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Non-Fermi-liquid behavior and superconducting fluctuations caused by hybridization
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The exact solution is proposed that describes the low-energy properties of conduction electrons hybridized
with localized 5 electrons. For small concentrations of the latter, the solution foofbitals manifests a
mixed valence and crossover from a Fermi-liquid-like behavior at very low energies to the two-channel
non-Fermi-liquid behavior at higher energies. For the finite concentration of localized electrons the same
hybridization dynamically yields an attraction between conduction electrons, resulting in superconducting
fluctuations(Cooper-like pairspresent in the low-temperature phase. We predict a quantum transition to the
phase, in which superconducting fluctuations coexist with magnetic ones. Possible relevance of our results to
the data of experiments in some U-based compounds is discussed.
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[. INTRODUCTION tallic compounds with § orbitals. The Coulomb interaction
of 5f electrons of the same orbitalvhich we enumerate
There has recently been a renewed interest in heavywith index j) can be described by the Hamiltonidt L
Iferrtr%ion_dsyts)temz. hWhiIefthe_ naturet of many deffeftsdfotr:Emm',oa'Um,m'ij,m,afj,m,oij,mr,grfj,m’,o'- Here U, v is
anthanide-based heavy-fermion systems is understood,
one for actinides ofte\rgyremains tg be clarified. As an extﬂ‘?Ie Coulomb constant, arf(ﬁmg creates an electron at the

, e orbital (at sitex;) with the pfo]ection of the orbital moment
ample, one can consider the non-Fermi-ligiFL) behav- ) ang gping=+ 1. It is the strongest interaction between

ior of the normgl phases, 'supercon(.ductiv'ity, and_coexistenc&ectrons in 5 orbitals* Note though that the Coulomb re-
ﬁf the flatte_r with magnecti;cz fluctuations in certain U'basledpulsion in actinides is estimated to be smaller than for rare-
eavy-fermion compounds. Here, we propose an exactly g, jons since £wave functions are more extended than

solvable model to q§scrjbe some of the impo'rtant e_ffect§” wave functions. In what follows we shall use the fact that
caused by the hybridization off5electrons of U ions with U, . is large enough, so thatultiple electron occupations

conduction electrons. Our exact solution reveals several ress orbital states will be excludedrhe next leading term in
markable properties. For a small concentration bbbitals the (local) Hamiltonian of 5 electrons is the Hund'ex-

the critical NFL behavior persists, while the hybridization changecoupling. Its Hamiltonian has the form
with the finite concentration of localization orbitals dynami-
cally induces the creation of Cooper-like pairs and a spin gap ,

of unbound conduction electrons. As the concentration in- Hi= X JH,mij,m,(,fj,mr,(rfJ-T,mr,,,/fj,m,ur, (1
creases for strong quasidegeneracy of the mixed configura- mm’, oo’

tions of the § orbitals, the gap closes, signaling a quantumy,ith J,, .. >0. Although spin-orbit coupling is relatively
phase transition to an uncompensated ferrimagnetic phasgrge for heavy atoms like U, it was found to be of minor
(coexisting with superconducting fluctuationgo the best  importance compared with Hund's couplifigh crystalline

of our knowledge, this is the first exact study where thegjectric field in U compounds deforms the degenerate 5
hybridization between two almost degenerate configurationgrpitals and brings an anisotropy to the hybridizations be-
of 5f orbitals and conduction electrons produseth NFL  tween deformed orbitals and conduction electrons. This dif-
physics in the dilute limit of U ions and superconducting fers from the usual role of the crystalline electric field in
fluctuations of conduction electrons in the dense limit of U|anthanide Compounds like Ce-based rare-earth Systems_ One
ions. Notice that there iso direct interactionbetween con-  group of the localized U electrons hybridizes more strongly
duction electrons, so that the pairing between them existgjith ligands and are almost completely delocalized, while
only because of the hybridization between them and localthe hybridization of others with ligands is smaller and they

ized 5f electrons. It turns out that a fully nonperturbative gre mostly localized. Hence the hybridization Hamiltonian
analysis of the relevant physics bbth situations is allowed can be written as

from the grounds othe sameamodel.

