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Angular dependence of the penetration depth in unconventional superconductors
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We examine the Meissner state nonlinear electrodynamic effects on the field and angular dependence of the
low-temperature penetration depthl of superconductors in several kinds of unconventional pairing states, with
nodes or deep minima~‘‘quasinodes’’! in the energy gap. Our calculations are prompted by the fact that, for
typical unconventional superconducting material parameters, the predicted size of these effects forl exceeds
the available experimental precision for this quantity by a much larger factor than for others. We obtain
expressions for the nonlinear component of the penetration depthDl for different two- and three-dimensional
nodal or quasinodal structures. Each case has a characteristic signature as to its dependence on the size and
orientation of the applied magnetic field. This shows thatDl measurements can be used to elucidate the nodal
or quasinodal structure of the energy gap. For nodal lines we find thatDl is linear in the applied field, while
the dependence is quadratic for point nodes. For layered materials with YBa2Cu3O7-d type anisotropy, our
results for the angular dependence ofDl differ greatly from those for tetragonal materials and are in agreement
with experiment. For the two- and three-dimensional quasinodal cases,Dl is no longer proportional to a power
of the field and the field and angular dependences are not separable, with a suppression of the overall signal as
the node is filled in.

DOI: 10.1103/PhysRevB.63.014501 PACS number~s!: 74.25.Nf, 72.40.1w, 74.20.De
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I. INTRODUCTION

Until about fifteen years ago, the question of the deter
nation of pairing states in superconductors was one of sm
and purely theoretical interest, since no existing superc
ductors were commonly suspected1 to be in a state other tha
the standards wave. Only liquid3He was known2 to exhibit
p-wave pairing in its several superfluid phases. Since th
the situation has dramatically changed. First, extensive s
ies in high-temperature oxide superconductors~HTSC’s!
have led to the widespread belief3 that in most cases th
order parameter for these materials is at least predomina
d wave, with lines of nodes in a quasi-two-dimension
Fermi surface~FS!. Whether these are true nodes or ve
deep minima is, however, not really established even in
best studied compounds,4 and the situation is less clear i
some5,6 other cases. More recently, unconventional pair
states have been proposed, on evidence of varying stre
for a plethora of other materials with lower superconduct
transition temperatures. Among these materials are s
heavy fermion~HF! compounds,7–10 members11–16of certain
superconducting families of organic salts such
k-~BEDT-TTF!2Cu~NCS!2 and (TMTSF)2X (X5PF6,ClO4,
etc.!, and certain other salts such as17–21Sr2RuO4 for which a
pairing state similar to that in theA phase of 3He has
been22–25 suggested, although recently other states26 have
also gained favor.

To probe thebulk order parameter~OP! it is best to use
experimental techniques that measure properties over a
of the penetration depth27 l, which in most materials of
interest, as mentioned above, is much larger than the co
ence lengthj. The OP at the surface may differ from that
the bulk, and furthermore, surface experiments are subje
0163-1829/2000/63~1!/014501~14!/$15.00 63 0145
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uncertainties arising from surface quality and preparat
problems. In cases where the OP leads to an energy
which has nodes~or very deep minima which we denote a
‘‘quasinodes’’!, it was pointed out eight years28 ago, that
excitation of quasiparticles near the nodes by an app
magnetic field leads to nonlinear anisotropies29–33 in the
electromagnetic properties of the material. It was show34

that one can in principle use these anisotropies to perf
‘‘node spectroscopy,’’ that is, not only to detect the existen
of nodes~or quasinodes! but to infer their location on the FS

Although in the earliest work28,29 anisotropies in the pen
etration depth were considered possible subjects of exp
mental investigation, emphasis soon switched to rela
quantities, chiefly the anisotropic component of the magn
momenttransverseto the applied field, and the torque ass
ciated with it. This quantity seemed more accessible exp
mentally thanl, which was deemed to be more difficult t
measure with the requisite precision. However, recent
vances and refinements in experimental techniques forc
reconsideration of this assessment. The best measureme35

of the transverse magnetic moment yield only a relativ
weak lower bound on the magnitude of the gap at a qua
ode, because the noise of the measurements is relat
high, with a resulting uncertainty a factor of only three belo
the maximum signal expected for a system with pure nod
On the other hand, measurements of the penetration dep
compounds such as YBCO can now be performed36 with a
precision of a small fraction of an Å. As we show later, th
is one or two orders of magnitude below the putative sig
for that compound. Furthermore,37 for many of the non-
HTSC compounds mentioned above, the predicted nonlin
signal can be considerably larger than that expected
HTSC’s. Hence, extension of techniques such as those
©2000 The American Physical Society01-1



l-
er

a

op

-
d
-
th

a
ith
ic
be
e
in
t
e
d
ne

ine
lu

a
o

e

n
q

e

et

th
a
s

on
t
o
-
th

e

o

ex

s,

a-
f
ich
at

e of
rin-
ent

ult

ch
per-
ors.
ves
u-
ive
s
n-
and
te.
n-
ted
ea-

c-

ite

an-

tal
ide
een
r

ear
has

v-
in-

KLAUS HALTERMAN, ORIOL T. VALLS, AND IGOR ŽUTIĆ PHYSICAL REVIEW B 63 014501
Ref. 36 to dilution refrigeration temperatures is likely to a
low the determination of the nodal structure of these mat
als. It appears, therefore, that measurements ofl are the
most promising way of probing the nodal structure of the g
through nonlinear electromagnetic effects.

With this in mind, we discuss here the nodal spectrosc
of the penetration depth. We define the quantityDl(c)
[l(c,HA)2l(c,0) whereHA is the magnitude of the ap
plied field andc the angle it forms with a suitably define
axis. In definingl(c,HA) attention must be paid to the ex
perimental methods involved. We then present results
show that the field and angular dependence ofDl(c) will
reflect the nodal or quasinodal structure of the energy g
We first consider quasi-two-dimensional systems w
d-wave pairing. In this case, we show that the orthorhomb
ity as it occurs in compounds of the YBCO type, must
included in a proper and clear way. We calculate the nec
sary fields and find that the effects of orthorhombicity
Dl(c) are very important, and that their neglect has led
misleading conclusions in interpreting experiments. We th
turn to other quasi-two-dimensional nodal and quasino
cases, for which the required results are readily obtai
from previously published field distributions.34 Finally, we
consider three-dimensional systems with point or l
nodal37 structures with quasinodal admixtures. In our conc
sions, we point out that the penetration depth can indeed
used to perform node spectroscopy in all these cases
elaborate on the use of our results to interpret existing
future experiments.

II. METHODS

A. Penetration depth

As explained above, our focus is on the angular dep
dence of the penetration depthl, as a very powerful probe in
the understanding of the symmetry of the bulk OP for u
conventional superconductors. The presence of nodes or
sinodes in the energy gap gives rise28,34 to nonlinear correc-
tions in the current response to an applied magnetic fi
HA . These nonlinear corrections result inl having an angu-
lar and field dependence that reflects directly the symm
of the pairing state.

