they localized. There is a third category: intrinsica
diffusive.8 A wave packet built from such states has ze
range of ballistic motion but an infinite range of diffusiv
propagation. Such states are found not only in a narr
crossover regime but over a wide range of parameters ph
cally accessible in real materials and mathematically acc
sible in models like the Anderson model.9 In this regime,

FIG. 1. Resistivity r at EF50 ~lower panel! and EF52.4t
~middle panel!, from a sample of cross sectionA5225a2, normal-
ized to the semiclassical Boltzmann resistivityrB calculated in the
Born approximation. Also plotted are the ratios ofrB to the Boltz-
mann resistivityrT obtained using aT matrix for multiple scatter-
ing on a single impurity. The upper panel shows putative mean-
paths obtained fromrB ~labeled by B! or rT ~labeled byT). Error
bars at smallW/t are smaller than the size of the dot.
©2000 The American Physical Society01-1
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there is not a simple scaling parameter nor a universal
havior. But the behavior is quite insensitive to a changes
Fermi energyEF or kBT, and scales smoothly withW/t.

The traditional tool for computation ofr has been the
Kubo formula,10 originally derived for a system in the the
modynamic limit. In a basis of an exact single particle ele
tron stateu i & of energye i , this can be written as

s5
1

r
5

e2

V (
i

S 2
] f

]e i
DDi5e2N~EF!D̄, ~2!

whereV is the sample volume,f is the equilibrium Fermi-
Dirac distribution,N(EF) the density of states atEF , D̄ the
mean diffusivity, and state diffusivity is given by

Di5p\(
j

u^ i uv̂xu j &u2d~e i2e j !, ~3!

wherev̂ is the velocity operator. These formulas, while co
rect, are hard to use numerically.11,12 Thanks to the recen
advances in mesoscopic physics,13 it is now apparent that the
Landauer scattering approach14 ~or, equivalent, ‘‘mesos-
copic’’ Kubo reformulation for the finite-size systems12! pro-
vides superior numerical efficiency when computing t
transport properties of finite disordered conductors. It rela
the conductance of a sample to its quantum-mechan
transmission properties. This formalism emphasizes the
portance of taking into account the interfaces between
sample and the rest of the circuit.15 Transport in the sample
is phase coherent~i.e., effectively occurring at zero tempera
ture!; the dissipation and thus thermalization of electro
~necessary for the establishment of steady state! takes place
in other parts of the circuit.

Our principal result for the~quantum! resistivity of
Anderson model, using Landauer-type approach, is show
Fig. 1 for two different Fermi energiesEF50 ~half-filled
band! and EF52.4t ~approximately 70% filled band bu
falling somewhat asW, and thus the band width, increase!.
The linearized Boltzmann equation2eE•vk] f /]ek
5(dFk /dt)scatt serves as a reference theory. Hereek is the
energy band forW50, namely ek52t( coska , \vka is
]e/]ka , andFk is the nonequilibrium distribution. The col
lision integral is

S dF

dt D
scatt

52
2p

\ (
k8

uVkk8u
2~Fk2Fk8!d~ek2ek8!. ~4!

The mean squared matrix element of the random poten
uVkk8u

2, in Born approximation, is«m
2 5W2/12, where( . . . )

denotes average over probability distributionP(«m)
5(1/W)u(W/22u«mu). This equation assumes that quasip
ticles propagate with mean-free pathl .a between isolated
collision events. The equation is exactly solvable, yield
~for kBT!t) 1/rB5e2t(n/m)eff , with (n/m)eff5(vkx

2 d(ek

2EF)/V, and \/t52pN(EF)W2/12. We have evaluated
(n/m)eff andN(EF) numerically. To within factors of orde
one, the Boltzmann-Born answer for the semiclassical re
tivity is rB5(p\a/e2)(W/4t)2. When W53t and a
53 Å, rB is 125 mV cm, typical of dirty transition meta
02020
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alloys, and close to the largest resistivity normally seen
dirty ‘‘good’’ metals. Figure 1 plotsr/rB versus (W/t)2.
Even for W510t there is less than a factor of 2 deviatio
from the ~unwarranted! extrapolation of the Boltzmann
theory into the regimeW.t. Boltzmann theory can be ‘‘im-
proved’’ by including multiple scattering from single impu
rities, that is, replacing the impurity potential by theT matrix
Tm(z)5«m /@12«mg(z)# where g(z)5(1/Ns)((z2ek)

21

is the free particle Green function (Ns is the number of lat-
tice sites!. To next order the mean squareT matrix is

uTm~z!u2 5
W2

12 F11
3W2

20t2
~gg* 1gg1g* g* !1 . . . G ,

~5!

