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We examine the Meissner state nonlinear electrodynamic effects on the field and angular dependence of the
low-temperature penetration depttof superconductors in several kinds of unconventional pairing states, with
nodes or deep minim@'quasinodes’) in the energy gap. Our calculations are prompted by the fact that, for
typical unconventional superconducting material parameters, the predicted size of these efleczdeeds
the available experimental precision for this quantity by a much larger factor than for others. We obtain
expressions for the nonlinear component of the penetration depttor different two- and three-dimensional
nodal or quasinodal structures. Each case has a characteristic signature as to its dependence on the size and
orientation of the applied magnetic field. This shows thatmeasurements can be used to elucidate the nodal
or quasinodal structure of the energy gap. For nodal lines we find\tkas linear in the applied field, while
the dependence is quadratic for point nodes. For layered materials withCWU§% _s type anisotropy, our
results for the angular dependence\of differ greatly from those for tetragonal materials and are in agreement
with experiment. For the two- and three-dimensional quasinodal caseis,no longer proportional to a power
of the field and the field and angular dependences are not separable, with a suppression of the overall signal as
the node is filled in.
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I. INTRODUCTION uncertainties arising from surface quality and preparation
problems. In cases where the OP leads to an energy gap
Until about fifteen years ago, the question of the determiwhich has nodesgor very deep minima which we denote as
nation of pairing states in superconductors was one of smaflquasinodes”, it was pointed out eight yedfsago, that
and purely theoretical interest, since no existing superconexcitation of quasiparticles near the nodes by an applied
ductors were commonly suspectéd be in a state other than magnetic field leads to nonlinear anisotroptes® in the
the standara wave. Only liquid®He was knowf to exhibit  electromagnetic properties of the material. It was shBwn
p-wave pairing in its several superfluid phases. Since therthat one can in principle use these anisotropies to perform
the situation has dramatically changed. First, extensive stud‘node spectroscopy,” that is, not only to detect the existence
ies in high-temperature oxide superconduct@rTSC'’s) of nodes(or quasinodesbut to infer their location on the FS.
have led to the widespread befiehat in most cases the Although in the earliest woA?° anisotropies in the pen-
order parameter for these materials is at least predominantlgtration depth were considered possible subjects of experi-
d wave, with lines of nodes in a quasi-two-dimensionalmental investigation, emphasis soon switched to related
Fermi surface(FS). Whether these are true nodes or veryquantities, chiefly the anisotropic component of the magnetic
deep minima is, however, not really established even in thenomenttransverseto the applied field, and the torque asso-
best studied compoundsand the situation is less clear in ciated with it. This quantity seemed more accessible experi-
some'® other cases. More recently, unconventional pairingmentally than\, which was deemed to be more difficult to
states have been proposed, on evidence of varying strengtimeasure with the requisite precision. However, recent ad-
for a plethora of other materials with lower superconductingvances and refinements in experimental techniques force a
transition temperatures. Among these materials are someconsideration of this assessment. The best measuréments
heavy fermion(HF) compound<; *°members—*%of certain  of the transverse magnetic moment yield only a relatively
superconducting families of organic salts such asweak lower bound on the magnitude of the gap at a quasin-
Kk-(BEDT-TTF),CUu(NCS), and (TMTSF}X (X=PF;,CIO,, ode, because the noise of the measurements is relatively
etc), and certain other salts such'&€*Sr,RuQ, for which a  high, with a resulting uncertainty a factor of only three below
pairing state similar to that in thé\ phase of®He has the maximum signal expected for a system with pure nodes.
beerf?~2° suggested, although recently other stftdsave  On the other hand, measurements of the penetration depth in
also gained favor. compounds such as YBCO can now be perforthedth a
To probe thebulk order parametefOP) it is best to use precision of a small fraction of an A. As we show later, this
experimental techniques that measure properties over a scateone or two orders of magnitude below the putative signal
of the penetration depth A, which in most materials of for that compound. Furthermoré,for many of the non-
interest, as mentioned above, is much larger than the coheTSC compounds mentioned above, the predicted nonlinear
ence lengthé. The OP at the surface may differ from that in signal can be considerably larger than that expected for
the bulk, and furthermore, surface experiments are subject tdTSC’s. Hence, extension of techniques such as those of
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Ref. 36 to dilution refrigeration temperatures is likely to al- which depends exponentially on the distarcevithin the
low the determination of the nodal structure of these materisample through only one of the principal values. Alterna-
als. It appears, therefore, that measurementd afre the tively, one can write\; in terms of the spatial derivatives of
most promising way of probing the nodal structure of the gaghe fields at the surface, since both the spatial extent to which
through nonlinear electromagnetic effects. H, penetrates into the superconductor and its derivative at
With this in mind, we discuss here the nodal spectroscopyhe surface are determined by the same length. Because of
of the penetration depth. We define the quanthy () the tensorial nature of the penetration depth, once the prin-
=\(¢,Hp) — N(4,0) whereH, is the magnitude of the ap- cipal values are determined, the results of any experiment
plied field andy the angle it forms with a suitably defined involving applyingH, along an arbitrary angles with re-
axis. In defining\ (,H,) attention must be paid to the ex- spectto, e.g., tha axis can be elucidated, although the result
perimental methods involved. We then present results thawill depend on the specific experiment considered.
show that the field and angular dependenceé\af ) will In the presence of nonlinear effects, the situation is much
reflect the nodal or quasinodal structure of the energy gapnore complicated. Because of the nonlinearities, the super-
We first consider quasi-two-dimensional systems withfluid density or the penetration length are no longer tensors.
d-wave pairing. In this case, we show that the orthorhombicAlso®?" the lengths that characterize the surface derivatives
ity as it occurs in compounds of the YBCO type, must beand the extent of field penetration differ by significant nu-
included in a proper and clear way. We calculate the necesnerical factors. Several possible definitions of the effective
sary fields and find that the effects of orthorhombicity inA(¢) which coincide in the linear limit give different results
AN(y) are very important, and that their neglect has led tdfor N(,H,) in the nonlinear case. In general, experimen-
misleading conclusions in interpreting experiments. We thertally one measures the extent to which fields penetrate and
turn to other quasi-two-dimensional nodal and quasinodatlefinitions involving surface derivatives are not appropriate.
cases, for which the required results are readily obtainedo find the right definition one must consider the experimen-
from previously published field distributiori8.Finally, we  tal setup. In the experiments of Ref. 36, the crystal is rotated
consider three-dimensional systems with point or lineto different orientations with respect to the field and a mea-
nodaP’ structures with quasinodal admixtures. In our conclu-surement of the component of the magnetic momewiong
sions, we point out that the penetration depth can indeed bihe applied field is performed. The penetration depth) is
used to perform node spectroscopy in all these cases arben extractet*! through the relation
elaborate on the use of our results to interpret existing or
future experiments. )= — I—h:/(l 2)\(1#)),

d (2.7
IIl. METHODS

whereml is the component ofm along the field and/ the
volume of the sample. The term in 2.1 involving the effec-