The first question we must address is that of defining
angular dependent penetration depth in the nonlinear c
This involves both theoretical and experimental difficultie
Let us consider the geometry of a semi-infinite superc
ducting slab of thicknessd, much larger than any relevan
penetration depth. The slab is oriented perpendicular to
of the symmetry axes, e.g., thec axis, and assuming ortho
rhombic or higher symmetry, its surfaces are parallel to
plane spanned by the other two~e.g., thea andb) axes. This
is the geometry that we will consider in this work. In th
linear case, the penetration depth is described in terms38 of
the superfluid density tensor, and its principal axes are th
of symmetry. The principal valuesla and lb can be deter-
mined by experiments involving an applied field along theb
and a directions, respectively. Thus one can use, for
ample, as a conventional39 definition l i[*0

`dzHj (z)/H(0),
where H j (z) is the magnetic field along a principal axi
01450
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which depends exponentially on the distancez within the
sample through only one of the principal values. Altern
tively, one can writel i in terms of the spatial derivatives o
the fields at the surface, since both the spatial extent to wh
HA penetrates into the superconductor and its derivative
the surface are determined by the same length. Becaus
the tensorial nature of the penetration depth, once the p
cipal values are determined, the results of any experim
involving applyingHA along an arbitrary anglec with re-
spect to, e.g., thea axis can be elucidated, although the res
will depend on the specific experiment considered.

In the presence of nonlinear effects, the situation is mu
more complicated. Because of the nonlinearities, the su
fluid density or the penetration length are no longer tens
Also31,37 the lengths that characterize the surface derivati
and the extent of field penetration differ by significant n
merical factors. Several possible definitions of the effect
l(c) which coincide in the linear limit give different result
for l(c,HA) in the nonlinear case. In general, experime
tally one measures the extent to which fields penetrate
definitions involving surface derivatives are not appropria
To find the right definition one must consider the experime
tal setup. In the experiments of Ref. 36, the crystal is rota
to different orientations with respect to the field and a m
surement of the component of the magnetic momentm along
the applied field is performed. The penetration depthl(c) is
then extracted40,41 through the relation

mi~c!52
HAV

4p S 12
2l~c!

d D , ~2.1!

wheremi is the component ofm along the field andV the
volume of the sample. The term in 2.1 involving the effe
tive penetration depth depends only on the sample areaA in
the direction parallel to the field. One can equivalently wr
this definition of l(c,HA) in terms of the integral of the
appropriate component of the field by making use of st
dard identities.34,42,43One then has

l~c,HA!5E
0

d/2

dzHi~c,HA ,z!/H~0!, ~2.2!

whereH i is the component ofH(z) parallel to the applied
field. This is the definition ofl(c) we will use. Other defi-
nitions may have to be employed for different experimen
setups. However, once the nonlinear field distributions ins
the sample are known it is a rather easy matter, as s
below, to extract the effectivel corresponding to any othe
alternative definition.

To separate the nonlinear effects we write

l~c,HA!5l lin~c!1Dl~c,HA!, ~2.3!

Since the linear part is field independent while the nonlin
part, as we shall see below, vanishes at zero field, one
that the nonlinear partDl(c,HA)5l(c,HA)2l(c,HA
50). We will see thatl lin has the expected angular beha
ior. The nonlinear part can be written in terms of the nonl
ear magnetic momentmnl as
1-2
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ANGULAR DEPENDENCE OF THE PENETRATION DEPTH . . . PHYSICAL REVIEW B63 014501
Dl~c,HA!5
2p

HAA
mnl

i ~c,HA!, ~2.4!

wheremnl
i is the parallel component ofmnl . Sincemnl is an

extensive quantity, proportional to the sample area, we
from Eq.~2.4! thatDl is intensive. Using the expression fo
the magnetic moment in terms of the current fieldj , m
5(1/2c)*dr „r3 j ), standard identities42,43 and the London
and Maxwell equations~2.4! can be expressed entirely34 in
terms of the value of the nonlinear flow fieldv at the surface
of the sample. This will be done explicitly for several cas
We first, however, give a brief outline below on the proc
dure for calculating the nonlinear fields in the cases wh
they are not yet known.

B. Calculation of the fields

In some of the cases of interest we will be able to use
field distributions found in previous work,34 but in several
others the fields must be calculated. We explain here bri
the method involved, with details of the calculations in t
Appendixes.

Within the framework28 of the nonlinear Meissner effec
the relation31 betweenj andv is a sum or linear and nonlin
ear partsj (v)5 j lin(v)1 jnl(v), wherev is the flow field, and
j is the supercurrent. The linear part is the usual relat
j lin52er̃v, wherer̃ is the superfluid density tensor, whil
the nonlinear term30,31 in the low-temperature limit consid
ered here is

jnl„v…522eNf* E
FS

d2sn~s!vfA~vf•v!22uD~s!u2

3Q@2vf•v2uD~s!u#. ~2.5!

HereNf* is the total density of states at the Fermi level, a
n(s) is the local density of states at the points on the Fermi
surface~FS!, normalized to unity. The step function in Eq
~2.5! restricts the integration over the FS by

uD~s!u1vf•v,0. ~2.6!

The functional relationship betweenj andv is then combined
with the Maxwell-London equation28,29

¹3¹3v5
4pe

c2
j „v…. ~2.7!

Using the boundary conditions¹3vud/25(e/c)HA and
v(0)50, we can, for the geometry under consideratio
solve Eq.~2.7! analytically for the necessary fields and th
extractDl from Eq. ~2.4!.

III. RESULTS

It is convenient to introduce several dimensionless qu
tities used in the calculations. These are the dimension
coordinatez i which represents the coordinate perpendicu
to the plane surface of the sample~measured from its mid-
point! in units ofl i , the appropriate penetration depth tens
component in the sample plane. Its surface value iszs,i
01450
ee

.
-
e

e

y

n

d

,

-
ss
r

r

[d/(2li). The dimensionless nonlinear flow field

unl,i[
vnl,i

ṽ
, ~3.1!

is normalized by the characteristic linear velocity

ṽ[
e

c
lHA , ~3.2!

wherel is defined in each case from the in-plane comp
nents of the linear penetration depth.

A. 2D nodal lines with YBCO type othorhombicity

As our first example, we examine the nonlinear effe
associated with a two-dimensional gap that has nodal lin
with crystal orthorhombicity of the YBCO type,34,44 that is,
with the nonequivalenta and b axes being along the an
tinodal directions. The applied field is in thea-b plane, form-
ing an anglec with the a axis, so that the fields havea and
b components, which depend only on the coordinatez. Con-
sidering the usual linear term only, it is completely eleme
tary to verify that the definition~2.1! yields l lin5lb cos2 c
1la sin2 c, independent of the magnitudeHA . We can turn
then to the nonlinearDl.