It is usually accepted that magnetic properties of U ions : . _ )
are determined by Borbitals[in real materials it pertains o~ Hhyp= > 8(X=X))Vmah ,()[jOm)(jSrm|+H.c.,
the configurations £ of U** ion or 5f3(U3*)]. Some U mer )
compounds manifest two almost degenerate low-energy
states of the & configurations of U ions: thef5 of U3* and  where aﬁw(x) are creation operators for conduction elec-
5f2 of U#*:3 the mixed valence behavior of U ions results. trons and the bra and kets denote the states of the localized
Let us classify possible electron-electron interactions in meelectrons in % orbitals, with spinS its projectionr, and
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orbital indexm (the energy of the delocalized orbitals is
higher than the localized ofje The dependence of the hy-
bridization elemenV,, on m manifests possible anisotropy in
hybridization with conduction electrons. The Hamiltonian of
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Wherec=V§n, 0= er3— €;2— u—conste=0 (u is the chemi-

cal potential ands;23 are the energies of the lowest levels of
5f23 configurations, respectivelyi, and P, denote the
identity and permutation operators in the spin subspace.

conduction electrons can be presented in the long-wave forfance the lowest configuration of % orbital (with zero ef-

Hcond=—m20 dxal, (X)X {id,+ (1/A)

X[92=V(X)]}ame(X), 3)

where

N
V()= 2, 8(x—xj)(X/|x])[ 8" (x+0)+ &' (x—0)].
J

The counterternfwith V(x)] is necessary to preserve the
integrability at the positiong; of N; 5f orbitals. The param-
eter A measures the curvarture scale of the spectrine
inclusion of the counterterm does not principally affect
physical properties of a single hybridization impuritgf.

fective spin can temporarily absorb the spin of one conduc-
tion electron to form an effective spiB=3, i.e., the §
localized site is mixed valent and its wave function is a linear
superposition of two different configurations. Each state of
each of the localized electrons has to satisfy the complete-
ness condition =, ,|Srm)(Srm|+|0m)(Om|=1. The
TPSM for procesqii) factorizes into the one for the spin
sector and the one for the orbital sector as
R(K) =[k'T,—ic'P,IX[k'Tm+ic' Pul/[(kK")2+(c")?],

(5
wherek’ = (k;—kp)/A, 2¢"=Jy ;. I andP,, are the iden-

tity and permutation operators in the orbital subspace. Those
matrices satisfy the Yang-Baxter relatiofBR) mutually

and withS if c=Ac’. YBR are the necessary and sufficient

Ref. 5. As for the dense limit, we emphasize that the sign ofconditions for the integrabilit}.” Hence the exact solvability

the counterterm ipositive so that it cannot produce an at-
traction between conduction electrons. Pé&ee belowcan-

of the model demands the restriction on the values of the
hybridization eIement§H,m=2Vr2n/A. The TPSM between

function of 5f electrons of U ions are more extended thdn 4
electrons of rare-earth iosThat is why one usually has to
take into account a possible direct interaction of electron
between 5 orbitals of neighboring U ions. Most often it is

considered as a magnetic Ruderman-Kittel-Kasuya-Yosid
(RKKY)) interaction through conduction electrons. To model

a RKKY interaction between the localized electrons of dif-

ferent sites in real U compounds, we add a direct hopping o{

5f electrons between neighboring U ions with the Hamil-
tonian Hy,op= —EM,,mlg(f;im’afj,,m,g+ H.c). [The integral

of such a hopping is much less than the intersheil 5
electron-electron interactionU(, ,, ,Jy m); hence, in the
first nonzero approximation, it produces a direct exchang
coupling between the spins of localized electrpige shall
consider that hopping in the long-wave limit, too. In this way
the total studied Hamiltonian isH=3[H}+H}l
+Hcond+Hhop-