As explained above, our focus is on the angular depentive penetration depth depends only on the sample Ariea
dence of the penetration depth as a very powerful probe in the direction parallel to the field. One can equivalently write
the understanding of the symmetry of the bulk OP for un-this definition of A(¢,H,) in terms of the integral of the
conventional superconductors. The presence of nodes or quappropriate component of the field by making use of stan-
sinodes in the energy gap gives A& to nonlinear correc- dard identities****3One then has
tions in the current response to an applied magnetic field
H, . These nonlinear corrections resultNrhaving an angu- diz I
lar and field dependence that reflects directly the symmetry Ny Ha) = JO dzH(¢,Ha,2)/H(0), 22
of the pairing state.

The first question we must address is that of deﬁning th@vhereH” is the Component OH(Z) para”e' to the app“ed
angular dependent penetration depth in the nonlinear casgeld. This is the definition of (1) we will use. Other defi-
This involves both theoretical and experimental difﬁCU'tieS.nitions may have to be emp]oyed for different experimenta|
Let us consider the geometry of a semi-infinite superconsetups. However, once the nonlinear field distributions inside
ducting slab of thicknesd, much larger than any relevant the sample are known it is a rather easy matter, as seen

penetration depth. The slab is oriented perpendicular to ongelow, to extract the effectivk corresponding to any other
of the symmetry axes, e.g., tleeaxis, and assuming ortho- gjternative definition.

rhombic or higher symmetry, its surfaces are parallel to the Tg separate the nonlinear effects we write

plane spanned by the other tW@.g., thea andb) axes. This

is the geometry that we will consider in this work. In the =\,

linear 3ase, thg penetration depth is described in t&rofs MEHA=Min(g)+ A HA), 23

the superfluid density tensor, and its principal axes are thos8ince the linear part is field independent while the nonlinear
of symmetry. The principal values, and\, can be deter- part, as we shall see below, vanishes at zero field, one has
mined by experiments involving an applied field along the that the nonlinear partAX(,Ha)=N(,Hp)—N(,Ha

and a directions, respectively. Thus one can use, for ex-=0). We will see that\;,, has the expected angular behav-
ample, as a conventiorialdefinition \i=JodzH;(2)/H(0), ior. The nonlinear part can be written in terms of the nonlin-
where H;(z) is the magnetic field along a principal axis, ear magnetic momem, as

A. Penetration depth
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21 I
AMlﬁ,HA):H—NA\mm(l//,HA). (2.9

wheremﬂ]I is the parallel component af,;. Sincem,, is an
extensive quantity, proportional to the sample area, we see
from Eq.(2.4) thatA\ is intensive. Using the expression for
the magnetic moment in terms of the current fi¢Jdm
=(1/) [dr(rXj), standard identitié4*® and the London
and Maxwell equation$2.4) can be expressed entirdfyin
terms of the value of the nonlinear flow fieldat the surface

of the sample. This will be done explicitly for several cases.
We first, however, give a brief outline below on the proce-
dure for calculating the nonlinear fields in the cases where
they are not yet known.

H,

B. Calculation of the fields FIG. 1. Variables and labels for the OP in Sec. Ill A. The four

In some of the cases of interest we will be able to use théodal lines are labeled by the numbets through(4). The Fermi
field distributions found in previous wor¥, but in several Velocity at node(l), v¢, forms an anglex with the a axis. The
others the fields must be calculated. We explain here brieflPPlied fieldHy is at an anglej to thea axis. A generic flow field
the method involved, with details of the calculations in the/€CtorV is shown for illustrative purposes.

Appendixes.

Within the framework® of the nonlinear Meissner effect,
the relatiori* betweenj andv is a sum or linear and nonlin-
ear part§(v) =j;n(v) +jn(v), wherev is the flow field, and U= Unl,
j is the supercurrent. The linear part is the usual relation nl.i
jin=—epV, wherep is the superfluid density tensor, while
the nonlinear teri?®in the low-temperature limit consid-
ered here is

jn|(V):—ZeN?J d?sn(s)vey(vs- V)= |A(s)]?
FS where\ is defined in each case from the in-plane compo-

X O —v¢-v—|A(s)]]. (2.5  nents of the linear penetration depth.

=d/(2\;). The dimensionless nonlinear flow field

: (3.0

<l

is normalized by the characteristic linear velocity

~ €
v=\Ha, (3.2

HereNf is the total density of states at the Fermi level, and
n(s) is the local density of states at the pogmn the Fermi _ _ _
surface(FS), normalized to unity. The step function in Eq.  As our first example, we examine the nonlinear effects

A. 2D nodal lines with YBCO type othorhombicity

(2.5) restricts the integration over the FS by associated with a two-dimensional gap that has nodal lines,
with crystal orthorhombicity of the YBCO typ#;** that is,
|A(s)]+vs-v<O. (2.6)  with the nonequivalent and b axes being along the an-

tinodal directions. The applied field is in theb plane, form-
ing an angley with the a axis, so that the fields haweand
b components, which depend only on the coordirat€on-
4re sidering the usual linear term only, it is completely elemen-
VXV XvV=—j(V). (2.7)  tary to verify that the definitior(2.1) yields \j,=\p, oS i
c +\4Sir? ¢, independent of the magnitudé, . We can turn
Using the boundary conditions’ X v|q,=(e/c)H, and  then to the nonlinead\. _

solve Eq.(2.7) analytically for the necessary fields and then (measured from the positiva axis), wheren=1, ... 4 la-
extractAN from Eq. (2.4). bels the node. The Fermi velocity g forms an anglex

with the +a axis. These angles are shown in Fig. 1. In the
presence of orthorhombic distortioa; need not equatr/4,
and a does not have to be equal ¢gg. One often character-

It is convenient to introduce several dimensionless quanizes the deviation ofp; from /4 by describing the order
tities used in the calculations. These are the dimensionlegsarameter as being d+s” writing, for example, A(¢)
coordinate; which represents the coordinate perpendicular=A,cos(2p)+Ag, and then introducing a separate angular
to the plane surface of the samplaeasured from its mid- variable(see Ref. 3% for the orientation of the Fermi veloc-
point) in units of\;, the appropriate penetration depth tensority. This may be misleading, however, since it is in this case
component in the sample plane. Its surface valugs no longer accurate to classify the OP in terms of angular