The four line nodes are symmetrically placed at angleswn
~measured from the positivea axis!, wheren51, . . . ,4 la-
bels the node. The Fermi velocity atw1 forms an anglea
with the 1a axis. These angles are shown in Fig. 1. In t
presence of orthorhombic distortion,w1 need not equalp/4,
anda does not have to be equal tow1. One often character
izes the deviation ofw1 from p/4 by describing the orde
parameter as being ‘‘d1s’’ writing, for example, D(w)
5Dd cos(2w)1Ds, and then introducing a separate angu
variable~see Ref. 34!, for the orientation of the Fermi veloc
ity. This may be misleading, however, since it is in this ca
no longer accurate to classify the OP in terms of angu

FIG. 1. Variables and labels for the OP in Sec. III A. The fo
nodal lines are labeled by the numbers~1! through~4!. The Fermi
velocity at node~1!, vf , forms an anglea with the a axis. The
applied fieldHA is at an anglec to thea axis. A generic flow field
vectorv is shown for illustrative purposes.
1-3
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momentum waves. More important, since the nonlinear
sults depend only on thelocal properties at the nodal pos
tions, there isonly onerelevant angular variable, which isa,
regardless45 of which origin one wishes to ascribe to it.46

We can see from the Fig. 1 that the magnitude ofvf is the
same at all nodes, and that we can restrict the angleHA
makes with thea axis to cP@0,p/2#. We characterize the
anisotropy of the linear penetration depth tensor byLa
[la /lb , and it suffices to takeLa>1. Only the local prop-
erties of the OP near the nodes contribute to the nonlin
current, hence we express the OP near the nodes as

D~w!'2D0~w2wn!, ~3.3!

whereD0 is half of the slope of the OP near the nodes, a
should not necessarily be identified with the gap maximu

WhencP@0,p/2#, we have@see Eq.~2.6!# the possibility
of quasiparticle activation~QPA! at the nodes labeled~see
Fig. 1! (1) and (2)or at (2) and (3). Thespecific nodal pair
that is activated depends on which nodalvf satisfy the re-
striction in Eq. ~2.6!. Anisotropy in the penetration dept
tensor leads tov twisting ~with increased depth from th
surface! towards the axis with the larger penetration dep
which is a. This effect occurs at linear order and it is ther
fore very significant. The nodes which contribute to the no
linear term, therefore, depend on the dimensionless coo
nate z i[z/l i within the sample. There are three cases
consider: The first is whencP@0,c1#, wherec1 is the maxi-
mum c that will result in QPA solely at (1) and(2). This
angle is very small except whenLa*1. The second case i
when cP@c1 ,c2#, wherec2 is the maximumc that will
give QPA at nodes (1) and (2) until a depthza* is reached,
then there is a crossover, and subsequent QPA at node
and (3). Thethird region hascP@c2 ,p/2#, where the only
nodes activated at any depth are at (2) and(3).

The nonlinear current-flow relation for the case wh
there is QPA at nodes (1) and (2) is calculated by inser
the OP, Eq.~3.3! into Eq. ~2.5!. The main steps are carrie
out in Appendix A. We find in Eq.~A3a! for the a compo-
nent

j nl,a522er
vavb

vc
cos2 a sina. ~3.4!
01450
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Herer[ 1
2 Nfv f

2 , is the local value of the superfluid densi
at the nodes,Nf is the local density of states,v f is the Fermi
speed at the nodes, and the local critical velocity isvc
[D0 /v f . Similarly, when there is QPA at (2) and(3), the
a component of the current is given by Eq.~A4a!,

j nl,a5
er

vc
cosa@va

2 cos2 a1vb
2 sin2 a#. ~3.5!

Analogous expressions can be written for theb component.
To find the nonlinear flow field we insert the current~3.4!
into Eq. ~2.7!, for zaP@za* ,zs,a# or Eq. ~3.5! for za

P@0,za* #. The solution is found perturbatively~to first order!
using the previously stated boundary conditions plus co
nuity of the flow field, magnetic field, and current at th
crossover pointza* . The details are given in Appendix B, th
main results are Eqs.~B4! and ~B10!. We choosel
[Alalb as the normalization in Eq.~3.2!, and we take34 l
5ln , its nodal value.H0 is the usual31,34 characteristic field

H05
cD0

elv f
. ~3.6!

We can now achieve our objective, and getDl from the
calculated fields. We write Eq.~2.4! in terms of the dimen-
sionless flow field

Dl5l@sincunl,a~zs,a!2 coscunl,b~zs,b!#. ~3.7!

The flow field results in Appendix B are valid for any mat
rial thicknessd. Upon taking the slab limitd@l, we can
expressDl(c) in the following form:

Dl~c,HA!5
1

6

HA

H0
lY~c!. ~3.8!

We see from this result that the nonlinear effect in the p
etration depth is proportional to the field, for line nodes. T
quantityY(c) represents its angular dependence, normali
so that its maximum is unity for the tetragonal case. T
function Y has a different expression for each region ofc,
with the crossover anglesc1 ,c2 being given in Eq.~B1!.
These expressions are
Y~c!5
18La

21La
cos2 a sina sin2 c cosc1

2

La
2

sin3 a cos3 c, cP@0,c1#, ~3.9a!

Y~c!5
18La

21La
cos2 a sina cosc sin2 c1

2

La
2~112La!

sin3 a cos3 cF112La1~4La21!S La tanc

tana D 3La /(La21)G
1

2La
2~2La

2210La21!

~21La!~112La!
cos3 a sin3 cS La tanc

tana D 3/(La21)

, cP@c1 ,c2#, ~3.9b!

Y~c!5
18

112La
sin2 a cosa cos2 c sinc12La

2 cos3 a sin3 c, cPFc2 ,
p

2 G . ~3.9c!
1-4
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WhenLa51, c15c25a and the middle one of the expre
sions above is not needed. We present plots forY(c) in the
next three figures, wherec is limited to 0,c,p/2, since
the result in the remaining range is trivially obtained by sy
metry. In Fig. 2, we show results for fixeda5p/4, and vary
the anisotropy parameterLa of the penetration depth tenso
which influences the result through the twisting of the fie
inside the sample. For reference, we plot the isotropic re
as the bold curve. The ratio ofA2/2 between the minima an
maxima of this reference curve has been known for a lo

FIG. 2. Angular dependence ofDl for the OP in Sec. III A,
with YBCO-type orthorhombicity. We plot here the functionY(c)
@Eqs. ~3.9a!–~3.9c!# vs the anglec. This function represents th
angular dependence ofDl normalized by the field dependence a
numerical prefactors in Eq.~3.8!. In this figure, the Fermi velocity
direction is fixed at an anglea5p/4. The bolder line shows the
result for the orthorhombicity parameterLa[la /lb51.0 ~tetrago-
nal limit!, while La equals 1.1, 1.2, 1.3, 1.4, and 1.5 in the oth
curves~from top to bottom atc50).