II. SCATTERING PROCESSES AND BETHE
ANSATZ EQUATIONS

Let us first treat the simplifiedrbital-isotropic hybridiza-

possible:(i) the scattering of conduction electrons off local-
ized ones(ii) the scattering between localized electrons, an

(iii) the scattering between conduction electrons. The two

particle scattering matrixTPSM) of the processi) is diag-
onal in orbital sector, and in the spin subspace it has the for
(with A>1)

, (4)

e

R (and mutually also to preserve the integrability. Formally,
there is no direct coupling between conduction electrons in

dur model. However, the naive choice of the diagonal scat-

tering matrices for the TPSM of procegi) does not satisfy
the YBR. The correlations between conduction electrons are
induced through the hybridization with localized electrons
Hence the hybridization of conduction electrons with time
eracting electrons in 5 orbitalsdynamically correlateshe
motion of formers. That is why the TPSM between conduc-

tion electrons dynamically obtains the form B{k). The
two-electron wave functiofWF) of conduction electrons
can be written as a product of a coordinate WF, a spin WF,
and an orbital WF. The WF has to be antisymmetric under
the exchange of two particles. Hence, if the spin and orbital
parts have the same symmetry, the coordinate WF is anti-
symmetric and vanishes ¥; =X, (with x; , being the coor-
dinates of the electronsso that the electrons cannot interact.
Conducting electrons then necessarily form a spin singlet
and orbital triplet or a spin triplet and orbital singlet. The
former corresponds to an attractive Hund’'s couplidg {,
>0), while for the latter that interaction is repulsive. When
applied to a triplet(either in the spin or the orbital secjor
WEF, the corresponding TPSM yields one, while if it acts on

& singlet it gives rise to a phase shift. For the case of spin and

rbital singlets the two phase factors cancel, and there is no
ffective interaction between the conduction electrons. It is
important to emphasize that the TPSM of conduction elec-

dfons dynamically obtains the form df((k) even forJy

=0; i.e., it can be causeghly by the hybridizationcf. Ref.
5.

In order to determine the spectrum and the eigenfunctions
of our model, we impose periodic boundary conditions and
solve the corresponding Sclaiager equations by means of
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Bethe’s ansatz. The procedure is standard and we skip tHehaves analogously to the systenirtéractingconduction
details. The energies and eigenstates of our model are paramlectrons coupled to impuriti€s? It is not a surprise be-
etrized by three sets ohpidities charge rapiditieikj}}“:1 cause the TPSM of these problems satify the YBE mutually.
(with N the number of electropsspin rapidities{\ ,}»_, The hybridization anisotropyi.e., letV;<V;) and the
(with M the number of down spifisand orbital rapidities Orbital-anisotropic exchange interaction between the local-
{55}2:1 (with n the number of electrons in thm=1 or- ized electrons produces sgveral importa}nt chanb‘dastice
bital). In principle a crystalline electric field lifts the degen- that the effect of a crystalline electriorbita)) field results
eracy of orbitals, the latter becoming unequally populatedSimilar to the one of a hybridization anisotropi] When
Each eigenstate corresponds to a solution of the Bethe ansdfgating the hybridization anisotropic case for the TPSM, we
equations(BAE), here obtained on a periodic interval of Proceed along the lines pioneered in Ref. 5. Then, following
length L (for simplicity we limit ourselves with only two the standard procedure, we obtain the BAE and the expres-
orbital indices. For the hybridization-isotropic case with ~ Sion for the eigenenergy. The BAE for the hybridization-
=V2, we get anisotropic situation in the scaling regime formally get simi-

lar form as Eqs.(6), but with cJ-=Vj2 and g,,(y) = sinhy(y

N L M n . —in/2)/sinhy(y+in/2) (v characterizes the anisotropy, cf.
ef'(Afj—onetit=TT e(fi—a )T gr'(f;— &y, Ref. 5
y=1 q=1
N M \ _ M
H el(ha—fj)=—H € (N o= Ny5), ell(Afi_C;l_G,)elkjL: H1 el(fi+cfl_)‘7)
j=1 5=1 r=

n

n » L
665~ )=~ 11 02(6-£,). (6) IR CUT )

