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Dirac structure, RVB, and Goldstone modes in thekagoméantiferromagnet
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We show that there exists a long-range resonating valence bond~RVB! state for thekagome´ lattice spin-1/2
Heisenberg antiferromagnet for which the spinons have a massless Dirac spectrum. By considering various
perturbations of the RVB state which give mass to the fermions by breaking a symmetry, we are able to
describe a wide-ranging class of known states on thekagome´ lattice, including spin-Peierls solid and chiral
spin-liquid states. Using a renormalization group treatment of fluctuations about the RVB state, we propose yet
a different symmetry breaking pattern and show how collective excitations about this state account for the
gapless singlet modes seen experimentally and numerically. We make a further comparison with numerics for
Chern numbers, dimer-dimer correlation functions, the triplet gap, and other quantities. To accomplish these
calculations, we propose a variant of the SU~N! theory which enables us to include many of the effects of
Gutzwiller projection at the mean-field level.

DOI: 10.1103/PhysRevB.63.014413 PACS number~s!: 75.10.Jm, 71.27.1a, 74.20.Mn
um

-

sp
x
iz
y

n

in

ro
.
r

le
tw

n
a
-
a

ns

wi
s
n

pe

a
d
um

he

net
s

a

th a

ec-

me-

irac
an

ym-
the
we

rac
her
ak-
b-
rgy
ro-
ally.
ce-

of
be
I. INTRODUCTION

The spin-1/2 Heisenberg antiferromagnet on thekagome´
lattice is a good candidate for a two-dimensional quant
system with a spin-disordered ground state.1 While it appears
that on square2 and triangular3–6 lattices an antiferrmomag
net will acquire Ne´el order, on thekagome´ lattice strong
numerical evidence has accumulated that the system is
disordered, as seen by the existence of a gap-to-triplet e
tation and through consideration of the spectra of finite-s
samples.7 Numerically, one finds a continuum of low-energ
states below the triplet gap.8 The continuum of low-energy
excitations provides a great puzzle to theory in the abse
of an obvious broken symmetry.

There are good experimental realizations ofkagome´ sys-
tems, despite the presence of additional couplings, includ
the jarosites and SrCrGaO. While in iron jarosites9,10 these
additional couplings produce long-range order, in deute
nium jarosite11 and SrCrGaO,12 no long-range order is seen
Additionally, in SrCrGaO a quadratic specific heat and ve
weak field dependence of the specific heat13–15 are in agree-
ment with the picture of a continuum of low-energy sing
excitations seen in numerics, suggesting that the latter
compounds provide good realizations of thekagome´ antifer-
romagnet.

Given the lack of spin order, resonating valence bo
~RVB! ideas seem natural for this system, and indeed h
stimulated much theoretical work on the system. LargeN
calculations based on SU~N! have been used to suggest
spin-Peierls state.16 Calculations based on Sp(2N) have sug-
gested a phase with deconfined, gapped, bosonic spino17

Chiral states have also been proposed,16 but do not account
for the excitation spectrum and also are in disagreement
the rapid decay of chirality-chirality correlation function
seen in numerics.18,19 States with BCS pairing have bee
suggested but again do not account for the excitation s
trum; due to the nonbipartite nature of thekagome´ lattice,
these states arenot equivalent to flux states.20 In addition to
the long-range states, short-range RVB states based on
duced Hilbert space of dimers21–23have also been considere
and provide some explanation for the gapless continu
0163-1829/2000/63~1!/014413~16!/$15.00 63 0144
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Variational RVB wave functions including Ne´el order have
also been considered.24

An RVB state on thekagome´ lattice would be particularly
attractive, given the intensive work on RVB states on t
square lattice,25 especially in connection with high-Tc
materials.26 In the absence of doping, the square mag
eventually acquires Ne´el order and the spinon excitation
disappear from the system. Since thekagome´ lattice does not
acquire Ne´el order, it could be a very important model for
spin-liquid or spin-solid state.

The idea behind the present approach is a to start wi
long-range RVB treatment of thekagome´ lattice and con-
sider various ways of gapping the spinon excitation sp
trum. We will first construct a ‘‘parent state’’ which will be
the best RVB state that does not break time-reversal sym
try or any lattice symmetry.

We will then demonstrate an interesting massless D
structure for this state. Various other known RVB states c
be obtained by perturbing the parent state, lowering the s
metry and giving mass to the Dirac particles, so that
parent state unifies a wide class of states. Physically,
expect that the system will attempt to give mass to the Di
particles and open a gap, picking out one of these ot
lower-symmetry states. We will discuss the symmetry bre
ing through a renormalization group treatment. We will o
tain some kind of spin-solid state and some low-ene
Goldstone and gauge excitations, which we will argue p
vide the low-energy degrees of freedom seen experiment

The RVB states can be thought of by a decoupling pro
dure, in which we decompose spin-1 operators into pairs
spin-1/2 operators. A general review of this procedure can
found in the book by Fradkin.27 Take a Hamiltonian

H5(
^ i , j &

JSW i•SW j , ~1!

where the sum extends over neighboring sitesi , j .
Introduce the spinon fieldsca

†( i ),ca( i ), where a5u,d
labels up and down spinon fields. Let the spin operatorsSi be
represented by bilinears in the fermion operators asSW i
©2001 The American Physical Society13-1
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5ca
†(i)sW abcb(i) where sW represents the Pauli matrices. Th

Hamiltonian which is bilinear in the spin operators becom
quartic in the spinons.

