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Non-Fermi-liquid behavior and superconducting fluctuations caused by hybridization
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The exact solution is proposed that describes the low-energy properties of conduction electrons hybridized
with localized 5f electrons. For small concentrations of the latter, the solution for 5f orbitals manifests a
mixed valence and crossover from a Fermi-liquid-like behavior at very low energies to the two-channel
non-Fermi-liquid behavior at higher energies. For the finite concentration of localized electrons the same
hybridization dynamically yields an attraction between conduction electrons, resulting in superconducting
fluctuations~Cooper-like pairs! present in the low-temperature phase. We predict a quantum transition to the
phase, in which superconducting fluctuations coexist with magnetic ones. Possible relevance of our results to
the data of experiments in some U-based compounds is discussed.
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I. INTRODUCTION

There has recently been a renewed interest in hea
fermion systems. While the nature of many effects
lanthanide-based heavy-fermion systems is understood
one for actinides often remains to be clarified. As an
ample, one can consider the non-Fermi-liquid~NFL! behav-
ior of the normal phases, superconductivity, and coexiste
of the latter with magnetic fluctuations in certain U-bas
heavy-fermion compounds.1,2 Here, we propose an exactl
solvable model to describe some of the important effe
caused by the hybridization of 5f electrons of U ions with
conduction electrons. Our exact solution reveals severa
markable properties. For a small concentration of 5f orbitals
the critical NFL behavior persists, while the hybridizatio
with the finite concentration of localization orbitals dynam
cally induces the creation of Cooper-like pairs and a spin
of unbound conduction electrons. As the concentration
creases for strong quasidegeneracy of the mixed config
tions of the 5f orbitals, the gap closes, signaling a quantu
phase transition to an uncompensated ferrimagnetic p
~coexisting with superconducting fluctuations!. To the best
of our knowledge, this is the first exact study where t
hybridization between two almost degenerate configurati
of 5f orbitals and conduction electrons produceboth NFL
physics in the dilute limit of U ions and superconducti
fluctuations of conduction electrons in the dense limit of
ions. Notice that there isno direct interactionbetween con-
duction electrons, so that the pairing between them ex
only because of the hybridization between them and lo
ized 5f electrons. It turns out that a fully nonperturbativ
analysis of the relevant physics ofboth situations is allowed
from the grounds ofthe samemodel.

It is usually accepted that magnetic properties of U io
are determined by 5f orbitals@in real materials it pertains to
the configurations 5f 2 of U41 ion or 5f 3 (U31)#. Some U
compounds manifest two almost degenerate low-ene
states of the 5f configurations of U ions: the 5f 3 of U31 and
5 f 2 of U 41;3 the mixed valence behavior of U ions resul
Let us classify possible electron-electron interactions in m
0163-1829/2000/63~1!/014503~7!/$15.00 63 0145
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tallic compounds with 5f orbitals. The Coulomb interaction
of 5f electrons of the same orbital~which we enumerate
with index j ) can be described by the HamiltonianH C

j

5(mm8,ss8Um,m8 f j ,m,s
† f j ,m,s f j ,m8,s8

† f j ,m8,s8 . Here Um,m8 is
the Coulomb constant, andf j ,m,s

† creates an electron at thef
orbital ~at sitexj ) with the projection of the orbital momen
m and spins56 1

2 . It is the strongest interaction betwee
electrons in 5f orbitals.4 Note though that the Coulomb re
pulsion in actinides is estimated to be smaller than for ra
earth ions since 5f wave functions are more extended th
4 f wave functions. In what follows we shall use the fact th
Um,m8 is large enough, so thatmultiple electron occupations
of orbital states will be excluded. The next leading term in
the ~local! Hamiltonian of 5f electrons is the Hund’sex-
changecoupling. Its Hamiltonian has the form

H H
j 5 (

mm8,ss8
JH,mf j ,m,s

† f j ,m8,s f j ,m8,s8
† f j ,m,s8 , ~1!

