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Rotational modes in molecular magnets with antiferromagnetic Heisenberg exchange
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In an effort to understand the low-temperature behavior of recently synthesized molecular magnets, we
present numerical evidence for the existence of a rotational band in systems of quantum spins interacting with
nearest-neighbor antiferromagnetic Heisenberg exchange. While this result has previously been noted for ring
arrays with an even number of spin sites, we find that it also applies for rings with an odd number of sites as
well as for all of the polytope configurations we have investigated~tetrahedron, cube, octahedron, icosahedron,
triangular prism, and axially truncated icosahedron!. It is demonstrated how the rotational band levels can, in
many cases, be accurately predicted using the underlying sublattice structure of the spin array. We illustrate
how the characteristics of the rotational band can provide valuable estimates for the low-temperature magnetic
susceptibility.
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I. INTRODUCTION AND SUMMARY

The subject of molecular magnets has greatly advance
recent years due to notable progress in synthesizing
samples of identical molecular-size units,1–4 each containing
a relatively small number of paramagnetic ions~‘‘spins’’ !
that mutually interact via Heisenberg exchange. An es
cially attractive feature of many of these systems is that
intermolecular magnetic interactions are utterly negligible
compared to the intramolecular interactions.

Already at this early stage, it is clear that even Heisenb
systems of relatively modest size pose a major theore
challenge. A stunning example is provided by the recen
synthesized molecular magnet5 $Mo72Fe30%, where the
30 Fe31 ions ~spins 5

2! occupy the sites of an icosidodecah
dron. The total dimension of the Hilbert space for this sp
system is a staggering 630, namely, of the order of
Avogadro’s number, utterly precluding the calculation of t
energy eigenvalues and eigenvectors on any imagined
figuration of immense, ultrafast computers. This is the c
text for our exploration in this paper of a generic feature
the low-lying excitation energies of a finite number of spi
interacting via antiferromagnetic Heisenberg exchange. W
the knowledge of the low-lying excitations, one can estab
the very low-temperature properties and in some cases
arrive at an estimate of the temperature range for the m
festation of essentially quantum behavior. This is illustra
in the present paper for$Mo72Fe30%; we arrive at an expres
sion for the temperature dependence of the weak-field
ceptibility at very low temperatures. We also provide an
timate for the temperature above which this system
reliably be described by the classical Heisenberg model, a
more practical theoretical platform than the correspond
quantum model. Indeed the classical Heisenberg mode
currently being exploited so as to provide detailed quant
tive predictions6,7 for $Mo72Fe30% that are being compared t
the results of ongoing experiments.6

In this paper, we focus on a generic feature of high
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symmetric geometric arrays~ring structures or polytopes!
housing a finite number of spins interacting via antiferr
magnetic Heisenberg exchange. Whatever the intrinsic s
of the individual paramagnetic ions, or the specific geome
cal symmetries of the spin array, there always exist what
refer to as rotational modes. Besides their intrinsic inter
we show that the knowledge of these modes can, in m
cases, be used to obtain good estimates of physical obs
ables, such as the magnetic susceptibility at very low te
peratures. We consider in the following a finite numberN of
quantum spins, each of intrinsic spins, which in most ex-
amples interact via nearest-neighbor isotropic Heisenberg
change. We assume that all nearest-neighbor pairs of s
interact with the same coupling constant, one which fav
antiferromagnetic ordering. IfS>W denotes the total spin opera
tor, the operatorS>W 2 commutes with the Hamilton operato
and thus we can structure the set of all energy eigenva
according to the total spin quantum numberS, extending up
to Smax5Ns. A key point of the present work relates to th
subset of minimal energies for the allowed values ofS. We
may summarize our findings as follows:Whatever the details
of the system, this subset of minimal energies appear
define what we shall refer to as a ‘‘rotational band,’’ i.e.,
well approximated by a dependence on S of the form S(S
11). We choose the term ‘‘rotational band’’ to indicate th
this portion of the spectrum is similar to that of a rigid roto
Similar behavior is commonly found also in nuclear a
atomic physics.