FIG. 3. Angular dependence ofDl, for the same OP as in Fig
2. Again, the functionY(c) is plotted. HereLa51.0 is fixed, while
a takes the valuesp/46n(p/80) with n50,1,2,3. As in the previ-
ous figure, the effect of orthorhombicity is quite strong. The b
line is the tetragonal (n50) case. The positive values ofn are
~dotted curves! above the bold curve at small angles, and those
negativen ~dashed! are below.
01450
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time.28 We consider the range 1.021.5 for La , in incre-
ments of 0.1. We see that as this parameter increases
symmetry of the curve changes, to reflect the mixing ofp/2
and p symmetries. The signal increase withLa when c
5p/2, can readily be understood physically, since the v
ume occupied by the currents will be in this case determi
by the larger of the linear components. We can see from
figure the signal characteristics change considerably with
creasing anisotropy. The maxima and minima ofY are no
longer separated by the factor ofA2/2 for La.1.0. With
sufficiently largeLa , as seen in the figure, the signal atc
5p/4 becomes approximately the average ofY(c50) and
Y(c5p/2). This illustrates the high sensitivity of the pen
etration depth to anisotropy, as compared with the previou
studied34 transverse magnetic moment. The reason for t
difference in the transverse and longitudinal behaviors is
plained in the last section.

Next, in Fig. 3, we examine the effects of varyinga while
keeping La51.0 fixed. Again, the bold curve is thea
5p/4 result, and the other curves are for valuesa5(p/4)
6nda with n51,2,3 andda5p/80. It is seen that, atc
50, the signal increases asa increases abovep/4, reflecting
the increase inuv•vf u. For smaller values ofa the effect
reverses, with the curves corresponding to the samen and
opposite sign being symmetric with respect to exchange
the a and b axes. This behavior is very sensitive to sm
changes ina. The effects of increasinga are in a sense
opposite to those of increasingLa . It is interesting therefore
to see how these two effects combine. Thus, in Fig. 4,
plot the normalizedDl for La51.3, and the same values o
a as in Fig. 3. The symmetry of the curves for the samen is
now lost, becauseLaÞ1. The overall conclusion that on
can draw from these results is that in the presence of e
relatively moderate deviations from the tetragonal ‘‘pu
d-wave’’ situation, the appearance of theDl(c) vs c data
might reflect more ap than ap/2 symmetry. This has to be
kept present in analyzing experimental results. We will
turn to this point in Sec. IV.

r

r

FIG. 4. Angular dependence ofDl for the same OP as in Figs
2 and 3. HereLa51.3 is fixed, whilea takes the same values as
the previous figure. The solid curve corresponds toa5p/4 and the
meaning of the dotted and dashed lines is as in the previous fig
The combined effects of the two anisotropy parameters are see
1-5
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B. 2D line nodes and orthorhombicity of BSCCO type

Next we consider the nonlinear effects associated wit
two-dimensional OP with line nodes in the presence
orthorhombic anisotropy characteristic of Bi2Sr2CaCu2O81d
~BSCCO! materials. The new orthorhombica andb axes of
symmetry form angles ofp/4 with the undistorted tetragona
axes. In this case, the nodes are at angles ofp/2 from each
other and the nodal Fermi velocities are aligned with
nodal directions, which are the principal axes of the syst
However, the two nodes on the newa axis are not equivalen
to the other two on the newb axis. The fields for this case
were calculated in Sec. III A 2 of Ref. 34. We need only
insert these fields into Eq.~3.7! and get~for d@l i)

Dl~c,HA!5
1

6

HA

H0
lB~c!, ~3.10!

where l[Alnalnb, with lni[(2pe2/c2)Nfv f ni
2 , where

v f ni are the nodal Fermi velocities,H0 is defined in Eq.~3.6!
with v f5Av f nav f nb, and we takelni5Alalb. Here the
simple angular dependence is contained in the factorB(c),
and is given by

B~c!5La
21/2cos3 c1La

1/2sin3 c. ~3.11!

In Fig. 5, we showB(c) for varying degrees of anisotrop
La51.021.5 in increments of 1/10.

C. 2D quasinodal lines

Now we turn to the situation where there are no nod
but rather, very deep minima in the gap function~quasi-
nodes!. This can be due to a small, constantiDs or iDdxy

FIG. 5. Angular dependence ofDl for a 2D OP with line nodes
and BSCCO-type orthorhombicity~Sec. III B!. The applied field
makes an anglec with the new orthorhombica axis. The nodal
lines are now along the principal axes, which are rotated by
angle of p/4 relative to the previous undistorted tetragonal ax
The curves are normalized so that they represent the functionB(c)
as defined in Eq.~3.11!. They correspond, from top to bottom a
c50 to values ofLa51.0,1.1,1.2,1.3,1.4,1.5. As in previous fig
ures, the tetragonal limit is plotted with a bolder line.
01450
a
f

e
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s,

component in the OP, which we assume is added to a m
Ddx22y2 component. The OP near the quasinodes can the
written in the form

D~w!5 iDmin12D0~w2wn!, ~3.12!

where 2D0 is the slope of the OP at the minima of the g
function, andDmin!D0 is the minimum value of the energ
gap. Here we consider only the isotropic casela5lb[l,
a5p/4, which is sufficient to illustrate the changes broug
about by the presence of quasinodes, rather than nodes
where we can use previously calculated field distributio
from Sec. IV of Ref. 34. We insert these fields into Eq.~2.1!.
The resulting nonlinearDl depends on two variables, i
addition to the anglec: the ratioh[HA /H0 of the applied
field to the characteristic fieldH0, defined in Eq.~3.6!, and
the ratio

k[
Dmin

D0
Y HA

H0
. ~3.13!

We find after straightforward algebra, in thed@l limit,

Dl~c,HA!5
1

6
l

HA

H0
Q~c,k!. ~3.14!

The angular and field dependences now no longer facto
and are~apart from the overall factor ofh) represented by
the function of two variablesQ, which is normalized to unity
at c50, h50:

Q~c,k!5~cosc82k!2~2k1 cosc8!Q~cosc82k!

1~sinc82k!2~2k1 sinc8!Q~sinc82k!,

~3.15!

written for 0<c8<p/2 ~trivially extended by symmetry to
the remaining range! with c8[c2p/4. The step functions
imply that the nonlinear effects vanish forh,d, with d
[Dmin /D0, since then the field is not sufficiently strong
create quasiparticles of energy larger than the minimum
value. The behavior ofQ(c,k) is plotted in Fig. 6, where we
show its angular dependence for several values ofk, with
the applied field above threshold. One can see how the fil
of the node produces a fast decrease in the nonlinear e
on the penetration depth, as it does35 also for the transverse
moment. In Fig. 7, the variation ofDl/l as a function of
HA /H0 is shown for several values ofd, at c5p/4. The
field threshold effect is clearly seen, and can be read
directly from the curves.

D. 3D quasinodal points and lines

We now examine cases where the FS is three dimensi
and the nodal or quasinodal structure of the energy gap
volves points or lines. We will consider here the same s
ation for which, in the limit of pure nodes, the transver
magnetic moment was calculated in Ref. 37. For the sak
brevity, we will compute directly the fields in the quasinod
case, and consider the situation where actual nodes exi
the appropriate special limit. For both of the cases cons

n
.