—

1

where f;=k;/cA, ¢'=6lc, ey(y)=(2y—in)/(2y+in), j

N M
=1,...N, a=1,... M, B=1,...n, andg,(y)=¢e,(y). H el()\a_fj_cfl): _ H e\ =N s),
The energy is given by j=1 ! 5=1

N
N n

E 2}1 [cAfj(1+cf)—2xma;(cAf,—0)],  (7) jﬂl Ga(Ea—caf ¢ Y= _yﬂl G(Es—t), @
wherea,(y) is the Fourier transform of exp(n|pd/2). The
last term(with x=N; /L being the concentration offSorbit-  wherej=1,... N, a=1,... M, B=1,...n, (cj:ij).
tion between $ electrons. In the case whati electrons are al(y), the Fourier transform of exp(nlpg|/2]).
localized the last term collapses to the well-known energy of
a Heisenberg spin-exchange antiferromagnetic model. The
fact that energies and eigenstates are blind to the spatial po- lll. LOW-ENERGY PROPERTIES
sitions of orbitals is an artifact of integrability. However, real

o - The main features of the low-energy behavior of our
systemS often exhibit a large quasidegeneracy of the states : ) : .
as a function of the distribution of hybridization impurities model are determined by its ground state. It is obtained by

for stoichiometric compounds. The BAE of our filling up the Dirac seas of low-lying excitations, i.e., by

(hybridization-isotropit model and those of Ref. 9 are simi- populating all possible eigenstates with negative energies.

lar. However, there is a drastic difference between the '€ can divide our study into two important cases: the low

present study and previous approach¥Namely, in previ- concentration of 5 orbitals and thdinite concentration of
ous studies thenternal interaction between conduction elec- then(’)l,x_qto.lln tlhe 1;0rrr|1er case l;n ;he th‘?m;o‘?'yna”?'.c limit
trons was the reason for the nontrivial scattering betweerf ~~: I.e., localized electrons behave siagle impurities.
conduction electrons. In contrast, in the present treatmen or the latter case corrglanon effects between localized elec-
there is noa priori attraction between conduction electrons, ONS have to be taken into account.

- i 5 Thi
The nontrivial scattering between conduction electrons is the For_Ni—l, we Pumﬂoo in Egs. (6)~(8).> This means
consequence of the hybridizatibetween them andfSelec- that A increases with the decrease of the concentratiorf of 5

trons. Notice also the difference in the structure of the BAECIPItals. The standard way to find the solution to E@s.or

Egs.(6) and those from Ref. 10. That difference originated(g) is thefusion proge_d_uré I_t i? the search OT a solution to
from the different nature of studied hybridizatigin Ref. 10 ~ BAE for charge rapidities within the class sifings(orbital-
the hybridization absorbs the spin of one conduction electroinglet bound statgsof the complex formfg=cyc; (&,
and forms asmaller effective spinS'=S— 1 of the orbital, *i3) (j=1,2)° Those of them that have maximal spin are
opposite to the present case and that of RefH8wever, our  only important for the low-energy physiésThe length of
system with the Hund’s exchange of localized electrons an¢hose strings is determined by the number of orbitelsan-