with JH,m.0. Although spin-orbit coupling is relatively
large for heavy atoms like U, it was found to be of min
importance compared with Hund’s coupling.4 A crystalline
electric field in U compounds deforms the degeneratef
orbitals and brings an anisotropy to the hybridizations
tween deformed orbitals and conduction electrons. This
fers from the usual role of the crystalline electric field
lanthanide compounds like Ce-based rare-earth systems.
group of the localized U electrons hybridizes more stron
with ligands and are almost completely delocalized, wh
the hybridization of others with ligands is smaller and th
are mostly localized. Hence the hybridization Hamiltoni
can be written as

H hyb
j 5 (

ms,t
d~x2xj !Vmam,s

† ~x!u j 0m&^ jStmu1H.c.,

~2!

where am,s
† (x) are creation operators for conduction ele

trons and the bra and kets denote the states of the loca
electrons in 5f orbitals, with spinS, its projectiont, and
©2000 The American Physical Society03-1
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A. A. ZVYAGIN PHYSICAL REVIEW B 63 014503
orbital index m ~the energy of the delocalized orbitals
higher than the localized one4!. The dependence of the hy
bridization elementVm on m manifests possible anisotropy i
hybridization with conduction electrons. The Hamiltonian
conduction electrons can be presented in the long-wave f

Hcond52(
m,s

E dxams
† ~x!3$ i ]x1~1/L!

3@]x
22V~x!#%ams~x!, ~3!

where

V~x!5(
j

Ni

d~x2xj !~x/uxu!@d8~x10!1d8~x20!#.

The counterterm@with V(x)# is necessary to preserve th
integrability at the positionsxj of Ni 5 f orbitals. The param-
eter L measures the curvarture scale of the spectrum.5 The
inclusion of the counterterm does not principally affe
physical properties of a single hybridization impurity~cf.
Ref. 5!. As for the dense limit, we emphasize that the sign
the counterterm ispositive, so that it cannot produce an a
traction between conduction electrons. Pairs~see below! can-
not be created due to that term. It is known that the wa
function of 5f electrons of U ions are more extended thanf
electrons of rare-earth ions.2 That is why one usually has t
take into account a possible direct interaction of electr
between 5f orbitals of neighboring U ions. Most often it i
considered as a magnetic Ruderman-Kittel-Kasuya-Yos
~RKKY ! interaction through conduction electrons. To mod
a RKKY interaction between the localized electrons of d
ferent sites in real U compounds, we add a direct hopping
5 f electrons between neighboring U ions with the Ham
tonian Hhop52( j , j 8,m,s( f j ,m,s

† f j 8,m,s1H.c). @The integral
of such a hopping is much less than the intershellf
electron-electron interaction (Um,m8 ,JH,m); hence, in the
first nonzero approximation, it produces a direct excha
coupling between the spins of localized electrons.# We shall
consider that hopping in the long-wave limit, too. In this w
the total studied Hamiltonian isH5( j@H H

j 1H hyb
j #

1Hcond1Hhop .

II. SCATTERING PROCESSES AND BETHE
ANSATZ EQUATIONS

Let us first treat the simplifiedorbital-isotropichybridiza-
tion ~i.e., Vm5V!. We shall return to the effect of the hy
bridization anisotropy below. Three scattering processes
possible:~i! the scattering of conduction electrons off loca
ized ones,~ii ! the scattering between localized electrons, a
~iii ! the scattering between conduction electrons. The t
particle scattering matrix~TPSM! of the process~i! is diag-
onal in orbital sector, and in the spin subspace it has the f
~with L@1)

Ŝ~k!5
~k2u! Î s2 ic P̂s

k2 ic
, ~4!
01450
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wherec5Vm
2 , u5e f 32e f 22m2const>0 (m is the chemi-

cal potential ande f 2,3 are the energies of the lowest levels
5 f 2,3 configurations, respectively!. Î s and P̂s denote the
identity and permutation operators in the spin subspa
Hence the lowest configuration of 5f 2 orbital ~with zero ef-
fective spin! can temporarily absorb the spin of one condu
tion electron to form an effective spinS5 1

2 , i.e., the 5f
localized site is mixed valent and its wave function is a line
superposition of two different configurations. Each state
each of the localized electrons has to satisfy the compl
ness condition (m,tuStm&^Stmu1u0m&^0mu51. The
TPSM for process~ii ! factorizes into the one for the spi
sector and the one for the orbital sector as