The occurrence of a rotational band has been noted
several occasions for an even number of spins defining a
structure. The minimal energies have been described8–11 as
‘‘following the Landé interval rule.’’ However, we find that
the same property also occurs for rings with an odd num
of spins as well as for the various polytope configurations
have investigated, in particular for quantum spins position
on the vertices of a tetrahedron, cube, octahedron, icos
dron, triangular prism, and an axially truncated icosahedr
Rotational modes have also been found in the contex
©2000 The American Physical Society18-1
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J. SCHNACK AND MARSHALL LUBAN PHYSICAL REVIEW B 63 014418
FIG. 1. Energy spectra of antiferromagnetically coupled Heisenberg spin rings~horizontal dashes!. Here and in all subsequent figures, th
crosses connected by the dashed line always represent the fit to the rotational band according to Eq.~5!, which by definition matches both
the lowest and the highest energies exactly. On the left-hand-side, the dashed line reproduces the exact rotational band, whe
right-hand-side, it only approximates it, but to high accuracy. The solid line on the right-hand-side corresponds to the approximatio
~10!.
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finite triangular lattices of spin-1/2 Heisenbe
antiferromagnets.12,13

Using only the sublattice structure of the various spin
rays, which is provided by symmetry arguments, we are a
to approximate the coefficient of theS(S11) dependence to
good accuracy. Our method describes in general how
approximate coefficient can be deduced. We can there
obtain an estimate of the ground-state energy as well as
low-lying rotational excitations. It is clear that at low tem
peratures, these minimal energies provide the major co
bution to thermal averages. This enables us to discuss
low-temperature behavior of quantities such as the magn
susceptibility without knowledge of the complete eigenva
spectrum. We illustrate these considerations for the spe
case of$Mo72Fe30%.

The concept of the rotational bands is useful even in ca
whereS>W 2 does not commute with the Hamilton operator,
the symmetry-breaking terms are small and can be tre
perturbatively. The eigenstates and eigenenergies of the
perturbed~rotationally symmetric! Hamilton operator can be
classified by their total spin quantum numberS, and
symmetry-breaking terms like on-site anisotropy or dipo
interactions will lead to energy corrections.14

The layout of this paper is as follows. In Sec. II, w
present our numerical findings for various Heisenberg s
systems and motivate in Sec. III how the rotational band
connected to the topology of spin sites. Finally in Sec.
we discuss some implications of the rotational band
physical observables.

II. ROTATIONAL BANDS

The Hamilton operator for the isotropic Heisenberg mo
in the absence of an external magnetic field reads

H> 522J (
~u,v !

s>W~u!•s>W~v !, ;u:s~u!5s, ~1!

whereJ is the exchange interaction with units of energy, a
J,0 results in antiferromagnetic coupling. The vector o
eratorss>W(u), underlined with a tilde, are the single-partic
spin operators with eigenvalue equations

„s>W~u!…2us~u!m~u!&5s~s11!us~u!m~u!&,
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s> z~u!us~u!m~u!&5m~u!us~u!m~u!&. ~2!

The sum in Eq.~1! runs over all distinct interacting pair
(u,v) of spins at positionsu and v. For a closed ring with
nearest-neighbor interaction, the indexv would simply equal
u11, and the sum is understood to fulfill the cyclic bounda
condition.

A. Heisenberg square

One of the few systems that possesses a rigorous p
bolic rotational band is the Heisenberg square, i.e., a r
with N54. Because the Hamilton operator can be rewrit
as

H> 52J~S>W 22S>W 13
2 2S>W 24

2 !, S>W 135s>W~1!1s>W~3!,

S>W 245s>W~2!1s>W~4!, ~3!

with all spin operatorsS>W 2, S>W 13
2 , andS>W 24

2 commuting with each
other and withH> , one can directly obtain the complete set
eigenenergies, and these are characterized by the qua
numbersS, S13, andS24. In particular, the lowest energy fo
a given total spin quantum numberS occurs for the choice
S135S2452s,

ES,min52J@S~S11!2232s~2s11!#5E02JS~S11!,

~4!

where E054s(2s11)J is the exact ground-state energ
The various energiesES,min form a rigorous parabolic rota
tional band of excitation energies. Therefore, these ener
coincide with a parabolic fit~crosses connected by th
dashed line on the left-hand side of Fig. 1! passing through
the antiferromagnetic ground-state energy and the hig
energy level, i.e., the ground-state energy of the correspo
ing ferromagnetically coupled system.