We can then introduce a Hubbard-Stratonovich fieldt i j

5t j i
† such that

H5(
^ i , j &

@ca
†~ i !t i j ca~ j !1H.c.#1

2

J (
^ i , j &

ut i j u2. ~2!

The Hubbard-Stratonovich field decouples the Hamilton
into terms which are quadratic in the spinons.

By taking a mean field int, minimizing the total energy of
the fermions and the Hubbard-Stratonovich field, we obt
an RVB state. One must at some point project results o
the physical space in which each site is singly occupied.
mean field in t defines the expectation value of the loc
singlet pairing.

Later, we will find this projection to be extremely impo
tant. In the absence of projection, the ideal mean-field sta
almost always found by taking a dimer covering of t
lattice,28 with t i j nonvanishing only on the given dimer
Projection can stabilize RVB states, so although our fi
calculations will ignore the effects of projection, in a nai
mean field, we will later discuss a projected mean field t
includes some of the essential effects of projection.

We will then have to proceed beyond mean-field so
tions. We will consider a functional integral with fieldsc( i )
and t i j , fluctuating about a saddle point of the action. The
are a large number of possible fluctuations int i j , including a
set of pure gauge fluctuations, as well as a set of gauge fi
Most other fluctuations can be ignored because they do
contribute to the low-energy dynamics. However, there w
be a particular set of fluctuations int i j that produce a mas
for the fermion field. Although these fluctuations are n
gapless, we will retain these fluctuations due to their imp
on the low-energy dynamics of the fermion field. We will s
using a renormalization group that the effective action
these fields can differ greatly from that suggested by
mean field.

To outline the paper, we will first describe the pare
state, and then discuss how to perturb the parent stat
obtain other proposed RVB states. Then we will discuss
ive and projected mean-field theory treatments of th
states. We will the proceed to a field-theoretic treatmen
fluctuations about the mean field and a renormalizat
group that will suggest one particular symmetry break
pattern. We will discuss the pseudo-Goldstone and ga
modes that arise from this symmetry breaking and
mechanism that ultimately gives them a very small ene
gap.

Next, we proceed to a discussion of finite-system-size
fects as a first step in comparison with numerics. These
fects lead to an additional flux for odd system sizes wh
leads to a nonvanishing Chern number for odd system si
We will then compare the low-energy bosonic modes fr
the field theory to the low-energy singlet modes found
numerical calculations as well as checking dimer-dimer c
relation functions and many-body density of states.
01441
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II. PARENT RVB STATE

Although the short-range RVB calculations provide o
starting point for thekagome´ lattice antiferromagnet, we will
be interested in looking at long-range states instead. C
tainly, the short-range RVB calculations themselves sugg
that long-range antiferromagnetic correlations are importa
the variational energy of these states improves when sec
neighbor dimers are included. Further, while thekagome´ lat-
tice has a gap-to-triplet excitation, this gap is about an or
of magnitude smaller thanJ; from a short-range calculation
one might expect a gap of orderJ as that is the energy to
break a dimer. However, Mila has suggested that within
short-range state it is possible to have a triplet gap m
smaller thanJ,23 so the small triplet gap does not necessar
rule against a short-range state.

The best RVB state on thekagome´ lattice antiferromagnet
is a chiral spin liquid.16,29 A similar chiral state30,31 was ob-
tained using a hard-core boson representation of the s
and transmuting the statistics from bosonic to fermionic
ing a Chern-Simons field. However, numerical calculation19

do not support a large chirality-chirality correlation functio
or expectation value of the chirality operator, which wou
seem to rule these states out. So we will look for the b
RVB state that is not chiral.

Assuming that we are looking for a long-range RVB sta
in which all t i j have the same magnitude, the only choice
have is how much flux to put into the system. The state
choose involves puttingp flux through the hexagons and n
flux through the triangles. This state offers a better me
field energy than any other nonchiral RVB state, includi
the state with no flux through the system at all.