R̂~k!5@k8 Î s2 ic8P̂s#3@k8 Î m1 ic8P̂m#/@~k8!21~c8!2#,
~5!

wherek85(k12k2)/L, 2c85JH,m . Î m andP̂m are the iden-
tity and permutation operators in the orbital subspace. Th
matrices satisfy the Yang-Baxter relations~YBR! mutually
and withŜ if c5Lc8. YBR are the necessary and sufficie
conditions for the integrability.6,7 Hence the exact solvability
of the model demands the restriction on the values of
hybridization elementsJH,m52Vm

2 /L. The TPSM between

conduction electrons~iii ! have to satisfy the YBR withŜ and
R̂ ~and mutually! also to preserve the integrability. Formall
there is no direct coupling between conduction electrons
our model. However, the naive choice of the diagonal sc
tering matrices for the TPSM of process~iii ! does not satisfy
the YBR. The correlations between conduction electrons
induced through the hybridization with localized electron.
Hence the hybridization of conduction electrons with the~in-
teracting! electrons in 5f orbitalsdynamically correlatesthe
motion of formers. That is why the TPSM between condu
tion electrons dynamically obtains the form ofR̂(k). The
two-electron wave function~WF! of conduction electrons
can be written as a product of a coordinate WF, a spin W
and an orbital WF. The WF has to be antisymmetric un
the exchange of two particles. Hence, if the spin and orb
parts have the same symmetry, the coordinate WF is a
symmetric and vanishes ifx15x2 ~with x1,2 being the coor-
dinates of the electrons!, so that the electrons cannot intera
Conducting electrons then necessarily form a spin sin
and orbital triplet or a spin triplet and orbital singlet. Th
former corresponds to an attractive Hund’s coupling (JH,m
.0), while for the latter that interaction is repulsive. Whe
applied to a triplet~either in the spin or the orbital secto!
WF, the corresponding TPSM yields one, while if it acts
a singlet it gives rise to a phase shift. For the case of spin
orbital singlets the two phase factors cancel, and there is
effective interaction between the conduction electrons. I
important to emphasize that the TPSM of conduction el
trons dynamically obtains the form ofR̂(k) even for JH,m
50; i.e., it can be causedonly by the hybridization, cf. Ref.
5.

In order to determine the spectrum and the eigenfuncti
of our model, we impose periodic boundary conditions a
solve the corresponding Schro¨dinger equations by means o
3-2
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NON-FERMI-LIQUID BEHAVIOR AND . . . PHYSICAL REVIEW B 63 014503
Bethe’s ansatz. The procedure is standard and we skip
details. The energies and eigenstates of our model are pa
etrized by three sets ofrapidities: charge rapidities$kj% j 51

N

~with N the number of electrons!, spin rapidities$la%a51
M

~with M the number of down spins!, and orbital rapidities
$jb%b51

n ~with n the number of electrons in them51 or-
bital!. In principle a crystalline electric field lifts the degen
eracy of orbitals, the latter becoming unequally populat
Each eigenstate corresponds to a solution of the Bethe an
equations~BAE!, here obtained on a periodic interval o
length L ~for simplicity we limit ourselves with only two
orbital indices!. For the hybridization-isotropic case withc
5V2, we get

e1
Ni~L f j2u8!eik jL5 )

g51

M

e1~ f j2lg!)
q51

n

g1
21~ f j2jq!,

)
j 51

N

e1~la2 f j !52 )
d51

M

e2~la2ld!,

)
j 51

N

g1~jb2 f j !52 )
g51

n

g2~jb2jg!, ~6!

where f j5kj /cL, u85u/c, en(y)5(2y2 in)/(2y1 in), j
51, . . . ,N, a51, . . . ,M , b51, . . . ,n, andgn(y)5en(y).
The energy is given by

E5(
j 51

N

@cL f j~11c f j !22xpa1~cL f j2u!#, ~7!