B. Heisenberg rings withNÌ4

We have calculated all energy levels by diagonalizin15

the Hamilton matrix for a variety of rings with different va
ues ofN ands. All of these systems exhibit a rotational ban
irrespective of whetherN is even or odd, and for both intege
and half-integer values ofs. That is, the subset of minima
8-2
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FIG. 2. Energy spectra of antiferromagne
cally coupled Heisenberg spin rings withN55,
s52 ~left-hand-side!, ands5

5
2 ~right-hand-side!.
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energies is well approximated by a dependence onS that is
proportional to S(S11), i.e., follows the Lande´ interval
rule,8–11

ES,min'Ea2J
D~N,s!

N
S~S11!. ~5!

We determine the parametersEa andD(N,s) so that formula
~5! reproduces our calculated values of the lowest and h
est energies of the rotational band, i.e., the ground-state
ergy of the antiferromagnetic system and the ground-s
energy of the corresponding ferromagnetic system. In
cases we have observed that if deviations occur the fit
parabola of Eq.~5! lies below the rotational band. Use of E
~5! is illustrated in Fig. 1~right-hand side! for the caseN
56 and s5 3

2 . The figure shows the complete spectru
~horizontal dashes! as well as the fit according to Eq.~5!
~crosses connected by a dashed line!. One observes that th
fit very nearly matches the energies of the rotational ba
meaning that the Lande´ interval rule is obeyed with high
accuracy. As a second example, spectra are shown for r
of five spins withs52 ~Fig. 2, left-hand side! and s55/2
~Fig. 2, right-hand side!. Inspecting the low-lying excita-
tions, one notices that the rotational band for odd rings is
separated from the remaining states as much as it is for e
rings. This remark also pertains to other, larger odd value
N.

In Table I, we collect the coefficientsD(N,s) for the
rings we have investigated. In all cases,D(N,s)'4. For the
odd rings, the values ofD(N,s) may be somewhat smalle
than 4. We will dwell on this fact in Sec. III.

It should be noted that in the large-N limit, the rotational
levels ~5! become degenerate for certain systems, e.g.,
rings with half-integer spin. Therefore, excitations within t
rotational band should not be confused with magnons.

C. Frustrated spin rings

Even for spin rings with next-nearest-neighbor intera
tion, the rotational band persists. The energy spectra of F
have been calculated for the Hamilton operator

H> 522Jnn(
u51

N

s>W~u!•s>W~u11!22Jnnn(
u51

N

s>W~u!•s>W~u12!,

~6!

where all spins have been taken to bes(u)5 3
2 . In Fig. 3, we

display spectra for a ring withN56 ands5 3
2 for various

ratios of the two coupling constantsJnn andJnnn. Although
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details of the spectra differ, the overall appearance pers
and in particular the minimal energies define a rotatio
band.

D. Heisenberg polytopes

In order to illustrate the generality of the rotational ban
we provide several additional examples: the tetrahedron,
cube~Fig. 4!, the octahedron~Fig. 5, left-hand side!, and the
icosahedron~Fig. 5, right-hand side!. As in the previous
cases, the displayed energy eigenvalues are calculate
numerical diagonalization, except for the tetrahedron and
tahedron, which can be solved analytically.

The tetrahedron of spins is a worthy textbook problem
can be solved with a few lines of algebra because the Ha
ton operator simplifies to

H> 52J~S>W 224s>W2!. ~7!

Therefore, the spectrum of this system consists exclusiv
of a rotational band.