The functional relationship betweg¢mndv is then combined
with the Maxwell-London equaticfi?®

Ill. RESULTS
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momentum waves. More important, since the nonlinear reHere p=3N;v?, is the local value of the superfluid density
sults depend only on thiecal properties at the nodal posi- at the nodesl\; is the local density of states; is the Fermi
tions, there ionly onerelevant angular variable, which is speed at the nodes, and the local critical velocityvis
regardles® of which origin one wishes to ascribe to*f. =A,/v;. Similarly, when there is QPA at (2) a(@), the
We can see from the Fig. 1 that the magnitudeat the  a component of the current is given by Ed\4a),
same at all nodes, and that we can restrict the ahfyle
makes with thea axis to ¢ e[0,7/2]. We characterize the
anisotropy of the linear penetration depth tensor /Ay
=\,/\p, and it suffices to také ;= 1. Only the local prop-
erties of the OP near the nodes contribute to the nonlineaginalogous expressions can be written for theomponent.

e
jm'a:v—icow[vgcos’- a+uvisirt al. (3.5

current, hence we express the OP near the nodes as To find the nonlinear flow field we insert the currgidt4)
into Eq. (2.7), for {,e[lh.¢sa] or Eq. (3.5 for ¢,
A(@)=~2A¢(¢—¢n), (33  [04*]. The solution is found perturbativelyo first orde¥

whereA, is half of the slope of the OP near the nodes, and'Sing the previously stated boundary conditions plus conti-

should not necessarily be identified with the gap maximumnuity of the flow field, magnetic field, and current at the
When e [0,7/2], we have[see Eq(2.6)] the possibility =~ Crossover point} . The details are given in Appendix B, the

of quasiparticle activatiofQPA) at the nodes labeletsee ~Main_results are Eqs(B4) and (B10). We chooseh

Fig. 1) (1) and (2)or at (2) and (3). Thepecific nodal pair = V\a\p as the normalization in E¢3.2), and we tak& \

that is activated depends on which nodglsatisfy the re- =N\, its nodal valueHy is the usuat-* characteristic field
striction in Eq.(2.6). Anisotropy in the penetration depth
tensor leads tos twisting (with increased depth from the Ho CAg (3.6

surface towards the axis with the larger penetration depth, Cenvg

which isa. This effect occurs at linear order and it is there-

fore very significant. The nodes which contribute to the non- We can now achieve our objective, and get from the
linear term, therefore, depend on the dimensionless coordialculated fields. We write Eq2.4) in terms of the dimen-
nate £;=z/\; within the sample. There are three cases tosionless flow field

consider: The first is whettr e [ 0,141 ], wherey; is the maxi-

mum ¢ that will result in QPA solely at (1) an¢2). This AN=N[siNgUpy a({sa) = COSPUL p(Lsp)]. (3.7

ar;]gle is very small e;:cept Whehﬁ?‘l' The seconhd cagﬁ is The flow field results in Appendix B are valid for any mate-
when ¢e [, 4,], where i, is the maximumy that wi rial thicknessd. Upon taking the slab limid>\, we can

give QPA at nodes (1) and (2) until a depth is reached, expressA\ (i) in the following form:
then there is a crossover, and subsequent QPA at nodes (2)

and (3). Thethird region hasye[ ¢,,w/2], where the only 1 Hy
nodes activated at any depth are at (2) &8}l AN HA) =5 g A (3.8

The nonlinear current-flow relation for the case when 0
there is QPA at nodes (1) and (2) is calculated by insertingve see from this result that the nonlinear effect in the pen-
the OP, Eq(3.3 into Eq. (2.5. The main steps are carried etration depth is proportional to the field, for line nodes. The
out in Appendix A. We find in Eq(A3a) for thea compo-  quantity))() represents its angular dependence, normalized

nent so that its maximum is unity for the tetragonal case. The
function ) has a different expression for each regionyof
i1 a= —2ep 22202 asina., (3.4  With the crossover angleg, i, being given in Eq.(B1).
' Uc These expressions are
18A 2
)= 2 co€ a sina sir? ycosy+—sintacos ¢,  pe[0y], (3.99
2+A, AZ
18A, : . _ A, tang| 3a/(ha-1)
W)= 2+ A, cog a sina COSIIDSII’\2 v+ mswﬁ a coS Y 1+2Aa+(4Aa_ 1) W
2A2(2A2—-10A,—1) . [Agtang| ¥ a1
(2+Aa)(l+2Aa) "’OS?Q/SIH:;IA taT ) ¢E[¢1!¢2]i (39b)
18 ) ] ) ) T
N Lp):msmz a cosa cog siny+2A%cos asi y, e V2, 5| (3.90
a
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v FIG. 4. Angular dependence afx for the same OP as in Figs.
FIG. 2. Angular dependence dfx for the OP in Sec. lllA, 2 and 3. Here\,=1.3 is fixed, whilex takes the same values as in
with YBCO-type orthorhombicity. We plot here the functioif) the previous figure. The solid curve corresponds tor/4 and the
[Egs. (3.98—(3.90] vs the angley. This function represents the meaning of the dotted and dashed lines is as in the previous figure.
angular dependence af normalized by the field dependence and The combined effects of the two anisotropy parameters are seen.
numerical prefactors in Eq3.8). In this figure, the Fermi velocity
direction is fixed at an angle==/4. The bolder line shows the time?2® We consider the range 1QL.5 for A,, in incre-
result for the orthorhombicity parametar,=\,/\p,=1.0 (tetrago-  ments of 0.1. We see that as this parameter increases, the
nal limit), while A, equals 1.1, 1.2, 1.3, 1.4, and 1.5 in the Othersymmetry of the curve changes, to reflect the mixingr(2
curves(from top to bottom at)=0). and = symmetries. The signal increase with, when y
= /2, can readily be understood physically, since the vol-
WhenA,=1, ;= ,=«a and the middle one of the expres- ume occupied by the currents will be in this case determined
sions above is not needed. We present plot9)igp) in the by the larger of the linear components. We can see from the
next three figures, wherg is limited to 0<¢<m/2, since figure the signal characteristics change considerably with in-
the result in the remaining range is trivially obtained by sym-creasing anisotropy. The maxima and minima)bfre no
metry. In Fig. 2, we show results for fixeg= /4, and vary  longer separated by the factor q2/2 for A,>1.0. With
the anisotropy parametdr, of the penetration depth tensor, sufficiently largeA,, as seen in the figure, the signal 4at
which influences the result through the twisting of the fields= /4 becomes approximately the average)giy=0) and
inside the sample. For reference, we plot the isotropic resul/(¢= /2). This illustrates the high sensitivity of the pen-
as the bold curve. The ratio gf2/2 between the minima and etration depth to anisotropy, as compared with the previously
maxima of this reference curve has been known for a longtudied” transverse magnetic moment. The reason for this
difference in the transverse and longitudinal behaviors is ex-
plained in the last section.
Next, in Fig. 3, we examine the effects of varyiagvhile
keeping A,=1.0 fixed. Again, the bold curve is the
= /4 result, and the other curves are for values (/4)
*nda with n=1,2,3 andda=7/80. It is seen that, aiy
=0, the signal increases asincreases above/4, reflecting
the increase irlv-v;|. For smaller values ofr the effect
reverses, with the curves corresponding to the sanaad
opposite sign being symmetric with respect to exchange of
the a and b axes. This behavior is very sensitive to small
changes ina. The effects of increasingr are in a sense
opposite to those of increasinyg, . It is interesting therefore
to see how these two effects combine. Thus, in Fig. 4, we
plot the normalized\\ for A,=1.3, and the same values of
¥ a as in Fig. 3. The symmetry of the curves for the samig
FIG. 3. Angular dependence af\, for the same OP as in Fig. NOW lost, becauseé\ ;# 1. The_ overal! conclusion that one
2. Again, the functio)( ) is plotted. HereA ,=1.0 is fixed, while ~ €&@n _draW from these res_uIFS is that in the presence of even
o takes the values/4=n(w/80) withn=0,1,2,3. As in the previ- relatively moderate deviations from the tetragonal “pure
ous figure, the effect of orthorhombicity is quite strong. The boldd-wave” situation, the appearance of the\(y) vs ¢ data
line is the tetragonal(=0) case. The positive values of are ~ Might reflect more ar than am/2 symmetry. This has to be
(dotted curvesabove the bold curve at small angles, and those forkept present in analyzing experimental results. We will re-
negativen (dashedl are below. turn to this point in Sec. IV.
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12 component in the OP, which we assume is added to a main
Adxz,yz component. The OP near the quasinodes can then be
1 written in the form