wherean(y) is the Fourier transform of exp(2nupcu/2). The
last term~with x5Ni /L being the concentration of 5f orbit-
als! is caused by the added direct antiferromagnetic inte
tion between 5f electrons. In the case whenall electrons are
localized the last term collapses to the well-known energy
a Heisenberg spin-exchange antiferromagnetic model.
fact that energies and eigenstates are blind to the spatia
sitions of orbitals is an artifact of integrability. However, re
systems8 often exhibit a large quasidegeneracy of the sta
as a function of the distribution of hybridization impuritie
for stoichiometric compounds. The BAE of ou
~hybridization-isotropic! model and those of Ref. 9 are sim
lar. However, there is a drastic difference between
present study and previous approaches.9,10 Namely, in previ-
ous studies theinternal interaction between conduction ele
trons was the reason for the nontrivial scattering betwe
conduction electrons. In contrast, in the present treatm
there is noa priori attraction between conduction electron
The nontrivial scattering between conduction electrons is
consequence of the hybridizationbetween them and 5f elec-
trons. Notice also the difference in the structure of the B
Eqs. ~6! and those from Ref. 10. That difference originat
from the different nature of studied hybridization.~In Ref. 10
the hybridization absorbs the spin of one conduction elec
and forms asmaller effective spinS85S2 1

2 of the orbital,
opposite to the present case and that of Ref. 9.! However, our
system with the Hund’s exchange of localized electrons
the hybridization of 5f electrons with conduction electron
01450
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behaves analogously to the system ofinteractingconduction
electrons coupled to impurities.9,10 It is not a surprise be-
cause the TPSM of these problems satify the YBE mutua

The hybridization anisotropy~i.e., let V1<V2) and the
orbital-anisotropic exchange interaction between the loc
ized electrons produces several important changes.@Notice
that the effect of a crystalline electric~orbital! field results
similar to the one of a hybridization anisotropy.4,11# When
treating the hybridization anisotropic case for the TPSM,
proceed along the lines pioneered in Ref. 5. Then, follow
the standard procedure, we obtain the BAE and the exp
sion for the eigenenergy. The BAE for the hybridizatio
anisotropic situation in the scaling regime formally get sim
lar form as Eqs.~6!, but with cj5Vj

2 and gn(y)5sinhn(y
2in/2)/sinhn(y1in/2) (n characterizes the anisotropy, c
Ref. 5!

e1
Ni~L f j2cj

212u8!eik jL5 )
g51

M

e1~ f j1cj
212lg!

3 )
q51

n

g1
21~c1f jcj

212jq!,

)
j 51

N

e1~la2 f j2cj
21!52 )

d51

M

e2~la2ld!,

)
j 51

N

g1~jb2c1f jcj
21!52 )

g51

n

g2~jb2jg!, ~8!

where j 51, . . . ,N, a51, . . . ,M , b51, . . . ,n, (cj5Vj
2).

For the anisotropic hybridization we renormalizean(y) to
an

j (y), the Fourier transform of exp(2nupcju/2u).

III. LOW-ENERGY PROPERTIES

The main features of the low-energy behavior of o
model are determined by its ground state. It is obtained
filling up the Dirac seas of low-lying excitations, i.e., b
populating all possible eigenstates with negative energ
We can divide our study into two important cases: the l
concentration of 5f orbitals and thefinite concentration of
them,xÞ0. In the former case in the thermodynamic lim
x→0, i.e., localized electrons behave assingle impurities.
For the latter case correlation effects between localized e
trons have to be taken into account.

For Ni51, we putL→` in Eqs. ~6!–~8!.5 This means
thatL increases with the decrease of the concentration of
orbitals. The standard way to find the solution to Eqs.~6! or
~8! is the fusionprocedure.6 It is the search of a solution to
BAE for charge rapidities within the class ofstrings~orbital-
singlet bound states! of the complex form f q5c1cj

21(jq

6 i 1
2 ) ( j 51,2).5 Those of them that have maximal spin a

only important for the low-energy physics.6 The length of
those strings is determined by the number of orbitals~chan-
nels!, i.e., for our case, it is 2. One conduction electro
3-3
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A. A. ZVYAGIN PHYSICAL REVIEW B 63 014503
however, is bound at the 5f orbital ~i.e., we have its charge
rapidity realkq5u with the fixed ratiou/L). In the limit of
L→` all real parts of those string solutions can
neglected5 ~except for the rapidity of the conduction electro
bound at the 5f orbital!. An additional meaning of the fusion
is the filling of all interorbital bound-state solutions to BAE
In fact, the fusion is a way of eliminating orbital~channel!
rapidities from BAE. After that procedure spin rapidities b
come present in the fused BAE only aslg2cj