where the first term is the Born approximation and the co
ficient of the correction@;O(W4)# changes sign from nega
tive to positive asEF moves from 0 to 2.4t. As shown in Fig.
1, the resistivity does not behave likeuTm(z)u2; multiple
scattering with interference from pairs of impurities is
least equally important, and the ‘‘exact’’r(W) is less sensi-
tive to details likeEF than is theT-matrix approximation.
The rest of the paper presents the method of calculation
describes a bit of mesoscopic physics of very dirty meta

The central linear transport quantity in the mesosco
view,2 as well as in the scaling theory of localization,6 is
conductanceG rather than conductivitys(L)5L22dG(L)
@the bulk conductivity is an intensive material consta
defined only in the thermodynamic limit, s
5 limL→` L22dG(L)]. We use a Landauer-type formula t
get the exact quantum conductanceG of finite samples with
disorder configurations chosen by a random number gen
tor. Finite-size samples permit exact solutions for a
strength of disorder. Similar to other recent works,16,17 the
bulk resistivity is extracted from the disorder-averaged re
tancê R& by finding the linear~Ohmic! scaling of^R& versus
the length of the sampleL at fixed cross sectionA ~Fig. 2!.
Two kinds of errors17 may arise:~a! The transition from the
Ohmic regime to the localized regime occurs for length
the sampleL;j ~j being the localization length!, which oc-
curs for18 G5O(2e2/h). If L is made large enough,G will
always diminish to this magnitude. Therefore, we avoid
ing the sample sizes with too smallG. ~b! Finite-size bound-
ary conditions and nonspecular reflection19 cause density of
states and scattering properties of the sample to be slig
altered as compared to the true bulk. We expect these eff
to be small for our samples wherel is smaller than the trans
verse sizeAA.

A two probe measuring configuration is used for comp
tation. The sample is placed between two disorder-free«m
50) semi-infinite leads connected to macroscopic reserv
which inject thermalized electrons at electrochemical pot
tial mL ~from the left! or mR ~from the right! into the system.
The electrochemical potential differenceeV5mL2mR is
measured between the reservoirs. The leads have the
cross section as the sample. The hopping parameter in
lead and the one which couples the lead to the sample
equal to the hopping parameter in the sample. Thus, e
scattering~and resistance! at the sample-lead interface
avoided but transport at Fermi energiesuEFu greater than the
1-2
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clean-metal band edgeuEbu56t cannot be studied.9,11 Hard
wall boundary conditions are used in theŷ and ẑ directions.
The sample is modeled on a cubic lattice withN3Ny3Nz
sites, whereNy5Nz515 and lengthsL5Na are taken from
the setNP$5,10,15,20%.

The linear conductance is calculated using an expres
obtained from the Keldysh technique20

G5
4e2

p\
Tr~ Im ŜLĜ1N

r Im ŜRĜN1
a !. ~6!

Here ImŜL,R5(ŜL,R
r 2ŜL,R

a )/2i are self-energy matrices (r
retarded,a advanced! which describe the coupling of th
sample to the leads, andĜ1N

r , ĜN1
a are Green function ma

trices connecting the layer 1 andN of the sample:Ĝr ,a

5(E2Ĥ2Ŝ r ,a)21 (Ĝa5@Ĝr #†), with Ŝ r5ŜL
r 1ŜR

r (Ŝa

5@Ŝ r #†). The self-energy matrices introduced by the lea
are nonzero only on the end layers of the sample adjace

the leads. They are given13 by ŜL,R
r (n,m)5t2ĝL,R

r (nS ,mS)

with ĝL,R
r (nS ,mS) being the surface Green function12 of the

bare semi-infinite lead between the sitesnS and mS in the
end atomic layer of the lead~adjacent to the correspondin
sitesn andm inside the conductor!. Positive definiteness o

the operators22 Im ŜL,R makes it possible to find thei
square root and recast the expression under the trace o
~6! as a Hermitian operator. The expression~6! then looks
like the Landauer formula involving the transmission mat
t

G5
e2

p\
Tr~ tt†!5

e2

p\ (
n51

NyNz

Tn , ~7!

FIG. 2. Linear fit ^R&5C11rL/A, (A5225a2) for the
disorder-averaged resistance^R& in the band centerEF50 and dif-
ferent disorder strengthsW. The interceptC1 is decreasing with
increasingW ~i.e., it is not determined just by the contact resistan
p\/147e2) and becomes negative forW*7t. The inset shows ex-
amples of the distribution of resistancesPL(R) ~for L515a) versus
log R. The distribution broadens either by increasingW or the
length of the sample~the units on they axis are arbitrary and dif-
ferent for each distribution!.
02020
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t52A2Im ŜL Ĝ1N
r A2Im ŜR, ~8!

or transmission eigenvaluesTn when the trace is evaluated i
a basis which diagonalizestt†.