The unit cell of thekagome´ lattice consists of three site
on a triangle. Once we add flux to the system, the unit c
doubles, and requires six sites on two triangles. We will fi
it convenient to double the unit cell again, to 12 sites, inclu
ing six sites on a hexagon and the six sites which neigh
the hexagon. This cell is shown in Fig. 1. Thekagome´ lattice
is made up of a triangular lattice of these 12-site unit ce

FIG. 1. Twelve-site unit cell, with fluxes indicated. Small num
bers are used to label points for reference.
3-2
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We have numbered the points in the cell for later referen
For now, let us assume that we pickJ such thatutu51

within our RVB state. Then, the band structure for our RV
state is shown in Fig. 2 scanning along the given line
momenta in the Brillouin zone. There is a degeneracy
states: the bottom line in the figure actually consists of f
bands, while the other four lines in the figure consist of t
bands each, providing a total of 12 bands. At (0,0), fo
bands meet at energy less than zero and another four me
positive energy. Near this point the spectrum becomes r
tivistic.

The particles occupy the lowest six bands of the syst
meaning that where the bands meet the spectrum beco
gapless. The system can gain energy by perturbing abou
given RVB state; we expect that the greatest gain in ene
comes from opening a gap. For this reason, we will study
Dirac point and look at possible perturbations to the Di
equation.

At the Dirac point, the Schro¨dinger equation for the fer
mions becomes

Ec5v f~axkx1ayky!c, ~3!

wherec is a four-component spinor, and the matricesax ,ay
are anticommutinga matrices. The particular basis chos
for c and for thea matrices is unimportant. We find b
explicit computation that

v f5~0.408 248 . . . !utu. ~4!

Given the Dirac equation~3!, we would like to consider
the effect of perturbationsdt i j on the low-energy structure
This analysis will enable us to focus on those fluctuations
t i j which have the greatest impact on the low-energy dyna
ics and which must be kept when we proceed to a fie
theory treatment of fluctuations.

From Eq. ~2!, the system pays an energy cost equal
(1/J)udt i j u2, but it can gain energy by opening a gap for t
Dirac particles. As a result, we look for the perturbatio
which open the greatest gap for the Dirac particles for giv
udt i j u2. Let us first proceed algebraically, considering po
sible perturbations to the Dirac equation which will open
gap, and only then ask how to obtain these perturbati
from dt i j .

A given perturbationdt i j will perturb the Dirac equation
to

FIG. 2. Band structure for the parent state. We scan along v

ing momenta in thex̂ direction, at vanishing momentum in th

x̂/21A3ŷ/2 direction.
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Ec5@v f~axkx1ayky!1M #c, ~5!

whereM is some matrix, the projection ofdt i j onto the space
of the four states at the Dirac point. It may be shown that
perturbationM will be most efficient at opening a gap whe
it anticommutes withax ,ay . By efficient, we mean that we
wish to maximize the gap for a given Tr(M2), as a first step
to maximizing the gap for givenudt i j u2. Since there is only a
16-dimensional space of matricesM, we can easily charac
terize all matrices that have the needed anticommuta
property; it is a four-dimensional vector space.

We will write three of the perturbations as matricesMi ,
for i 51,2,3. In terms ofa matrices, they will be

M15az , M25b, M35baxayaz . ~6!

These perturbations anticommute with each other; in fa
one can make a change in basis in the Dirac equation w
leavesax ,ay unchanged, but produces continuousO(3) ro-
tations in the space ofM1 ,M2 ,M3. This continuous symme
try is only valid at low energy; it will be broken to a discre
symmetry by lattice effects as discussed below. By tak
M5( imiM i , for some numbersm1 ,m2 ,m3, we open a gap
equal toA( i(mi

2). We will refer to these as nonchiral mas
terms.

The fourth perturbation is of a different sort. It isM
5mcMc with Mc5 iaxay ~here,c stands for chiral and we
will refer to this as a chiral mass term!. This perturbation
breaks parity and time-reversal symmetry.Mc commutes
with M1 ,M2 ,M3. As mentioned above, we are interested
the most efficient way for the system to open a gap; sinceMc
does not anticommute withMi , it is most efficient for the
system to take either purely chiral mass or purely nonch
mass, so thatmi50 or mc50.

Next, we would like to ask what perturbations in thet i j
will produce the desired mass matrixM. We will find that to
produceMi requires dimerizing the system by making th
magnitudes of theut i j u nonuniform; to produceMc requires
adding additional fluxes to the system. Clearly, there is
large degeneracy here, as there is a only 16-dimensi
space of matricesM while in a given unit cell there is a
48-dimensional space of perturbations tot i j . While some of
the degeneracy is due to the large number of possible ga
transforms ont i j , this does not completely alleviate th
problem. Again, the question of efficiency becomes imp
tant: for eachM, there is a class oft i j which produce the
desired perturbation, but only one element in the class m
mizes( i , j ut i j u2. We will find one unique perturbation int i j
~up to arbitrariness in gauge! which produces the desire
mass matrix.