216(16f j ),
wheref j5c1 /cj ( j 51,2). Hence the hybridization aniso
ropy yields~via the filling of inter-orbital bound states! four
kinds of low-lying bulk spin excitations, which have Dira
seas: spinons~spin strings of length 1 or real spin rapidities!,
spin strings of length 2, and spin composites with the eff
tive lengths (16c1 /c2). In the isotropic limit c15c2, we
recover the only bound states of length 2 relevant in
low-energy physics of the system, which is characteristic
the two-channel Kondo problem. In the opposite case of v
ishing V1 or V2, i.e., when the localized electrons with on
one orbital index hybridize with conduction electrons, w
recover the standard single-channel Kondo case. For the
havior of the hybridization impurity~the conduction electron
bound at the 5f orbital! two low-energy scales are importan
TK5(N/L)exp@2p(u11)c1

21# and Ta5(N/L)cos(pc1/
2c2)exp@2p(u11)c2

21#. One can see that the parameteru
also measures the exchange coupling of the localized e
tive spin to the spins of conduction electronsJ;u21. The
antiferromagnetic effective exchange between the spin
neighboring 5f orbitals in our model is proportional to
L22;u22. This is consistent with the standard condition f
a RKKY interaction, which is proportional toJ 2.

The solution of BAE reveals that in the ground state~for
small enoughu) the mixed valence of the 5f orbital in-
creases with growing the band filling of conduction electro
from 2 (5f 2) for the empty band to 3 (5f 3). ~It means that
the valence of the 5f orbital explicitly depends on thetotal
number of electronsin the system.! The ground-state mag
netization of the localized electron forH!Ta!TK (H is an
external magnetic field! is proportional toH/Ta with the
standard Kondo logarithmic corrections, i.e.,Mloc

z

;H/Ta(11u ln H/aTau212•••) (a is some nonuniversal con
stant!. The latter are characteristic to the asymptotically fr
behavior of an impurity spin. It is usual for a simple on
channel Kondo problem6 with a finite magnetic susceptibil
ity. However, for Ta!H!TK , the magnetization of the
5 f orbital reveals the logarithmic behaviorMloc

z

;2(H/Ta)ln(H/aTK) ~with divergent susceptibility!, typical
for the two-channel Kondo behavior. ForT!Ta!TK , we
obtain the low-T ~Sommerfeld! coefficient of the specific
heat for the localized electron

g loc;Ta
21@12~3TapTK!ln~Ta /TK!#~11u lnT/Tau212••• !

and the finite ground-state susceptibility

x loc;TK
21ln~Ta /TK!~11u lnT/TKu212••• !

~both with usual logarithmic corrections of an asymptotica
free spin!. This case pertains to the single-channel Kon
01450
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physics, although two different energy scales forx loc and
g loc mean that the Wilson ratio differs from the FL one. F
Ta!T!TK we have g loc}x loc;2(TK)21ln(T/TK) ~i.e.,
logarithmically divergent! and with the remnant entropy o
the 5f orbital Sloc5 lnA2. For higher temperatures the ma
netic susceptibility of the 5f orbital manifests the Curie-like
behavior with usual logarithmic corrections. The temperat
dependence of the~magneto!resistivity is determined by the
scattering of conduction electrons off the spins of localiz
electrons~magnetic impurities!. We calculate it in a standard
way, taking into account subleading irreleva
perturbations.2 It can be approximated~for a small hybrid-
ization anisotropy! at low temperatures by

r~T!;r02A~T/Ta!2~11u lnT/Tau212••• !

for T!Ta!TK and

r~T!;r081B~T/TK!1/2~11u lnT/TKu212••• !

for Ta!T!TK ~also with logarithmic corrections of the as
ymptotically free spin of the impurity!.6