For the case of two probe geometry the average trans
sion in the semiclassical transport regime (a, l !L!j) is
given by13 ^T&5 l 0 /( l 01L), with l 0 being of the order ofl.

Thus, the semiclassical limit21 of the Landauer formula
for conductance^G&5(e2/p\)M ^T& ~measured between
points deep inside the reservoirs! in the case of not too strong
scattering should have the form

^G&215RC1r
L

A
. ~9!

It describes the~classical! series addition of two resistors
The ‘‘contact’’ resistance22 RC5p\/e2M is nonzero, even
in the case of ballistic transport when the second term c
taining the resistivityr5(p\/e2)A/ l 0M vanishes. HereM
;kF

2A is the number of propagating transverse modes atEF ,
also referred to as ‘‘channels.’’ A ballistic conductor with
finite cross section can carry only finite currents~the voltage
drop occurs at the lead-reservoir interface!. Using this simple
analysis for guidance, we plot average resistances~taken
over Nconf5200 realization of disorder! versusL in Fig. 2,
and fit with the linear function

^R&5C11C2L,C25r/A. ~10!

The resistivityr in Fig. 1 is obtained from the fitted value o
C2. For very small values ofW the constantC1 is approxi-
mately equal toRC5p\/e2M ~whereM5147 is the number
of open channels in the band center!. To our surprise,C1
diminishes steadily with increasingW, and even turns nega
tive aroundW*7t.

The quantum conductanceG fluctuates from sample to
sample exhibiting universal conductance fluctuation23

~UCF! DG5AVarG.e2/p\ in the semiclassical transpo
regimeG@e2/p\. The inset of Fig. 2 shows the distributio
of resistance24 PL(R) for our numerically generated impurit
ensemble. The error bars, used as weights in the fit~10!, are
computed asd^R&5AVarR/Nconf. We find thatDG is in-
deed independent of the sizeL ~of cubic samples!, but de-
creases systematically by a factor'3 asW increases to the
critical value Wc ~Fig. 3!. On the other hand,DR, being

e

FIG. 3. The conductance fluctuations (DG5AVar G at EF

50) from weak to strong scattering regime in the disordered cu
samples 10310310 and 15315315.
1-3
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similar toDG/G2, depends on sample size. AsW approaches
Wc , G gets smaller until~for our finite samples! DG/G;1.
At this point the distribution of resistancesR51/G becomes
very broad and̂ R& begins to rise above 1/^G&. For L515
this happens whenW*12t. At large W the conductance o
long samples (N520) becomes close toe2/p\ and devia-
tions from Ohmic scaling are expected. Therefore, we do
use these points in the fitting procedure whenW*10t ~keep-
ing the conductance16 of the fitted samplesG.2e2/p\).

We do not have a complete explanation for the deviat
of C1 ~10! from the quantum point contact resistanceRC . In
the semiclassical regimeG@e2/p\ there are corrections to
the Ohmic scalingG}Ld22. The Diffuson-Cooperon dia
grammatic perturbation theory gives a~negative! WL
correction5

s~L !5s1
e2

p2\2A2

1

L
2

e2

p3\

1

l 08
, ~11!

wherel 08 is a length of orderl ~its precise value does not lea
to observable consequences in the experiments studying
as long as it is unaffected by the temperature and the m
0202
ot

n

L,
g-

netic field!. The positive 1/L term in Eq. ~11! provides a
possible picture for our finding thatC1 in Eq. ~10! goes
negative asW increases. However, this picture is an extrap
lation from the semiclassical into the ‘‘middle’’ regime o
intrinsically diffusive states, and therefore should be giv
little weight. The negative values ofC1 is better regarded a
a numerical result from the mesoscopic dirty metal theor

It is interesting to note that in manyd-band intermetallic
compounds,r ‘‘saturates’’ at a constant value25 rather than
following the semiclassical extrapolation, that is, increas
linearly with T at high T. High-Tc materials and doped C60

metals, on the other hand, do not saturate.25 Within Boltz-
mann theory, the static disorder measured by (W/t)2 plays
the same role as thermal disorder or squared lattice displ
ment}kBT. Our numerical results thus can be described
‘‘failing to saturate.’’ Similar failure was seen in high-T
Monte Carlo studies by Gunnarsson and Han.26
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