The perturbation that we will pick forM1 is shown in Fig.
3. One can see that all the horizontal bonds have been e
decreased or increased in strength, such that along a hor
tal line the bonds alternate in strength while horizontal bon
which are in a vertical column all have the same strength

This perturbation is a dimerization of thet i j . The spins
form singlets most strongly across the largestt i j , so that
dimerization oft i j tends to produce a spin solid and chang
the long-range RVB to a short-range set of singlets.

y-
3-3
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This mass term breaks rotational and translational s
metry of the lattice. We will pickM2 and M3 to be lattice
rotations of M1. The continuous symmetry of the Dira
equation will then be broken at the lattice level to a discr
symmetry of permutations ofm1 ,m2 ,m3 under lattice rota-
tion, while lattice translations change the sign of any two
the three mass termsm1 ,m2 ,m3. We will find later that
while we obtain symmetry breaking and produce a mass,
discrete nature of the lattice group will leave us with on
pseudo-Goldstone modes.

There are two mass terms which are symmetric un
rotations. They are

M125
M11M21M3

A3
, ~7!

M652M125
2M12M22M3

A3
, ~8!

where ‘‘12’’ denotes the fact that thet i j are strongest on the
12-site loop surrounding the unit cell, while ‘‘6’’ denotes th
fact that the bonds are strongest on the hexagons and
angles. We show the perturbation tot i j to produceM12 in
Fig. 4.

To estimate dimerization later, it will be useful to kno
connect the change int to the eigenvalues of the mass matr
that arises. One finds that if the bonds on the 12-site loop
increased bydt, while those on the hexagons and triang
are decreased by the same amount, then one produces a
m12M12 in the Dirac equation withm1251.577 35 . . .dt.

For calculations later, it will be convenient to transform
a basis ofg matrices. Defineg t5b, g i5ba i . Then Mi
→bMi in the basis ofg matrices, and Eq.~6! is replaced by

M15g3 , M251, M35 ig5 , ~9!

while Mc5 ig tgxgy . While the nonchiral mass terms ant
commute in thea-matrix basis, their commutation rules a
different in theg-matrix basis.

FIG. 3. Mass perturbation to produceM1. Bold lines are in-
creased in strength; dotted lines are reduced in strength.
01441
-

e

f

e

r

tri-

re
s
erm

It is interesting to compare to above characterization
possible perturbations in terms ofg matrices to the situation
in thep-flux phase on the square lattice, where there is ag
a Dirac spectrum, and again various mass terms can
introduced.32 We find that we are able to introduce one no
chiral mass term by dimerizing the horizontal bonds of t
square lattice, so that the horizontal bonds alternate
strength as one moves horizontally along the lattice; ano
mass term can be introduced by dimerizing the verti
bonds. In the limit of extreme dimerization, these states c
respond to short-range RVB states in which the dimers
stacked on top of each other, and all lie either horizontally
vertically.33 By taking sums of these two mass terms, we c
produce a short-range state in which dimers resonate aro
a square. The final nonchiral mass term can be obtained
placing an on-site potential on one sublattice of the squ
lattice; this corresponds to introducing Ne´el order into the
system.34 Due to the highly frustrated nature of thekagome´
lattice, in this paper we will not have any such terms invo
ing introducing on-site potentials.

For the square lattice, the chiral mass term can also
introduced. It requires adding additional couplings to the s
tem, which connect diagonally across a given plaquette,
then insertingp/2 flux through the triangle that is forme
when a particle traverses two sides of a plaquette and
crosses the plaquette on the diagonal.35

III. CONNECTION TO OTHER VALENCE BOND STATES

From the parent state, it is possible to continuously c
nect to other possible valence bond states, using the m
terms we have found above. Let us first consider the ch
spin liquid and then the spin-Peierls solid of Marston a
Zeng.16

Let us consider a state such that the flux through e
triangle is equal tou and the flux through each hexagon
equal top22u. Then, asu varies from 0 top/2 we con-
tinuously deform from the parent state to the chiral spin l

FIG. 4. Mass perturbation to produceM12. Bold lines are in-
creased in strength; dotted lines are reduced in strength.
3-4
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uid. By looking at howt i j changes along this deformation
and then projecting this change onto the Dirac point, we fi
that for smallu, the perturbation exactly produces the chi
mass termMc . Let us note that atu5p/4 there is a highly
interesting band structure, discussed in the Appendix, w
multiple flat bands.

The chiral spin-liquid state improves on our parent state
the mean-field level. Since we will argue below that fluctu
tions stabilize our state against the chiral mass term, le
here analyze why the chiral state works at the mean-fi
level, and provide a qualitative explanation of why fluctu
tions destroy the chiral spin liquid.

The idea behind the chiral state results from the ‘‘Roks
rules,’’36 which argue that one should put fluxp/2 through
every triangle, no flux through the hexagons, and have a t
flux of p through the loop of length 12 that surrounds
hexagon and its six attached triangles. These rules are
rived from considering individual hexagons and triangles
isolation, and minimizing the mean-field energy.