IV. FINITE CONCENTRATION

Now we turn to the case of the finite concentration off
orbitals. Hence we keepxÞ0 andL finite. Absolutely analo-
gous to Ref. 9 we can show that only~gapped! unbound
conduction electrons, Cooper-like pairs~spin-singlet orbital-
triplet charged bound states of electrons! and interorbital
bound states of conduction electrons~orbital strings of
lengths 1 and 2! have negative energies. Thus only tho
low-lying excitations make up the Dirac seas defining t
ground state of the model. This means that all the states
negative energies are filled in the ground state, while oth
are empty. Noninteracting~see below! spin-singlet pairs
have bosonic symmetric wave functions. However, they
hard-core bosons, this is why they have their Dirac sea
These Cooper-like pairs persist at any temperature, but s
the movement of electrons is effectively one dimensio
~1D! in our model, there is no global phase coherence
tween pairs, and hence no long-range order. However,
pairing implies a critical fieldHc1 ~equal to the gap of un-
bound conduction electron excitations! at zero temperature
below which there is no magnetic response, reminiscen
the Meissner effect. Naturally, there exists an additional cr
cal field, Hc2, at which all the spins of the system becom
aligned parallel to the magnetic field. All pairs are absen
this domain of fields, and unbound electron excitations
gapped. A small coupling between 1D subsystems, thou
usually can produce a long-range superconducting orde
with pairs existing only in the low-temperature phase. No
that magnetic impurities in BCS superconductors break
time-reversal symmetry and act as Cooper pair breake12

thus reducing the critical temperature and the gap. The
can be closed before the superconductivity is destroyed—
effect that is known as gapless superconductivity. In o
model, in contrast to the standard BCS-like approach,
finite concentration of~magnetic! 5 f electrons, on the one
hand, causesan attraction between conduction electro
3-4
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NON-FERMI-LIQUID BEHAVIOR AND . . . PHYSICAL REVIEW B 63 014503
through the hybridization and tends to enhance the densit
states of Cooper-like pairs. On the other hand, the samef
orbitals act as magnetic impurities and tend to destroy su
conducting fluctuations. The total effect, as will be sho
below, strongly depends on the value ofu ~the difference
between the energies of the lowest nonmagnetic and m
netic configurations of the 5f orbitals, or, in other words
off-resonance shifts for single impurities!.

The introduction of a finite concentrationxÞ0 of 5f or-
bitals drastically affects the ground state~and, in fact, all
states that are effectively present atT!H, in the case that an
external magnetic field is applied!. To see how this come
about, we study the integral equations for the ‘‘dresse
~due to interactions! energies of low-lying excitations. In th
case of zero total orbital moment, this can be done ana
cally, similar to, e.g., Refs. 9 and 10. For zero total orbi
moment the interorbital bound states can be eliminated. T
the integral equations for the dressed energies for unbo
electron excitations («) and Cooper-like pairs (C) at H50
have the form

@22G12Gc1 /c2
#°«1@2G02G21Gc1 /c2

#°C

52«0~k!22m22px (
j 51,2

a1
j ~k2u!,

@2G02G21Gc1 /c2
#+«22C0~l!12px (

j 51,2
a2

j ~l2u!b f

5@21G11G32Gc1 /c2
2G3c1 /c2

#°C24m, ~9!

where ° denotes convolution over the Dirac seas9 and

2L«0~k!5~4k1L!22
1

2
L2 ,

2LC0~l!52~4l1L!22L2. ~10!

The kernels are determined from the formula

Ga~x!5
1

2pE du
exp~2 iux2auuc2u/2!

2 cosh~c2u/2!
. ~11!

It is important to emphasize that the antiferromagnetic
change between neighboring 5f orbitals does notproduce
additional Dirac sea for pure spin excitations in this mod
which is clear from the analysis of Eqs.~9!. This differs from
the situation in Refs. 9 and 10.

The value of the spin gapD is one-half of the smalles
energy required to overcome the binding energy and to
pair the Cooper-like spin-singlet state.~On the other hand
the value of the spin gap coincides withHc1.! The value of
the gap depends on the concentration of 5f orbitals. In the
orbital-isotropic hybridization~andH50), we find

D5@C0~Q!12pxa2~Q2u!#@ 1
2 2G0#22pxa1~u!