1-6



al

s
e
w

.

si-

n
is
.

ly

ow
ly

,
at

will
on-

low

ly

t

.

f the

om-

-
ini-

su

a

-

ho

05
th

ANGULAR DEPENDENCE OF THE PENETRATION DEPTH . . . PHYSICAL REVIEW B63 014501
ered below, we will assume that the slab surfaces are par
to the a-c plane, and thatHA is also in this plane, withc
defined with respect to thec axis. Then, the nonlinear field
have onlyx or z components~depending on whether we ar
discussing lines or point nodes, respectively, see belo!,
which depend only on the coordinatey normal to the sample
Again it is elementary to show thatl(c,HA)5l lin(c)
1Dl(c,HA), wherel lin(c)5lz sin2 c1lx cos2 c, indepen-
dent ofHA and

Dl~c,HA!5lz sincunl,z~zs,z!2lx coscunl,x~zs,x!.
~3.16!

We will use this result with the fields calculated below.

FIG. 6. Angular dependence ofDl for a 2D gap with quasi-
nodes and tetragonal symmetry as discussed in Sec. III C. Re
are normalized so that the quantity plotted is the functionQ of Eq.
~3.15!. This function is plotted vs. the anglec that the applied field
forms with thea axis. The bolder line corresponds to the usu
result with nodes@k50 see Eq.~3.13!#, and the other curves, from
top to bottom, are for values ofk of 0.2, 0.4, 0.6, and 0.8, respec
tively.

FIG. 7. Field dependence ofDl(c) for the same 2D gap with
line quasinodes considered in the previous figure. The curves s
the quantityDl/l @see Eq.~3.14!# at c5p/4, as a function ofh for
values ofd ~see text! equal to 0, 0.01, 0.02, 0.03, 0.04, and 0.
These values can be read off from the threshold field values in
curves.
01450
lel

1. 3D point nodes

We first consider an OP leading to a gap with two qua
nodes at the poles along thez axis. In this configuration, the
nonlinear fields have only az component, which depends o
the coordinatey. By symmetry, we can restrict our analys
to the quasinode atu50, whereu is the usual polar angle
We take the form of the gap near the quasinode to be

uD~u!u5~ uDminu21uDpuu2!1/2, u'0, ~3.17!

where Dp is the slope of the OP near the node, andd
[Dmin /Dp!1. This is the generalization of the previous
studied37 OP to the quasinodal case.

The nonlinear current response as a function of the fl
field is calculated in Appendix A, and we find, for its on
nonzero component

j nl,z5
er

vp
2 ~vz

22vs
2!3/2Q~vz2vs!, ~3.18!

where vp[Dp /v f , vs[Dmin /v f , and in three dimensions
r[ 1

3 Nfv f
2 in terms of local values. This result shows th

there are no nonlinear effects present ifvz,vs . Since the
flow field decreases with distance into the sample, there
be a depth in the material, which, in terms of the dimensi
less variablezz[y/lz , we denote aszz* , wherevz5vs , so
that nonlinear corrections are absent for the region be
zz* . Inserting Eq.~3.18! into Eq. ~2.7!, we get an equation
for the flow field. This equation can be solved perturbative
to first order in the small parameter (HA /H0)2, whereH0
[cDp /elzv f . In Appendix B we find, taking into accoun
these subtleties, the solutionunl,z(zz) for arbitrary thickness
d. The result is given in Eq.~B14!. We then have from Eqs
~3.16! and ~B14!, after taking the limitd@lz , the result,
valid for 0,c,p/2,

Dl~c,HA!5
1

4
lz

HA
2

H0
2
P~c,k!Q~sinc2k!, ~3.19!

where the functionP(c,k) is given by

P~c,k!5
3

2
k4 lnS sinc1Asin2 c2k2

k D
1S sin3 c2

5

2
k2 sinc DAsin2 c2k2.

~3.20!

Here we see the mixed angular and field dependence o
result, as in the functionQ in ~3.15!. The step function pa-
rameter, involving the quantity

k[
Dmin

Dp
Y HA

H0
, ~3.21!

reflects again the requirement that the appropriate field c
ponent exceed a minimum value. In Fig. 8, we plotP(c,k),
for various values ofk with the applied field above thresh
old. One again can see the decrease of the effect as the m

lts

l

w

e
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mum gap value increases. The inset contains the field de
dence ofDl/lz at c5p/2, for d5020.04, in increments of
0.01. There we can see that the field dependence a
threshold is no longer parabolic, as is the case whenDmin
50.

2. 3D line nodes

Finally, we consider a three dimensional FS with a qu
sinodal line in thex-y plane. The angular dependence of t
gap near the quasinodal line atu5p/2 has the form

uD~u!u5F uDminu21UDpS p

2
2u D U2G1/2

, u'
p

2
,

~3.22!

with Dmin!Dp . The transverse magnetic moment in t
Dmin50 limit of this OP has been previously37 studied. For
this case, the fields only havex components, and we assum
tetragonal symmetry. We calculate the nonlinear curren
Appendix A, where we find

j nl,x5
er

vpvx
~vx

22vs
2!3/2Q~vx2vs!. ~3.23!

Again, the nonlinear current vanishes unless the flow fielv
is sufficiently large;vx.vs . Once Eq.~3.23! is inserted into
Eq. ~2.7!, we get an equation for the flow field that can
solved with a procedure identical to the point node case. T
is done in Appendix B. We find in the thick slab limit, for th
only nonzero component

unl,x~z!5
HA

H0
@E1ez1E2e2z1r ~z!ez1s~z!e2z#,

~3.24!

FIG. 8. Angular and field dependence ofDl(c) for a 3D gap
with point quasinodes. The main plot is normalized so that
quantity plotted is the functionP(c,k) defined in Eq.~3.19!. This
quantity is plotted as a function of angle for values ofk
50,0.1,0.2,0.3,0.4,0.6,0.8, as defined in Eq.~3.21!. The bolder
curve is thek50 result. The inset displays the field dependence
Dl at c5p/2. The quantity plotted isDl/lz vs normalized ap-
plied field, for values ofd equal to 0, 0.01, 0.02, 0.03, and 0.04.
01450
n-

ve

-

in

is

whereH0[cDp /elv f , z[y/l, l is the linear penetration
depth in thea-b plane, and the constantsE1 ,E2, and the
functions r, and s are given in Appendix B. The nonlinea
correction to the penetration depth is then obtained from E
~3.16! and ~3.24!, as

Dl5
1

3
l

HA

H0
L~c,k!Q~cosc2k!, ~3.25!

whereL(c,k) is normalized so that its maximum atk50 is
unity

L~c,k!53k3 tan21SAcos2 c2k2

k D
1~cos2 c24k2!Acos2 c2k2. ~3.26!