the hybridization of % electrons with conduction electrons nel9, i.e., for our case, it is 2. One conduction electron,
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however, is bound at thefSorbital (i.e., we have its charge physics, although two different energy scales fg§. and
rapidity realk,= 6 with the fixed ratio6/A). In the limit of .. mean that the Wilson ratio differs from the FL one. For
A—o all real parts of those string solutions can beT,<T<Tx we have y,:*xioc~ — (Tx) N(T/Ty) (i.e.,
neglected (except for the rapidity of the conduction electron logarithmically divergentand with the remnant entropy of
bound at the § orbital). An additional meaning of the fusion the 5f orbital S;,.=In+/2. For higher temperatures the mag-
is the filling of all interorbital bound-state solutions to BAE. netic susceptibility of the & orbital manifests the Curie-like
In fact, the fusion is a way of eliminating orbitéthannel  behavior with usual logarithmic corrections. The temperature
rapidities from BAE. After that procedure spin rapidities be-dependence of theémagnetoresistivity is determined by the
come present in the fused BAE only ag— cj‘li(li i), scattering of conduction electrons off the spins of localized
where ¢;=c,/c; (j=1,2). Hence the hybridization anisot- electronsmagnetic impurities We calculate it in a standard
ropy yields(via the filling of inter-orbital bound statgfour ~ way, taking into account subleading irrelevant
kinds of low-lying bulk spin excitations, which have Dirac perturbations. It can be approximatedfor a small hybrid-
seas: spinonéspin strings of length 1 or real spin rapidities ization anisotropy at low temperatures by
spin strings of length 2, and spin composites with the effec-
tive lengths (t-c,/c,). In the isotropic limitc;=c,, we p(T)~po— A(TIT)?(L+[INT/T,| 1= -+)
Irecover the only bound states of Ien_gth_ 2 relevant.m. th or T<T,<T, and
ow-energy physics of the system, which is characteristic o
the two-channel Kondo problem. In the opposite case of van- . 1/2 -1_
ishing VV; or V,, i.e., when the localized electrons with only P(T)=pot B(T/T) HLH[INT/T[ 2= )
one orbital index hybridize with conduction electrons, wefor T,<T<Ty (also with logarithmic corrections of the as-
recover the standard single-channel Kondo case. For the bgmptotically free spin of the impurii)f’
havior of the hybridization impuritythe conduction electron
bound at the 5 orbital) two low-energy scales are important:
TK=(N/L)eX|c[—7T(0+1)c1‘1] and T,=(N/L)cos(@rc,/
2c,)exd —mw(0+1)c, 1. One can see that the parameter Now we turn to the case of the finite concentration &f 5
also measures the exchange coupling of the localized effe@rbitals. Hence we keep0 andA finite. Absolutely analo-
tive spin to the spins of conduction electrogs- 1. The  gous to Ref. 9 we can show that on{gapped unbound
antiferromagnetic effective exchange between the spins afonduction electrons, Cooper-like paigpin-singlet orbital-
neighboring 5§ orbitals in our model is proportional to triplet charged bound states of electrprmd interorbital
A2~ 672, This is consistent with the standard condition for bound states of conduction electrofierbital strings of
a RKKY interaction, which is proportional tg 2. lengths 1 and Rhave negative energies. Thus only those
The solution of BAE reveals that in the ground stéfte low-lying excitations make up the Dirac seas defining the
small enough#) the mixed valence of the fSorbital in-  ground state of the model. This means that all the states with
creases with growing the band filling of conduction electronghegative energies are filled in the ground state, while others
from 2 (5f2) for the empty band to 3 (). (It means that are empty. Noninteractingsee below spin-singlet pairs
the valence of the B orbital explicitly depends on thtotal ~have bosonic symmetric wave functions. However, they are
number of electronin the Systen)_The ground-state mag- hard-core bosons, this is Why they have their Dirac sea too.
netization of the localized electron fét<T,<Ty (H isan  These Cooper-like pairs persist at any temperature, but since
external magnetic fieldis proportional toH/T, with the  the movement of electrons is effectively one dimensional
standard Kondo logarithmic ~corrections, i.eM?%,  (1D) in our model, there is no global phase coherence be-
~H/T,(1+|InH/aT|L=--.) (a is some nonuniversal con- tween pairs, and hence no long-range order. However, the

stani. The latter are characteristic to the asymptotically fregP@ring implies a critical fielcH, (equal to the gap of un-
behavior of an impurity spin. It is usual for a simple one- bound conduction electron excitatiorest zero temperature,

channel Kondo problefrwith a finite magnetic susceptibil- P€low which there is no magnetic response, reminiscent of
ity. However, for T,<H<T,, the magnetization of the the Meissner effect. Naturally, there exists an additional criti-