2G0+@C0~l!22pxa2~l2u!#, ~12!

where the integration is over the Dirac sea for pairs withQ
denoting their Fermi points. In the trivial limitVm→0, the
01450
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gap vanishes since there is no binding between conduc
electrons~all the TPSM in this case are unities!. Notice that
the terms proportional to the concentrationx appear due to
the inclusion of the direct transfer of electrons betweenf
orbitals at neighboring sites~antiferromagnetic exchange be
tween 5f neighboring orbitals!. The degree of degeneracy o
5 f orbitals at the same site~i.e., the difference between th
energies of the lowest magnetic 5f 3 and nonmagnetic 5f 2

configurations of 5f orbitals,u) determines whether the spi
gap becomes smaller or larger with the increase of conc
tration of 5f orbitals. For largeu the gap of unbound con
duction electron excitationsincreasesif the number of paired
electrons is large due to an enhancement of the densit
states of pairs. In contrast, for smallu the spin gapdecreases
with increasingx andclosesat the critical concentrationxc .
Thus the gap of low-lying unbound conduction electron e
citations decreases for almost degenerate lowest states of 2

and 5f 3 configurations of U ions. On the other hand, wh
the difference between the lowest energies of those magn
and nonmagnetic configurations becomes large, the gap
creases linearly with the number of 5f orbitals, hence with
the enhancement of the superconductiving fluctuations
fact, such a behavior is the consequence of the presenc
antiferromagnetic correlations between the neighboringf
orbitals. The parameteru itself can depend onx, consistent
with the experimental situation Ref. 2~or if one takes into
account that the Fermi points of pairsQ are slightlyx depen-
dent, which manifests the conservation of the total numbe
electrons!, yielding thenonlinear in the concentrationx ef-
fect.

There are no additional unbound electron excitations
pearing when the gap is open~i.e., for x,xc). Hence, the
presence of localized~magnetic! 5 f electronsdoes not lead
to a pair breakingof conduction electrons for such conce
trations, in contrast to the suppression of a superconducti
in ordinary BCS-like superconductors.12 The charge and
magnetic subsystems are effectivelydisconnectedfor x
,xc . In this phase magnetic 5f electrons are antiferromag
netically compensated, which coexists with superconduc
fluctuations of Cooper-like spin-singlet pairs. However, t
gap may become negative whenx.xc . Thus, unbound con-
duction electron excitations~with kF;Ax2xc! appear to
have their Dirac sea~i.e., for some of them their energie
become negative! in the absence of a magnetic field, signal-
ing a quantum phase transitionto a ferrimagnetic phase
~with a weak magnetic moment!. It is the quantum phase
transition, because it is governed by the change of conc
tration of 5f orbitals, not of the temperature as for usu
phase transitions. Cooper-like pairs are still present fox
.xc , reminiscent of type-II superconductivity.12 In this
phase the weak magnetism~ferrimagnetism! coexists with
superconducting fluctuations. For nonzeroH smaller than the
critical field Hc1(x), the spin gap persists forx,xc , and
there are no unbound electrons in the system. The crit
field Hc1(x) decreases with increasing concentrationx and
vanishes whenx approachesxc . The critical line separating
the gapless and gapped~ferrimagnetic! phases manifests it
self in the van Hove singularity of the opening of the band
3-5
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unbound electron excitations. The critical behavior at
quantum phase transition pointx5xc , H50 is also re-
vealed in the scaling dimensions: the dressed charge ma7

gets enlarged from 333 to 434 with the additional off-
diagonal components proportional toAx2xc. The band of
pairs produces a nonzero coefficient for the low-T specific
heat (;T in one dimension!. In contrast, at the critical lines
the van Hove singularities of empty bands produce aAT
behavior of the specific heat.