A(@)=iAmint2A0(¢— @n), (3.12

where 2, is the slope of the OP at the minima of the gap
function, andA ,;<<A, is the minimum value of the energy
gap. Here we consider only the isotropic casg=A,=\,

a= /4, which is sufficient to illustrate the changes brought
0.25 about by the presence of quasinodes, rather than nodes, and
where we can use previously calculated field distributions
from Sec. IV of Ref. 34. We insert these fields into Eg1).

0.75

0.5

Normalized AA

0 z z ar z The resulting nonlinead A depends on two variables, in
& ¢ 8 2 addition to the angley: the ratioh=H,/H, of the applied
W field to the characteristic fieltly, defined in Eq(3.6), and
the ratio
FIG. 5. Angular dependence afx for a 2D OP with line nodes
and BSCCO-type orthorhombicit§Sec. Ill B). The applied field _ Amin E (3.13
makes an anglgs with the new orthorhombia axis. The nodal A, Ho' '

lines are now along the principal axes, which are rotated by an . . . L
angle of 7/4 relative to the previous undistorted tetragonal axes. e find after straightforward algebra, in the-A limit,
The curves are normalized so that they represent the funB(ign 1 H

as defined in Eq(3.11). They correspond, from top to bottom at AN & H :_)\_A 31
=0 to values ofA,=1.0,1.1,1.2,1.3,1.4,1.5. As in previous fig- (4,Ha) 6 H QA x). (3.19

ures, the tetragonal limit is plotted with a bolder line. . .
g P The angular and field dependences now no longer factorize

B. 2D line nodes and orthorhombicity of BSCCO type and are(apart from the overall factor di) represented by

) ) ) _ the function of two variable®), which is normalized to unity
Next we consider the nonlinear effects associated with a; #=0, h=0:

two-dimensional OP with line nodes in the presence of

orthorhombic anisotropy characteristic of,8Bi,CaCyOg, 5 Q(ih,k)=(cosy’ — k)2(2k+ cosy’)O(cosy’ — k)
(BSCCQO materials. The new orthorhombé&candb axes of _ _ _

symmetry form angles ofr/4 with the undistorted tetragonal +(siny' — k)*(2k+ siny’)O(siny’ — k),
axes. In this case, the nodes are at angles/@ffrom each (3.15

other and the nodal Fermi velocities are aligned with the o

nodal directions, which are the principal axes of the systemWritten for O<y’< /2 (trivially extended by symmetry to
However, the two nodes on the nevaxis are not equivalent the remaining rangewith ¢’ = —m/4. The step functions
to the other two on the new axis. The fields for this case IMPply that the nonlinear effects vanish for<s, with &
were calculated in Sec. Il A2 of Ref. 34. We need only to =2min/Ao, since then the field is not sufficiently strong to

insert these fields into E¢3.7) and get(for d>X\;) create quasiparticles of energy larger than the minimum gap
value. The behavior of (¢, k) is plotted in Fig. 6, where we
1Hu show its angular dependence for several valueg,oWwith
ANy HA) =5 H—O?\B( ), (3.10  the applied field above threshold. One can see how the filling

of the node produces a fast decrease in the nonlinear effect
where A= \\nahnp With Api=(2me?/c?)Nsw?,;, where on the penetration depth, as it ddealso for the transverse
v¢ni are the nodal Fermi velocitiebl, is defined in Eq(3.6) ~ moment. In Fig. 7, the variation akA/\ as a function of
With v1= 0 naVmp and we takek,;=\s\p. Here the Ha/Hg is shown for several values af, at y=m/4. The
simple angular dependence is contained in the fabtar),  field threshold effect is clearly seen, and can be read off

and is given by directly from the curves.