The overall power law behavior atDmin50 is now linear in
the field, and at finiteDmin a threshold effect is found. We
plot these results in Fig. 9, where we displayL(c,k), for
various values ofk. The resulting behavior is very reminis
cent from that found in the previous case. The inset conta
the field dependence ofDl/l at c50, with d having the
same values as in Fig. 8. Because of the mixed depend
of these results on the field and angular variables, the cu
shown are not linear, except in the cased50, and again the
threshold values can be read off directly from the intercep

IV. DISCUSSION AND CONCLUSIONS

In summary, prompted by recent refinements in expe
mental techniques that allow very high precision measu
ments ofDl, and by the ever increasing number of can
dates for unconventional superconducting states, we h
calculated the low-temperature angular and field depende
of the nonlinear component to the penetration depth for s
eral different two and three-dimensional energy gaps w
nodal or quasinodal structures.

e

f

FIG. 9. Angular dependence ofDl(c) for a 3D line quasinode.
The main plot is normalized so that the quantity plotted is the fu
tion L(c,k) defined in Eq.~3.25!. The inset has the field depen
dence ofDl at c50. All parameter values are precisely as in t
previous figure.
1-8
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The expected signal for the nonlinear penetration de
effect exceeds the available experimental resolution36,47 of
one tenth of an Å by a considerable factor. To see this, c
sider for example a tetragonal compound with pured-wave
pairing and a linear penetration depthl51400 Å, in the
YBCO range. From Eq.~3.8!, we easily get that the differ
encedl[Dlmax2Dlmin , between the minimum and max
mum values ofl(c) would be, ath50.04, about 3 Å, a
factor of 30 better than the experimental resolution. This
an order of magnitude improvement when compared to
corresponding estimate, under the same assumptions
measurements of the transverse magnetic moment where
has at best35 a factor of 3. Further, taking into account th
orthorhombicity of YBCO by setting48 La51.6, which in-
creasesdl ~see Fig. 2!, we find from the same equation an
at the sameh, dl'14 Å. This is a factor of 140 above th
resolution achieved in Refs. 36,47.

For gap functions with line nodes, we have found thatDl
at fixed angle is proportional to the field. Our results, ho
ever, are obtained in the low-temperature, clean limit. B
finite temperature30 and impurities30,29 modify this linear be-
havior at smaller fields, where nonlocal effects49 may have a
similar influence.50 Since the combined outcome of the
effects is not at present amenable to reliable computatio
is safer to perform the experiments and to compare w
theory at the largest possible fields, where the beha
should approach linearity.HA can be increased all the way t
the field of first flux penetrationH f 1 taking in this full ad-
vantage of this field being in practice35,50 much larger than
the Ginzburg-Landau estimate ofHc1.

Keeping this in mind, let us consider our results for tw
dimensional gap functions with nodes for materials w
YBCO-type orthorhombicity. Some experimental results
the angular dependence ofl(c) for YBCO are available,36

although only for a few selected directions. We have fou
that the angular dependence ofl(c) is extremely sensitive
~see Fig. 2! to small departures from unity in the anisotrop
factor La , eventually resulting in a change in the appare
leading symmetry behavior ofDl(c), which then looks
quite different from that found in the tetragonal case. Tak
again La51.6, for48 YBCO, we find thatY(c50)'0.30,
Y(c5p/2)'1.8, while Y(c5p/4)'1.2, very close to the
average in the two main axial directions. This is precis
what it is found experimentally.36 Because this is so differen
from what happens whenla5lb , it was mistakenly inter-
preted in the experimental work as evidence against, ins
of for, the anisotropy found there being due to the nonlin
Meissner effect. The measured field dependence36 departs
considerably at small fields from linearity. This
apparently36,40 not due to temperature effects alone and
believe it is very likely attributable to impurities, since th
zero field temperature dependence ofl of the sample used
departs appreciably from linearity for temperatures bel
about 3 K. At the largest fields, the field dependence extra
lates to linear, with reasonable values ofH0'9000 Gauss.
Thus, these experimental results are consistent, as far as
field and angular dependence, with our theory. The w
temperature dependence of these and other47 measurements
remains, however, a puzzle. It cannot be ruled out, given
01450
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complications involving the correct treatment of impuri
averaging51 in these materials, that the temperature ha
relatively weak effect in the samples studied. Further exp
mental work in the same or other materials is needed. P
liminary results for single crystals of TI-2201 showDl hav-
ing a linear magnetic field dependence that is interpreted52 as
agreeing with theoretical expectations for the nonline
Meissner effect.

This strong sensitivity ofDl to anisotropy~either toLa

or to a, the angle thatvf , at the node, makes with the1a
axis! would not be expected from previous calculations34 of
the transverse magnetic moment, where the effects of ort
hombicity were not pronounced. The reason is that the tra
verse moment is constrained by symmetry to vanish, reg
less of orthorhombicity, both atc50 and atc5p/2, plus at
one point in between. This constraint does not exist fo
longitudinal measurement.

We have also examined gaps with two-dimensional q
sinodes, and found that the field and angular dependence
no longer separable. The angular and field dependence oDl
is governed by a term linear in the field and by a step fu
tion indicating that a minimum threshold field must be a
plied to excite quasiparticles above the gap minimum. Thi
multiplied by a function ofc and of the parameterk, which
is a ratio@see Eq.~3.13!# relating the value of the gap mini
mum to the applied field strength. The signal decrea
markedly ask increases.

In Sec. III D, we investigated three-dimensional gaps w
points and line quasinodes. There again the nonlinear co
bution to the penetration depth depends on a function
angle and of a parameterk now defined in Eq.~3.21!, a step
function, and a separate factor linear in the applied field
line nodes and quadratic for points. The situation is simi
as far as the field dependence, to that for the tw
dimensional case. The signal decreases with increasingk and
vanishes at threshold. For example, atk50.6, the nonlinear
signals for both points and lines drop to about 25% of th
maximum (k50) values. Even with such large admixture
however, the signal is still likely to be within current exper
mental resolution. Let us estimate the signal for an OP w
three-dimensional line nodes, similar to that which mig
occur in Sr2RuO4, or certain9 heavy fermion compounds
Using Eq. ~3.25!, with k50, we find, dl5Dlmax5

1
3 lh.

Using published19 values for Sr2RuO4 we estimate l
52000 Å and a valueh50.3 for HA5Hc1. These values
give a maximum signal of,dl'200 Å. The magnitude of
the signal in this case is well above experimental resoluti
and even with relatively large admixture leading to a su
stantial Dmin the signal would still be experimentally tan
gible.

We have focused here on the nonlinear effects on
angular dependence of the penetration depth, and we h
shown the strong influence that anisotropy in the princi
values of the linear penetration depth and orientation of
Fermi velocity has on the results. The methods presente
this paper can be readily extended to other nodal patterns
to include the nonlinearities in the temporal response t
arise from a time-dependent magnetic field.53,54 These phe-
1-9
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nomena are currently being investigated via microwa
measurements.55
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APPENDIX A: CURRENTS

1. 2D nodal lines with orthorhombicity

For the order parameter given by Eq.~3.3!, the four line
nodes are symmetrically placed~see Fig. 1! at angleswn ,
measured from the positivea-axis, wheren51, . . . ,4labels
the node. The Fermi velocity at node 1 isvf

(1)

5v f(cosa,sina). After making the replacemen
Nf* *FSd2sn(s)→Nf*w̄c

dw/2p, Eq. ~2.5! gives the contribu-

tion, jnl
(n) , when quasiparticles atwn are activated:

jnl
(n)
„v…522eNfE

2w̄c

w̄c dw̄

2p
vfA~2D0w̄c!