While our parent state appears to violate every one of
rules, except the rule for the length-12 loop, the chiral s
liquid is in perfect agreement with these rules. Let us foc
on one isolated triangle, withutu51. If there is no flux
through the triangle, there are two negative energy st
with energy21. We can put two particles in one state a
one in another for a total energy of23. By addingp/2 flux,
we have one state at energy2A3 and another state at energ
zero. By putting two particles in the lowest-energy state,
improve the energy of the system and introduce a chiral

Now, consider the triangle coupled to the rest of the s
tem. If the rest of the system strongly scatters the particle
the triangle, it may no longer by appropriate to think of tw
particles in one state and one in another. One must ins
think of each of the two negative energy states of the trian
as each having average occupation of one-and-a-half
ticles. In that case, it is most advantageous to put no
through the triangle.

So if the system to which the triangle is coupled is chir
so that all triangles in the system have the same fluxp/2,
then the chiral spin liquid may work. But if the triangle
coupled to states which are not chiral, then the chiral s
liquid is destroyed. One sees this even at the mean-fi
level; a state in which triangles have alternating flux6p/2 is
significantly worse in energy than our parent state. Simila
if one introduces sufficiently strong dimerizationm12, one
finds that the system is stabled against weakmc . Within the
renormalization group~RG! below, we will consider the
fluctuations in the massesmi and show that they help stab
lize the parent state against the chiral perturbation.

The spin solid of Marston and Zeng can also be obtai
from the parent state. In this spin-solid state, the idea is
look for dimer coverings which maximize the number
‘‘perfect hexagons,’’ hexagons on which three of the bon
are covered by dimers. Attached to these hexagons are
fect triangles,’’ triangles on which no bonds are covered
triangles. Clearly, we wish to increaseut i j u on the perfect
hexagons, while decreasing it on the defect triangles. T
will project onto the mass termM6 on the 12-site cell tha
includes the given perfect hexagon.
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The perfect hexagons are then supposed to form a lat
We can obtain this lattice by taking the triangular lattice
12-site cells and placing perfect hexagons inside the 12-
cells on two out of the three sublattices of the triangu
lattice. In this case the cells containing perfect hexag
form a honeycomb lattice. This gives rise to a stagge
mass state with an 18-site unit cell. We produce a mass t
M6 on two-thirds of the system, so that the Dirac partic
feel a netM6 at zero momentum, as well as a fluctuatingM6
at finite momentum.

Later, we will show that numerical results suggest that
least for finite-size systems, such a staggered mass may a
Our theoretical computations will be confined to a slow
varying mass. The arguments of Marston and Zeng show
one can also have a staggered mass. The computation w
our approach of staggered versus constant mass will req
an involved projection onto a large number of sites and
not yet been done.

IV. NAIVE MEAN FIELD AND PROJECTED MEAN
FIELD

To compare the energies of possible RVB states, incl
ing the various mass perturbations of our parent state,
turn to the RVB mean field. When we look for a mean-fie
solution of t i j in Eq. ~2!, it is known28 that the best mean
field is a dimer covering. Still, let us start by looking
results of the naive mean-field calculation, and then la
provide a projected mean-field calculation.

Let us introduce the Green’s function between sites,Gi j ,
defined to be the sum over all occupied fermionic statesc,
of

c†~ i !c~ j !. ~10!

The fermionic energy is then equal to

2(
^ i , j &

Gi j t j i , ~11!

where the factor of 2 arises from the presence of up
down species of fermion.

For our parent state, explicit calculation shows that,
nearest neighborsi , j ,

uGi j u50.221 383 . . . . ~12!

From the mean-field condition for Eq.~2!, we find for the
parent state thatt50.221 383J, so by Eq.~4!

v f5~0.0904 . . . !J. ~13!

We find that within the projected mean field that the p
ent stable is unstable to all of the massive fluctuations,
cluding the chiral mass fluctuation which will drive the sy
tem to a chiral spin liquid.

For infinitesimal perturbations, the different nonchir
masses all provide an equivalent improvement in mean-fi
energy. To some extent this is due to the approximate lo
energy symmetry of the Dirac equation to rotating contin
ously among the different mass terms. However, it is int
3-5
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esting that lattice effects do not break this symmetry. T
reason is the discrete lattice symmetry. The change in en
for takingM5m1M11m2M21m3M3 is, for smallm, a qua-
dratic form inmi . Let this form be

(
i , j

ci j mimj . ~14!

The coefficientsc11,c22,c33 in this form must all be the
same due to lattice rotation symmetry. Lattice translat
symmetry permits one to change the sign of any two of
mi , and prevents a nonvanishingci j for iÞ j . Therefore, for
small perturbations the energy gain for introducing a m
must be dependent only on the magnitude of the mass,
the particular mass term used. For larger perturbations,
energy gains may depend on the particular mass term u
and of all the nonchiral mass terms, the system gains
most energy by a massM12.