B(yp)=A,"?cos y+ AYsin® . (3.1) D. 3D quasinodal points and lines
In Fig. 5, we showB(y) for varying degrees of anisotropy ~ We now examine cases where the FS is three dimensional
A,=1.0-1.5 in increments of 1/10. and the nodal or quasinodal structure of the energy gap in-

volves points or lines. We will consider here the same situ-
ation for which, in the limit of pure nodes, the transverse
magnetic moment was calculated in Ref. 37. For the sake of
Now we turn to the situation where there are no nodesbrevity, we will compute directly the fields in the quasinodal
but rather, very deep minima in the gap functitquasi- case, and consider the situation where actual nodes exist as
nodes. This can be due to a small, constant or iAdXy the appropriate special limit. For both of the cases consid-

C. 2D quasinodal lines
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1

1. 3D point nodes

We first consider an OP leading to a gap with two quasi-
075 nodes at the poles along thexis. In this configuration, the
nonlinear fields have only acomponent, which depends on
the coordinatey. By symmetry, we can restrict our analysis
05 to the quasinode a#=0, where# is the usual polar angle.
We take the form of the gap near the quasinode to be

02 |A(0)|:(|Amin|2+|Ap0|2)1/21 6~0, (3.17

where A is the slope of the OP near the node, afid
n ! =Anmin/A,<1. This is the generalization of the previously
7 - 2z studied” OP to the quasinodal case.
The nonlinear current response as a function of the flow
¥ field is calculated in Appendix A, and we find, for its only
FIG. 6. Angular dependence @\ for a 2D gap with quasi- nonzero component
nodes and tetragonal symmetry as discussed in Sec. Il C. Results

Normalized AA

IE]

are normalized so that the quantity plotted is the functipof Eq. : _e_p 2_ . 2\3/ _
(3.15. This function is plotted vs. the angiethat the applied field Iniz= 02 (vz=vs) B(v,~vy), (3.19
forms with thea axis. The bolder line corresponds to the usual P

result with node$ «=0 see Eq(3.13)], and the other curves, from wherev,=A,/v¢, vs=An/vs, and in three dimensions,
top to bottom, are for values of of 0.2, 0.4, 0.6, and 0.8, respec- p=1N;v{ in terms of local values. This result shows that

tively. there are no nonlinear effects presenvjuv. Since the

. flow field decreases with distance into the sample, there will
ered below, we will assume that the slab surfaces are parallge 5 depth in the material, which, in terms of the dimension-
to t.he a-c.plane, and thaH is also in this plar_le, wit_hp less variableZ,=y/\,, we denote ag* , wherev,=vs, SO
defined with respect to theaxis. Then, the nonlinear fields 5t nonlinear corrections are absent for the region below
have onlyx orz compon_entidependlng on'Whether We are {5 . Inserting Eq.(3.18 into Eq. (2.7), we get an equation
discussing lines or point nodes, respectively, see b)E’Iowfor the flow field. This equation can be solved perturbatively

which depend only on the coordinateormal to the sample. : : 2
Again it is elementary to show thak(i,Hz)=A(1) to first order in the small parameteHf/Hq)“, whereH,

a . . =cA,/e\p;. In Appendix B we find, taking into account
;A:‘(‘fﬂl’_'HA)’ (\j/vhere)\,m(<p)—)\zsm2 yri\cCoS ¢, indepen- these subtleties, the solutiar, ,(¢,) for arbitrary thickness
ent offa an d. The result is given in EqB14). We then have from Egs.
: A B14 ki he limitd> h I
A)\('JIrHA):)\zsm(/funl,z(gs,z)_)\XCOS’/IUnI,x(gs,xgélG) \(/:;"d@f;ngi ¢<)7,T/f;f’ter taking the limitd>X\,, the result,
We will use this result with the fields calculated below. 1 H3 .
AN(¢,HA) = ZAZFP( )0 (sing—«), (3.19
1.25 0
where the functiorP(¢, «) is given by
1
~ 3, (sing+sir y—«?
— Py, k)= k"In
<~ o7 2 K
<
S 5
- +| sin® y— EKZ sin 1,0) Jsir? y— «2.
0.25 (3.2@
Here we see the mixed angular and field dependence of the
O 00T 0800 00d 0% 008 0T 0% resylt, as in the functio® in (3.15. The step function pa-
Ha rameter, involving the quantity
Ho
0 K= Ain ﬁ (3.21
FIG. 7. Field dependence a@f\ () for the same 2D gap with Ap Hy' :

line quasinodes considered in the previous figure. The curves show

the quantityAN/\ [see Eq(3.14)] at = w/4, as a function oh for reflects again the requirement that the appropriate field com-
values of§ (see text equal to 0, 0.01, 0.02, 0.03, 0.04, and 0.05 ponent exceed a minimum value. In Fig. 8, we R}, ),
These values can be read off from the threshold field values in th&r various values ok with the applied field above thresh-
curves. old. One again can see the decrease of the effect as the mini-
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FIG. 8. Angular and field dependence &k () for a 3D gap FIG. 9. Angular dependence afx (i) for a 3D line quasinode.
with point quasinodes. The main plot is normalized so that theThe main plot is normalized so that the quantity plotted is the func-
quantity plotted is the functio®(y, ) defined in Eq(3.19. This tion L(y,«) defined in Eq.(3.29. The inset has the field depen-
quantity is plotted as a function of angle for values ef dence ofAN at =0. All parameter values are precisely as in the
=0,0.1,0.2,0.3,0.4,0.6,0.8, as defined in E8.21). The bolder previous figure.
curve is thex=0 result. The inset displays the field dependence of
AN at y=m/2. The quantity plotted i\N/\, vs normalized ap- whereHo=cA,/e\v¢, {=y/\, \ is the linear penetration
plied field, for values ofs equal to 0, 0.01, 0.02, 0.03, and 0.04. depth in thea-b plane, and the constants; ,E,, and the

functionsr, ands are given in Appendix B. The nonlinear
mum gap value increases. The inset contains the field depegorrection to the penetration depth is then obtained from Egs.
dence ofAN/\, at = /2, for 5=0—0.04, in increments of (3.16) and(3.24), as
0.01. There we can see that the field dependence above

threshold is no longer parabolic, as is the case wh 1 H
5 ! ger parabolic, as | WA AN=ZNEL(, ) O (cosy—x), (3.25
. 0
2. 3D line nodes whereL(#, ) is normalized so that its maximum at=0 is

. . . . . unit
Finally, we consider a three dimensional FS with a qua- y

sinodal line in thex-y plane. The angular dependence of the [co2 U— K2
gap near the quasinodal line &t /2 has the form L(,xk)=3x3tan ! #)
21172
|A(0)|:[|Amin|2+ Ap g_e) } ' 0Ng! +(C052 $_4K2)\0032 lﬂ_Kz. (32@
(3.2 The overall power law behavior at,,;,=0 is now linear in

the field, and at finiteA ,,;, a threshold effect is found. We
with Apis<A,. The transverse magnetic moment in thepiot these results in Fig. 9, where we displ&yy,«), for
Apin=0 limit of this OP has been previousiystudied. For  various values ok. The resulting behavior is very reminis-
this case, the fields only havxecomponents, and we assume cent from that found in the previous case. The inset contains
tetragonal symmetry. We calculate the nonlinear current ifhe field dependence af\/\ at /=0, with 8 having the

Appendix A, where we find same values as in Fig. 8. Because of the mixed dependence
of these results on the field and angular variables, the curves
; €p 2 23 shown are not linear, except in the case0, and again the
= - —vg). 2 ' i ' .
Ini.x vpvx(vX vs) 7O vy vs) 3.23 threshold values can be read off directly from the intercepts.