22~2D0w̄ !2,

~A1!

where w̄[w2wn , and the integration is limited byw̄c
5uvf•vu/(2D0). One finds,

jnl
(n)52

e

4D0
Nfvf

(n)@vf
(n)
•v#2. ~A2!

Except whenv is along a nodal Fermi velocity, in gener
two nodes must be considered. If the nodes atw1 andw2 are
activated, we can get the total nonlinear current by add
jnl
(1)1 jnl

(2) from Eq. ~A2!:

j nl,a522er
vavb

vc
cos2 a sina, ~A3a!

j nl,b52
er

vc
sina@va

2 cos2 a1vb
2 sin2 a#, ~A3b!

where we have introduced the local superfluid densityr
[(1/2)Nfv f

2 and critical velocityvc5D0 /v f . Likewise, if
the nodes atw2 andw3 are activated, we get

j nl,a5
er

vc
cosa@va

2 cos2 a1vb
2 sin2 a#, ~A4a!

j nl,b52er
vavb

vc
sin2 a cosa. ~A4b!
01450
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2. Nonlinear current for 3D quasinodes

a. 3D point quasinodes

We examine first a gap of the form~3.17!. By symmetry,
we can restrict ourselves to the node atu50 since the con-
tribution fromu5p is identical. Thus,vf'(0,0,v f z), and the
relevant region of integration is limited byuc , as determined
from (vf•v)25uD(uc)u2. In performing the integral in Eq
~2.5! we again replaceNf* *FSd

2sn(s) by Nf*Vc
dwudu/4p.

This yields only az component to the nonlinear current

j nl,z52
eNfv fDp

2p E
0

2p

dwE
0

uc
udu~uc

22u2!1/2Q~vz2vs!,

~A5!

whereuc
2[@(v fvz)

22Dmin
2 #/Dp

2 . We get,

j z5
er

vp
2 ~vz

22vs
2!3/2Q~vz2vs!, ~A6!

wherevp[Dp /v f , vs[Dmin /v f , and, in three dimensions
r[ 1

3 Nfv f
2 . The step function reflects that the flow fieldvz

must be sufficiently largevz.vs , in order for nonlinear ef-
fects to be present.

b. 3D line quasinode

For an energy gap as given in Eq.~3.22!, where the nodal
line is at u5p/2, v f z50 over the region of integration
which is then limited touu2p/2u,uc . Here (uc2p/2)2

5@(vf•v)22Dmin
2 #/Dp

25@(v fv' cosh)22Dmin
2 #/Dp

2 , where
v'5(vx

21vy
2)1/2 is the projection ofv on thex-y plane, and

h the angle betweenv' and the in-planev f . In our geometry
vy50 and the only component of the nonlinear contributi
to the current is alongx. We have

j nl,x5
eNfv fDp

2p E
w1

w2E
2uc

uc
dwduv f

3cosw~uc
22u2!1/2Q~v'2vs!. ~A7!

After performing the integration overu, this leaves an inte-
gral overw. To find the specific limits in this integral, we
transform the integral overw to one overh. Using the rela-
tion w5b1h, whereb is the ~fixed! anglev' makes with
the x axis, we find

j nl,x5
eNfv f

4Dp
E

2ws

ws
dh cos~b1h!

3@~v fv' cosh!22Dmin
2 #Q~v'2vs!, ~A8!

where ws5arccos(2Dmin /v fv'). Making use of cosb
5vx /v' , we get the nonlinear contribution to the current

j nl,x5
er

vpv'
2 vx~v'

2 2vs
2!3/2Q~v'2vs!. ~A9!
1-10
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APPENDIX B: PERTURBATION SOLUTION

1. 2D YBCO-type orthorhombicity

Here we assume that the anisotropy factorLa.1 and first
examine the case whencP@c1 ,c2#, where the limiting
anglesc i are defined in the text. We will need their expre
sions in the slab limitd@l, which are

c15tan21S tanaezs,a(12La)

La
D , ~B1a!

c25tan21S tana

La
D . ~B1b!

However, unless otherwise stated, all expressions below
for arbitraryd. Without loss of generality, we give details o
the solution for thea component of the nonlinear curren
and simply give the results for theb component later, since i
follows from an identical procedure. We find after inserti
Eq. ~A3a! into Eq. ~2.7!,

d2ua

dza
2

2ua22«uaub cosa sina50, zaP@za* ,zs,a#,

~B2a!

d2ua

dza
2

2ua1«@ua
2 cos2a1ub

2 sin2 a#50, zaP@0,za* #.

~B2b!

Here «5La,n
2 (HA /H0)cosa, L i ,n5l i /ln ~for i 5a,b),

ln
22[(2pe2/c2)Nfv f

2 . We can now solve Eqs.~B2a! and
~B2b! perturbatively in the small parameter«, and writeui
5u0,i1«u1,i . To zeroth order, we have u0,a

5La
1/2sinc sech(zs,a)sinh(za), and u0,b5

2Lb
1/2cosc sech(zs,b)sinh(zb), whereLb[lb /la . The first

order solutions satisfy the following two equations:

d2u1,a

dza
2

2u1,a22u0,au0,b cosa sina50, zaP@za* ,zs,a#,

~B3a!

d2u1,a

dza
2

2u1,a1@u0,a
2 cos2 a1u0,b

2 sin2 a#50, zaP@0,za* #.

~B3b!

The boundary condition on the nonlinear terms
]u1i /]z i uzs,i

50. By requiring continuity of the flow field,

current, and magnetic field at the pointza* , we can obtain the
first order solutionunl,a5«u1,a to Eq. ~B3a!:

unl,a5La,n
2 cosa

HA

H0
@C1a cosh~za!1C2a sinh~za!

1wa~za!cosh~za!1ga~za!sinh~za!#. ~B4!
01450
-
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Here the constantsC1i and C2i are given byC1i5w̄i(z i* )

2w̄i(0)2wi(z i* ), C2i52gi(zs,i)1tanh(zs,i)@w̄i(0)1wi(zi* )

2wi(zs,i)2w̄i(zi* )#, with w̄a[2m2Ua2m3Wc,a , wa[
2m1Gc,a , ga[m1Gs,a , and

Gs,i~z i !5
sinh@~L i12!z i #

4~L i12!
2

sinh@~L i22!z i #

4~L i22!
,

~B5a!

Gc,i~z i !5
cosh@~L i12!z i #

4~L i12!
1

cosh@~L i22!z i #

4~L i22!

2
cosh~L iz i !

2L i
, ~B5b!

Wc,i~z i !5
cosh@~2L i11!z i #

4~2L i11!
2

cosh@~2L i21!z i #

4~2L i21!

2
cosh~z i !

2
, ~B5c!

Ui~z i !5
1

12
cosh~3z i !2

3

4
cosh~z i !, ~B5d!

m152
sin 2a sin 2c

2 cosh~zs,a!cosh~zs,b!
, ~B5e!

m252
La cos2 a sin2 c

cosh2~zs,a!
, ~B5f!

m352
Lb sin2 a cos2 c

cosh2~zs,b!
. ~B5g!