Now let us turn to the projected mean-field. Instead
doing a full Gutzwiller projection, we will use an approx
mation introduced by Hsu.34 Within a variational Gutzwiller
projection, one minimizes the energy of the Hamiltonian~1!.
Hsu’s idea at the lowest level of approximation is to note t
the Hamiltonian is a sum of termsJSW i•SW j over different
neighborsi , j , and, when evaluating the expectation value
each of these terms, to perform the projection only on
given sitesi , j . At this level, the variational principle corre
sponds to minimizing

(
^ i , j &

~SW i•SW j !'2(
^ i , j &

6
uGi j u2

1116uGi j u4
~15!

over all possiblet i j , whereGi j is determined byt i j .
For our parent state, we find that26uGi j u2/(1

116uGi j u4)520.2832 . . . . By going to the chiral spin liq-
uid, the system improves the ground-state energy by roug
2.9% within the projected mean-field approximation. By g
ing to a state with staggered6p/2 flux through each tri-
angle, the systems worsens the ground-state energy
roughly 1.4%. Within this approximation the system is sta
against the nonchiral mass perturbations as all the nonc
mass perturbations worsen the ground-state energy at
level of approximation. Again due to discrete lattice symm
try, the energy cost is independent of the particular m
term for small mass, while for larger perturbations, the
ergy costs differ, and theM12 perturbation costs the leas
energy.

V. FIELD THEORY OF FLUCTUATIONS

Having discussed the naive and projected mean fields
the problem, we must include fluctuations about the m
field. To do this, we will use an SU~N! generalization of the
original problem,37 such that the projection procedure of H
becomes exact. After discussing how to do this in the
stract, we will present the field theory for our specific pro
lem: it will have a number of interacting fields, includin
fermions, gauge fields, the nonchiral mass terms discu
above, which we will refer to as ‘‘pion’’ fields, and the chira
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mass term. In the large-N limit the interaction between fields
is absent; in this case, the mean-field solution16 becomes
exact. However, we know that the chiral spin liquid is
disagreement with numerics, so that at some finiteN the
interactions must destabilize that state; in the next sect
we will use an RG treatment of the interacting field theo
derived in this section to show how fluctuations destabil
the chiral spin liquid forN52.

The approximation of Hsu ammounts to minimizing E
~15!. By introducing an auxiliary fieldl i j we can ‘‘de-
couple’’ this sum of functions ofGi j and instead extremize
the function

(
i , j

Gi j l j i 1 f ~ ul i j u2!, ~16!

where f (ulu2) is a Legendre transform ofuGu2/(1
116uGu4).

Then, we can interchange the order of extremizations,
extremize this quantity overt i j before extremizing overl i j .
We find that this is extremized att i j 5l i j . Then we proceed
to extremizing over the one remaining set of variablesl i j .
But sincet i j 5l i j , we are are equivalently trying to extrem
ize the function

(
i , j

Gi j t j i 1 f ~ ut i j u2! ~17!

over all t i j . Note, now, thatGi j t j i is exactly the kinetic en-
ergy of the fermions. So, finally, we are trying to extremi

H5(
^ i , j &

@ca
†~ i !t i j ca~ j !1H.c.#1(

^ i , j &
f ~ ut i j u2!. ~18!

Returning to the language of functional integrals, we c
introduce an SU~N! field theory for which the Hsu projection
procedure becomes exact. We take a large-N limit in the
number of fermion fields in Eq.~18!, so thata51, . . . ,N.
Then, we integrate over all possiblet i j in that equation, un-
doing the decoupling procedure above, and rewrite the re
in terms of spin operators. We find

H5(
^ i , j &

SW i•SW j

1116SW i•SW j

. ~19!

We should note a few facts about this procedure. Wh
we demonstrate the equivalence of the large-N mean field
with the Hsu mean field, it is the large-N limit that permits us
to ignore fluctuations int i j ,l i j , so that the decoupling
amounts exactly to taking a Legendre transform; at finiteN,
the decoupling of an interaction is not exactly a Legen
transform. Further, we used the word ‘‘extremize’’ abo
with care: in some cases we maximize while in other ca
we minimize, as in some places the functionuGu2/(1
116uGu4) has positive curvature while in other cases it h
negative curvature. This does not provide any formal pr
lems when performing the decoupling at the level of fun
tional integrals, as long as we correctly choose the integ
tion contour ofl i j .
3-6
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The fractional operator,(^ i , j &(SW i•SW j /(1116SW i•SW j ) in Eq.
~19! may be interpreted as a formal power series, so tha
includes operators of the form (SW i•SW j )

k for all k. At N52,
this operator is equivalent toSW i•SW j , up to a constant factor

Finally, the above procedure is similar to the technique
introducing biquadratic interactions (SW i•SW j )

2 into the Hamil-
tonian to stabilize RVB states against dimerization. We s
ply prefer the above Hamiltonian as it reproduces exactly
desired mean-field theory.