Again, the nonlinear current vanishes unless the flow teld
is sufficiently largep,>vs. Once Eq(3.23 is inserted into
Eqg. (2.7), we get an equation for the flow field that can be  |n summary, prompted by recent refinements in experi-
solved with a procedure identical to the point node case. Thigental techniques that allow very high precision measure-
is done in Appendix B. We find in the thick slab limit, for the ments of A\, and by the ever increasing number of candi-
only nonzero component dates for unconventional superconducting states, we have
calculated the low-temperature angular and field dependence
of the nonlinear component to the penetration depth for sev-
eral different two and three-dimensional energy gaps with
(3.29 nodal or quasinodal structures.

IV. DISCUSSION AND CONCLUSIONS

H
Uni (£ = - [Eqef+ g CHr(Oef+s(pe 4],
0
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The expected signal for the nonlinear penetration deptltomplications involving the correct treatment of impurity
effect exceeds the available experimental resoldtidbhof  averaging® in these materials, that the temperature has a
one tenth of an A by a considerable factor. To see this, correlatively weak effect in the samples studied. Further experi-
sider for example a tetragonal compound with pdr&ave  mental work in the same or other materials is needed. Pre-
pairing and a linear penetration depth=1400 A, in the |iminary results for single crystals of TI-2201 shaw hav-
YBCO range. From Eq(3.8), we easily get that the differ- jng a linear magnetic field dependence that is interprétesi

encesA=ANma— ANmin, between the minimum and maxi- agreeing with theoretical expectations for the nonlinear
mum values ofA(¢) would be, ath=0.04, about 3 A, a pjeissner effect.

factor of 30 better than the experimental resolution. This is  This strong sensitivity oA\ to anisotropy(either toA,
an order of magnitude improvement when compared to thg, ;4 ,, the angle thav;, at the node, makes with thea
corresponding estimate, under the same assumptions, fgtiq would not be expected from previous calculatfésf
measuremg?nts of the transverse magnetic moment where ofe, 4.5 syerse magnetic moment, where the effects of orthor-
has at best a factor of 3. Further, taking into account the hombicity were not pronounced. The reason is that the trans-

2:;22?;;1?;22’ Igif Y,f’ Svg fm/ dSffé%nd?hga;;{g’eWS;t:igr:nén q verse moment is constrained by symmetry to vanish, regard-
g q less of orthorhombicity, both at=0 and atyy= 7/2, plus at

at the samédn, S\~14 A. This is a factor of 140 above the o : . .
resolution achieved in Refs. 36 47 one point in between. This constraint does not exist for a
Pt longitudinal measurement.

For gap functions with line nodes, we have found that ) . . .
at fixed angle is proportional to the field. Our results, how- = W€ have also examined gaps with two-dimensional qua-

ever, are obtained in the low-temperature, clean limit. BotSinodes, and found that the field and angular dependence are
finite temperatur® and impuritied®?° modify this linear be- N0 longer separable. The angular and field dependenta of
havior at smaller fields, where nonlocal efféétmay have a IS governed by a term linear in the field and by a step func-
similar influence?® Since the combined outcome of these tion indicating that a minimum threshold field must be ap-
effects is not at present amenable to reliable computation, lied to excite quasiparticles above the gap minimum. This is
is safer to perform the experiments and to compare wittmultiplied by a function ofy and of the parametet, which
theory at the largest possible fields, where the behaviois a ratio[see Eq(3.13] relating the value of the gap mini-
should approach linearityd , can be increased all the way to mum to the applied field strength. The signal decreases
the field of first flux penetratiofds, taking in this full ad- markedly as« increases.
vantage of this field being in practi®e® much larger than In Sec. lll D, we investigated three-dimensional gaps with
the Ginzburg-Landau estimate bif;. points and line quasinodes. There again the nonlinear contri-
Keeping this in mind, let us consider our results for two-bution to the penetration depth depends on a function of
dimensional gap functions with nodes for materials withangle and of a parameternow defined in Eq(3.21), a step
YBCO-type orthorhombicity. Some experimental results forfunction, and a separate factor linear in the applied field for
the angular dependence ®fy) for YBCO are availablé®  line nodes and quadratic for points. The situation is similar,
although only for a few selected directions. We have foundas far as the field dependence, to that for the two-
that the angular dependence X)) is extremely sensitive dimensional case. The signal decreases with increasaryl
(see Fig. 2to small departures from unity in the anisotropy vanishes at threshold. For examplexat 0.6, the nonlinear
factor A5, eventually resulting in a change in the apparentsignals for both points and lines drop to about 25% of their
leading symmetry behavior oAN(), which then looks maximum (k=0) values. Even with such large admixtures,
quite different from that found in the tetragonal case. Takinghowever, the signal is still likely to be within current experi-
again A,=1.6, fo® YBCO, we find that)(#=0)~0.30, mental resolution. Let us estimate the signal for an OP with
W= ml2)~1.8, while Y(y=ml4)~1.2, very close to the three-dimensional line nodes, similar to that which might
average in the two main axial directions. This is preciselyoccur in SsRuQ, or certaifl heavy fermion compounds.
what it is found experimentall}f Because this is so different Using Eq.(3.25, with k=0, we find, 5\ = A\ = s\ h.
from what happens when,=\,, it was mistakenly inter- Using publishet® values for SjRuQ, we estimate A
preted in the experimental work as evidence against, instead 2000 A and a valudr=0.3 for Hy=H;. These values
of for, the anisotropy found there being due to the nonlineagive a maximum signal ofdA~200 A. The magnitude of
Meissner effect. The measured field depend&ndeparts the signal in this case is well above experimental resolution,
considerably at small fields from linearity. This is and even with relatively large admixture leading to a sub-
apparently®“® not due to temperature effects alone and westantial A ,,;, the signal would still be experimentally tan-
believe it is very likely attributable to impurities, since the gible.
zero field temperature dependencenobf the sample used We have focused here on the nonlinear effects on the
departs appreciably from linearity for temperatures belowangular dependence of the penetration depth, and we have
about 3 K. At the largest fields, the field dependence extrapashown the strong influence that anisotropy in the principal
lates to linear, with reasonable valueskbf~9000 Gauss. values of the linear penetration depth and orientation of the
Thus, these experimental results are consistent, as far as th€ermi velocity has on the results. The methods presented in
field and angular dependence, with our theory. The wealhis paper can be readily extended to other nodal patterns and
temperature dependence of these and dtlraeasurements to include the nonlinearities in the temporal response that
remains, however, a puzzle. It cannot be ruled out, given tharise from a time-dependent magnetic figld? These phe-
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nomena are currently being investigated via microwave

measurements,
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2. Nonlinear current for 3D quasinodes

a. 3D point quasinodes

We examine first a gap of the for(8.17). By symmetry,
we can restrict ourselves to the nodefat0 since the con-
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APPENDIX A: CURRENTS
1. 2D nodal lines with orthorhombicity