Similarly, Eq. ~B3b! gives

u1,a5C3a cosh~za!1C4a sinh~za!1w̄a~za!cosh~za!

1ḡa~za!sinh~za!, ~B6!

where C3i52w̄i(0), C4i5C2i1gi(z i* )2ḡi(z i* ). Here ḡa

[m2Va1m3Ws,a , and

Ws,i~z i !5
sinh~@2L i21!z i #

4~2L i21!
1

sinh@~2L i11!z i #

4~2L i11!

2
sinh~z i !

2
, ~B7!

Vi~z i !5
1

4
sinh~z i !2

1

12
sinh~3z i !. ~B8!

The matching pointza* ~for zs,a@1) is

za* 5zs,a2
1

12La
lnS La tanc

tana D . ~B9!

The b component is found by a similar procedure. We fin
1-11
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unl,b5Lb,n
2 sina

HA

H0
@C1b cosh~zb!1C2b sinh~zb!

1wb~zb!cosh~zb!1gb~zb!sinh~zb!#, ~B10!

zbP@zb* ,zs,b#,

unl,b5Lb,n
2 sina

HA

H0
@C3b cosh~zb!1C4b sinh~zb!

1w̄b~zb!cosh~zb!1ḡb~zb!sinh~zb!#, ~B11!

zbP@0,zb* #,

where, wb5m2Wc,b1m3Ub , gb52m2Ws,b2m3Vb , w̄b

5m1Gc,b , andḡb52m1Gs,b .
The fields calculated above are forcP@c1 ,c2#. For c

P@0,c1#, we getunl,i by simply setting the crossover poin
z i* 50 in Eqs. ~B4!,~B10!. Similarly, to find the nonlinear
fields for cP@c2 ,p/2#, we setz i* 5zs,i in Eqs.~B6!,~B11!.

2. 3D quasinodes

a. 3D point quasinodes

For the geometry we consider,HA is in thea-c plane, and
the nonlinear fields now have only az component, which
depends on the coordinatey. The flow field decreases rapidl
with distance into the sample, so that there will be a poin
the materialzz* , whereuz,k, so that nonlinear correction
are absent for distances belowzz* . Again, there is no restric
tion on sample thickness, unless otherwise stated. Inse
the current~A6! into Eq. ~2.7! gives

d2uz

dzz
2

2uz1«~uz
22k2!3/2Q~uz2k!50, ~B12a!

where«[h25(HA /H0)2, andk and H0 are defined in the
text. Equation~B12a! can be written as

d2uz

dzz
2

2uz1«~uz
22k2!3/250, zzP@zz* ,zs,z#,

~B13a!

d2uz

dzz
2

2uz50, zzP@0,zz* #. ~B13b!

We now solve Eq.~B13a! perturbatively to first order, and
write unl,z5«u1z . We find,

unl,z~zz!5
HA

2

H0
2 @D1 cosh~zz!1D2 sinh~zz!1k~zz!cosh~zz!

1 f ~zz!sinh~zz!#, ~B14!

where the constantsD1 andD2 are found by requiring con
tinuity of the fields atzz* , and given byD152k(zz* ), D2

52 f (zs,z)1tanh(zs,z)@k(zz* )2k(zs,z)#. The functionsf and k
are found by elementary methods, and are given by
01450
n

ng

f ~zz!5
1

8 S 2
3k4

m~c!
ln$2@m~c!sinh~zz!

1Am2~c!sinh2~zz!2k2#%

1@5k2 sinh~zz!22m2~c!sinh3~zz!#

3@m2~c!sinh2~zz!2k2#1/2DQ@m~c!sinh~zz!2k#,

~B15a!

k~zz!5
1

8 S 3

m~c!
@m2~c!1k2#2 ln$A2@m~c!cosh~zz!

1Am2~c!sinh2~zz!2k2#%

1 cosh~zz!@24m2~c!25k21m2~c!cosh~2zz!#

3@m2~c!sinh2~zz!2k2#1/2DQ@m~c!sinh~zz!2k#,

~B15b!

wherem(c)[ sinc/coshzs,z. The matching point is found to
be zz* 5sinh21@k/m(c)#. In a similar fashion, Eq.~B13b! has
the first order solution

u1z5$ f ~zz* !2 f ~zs,z!1tanh~zs,z!@k~zz* !2k~zs,z!#%sinh~zz!.
~B16!

b. 3D line quasinode

HA is again in thea-c plane, and due to the form of th
gap, the nonlinear fields now have only ax component,
which depends on the coordinatey. Hereux.k, in order for
nonlinear effects to be present. These effects are there
absent at distances belowz* . Inserting Eq.~A9! into Eq.
~2.7! gives the following:

d2ux

dz2
2ux1

«

ux
~ux

22k2!3/2Q~ux2k!50, ~B17!

where the small parameter« is «[h[HA /H0.
We can now solve Eq.~B17! perturbatively to first order.

We write ux5u0x1«u1x . To avoid unnecessarily tediou
calculations, we take the slab limit, and hence the zer
order solution,u0x is, u0x'2 cosc exp(z2zs). The first or-
der solution,u1x , is found from dividing the slab atz* into
two portions. This allows Eq.~B17! to be written

d2ux

dz2
2ux1

«

ux
~ux

22k2!3/250, zP@z* ,zs#,

~B18a!

d2ux

dz2
2ux50, zP@0,z* #. ~B18b!

The solution to Eq.~B18a! is found by methods similar to
the point node case, and is given by

u1x5E1ez1E2e2z1r ~z!ez1s~z!e2z. ~B19!
1-12
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The functionsr (z) ands(z) are found by elementary meth
ods, and the constantsE1 and E2 are determined from the
boundary conditions (]u1x /]z)uzs

50, and continuity of the

flow field, current, and magnetic field at the pointz* :

E15@s~zs!2s~z* !2r ~z* !#e22zs1r ~zs!, ~B20a!

E252s~zs!e
22zs1r ~zs!2s~z* !2r ~z* !, ~B20b!

r ~z!5
1

8 F23n~c!k tan21S n2~c!e2z22k2

2kAn2~c!e2z2k2D
1

2

n~c!
@2n2~c!1k2e22z#An2~c!e2z2k2G

3Q@n~c!ez2k#, ~B20c!
01450
s~z!5
1

6 F2
3k3

n~c!
tan21SAn2~c!e2z2k2

k D
1

1

n~c!
@4k22n2~c!e2z#An2~c!e2z2k2G

3Q@n~c!ez2k#, ~B20d!

wheren(c)[ cosc exp(2zs). Similarly, Eq. ~B18b! can be
solved, with the only major difference begin the bounda
conditionu1x(0)50. We find,

u1x5E3~ez2e2z!, ~B21!

where

E35@s~zs!2s~z* !#e22zs2r ~zs!1r ~z* !. ~B22!

The matching pointz* is found by equating Eqs.~B18a! and
~B18b! at z* , giving z* 5zs1 ln@k/cosc#.
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