The case of the octahedron is similar to the Heisenb
square; the Hamilton operator can be written as

H> 52J~S>W 22S>W A
22S>W B

22S>W C
2 !, ~8!

whereS>W A ,S>W B ,S
>

W
C are the sums for pairs of spins situated

opposite vertices of the octahedron, andS>W is the total spin.
The spin operatorsS>W 2, S>W A

2, S>W B
2, andS>W C

2 commute with each
other and withH> . Thus, the eigenvalues ofH> may be written
down at once, and they are given in terms of the quant

TABLE I. CoefficientsD(N,s) for various Heisenberg rings, to
be used in conjunction with Eq.~5!.

N
s 5 6 7 8 9 10

2.5 4 2.333 4 3 4 Simple
conjecture

3.618 4 3.802 4 3.879 4 Refined
conjecture

1
2 3.8975 4.3028 4.2982 4.5209 4.5355 4.6770
1 3.8437 4.1764 4.1430 4.2971 4.2957 4.3809
3
2 3.7591 4.1190 4.0174 4.1977 4.1443 4.2514
2 3.7399 4.0896 3.9772 4.1482 4.0886 4.1881
5
2 3.7103 4.0718 3.9368 4.1185 4.0420 4.1500
8-3
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FIG. 3. Energy spectrum of an antiferroma
netically next-neighbor-coupled Heisenberg rin
with competing next-nearest-neighbor intera
tion.
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numbersS, SA , SB , and SC . Therefore, the lowest energ
for a given value ofS is achieved ifSA5SB5SC52s, and
its value is given by

ES,min52J@S~S11!2332s~2s11!#. ~9!

This is another one of the few cases where the minimal
ergies define a rigorous rotational band~see Fig. 5, left-hand
side!.

The remaining examples of the cube~Fig. 4! and the
icosahedron~Fig. 5, right-hand side! illustrate the behavior
of the gaps between the rotational band and the remai
eigenenergies. It is worth noting that the rotational band
the icosahedron is not as well separated from higher en
levels as it is for the cube. This behavior is similar to th
discussed above for even and odd rings. Systems tha
bipartite, i.e., can be subdivided into two sublattices w
interactions only between spins of different sublattices~rings
with evenN and the cube!, show a significant gap, wherea
systems that are nonbipartite appear to show much sm
gaps.16 The latter systems are often also called frustrate17

Two other cases we have studied, the equilateral-trian
prism and an axially truncated icosahedron, conform w
these trends.

III. CONJECTURE ON ROTATIONAL BANDS

A. Heisenberg rings; evenN

It turns out that an accurate approximate formula for
coefficient D(N,s) of Eq. ~5! can be developed using th
01441
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sublattice structure of the spin array. As an introductory
ample, we repeat the basic ideas for Heisenberg rings wit
even number of spin sites.11 Such rings are bipartite and ca
be decomposed into two sublattices, labeledA and B, with
every second spin belonging to the same sublattice. F
classical spin dynamics, it is known that the classical grou
state, sometimes called the classical Ne´el state,12 is given by
an alternating sequence of opposite spin directions. On e
sublattice, the spins are mutually parallel. Therefore, a qu
tum trial state, where the individual spins on each sublat
are coupled to their maximum valuesSA5SB5Ns/2 could
be expected to provide a reasonable approximation to
true ground state, especially ifs assumes large values. Suc
trial states are called Ne´el-like. For rings with evenN, the
approximation to the respective minimal energies for ea
value of the total spinS>W 5S>W A1S>W B is found to be given by11

ES,min
approx52

4J

N FS~S11!22
Ns

2 S Ns

2
11D G . ~10!