For the order parameter given by E.3), the four line
nodes are symmetrically placddee Fig. 1 at anglese,,
measured from the positiveeaxis, wheren=1, . . . ,4labels
the node. The Fermi velocity at node 1 ig{"
=v¢(cosa,sina). After making the replacement
Nf [esd®sn(s)— N[, de/2m, Eq.(2.5) gives the contribu-
tion, jV, when quasiparticles at, are activated:

v do
(M )= — fc Z¥
in’ (V) 2efo_;0277

ViV (28000)2— (2A00)2,
(A1)

where ¢=¢—¢,,, and the integration is limited byp,
=|v;-V|/(2A¢). One finds,

, e
iw=- ervagn)[V%n) V]2,

(A2)

Except whenv is along a nodal Fermi velocity, in general
two nodes must be considered. If the nodeg and ¢, are

activated, we can get the total nonlinear current by adding

iD+j@ from Eq. (A2):

[
jnia=—26€p z > cog asina, (A3a)
C
. ep . 2 2 .
Jn|’b=—v—Slna[UaCO§a+vbSIn2a], (A3b)
C

where we have introduced the local superfluid dengity
=(1/2)N;v? and critical velocityv,=Ay/v;. Likewise, if
the nodes atp, and ¢4 are activated, we get

e
jm,a:v—pcos(yz[vicosz atvisifal,  (Ada)
Cc
Ul
Jni,b=2ep z sir? a cosa. (Adb)
C

(2.5 we again replac&l} [rd?sn(s) by foQCd<p0d 6l41r.
This yields only az component to the nonlinear current

. ENfoA 2m Oc
o=~ et [ Ta [ “odoc- %0 0,02
0 0
(A5)
where 05=[ (viv,)?— A, l/A%. We get,
. €p
jz=— i~ v)¥O (v~ vy), (AB)

Up

wherev,=A, /vy, vs=Any/vs, and, in three dimensions,
pE%NfufZ. The step function reflects that the flow fiald
must be sufficiently large ,>vg, in order for nonlinear ef-
fects to be present.

b. 3D line quasinode

For an energy gap as given in E8.22, where the nodal
line is at #=m/2, v;,=0 over the region of integration,
which is then limited to|6— 7/2|]<6.. Here (0.— m/2)?
=[(v- V)2 = AL/ AL =[ (v v, cosn)*~AZ,l/AZ,  where
vL=(v§+v§)1’2 is the projection ofs on thex-y plane, and
7 the angle between, and the in-plane; . In our geometry
vy=0 and the only component of the nonlinear contribution
to the current is along. We have

. _evaprJ’<P2J0c dodd
Jnl,x_T o) o, @aovs

X cose( 62— 60220 (v, —vy). (A7)
After performing the integration ovet, this leaves an inte-
gral overg. To find the specific limits in this integral, we
transform the integral ovep to one overyn. Using the rela-
tion ¢= B+ 7, whereg is the (fixed) anglev, makes with
the x axis, we find

. _eNfof¢s d
Jnl,x_TAp . ncog B+ 7n)
X[(viv, cosn)? =A%, 10 (v, —vs),

(A8)

where ¢g=arccost-A,n/viv, ). Making use of co@
=v,/v, , we get the nonlinear contribution to the current

ep 22312
zvx(vj__vs)y@(vj__vs)-
VUL

(A9)

jnl,x:
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APPENDIX B: PERTURBATION SOLUTION
1. 2D YBCO-type orthorhombicity

Here we assume that the anisotropy factqr>1 and first
examine the case whetre[ q,4¥,], where the limiting

anglesy; are defined in the text. We will need their expres-

sions in the slab limid>\, which are

tanaefsall=4a)
g =tan ! — ) (Bla)
a
_,(tana
Yr=tan A (B1b)
a

PHYSICAL REVIEW &3 014501

Here the constant€;; and C,; are given byC;;= w(gI )
_W(O) W(§|)- C2I %(gs,l)+tanh€$l)[vvl(o)+wl(é/|k)
Wl(gs,l) Wl(é/*)] with  w,= _MZUa_M3Wc,a- Wa=
Mcha Ja= Mlea and
sinf{(A;+2)]  sinH(A—2);]
Cill)="4Nv2) aA-2)
(B5a)
_cosli(Ai+2)4] | coshi(A—2){]
Ceill)="73x +2) 4(A-2)
cosh{A;{)
—Z—Ai, (BSb)

However, unless otherwise stated, all expressions below are

for arbitraryd. Without loss of generality, we give details of
the solution for thea component of the nonlinear current,
and simply give the results for thecomponent later, since it
follows from an identical procedure. We find after inserting
Eqg. (A3a) into Eq.(2.7),

d?u
I;—ua—z(euaub cosasina=0, {(,e[lh . lsal,
’ (B2a)
d2
dgz —Uyte[uicofa+uisi? a]=0, (,e[0,%].

(B2b)

Here &= Aa1 n(HalHg)cosa, Aj,=\;/\, (for i=a,b),
N, 2=(2me?/c?)N;v?. We can now solve EqgB2a) and
(BZb) perturbatively in the small parameter and writeu;
—u0|+su1,. To zeroth order, we have ug,
—A smzpsechcS a)SIiNh(&y), and Ugp=
A”zcoswsechzs,b)smh@b) whereA,=\/\,. The first
order solutions satisfy the following two equations:

d%u;,
d?