The above-mentioned effect persists forc1Þc2. For that
case, however, the hybridization anisotropy causes the e
tive interaction between pairs~they become not free as in th
previous case!. For a small hybridization anisotropyuV1
2V2u!V2, the scaling dimension of pairs in our effective
1D model is 12o„(V12V2)2/V2

2
…. Pairs arealmost free

hard-core bosons for a small nonzero anisotropy. The s
dard 3D coupling between effective 1D subsystems yie
the power-law low-T behavior of the specific heat~for T
,Tc) with the exponent 32o„(V12V2)2/V2

2
…. The devia-

tion of the exponent from 3 is as larger, as larger the ani
ropy of the hybridization of conduction electrons with th
ones of 5f orbitals.

V. DISCUSSION AND CONCLUSIONS

Let us briefly discuss the possible relevance of our res
for real systems. The effective one dimensionality of o
model for large concentrations of 5f orbitals introduces fea
tures not seen in higher dimensions. However, even a s
coupling between 1D subsystems results in the phase tra
tion for low T to the ordered superconducting state. Suc
weak coupling determines the small critical temperatu
which is consistent with observations for U-based hea
fermion superconductors.2 ~Note, though, that the presenc
of possible nodes on the Fermi surface of conduction e
trons in two or three dimensions or electron-phonon coup
may change the picture.! It turns out that our~even simpli-
fied! model shares a number of important characteristics w
some real U-based heavy-fermion compounds, e.g., al
UxTh12xBe13. Among them, we can point out a huge e
hancement of the effective mass of carriers in the nor
phase of those U alloys;13 the mixed valence of localized 5f
electrons there;3 the critical NFL behavior in the norma
~nongapped! low-temperature phase@of the low-temperature
spin susceptiblitityx;x02AT, specific heatC;2T ln T
and ~magneto!resistivity r;r01BAT with a crossover at 2
K#;2 the power-law behavior (;T3) of the low-T specific
heat in the presence of a spin gap;13 the scattering of con-
duction electrons off two configurations of U ions;3 a phase
with a weak ferromagnetic moment for a certain range
.
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concentrations of U;14 and the coexistence of supercondu
ing and magnetic fluctuations for some concentrations o
ions1 and~quantum! phase transitions driven by a change
the concentration of U ions.1,14

To summarize, in this paper we have exactly studied
effects of a hybridization between the mixed configuratio
of 5f 2 and 5f 3 orbitals and conduction electrons. A finit
fraction of the electrons is localized, producing a mixed v
lence of 5f orbitals. For small concentration of 5f orbitals a
hybridization anisotropy yields two low-energy scales w
the critical NFL behavior of the localized electrons. For
finite concentration of orbitals the hybridization dynamica
induces an attraction between conduction electrons, wh
results in the creation of Cooper-like pairs and the spin g
for unbound electron excitations. This important result w
obtained by an exact method takingall possible fluctuations
into account, with noa priori assumption of a~local! sym-
metry breaking. Note that an attraction between conduc
electrons due to the hybridization~hence a large effective
mass! implies a short coherence lengthj0}pvF /D, consis-
tent with the relatively short coherence lengths in U-bas
superconductors. The main criticism of our previo
studies10 was connected with the fact that in the previo
model superconducting fluctuations were caused by theini-
tial interaction between the conducting electrons~i.e., they
were not caused by the interaction of conduction electro
with 5 f electrons!. In the present model the critical NFL
behavior of the system for the small concentration of
localized electrons and superconducting correlations
large concentrations of the latter are theconsequences of th
same hybridization with5 f electrons. We predict that the
spin gap may be closed for concentrations of 5f orbitals
above some critical value, at which unbound electron ex
tations appear. Emergence of that effect depends on the
gree of the quasidegeneracy between the lowest levels off 2

and 5f 3 configurations of 5f orbitals. The total magnetiza
tion of the systemspontaneouslybecomes nonzero~for H
50), implying a quantum phase transition~governed by the
change of concentration of 5f orbitals! to a ferrimagnetic
phase with coexisting superconducting fluctuations~pairs!.
Naturally, our simplified model cannot explainall the fea-
tures of real alloys. However, any of existing models
UxTh12xBe13 ~see, e.g., Ref. 2! cannot exactly manifest a
non-Fermi-liquid behavior of the normal phase and pha
with coexistence of superconducting and magnetic fluct
tions in low-temperature phases.
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