This approximation exactly reproduces the energy of
highest-energy eigenvalue, i.e., the ground-state energ
the corresponding ferromagnetically coupled systemS
5Ns), since the true eigenstate with all spins assuming th
largestm quantum numberm5s is a linear combination of
Néel-like states. For all smallerS, the approximate minima
energy ES,min

approx is bounded from below by the true on
~Rayleigh-Ritz variational principle!. The solid curve dis-
plays this behavior for the example ofN56, s5 3

2 in Fig. 1
ti-
es
FIG. 4. Energy spectrum of antiferromagne
cally coupled Heisenberg cubes. The solid lin
correspond to the approximation of Eqs.~12! and
~13!, i.e., D56.
8-4
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FIG. 5. Energy spectrum of an antiferroma
netically coupled Heisenberg octahedron~left-
hand side! and icosahedron~right-hand side!.
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~right-hand side!. The entries in Table I provide additiona
numerical support for the approximationD(N,s)'4 adopted
in Eq. ~10!. For each fixed evenN, the coefficientD(N,s)
approaches 4 with increasings.

The approximate spectrum, Eq.~10!, is similar to that of
two spins,S>W A andS>W B , each of spin quantum numberNs/2,
that are coupled by an effective interaction of strength 4J/N.
Therefore, one can equally well say that the approxim
rotational band considered in Eq.~10! is associated with an
effective Hamilton operator

H> approx52
4J

N
@S>W 22S>W A

22S>W B
2 #, ~11!

where the two sublattice spinsS>W A ,S>W B assume their maxima
value SA5SB5Ns/2. This result agrees with that obtaine
by a different procedure, which utilizes a Fourier repres
tation of the Hamilton operator.12

In retrospect, one realizes that all we needed for rin
with evenN to arrive at Eq.~10! was a sublattice structure i
order to build Ne´el-like trial states. The sublattice structu
can be deduced from the classical ground state or the s
metries of the spin array, which manifest themselves in
classical ground state. In the case of rings with an even n
ber of sites, the symmetry is the cyclic shift symmetry: Su
lattice A can be transformed into sublatticeB by a single
shift. These considerations lead us in the following subs
tion to a generalization for other systems.

B. Conjecture

We assume that the Heisenberg spin system can be
composed intoNsl sublattices according to a symmetry tran
formation. The spins of each sublattice are to be couple
their maximal valuesSsl5Ns/Nsl . Then we conjecture tha
the energies of the rotational band can be approximated

ES,min
approx52J

D

N
@S~S11!2NslSsl~Ssl11!#, ~12!

where the parameterD is to be fixed by the requirement tha
the energyEferro522JNbs2 of the corresponding ferromag
netic ground state, for whichS5Ns, is reproduced exactly
The energyEferro depends only on the number of distin
bondsNb . Therefore, the coefficientD is given by

D52
Nb

N

1

121/Nsl
, ~13!

which is independent ofs. For rings with an even number o
sites, this formula reproduces the valueD54, whereas for
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the cube, which hasNb512, it givesD56. That these values
of D provide a very good estimate of the coefficientsD(N,s)
is demonstrated in Fig. 1~right-hand side! for a ring with
N56 and s5 3

2 , and in Fig. 4 for cubes withs51 and s
53/2.

If there are several possible partitions into sublattices
cording to various symmetries of the spin array, one c
safely choose that one that leads to the lowest approxim
ground-state energy, because this energy is bounded
below by the true ground-state energy. For spin arrays w
low symmetry, the gained approximation can be rather po
This is, for instance, the case for rings of oddN. The classi-
cal ground-state structure would suggest as many sublat
as spin sites, which leads to rather small coefficientsD as
depicted in Table I~‘‘simple conjecture’’!. A closer inspec-
tion shows that it is possible to obtain a better approximat
if one defines the approximate rotational band by the
rabola passing through the classical Ne´el ground-state energy
level and through the ground-state energy level of the co
sponding ferromagnetic system. For rings of oddN, the clas-
sical Néel ground-state energy is

ENéel522JNs2 cos@~N21!p/N#, ~14!

as can be shown using spin coherent states.18 This leads to
the ‘‘refined conjecture’’ for odd rings; see Table I. For oth
spin arrays, such as the icosahedron, it may be simply
possible to derive a good approximation for the coefficie
D(N,s); nevertheless, the minimal energies always form
rotational band according to Eq.~5!.