—Uia— 2Uo,auo,b cosa sina=0, IoN= [52 ags,a]a

(B3a)

d%uy,
dz?

a

—Upa+[uf,cof a+ud,sif al=0, {,e[0%].
(B3b)

The boundary condition on the nonlinear terms is
(9u1i/r9§i|§si=0. By requiring continuity of the flow field,
current, and magnetic field at the poift, we can obtain the

first order solutioruy, ,=&u; 5 to Eq. (B3a):

unl,a:Aancosa [Clacoshga)+C2aS|n“§a)

+Wa(La)COSH L) +9a(La)sinh( ) ]. (B4)

coshi(2Ai+1)¢i]  coshi(2Ai—1)&i]

Weild)=—2302A,+1) 4(2A,-1)
3 cosf(éi), (850
2
1 3
Ui(gi) = 75c08i3¢i) — 5 coshidy), (B5d)
B sin 2« sin 2y
H1 " 2 costigs 5 cosh s p) (B59
-~ A, cog asir? ¢ (850
o Cost(fea)
Ay Sir? a cog ¢
=== B5
M3 Cosﬁ(gsyb) (B59)

Similarly, Eq.(B3b) gives

Uy a=Csqa COSH £5) + Caa SINN( L) +Wa(a)COSH L)
+0a(£2)SINN(Zy),

where Cg = —w;(0), C4=Cy+gi()—gi({f). Hereg,
=p2VatusWsa, and

(B6)

sinh([2A;—1)¢]  sinf (2A+1){]

Ws,i(gi):

4(2A—1) 4(2A;+1)
sinh( ;)
-, ®7)
Vi(&) = smh(é) 12smh(3§) (B8)
The matching point; (for {s,>1) is
. 1 A tany
ga:gs’a_l—Aa tana (B9)

The b component is found by a similar procedure. We find
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. Ha :
Un|,b:A§,n SmaH_o[Clb cosh{ )+ Cyp sinh({y,)

+ Wy (p)coSH ) +9p(Lp)sinh( ) ], (B10)
Loellh Lspls

_ Ha .
um,b=Aé,nsmaH—o[cab cosh(£,) + Cap SiNN(£p)

+Wp(Lp)CoSH £p) + Gp(Lp)SinN(£)],  (B1D)
gb € [Oagi’; ];

where, W= uoWe p+u3Up, 9p=— uaWsp—u3Vp, Wp
=m1Gep, andgp=—u1Gsp-

The fields calculated above are fgre [ ¢ ,1,]. For
e[0,41], we getu,,; by simply setting the crossover point
{F=0 in Egs.(B4),(B10). Similarly, to find the nonlinear
fields for ¢ e[ y,,7/2], we set(i ={; in Egs.(B6),(B11).

2. 3D quasinodes
a. 3D point quasinodes

For the geometry we considéi, is in thea-c plane, and
the nonlinear fields now have only zacomponent, which
depends on the coordinageThe flow field decreases rapidly

PHYSICAL REVIEW B 63 014501

B 3x?

m( )
+\m?(¢)sink?(¢,) — x2]}

+[5x?sinh(,) — 2m?(¢)sini({,) ]

1
f({)=3 In{2[m(y)sinh({;)

X[MP()sint?(¢,) — k?1Y2| @[ m(y)sinh(£,) — «],
(B153

k()= % %[mz(df)+ <212 In{\2[m(y)cosh ¢,)

+\m?(y)sint?(¢,) — x*1}
+ cosi &) —4m?(¢) — 5%+ m?()cosi2¢,)]

X[m2(y)sint?(¢,) — k2172 O [ m()sinh(,) — ],

(B15b

wherem( ) = sinyl/cosh{s,. The matching point is found to
be ¥ =sinh Y x/m(#)]. In a similar fashion, Eq(B13b) has
the first order solution

u,={f(3)—f(Ls,) Htanh(Zs HIK(LS ) —k(Zs ) T}sinh(E,).
(B16)

with distance into the sample, so that there will be a point in

the material; , whereu,<«, so that nonlinear corrections
are absent for distances bel@y. Again, there is no restric-

b. 3D line quasinode

H, is again in thea-c plane, and due to the form of the

tion on sample thickness, unless otherwise stated. Insertingap, * the nonlinear fields now have onlyxacomponent,

the current(A6) into Eq.(2.7) gives

d?u
EZZ_ u,+e(uZ— k)30 (u,— k)=0, (B123
z

wheree=h?=(H,/H,)?, and« andH, are defined in the
text. Equation(B123 can be written as

d2
zug_uz—’_S(ug_KZ)B/z:O' gze[ggvgs,z]a
(B13a
d?u, i
d—ﬁ—ufo, {e[047]. (B13b)

We now solve Eq(B13a perturbatively to first order, and
write Uy ,=euy,. We find,

H2
Unt.A(L2)= H—’;[Dl cosh(£,)+ D, sinh(£,) +k(Z,)cost(Z,)
0

+1({y)sinh({)], (B14)

where the constant®; andD, are found by requiring con-
tinuity of the fields at{; , and given byD,=—k({}), D,
=—1f({s ) +tanhs k(&) —k(Ls)]- The functionsf and k
are found by elementary methods, and are given by

which depends on the coordingteHereu,> «, in order for
nonlinear effects to be present. These effects are therefore
absent at distances belog# . Inserting Eq.(A9) into Eq.

(2.7) gives the following:

d?u,
dz?

where the small parameteris e=h=H,/H,.

We can now solve EqB17) perturbatively to first order.
We write u,=ug,+eUq,. TO avoid unnecessarily tedious
calculations, we take the slab limit, and hence the zeroth
order solutionugy IS, Ugy~ — cosyexp—{y). The first or-
der solution,u,,, is found from dividing the slab af* into
two portions. This allows EqB17) to be written

Ut ui(ui— )% (U~ k)=0, (B17)

d®uy € 2 o3p *
d§2 _Ux+ U_X(UX_K ) _01 ge[g 1§S]!
(B18a
d?u, .
d—gz—ux=o, {e[0L*]. (B18b)

The solution to Eq(B183 is found by methods similar to
the point node case, and is given by

U, =Eef+Ee f+r(f)ef+s()e . (B19)
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The functionsr ({) ands(¢) are found by elementary meth-
ods, and the constants; and E, are determined from the
boundary conditionsdulx/ag)lgszo, and continuity of the

flow field, current, and magnetic field at the poifit:
E1=[s({s)—s(£*)—r(£*)]e *s+r(¢y), (B20a

Eo=—s({)e 241 () —s(&*)—r(¢*), (B20b

1
f(§)=§

n2(y)e?t—2«? )
2k\N?(h)e**— k?

+ %&)[2”2( 0)+ kPe 2 () e - i

XO[n(y)et—«l,

—3n(zp);<tan‘1<

(B209

PHYSICAL REVIEW &3 014501

1| 3« [Vnf(p)e*t—«?
s(g):g - n(lr/,)tan -
b A2 )N

X O[n(yp)et— k], (B20d)

wheren()= cosy exp(—{y). Similarly, Eq.(B18b can be
solved, with the only major difference begin the boundary
conditionu4,(0)=0. We find,

U= Ez(ef—e™9), (B21)

where

Es=[S({s)—S({*)]e Hs—r(L)+r(L*).  (B22)

The matching poing* is found by equating Eq$B18g and
(B18b) at ¢*, giving {* =+ In[«/cosy].
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