Having defined a large-N theory with no fluctuations in
the decoupling fields, we next add in fluctuations. Forma
this can be handled by a 1/N expansion. We will directly
write the field theory atN51 without including explicit fac-
tors of N.

The theory includes several modes. There is the D
fermion field c(x). This is coupled to a fluctuating U~1!
gauge fieldAm(x), m5t,x,y. By considering other fluctua
tions in t i j we will also obtain a fluctuating chiral mass fie
that we will refer to ass(x) and a triplet of fluctuating
nonchiral mass terms that we will group into one ‘‘pion
field pa(x), a51,2,3. If the pion field acquires an expect
tion value, then the fermions will acquire a massma5^pa&.

For the field theory, we will suppress the velocityv f . At
the level of the bare action thep, s, and gauge fields can
have different velocities from the Fermi fields. However, t
greatest contribution to the effective action of the boso
fields arises from integrating over the relativistic fermion
so that at low energies the velocity of the bosonic fields m
be roughly equal to that of the fermionic fields.

The LagrangianL we will take is

L5E d3x Lf1LA1LM , ~20!

where

L f5c̄u,d~x!@gm~Am1 i ]m!1g0Mapa1g0Mcs#cu,d~x!,
~21!

LA5
1

4Lga
2

FmnFmn, ~22!

LM5
1

2Lgs
2

s~x!~]m
2 1ms

2 !s~x!

1
1

2Lgp
2

pa~x!@]m
2 1~mp

2 !ab#pb~x!. ~23!

We have written the mass for the pion field as a mat
However, following the arguments for Eq.~14!, the masses
of the different pion modes must be the same. It is only a
condensation of the pion field, breaking the lattice symme
that the masses can differ.

We have inserted factors ofL, representing a lattice cut
off scale, into the action to make the coupling constants
mensionless. We have chosen to scale the bosonic field
that all coupling constant dependence appears in the ac
LA andLM , not L f .
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In addition to the terms we have written, there must b
quartic interaction term for thep ands fields. This term is
necessary to stabilize the action if the system spontaneo
breaks a symmetry and has eithermp,0 or ms,0. Since
we will be initially starting the renormalization group of th
next section with both such masses positive, we can tem
rarily ignore the quartic term at high energy under the
sumption that this term is small. If the system acquires
expectation value for thep fields, the quartic term will break
the continuous symmetry down to the lattice symmetry, a
give a small massmp

' for the approximate Goldstone mode
There will also be cubic terms that give a mass to th
modes.

Another interesting term we have left out isc̄gmgnFmnc,
which can be added to change theg factor of the Dirac fer-
mions. In the absence of external fields, there are two deg
erate states of the Dirac equation at each energy. For ph
cal electrons, this reflects a spin degeneracy. For the spin
we consider, which already have a definite spin, this deg
eracy instead reflects achirality degeneracy, and we wil
refer to it as such. If the system has an odd number of s
and hence an unpaired spinon, not only does the system
a net spinon, but it also has a net chirality, which can
taken to be positive or negative. Generically theg factor will
be nonzero.

VI. RENORMALIZATION GROUP

We will consider the one-loop RG from the field theor
We will see that it is indeed possible for fluctuations to le
to a condensation of the pion field.

For the gauge, pion, ands fields we will use a simple
mode elimination RG, with a cutoffL. For the fermion
fields, we will introduce a set of massive regulator fields w
masses of orderL and reduce the regulator mass. The cho
of the particular mass terms for the regulator fields repres
a lattice breaking of the Goldstone symmetry. It is possi
to preserve the needed lattice symmetry of Eq.~14! by intro-
ducing seven regulator fields. Four are ghost fields w
masses proportional toM11M21M3 ,M12M22M3 ,2M1
1M22M3, and2M12M21M3 and the other three are no
ghosts and have masses proportional toM1 , M2, andM3.

Initially the theory will have a cutoffL0, defining the
lattice scale. As we renormalize, we lower the cutoffL, and
rescale all distances and fields to keepL fixed.

We must take into account self-energy corrections to
fermions from interactions with the bosonic fields, vert
corrections, and self-energy corrections to the bosonic fie
from vacuum polarization bubbles. If we were to take in
account only the self-energy corrections to the bosonic fie
and not the vertex and fermionic self-energy terms,
would find that we are considering just the mean-field the
in the bosonic fields.

We find the following RG equations:

d ln gA

d ln ~L0 /L!
5122

gA
2

3
, ~24!
3-7
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d ln gp

d ln~L0 /L!
511

3gA
21gp

2 2gs
2

2p2
1vacuum polarization,

~25!

d ln gs

d ln~L0 /L!
511

3gA
223gp

2 2gs
2

2p2
1vacuum polarization,

~26!

dmp
ab

d ln~L0 /L!
521vacuum polarization, ~27!

dms

d ln~L0 /L!
521vacuum polarization. ~28!