. . . : cal field, H.,, at which all the spins of the system become
5f orbital reveals the logarithmic behaviorM{, c2 P y

— (H/TO)IN(H/aT, ith di ¢ tibility tvpical aIigned parallel to the magnetic field. All pairs are apsent in
for t(he tvsz)-nc(haﬁng)l %n d olvlf erﬁzci osruT:C;’ZEI'Ig)fr:pl\(l:vaé this domain of fields, and unbound electron excitations are
. a ,

obtain the lowT (Sommerfeld coefficient of the specific gapped. A small coupling between 1D subsyste_ms, though,
heat for the localized electron us_;ually_can pro_duce a I_ong-range superconducting ordering
with pairs existing only in the low-temperature phase. Note
that magnetic impurities in BCS superconductors break the
time-reversal symmetry and act as Cooper pair bredkers,

IV. FINITE CONCENTRATION

Yoo~ Ta 11— (BTam T )IN(TL /T L+ |INT/Ty 1= -+ )

and the finite ground-state susceptibility thus reducing the critical temperature and the gap. The gap
can be closed before the superconductivity is destroyed—an
Xioe~ T IN(To /T (1+[INT/T | 1= 1) effect that is known as gapless superconductivity. In our

model, in contrast to the standard BCS-like approach, the
(both with usual logarithmic corrections of an asymptoticallyfinite concentration ofmagneti¢ 5f electrons, on the one
free spin. This case pertains to the single-channel Kondohand, causesan attraction between conduction electrons
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through the hybridization and tends to enhance the density @jap vanishes since there is no binding between conduction
states of Cooper-like pairs. On the other hand, the safme 5electrons(all the TPSM in this case are unitiedNotice that
orbitals act as magnetic impurities and tend to destroy supethe terms proportional to the concentrativmppear due to
conducting fluctuations. The total effect, as will be shownthe inclusion of the direct transfer of electrons betweén 5
below, strongly depends on the value @f(the difference orbitals at neighboring site@ntiferromagnetic exchange be-
between the energies of the lowest nonmagnetic and magyeen 5 neighboring orbitals The degree of degeneracy of
netic configurations of the f5orbitals, or, in other words, 5¢ grpjtals at the same sitée., the difference between the
off-resonance shifts for single impurities energies of the lowest magnetid 5and nonmagnetic &

_ The introduction of a finite concentration”0 of 5f or- - qafiarations of 5 orbitals, 6) determines whether the spin
bitals drastically affgcts the ground St‘f{md in fact, all gap becomes smaller or larger with the increase of concen-
Zt)(a;t;sﬂ;?arl;:re etf'fec;_tl\llgly pres?nig_artH, n tr:‘e C?ﬁ’.e that an tration of 5f orbitals. For larged the gap of unbound con-

gnetic field is appliedTo see how this comes duction electron excitatioriacreasesf the number of paired

about, we study the integral equations for the “dreSSEd”eIectrons is large due to an enhancement of the density of
(due to interactionsenergies of low-lying excitations. In the arg : y
states of pairs. In contrast, for smélthe spin gapglecreases

case of zero total orbital moment, this can be done analyti="= "~ X - .
cally, similar to, e.g., Refs. 9 and 10. For zero total orbitaWith increasingx andclosesat the critical concentratior .

moment the interorbital bound states can be eliminated. ThehNUS the gap of low-lying unbound conduction electron ex-
the integral equations for the dressed energies for unbourfdtations decreases for almost degenerate lowest statef$ of 5

electron excitationsgo and Cooper_“ke pairs\KI) atH=0 and 53 Configurations of U ions. On the other hand, when

have the form the difference between the lowest energies of those magnetic
and nonmagnetic configurations becomes large, the gap in-
[2=G1— G, /c,1°e +[2Go— G2+ G, 1, 1°V creases linearly with the number of Brbitals, hence with
the enhancement of the superconductiving fluctuations. In
=2e0(K)—2u— 27X E ajl(k— 0), fact, such a behavior is the consequence of the presence of
j=1.2 antiferromagnetic correlations between the neighborifig 5

orbitals. The parametet itself can depend omr, consistent
with the experimental situation Ref. @r if one takes into
account that the Fermi points of paisare slightlyx depen-
dent, which manifests the conservation of the total number of
=[2+G1+G3— G, jc,~ Gac, 1c, 1"V —4u, (9 electrons, yielding thenonlinearin the concentratior ef-
fect.