Using Eqs.~12! and ~13!, one can find an approximatio
for the rotational band for larger polytopes such as the ico
dodecahedron, which characterizes the sites of the 30 p
magnetic Fe31 ions in the recently synthesized molecul
magnet5 $Mo72Fe30%. The related Hilbert space has a dime
sion of (2s11)N5630, which is of the order of Avogadro’s
number. Numerical diagonalization of the Hamilton matrix
totally out of reach. Nevertheless, we can estimate both
ground-state energy and the form of the rotational band.
icosidodecahedron, consisting of 20 triangles and 12 pe
gons, has threefold rotational symmetry and thus three s
lattices. Assuming nearest-neighbor interaction, we haveNb
560. Thus, one ends up with

ES,min
approx52

J

5
S~S11!160JsS s1

1

10D . ~15!

The threefold rotational symmetry of the spin array is a
reflected by the structure of the classical ground state, thu
is no surprise that approximate quantum and classical N´el
ground-state energies
8-5
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E0,min
approx560Js~s1 1

10 !, ENéel560Js2 ~16!

differ from each other only by 4% for the rather highs
5 5

2 .

IV. LOW-TEMPERATURE THERMODYNAMIC
PROPERTIES

It is obvious that at low temperatures, the rotational ba
energies provide the dominant contribution to thermal av
ages, especially if these energies are well separated from
remaining energy levels. This suggests, for example, tha
approximate the partition function by

Z~b!' (
S5Smin

Smax

dS expH 2bFEa2J
D

N
S~S11!G J , ~17!

wheredS is the degeneracy factor of the eigenenergies
longing to the rotational band, andEa5J(D/N)NslSsl(Ssl
11) according to Eq.~12!. For bipartite systems, i.e., sys
tems that can be subdivided into two sublattices accordin
the theorem of Lieb-Schultz-Mattis,19,20 dS52S11. For
nonbipartite systems, not much is known about the deg
eracy. First investigations show that it is possible to estab
rules for the degeneracy of certain states also for nonbipa
systems.21 For the approximate rotational energies, we ta
the degeneracies to be that resulting from the coupling of
sublattice spins.12 It might be that the full Hamiltonian lifts
this degeneracy somewhat; nevertheless, this procedure
vides a reasonable approximation for the degeneracies o
true minimal energies.

The corresponding approximation of the zero-field s
ceptibility is then given by

x0'
g2mB

2b

Z (
S5Smin

Smax dS

2S11 S (
M52S

M5S

M2D
3expH 2bFEa2J

D~N,s!

N
S~S11!G J . ~18!

FIG. 6. Zero-field magnetic susceptibility of the antiferroma
netically coupled Heisenberg spin ring withN56 ands5

5
2 . The

solid curve displays the full quantum solution; the dashed cur
correspond to approximation~18! upon including the contributions
of rotational levels up toS51, S53, andS515.
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Inspecting Fig. 6, one sees how the rotational band cont
utes to the susceptibility in the case of the ring withN56
ands5 5

2 . The rise at low temperatures is mostly determin
by the first excited level of the rotational band~dashed curve
labeled 1!.

As our final example, we show in Fig. 7 the result usi
Eqs. ~15! and ~18! for the low-temperature behavior of th
zero-field susceptibility for$Mo72Fe30%. For this system,ds
5min$(2S11)2,(2S11)(762S)%. The susceptibility ~solid
curve! rises very rapidly with increasing temperature to t
result22 for the classical Heisenberg model~dash-dot curve!.
Inspecting Eq.~15!, one can understand that the rapid rise
due to the small energy difference between ground and
excited state and, in particular, because of the small co
cientJ/5 of theS(S11) term. In addition, theS51 level of
the approximate rotational band is ninefold degenerate
thus, the rapid rise inx0 commences at very low tempera
tures. Thus, for$Mo72Fe30%, which has a nearest-neighbo
coupling constant6 of J/kB'0.75 K, we expect that weak
field susceptibility measurements will confirm the rapid d
crease on cooling, which is a genuine quantum feature
not present in the classical counterpart, only at temperat
below T'0.15 K.
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only the two lowest levels and the solid curve using all levels of
approximate rotational band. The classical result is given by
dash-dot line.
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