There are no additional unbound electron excitations ap-
1 pearing when the gap is opéne., for x<x.). Hence, the
2Aeo(K)=(4k+A)°— =A% | presence of localizetmagneti¢ 5f electronsdoes not lead

2 to a pair breakingof conduction electrons for such concen-

trations, in contrast to the suppression of a superconductivity

[ZGO—Gz+Gcl,CZ]os—Z\Po()\)JrZTrxj:El2ajz()\—B)bf

where ° denotes convolution over the Dirac Semd

2AWo(N)=2(4AN+A)?— A%, (10 in ordinary BCS-like superconductots.The charge and
The kernels are determined from the formula magnetic subsystems are effectivetiisconnectedfor x
<X.. In this phase magneticfelectrons are antiferromag-
1 exp(—iux—aluc,|/2) netically compensated, which coexists with superconducting
Ga(x)= EJ 2 coslic,ul2) - 11 fyctuations of Cooper-like spin-singlet pairs. However, the

gap may become negative wherx;. Thus, unbound con-
It is important to emphasize that the antiferromagnetic exyction electron excitationgwith ke~ Xx—x.) appear to
change between neighboring ®rbitals does notproduce paye their Dirac sedi.e., for some of them their energies
additional Dirac sea for pure spin excitations in this model,pecome negativen the absence of a magnetic fiekignal-
which is clear from the analysis of E¢8). This differs from  jhg 3 quantum phase transitioto a ferrimagnetic phase
the situation in Refs. 9 and 10. (with a weak magnetic momentlt is the quantum phase

The value of the spin gap is one-half of the smallest {ansition, because it is governed by the change of concen-

energy required to overcome the binding energy and to Ungation of 5f orbitals, not of the temperature as for usual
pair the Cooper-like spin-singlet stan the other hand, phase transitions. Cooper-like pairs are still presentxfor
the value of the spin gap coincides with.;.) The value of  ~y " reminiscent of type-Il superconductivity. In  this
the gap depends on the concentration bfdsbitals. In the phase the weak magnetis(ferrimagnetism coexists with

orbital-isotropic hybridizatioandH=0), we find superconducting fluctuations. For nonzétemaller than the
. critical field H;1(x), the spin gap persists for<x., and
A=[V(Q)+2mxay(Q—6)][3 —Gol—2mxay(6) there are no unbound electrons in the system. The critical

e B B field H(X) decreases with increasing concentratioand
Goel Wolh) —2mxay(A = 0)], 12 Vanishes whex approaches, . The critical line separating

where the integration is over the Dirac sea for pairs vWijith the gapless and gappéférrimagneti¢ phases manifests it-

denoting their Fermi points. In the trivial lim¥,,—0, the  self in the van Hove singularity of the opening of the band of
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unbound electron excitations. The critical behavior at theconcentrations of 3 and the coexistence of superconduct-

guantum phase transition poixt=x., H=0 is also re-

ing and magnetic fluctuations for some concentrations of U

vealed in the scaling dimensions: the dressed charge rhatrijons' and (quantum phase transitions driven by a change of

gets enlarged from 83 to 4X4 with the additional off-
diagonal components proportional {—x.. The band of
pairs produces a nonzero coefficient for the [dvspecific
heat (~T in one dimension In contrast, at the critical lines,
the van Hove singularities of empty bands produce/Ta
behavior of the specific heat.

The above-mentioned effect persists &g c,. For that

case, however, the hybridization anisotropy causes the effe

tive interaction between paifthey become not free as in the
previous case For a small hybridization anisotropjV,
—V,|<V,, the scaling dimension of pairs in our effectively
1D model is 1 o((V,—V,)?/V3). Pairs arealmost free
hard-core bosons for a small nonzero anisotropy. The sta

dard 3D coupling between effective 1D subsystems vyield

the power-law lowT behavior of the specific hedfor T
<T.) with the exponent 3 o((V,—V;)?/V3). The devia-
tion of the exponent from 3 is as larger, as larger the aniso
ropy of the hybridization of conduction electrons with the
ones of § orbitals.

V. DISCUSSION AND CONCLUSIONS

Let us briefly discuss the possible relevance of our result

n
S

the concentration of U ions™

To summarize, in this paper we have exactly studied the
effects of a hybridization between the mixed configurations
of 5f2 and 5 orbitals and conduction electrons. A finite
fraction of the electrons is localized, producing a mixed va-
lence of & orbitals. For small concentration off ®rbitals a
hybridization anisotropy yields two low-energy scales with
%he critical NFL behavior of the localized electrons. For a
inite concentration of orbitals the hybridization dynamically
induces an attraction between conduction electrons, which
results in the creation of Cooper-like pairs and the spin gap
for unbound electron excitations. This important result was
obtained by an exact method takiafj possible fluctuations
into account, with na priori assumption of dlocal) sym-
metry breaking. Note that an attraction between conduction
electrons due to the hybridizatioinence a large effective
mas$ implies a short coherence lengége mv /A, consis-

ffent with the relatively short coherence lengths in U-based

superconductors. The main criticism of our previous
studies® was connected with the fact that in the previous
model superconducting fluctuations were caused byirthe
tial interaction between the conducting electrdns., they
were not caused by the interaction of conduction electrons
with 5f electron$. In the present model the critical NFL

for real systems. The effective one dimensionality of our g )
model for large concentrations of Srbitals introduces fea- Pehavior of the system for the small concentration of the

tures not seen in higher dimensions. However, even a smdfcalized electrons and superconducting correlations for
coupling between 1D subsystems results in the phase transf9€ concentrations of the latter are twnsequences of the
tion for low T to the ordered superconducting state. Such @ame hybridization witlbf electrons We predict that the
weak coupling determines the small critical temperatureSPIN 9ap may be closed for concentrations df @rbitals
which is consistent with observations for U-based heavy_abpve some critical value, at which unbound electron exci-
fermion superconductofs(Note, though, that the presence fations appear. Emergence of that effect depends on t2he de-
of possible nodes on the Fermi surface of conduction elecd"®€ of the quasidegeneracy between the lowest leveltof 5

3 . . . .
trons in two or three dimensions or electron-phonon couplingnd 5~ configurations of $ orbitals. The total magnetiza-

may change the pictupelt turns out that oureven simpli-

ion of the systemspontaneouslypecomes nonzerfor H

fied) model shares a number of important characteristics witt=0), implying a quantum phase transitiegoverned by the
some real U-based heavy-fermion compounds, e.g., a||0yghange of concentration off5orbitalg to a ferrimagnetic
U,Th,_,Be;s. Among them, we can point out a huge en- phase with coe_xistin_g superconducting quctgaticjpairs).

hancement of the effective mass of carriers in the normalNaturally, our simplified model cannot explaail the fea-

phase of those U alloys:the mixed valence of localizedf5
electrons theré;the critical NFL behavior in the normal
(nongappegpllow-temperature phadef the low-temperature
spin susceptiblitity y~ xo— VT, specific heatC~—TInT

and (magnetdresistivity p~ po+ B+T with a crossover at 2
K];? the power-law behavior+T3) of the low-T specific

heat in the presence of a spin gdpthe scattering of con-
duction electrons off two configurations of U iofs; phase

tures of real alloys. However, any of existing models of
U,Th; _,Beis (see, e.g., Ref.)2cannot exactly manifest a
non-Fermi-liquid behavior of the normal phase and phases
with coexistence of superconducting and magnetic fluctua-
tions in low-temperature phases.
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