We have avoided explicitly writing the vacuum polariz
tion contributions to thes and pion fields. The vacuum po
larization contribution to the mass is regularization dep
dent, while the vacuum polarization contribution to t
coupling constant is ultraviolet convergent and is domina
by the infrared contribution.

Fluctuations in the gauge field increase the coupling c
stants for the pion and sigma fields. This reflects the bind
force due to the gauge field between charged spinons an
resulting tendency to break chiral symmetry. Further, we
that the coupling constant for the pion field increases m
rapidly than that for thes field, reflecting the destabilization
of the chiral state by fluctuations in the pion field.

Thus, we see from the renormalization group that ther
a range of bare parameters such that the theory will cond
the pion field, producing a nonchiral mass term for the f
mions, even though at the mean-field level the theory wo
rather produce a nonchiral mass term for the fermions.

In the next section we will consider the low-energy acti
after condensation. We will first discuss the mass term
the fermions that appears.

Unfortunately, it is beyond our ability to calculate th
bare parameters in the field theory with any precision, and
the mass of the fermion field is not something we can co
pute. Let us instead take the mass of the fermion as an i
from numerics, and use that to check for consistency of
theory. Extrapolating finite-size results from systems of up
36 sites, one finds that the system has a gap-to-triplet e
tation which is of orderJ/20 or less.19 While the gap is
decreasing even at the largest sizes, it appears to be bou
below by roughlyJ/40. Assuming that the triplet excitation
are made of pairs of spinons, we can estimate the spinon
as being half the triplet gap. Further evidence for the spin
gap being roughly half the triplet gap comes from odd-ev
studies of the energy dependence on N.19 The fermion mass
is half the spinon gap or one-quarter the triplet gap.

Using this estimated spinon gap and the calculated ve
ity of our Dirac particles from RVB theory, we can obta
the correlation length of the Dirac particles. Taking the e
mate ofJ/20 for the triplet gap, we find that the correlatio
length is roughly 8 of our 12-site unit cells, large enough
include theN536 numerical studies.
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We can also estimate the strength of dimerization at
mean-field level, by asking how large a change int i j is
needed to produce the desired mass term. Assuming tha
dimerization is provided by a perturbation of the formM12,
one finds that thet i j 12-site loops are increased by approx
mately 3.5%, while the other bonds are decreased by 3.
This is a relatively small amount of dimerization, and w
expect that only after a significant increase in system s
will numerical studies be able to detect this directly from
dimer-dimer correlation function.

VII. LOW-ENERGY MODES

The remaining low-energy modes after the pion field co
denses are the Goldstone excitations of the pion field and
gauge excitations, which we will argue provide the low
energy singlet modes seen in numerics. While numerical
culations have only probed systems up toN536 sites, which
is relatively small considering that we take a unit cell of
sites, experiment also reveals a quadratic low-tempera
specific heat. This specific heat suggests that a bosonic m
with a linear density of states survives to much larger sca
while the insensitivity of the specific heat to weak magne
fields suggests that the mode is still a singlet. In this sec
we will first discuss the nature of the low-energy modes a
then the ultimate fate of our pion and gauge excitations
large distances, including a gap for the pion from latti
effects as well as a confining phase for the gauge fields.

Once the pion field condenses, the system is left with t
pseudo-Goldstone pion modes as well as gauge modes.
gauge action is

LA5
1

4LgA
2

FmnFmn, ~29!

with

gA
2}m, ~30!

wherem5u^p&u is the fermion mass. The pion action will b
a sigma model. If we change the normalization on the p
field so thatupu51, we get the model

LM5
1

2g2
~]mpa!21

~mp
'!2

2g2
p1p2p3, ~31!

where the coupling constantg2 is proportional tom21 and
the massmp

' represents the breaking of continuous symme
by lattice effects.

We have chosen the mass term for the pion to cause
pion to prefer to condense in a way that gives rise to a m
M12. In the projected mean-field calculation above, we co
sidered states invariant under the rotational symmetry,
that um1u5um2u5um3u. This provided two inequivalent per
turbations. In one, we increasedut i j u on hexagons and tri-
angles; in the other we increasedut i j u on a loop of length 12.
While at the mean-field level symmetry breaking does
occur, from the projected mean-field calculation we can s
argue that the preferred symmetry breaking pattern would
given by a mass matrixM12. Other patterns are of cours
3-8
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possible, and comparison with numerics provides some
dence that a staggered mass is also a possibility, at leas
small systems; in the Conclusion we discuss possibilities
numerically testing the preferred mass pattern.

In the continuum field theory, the pion mass (mp
2 )ab is

ultraviolet divergent. However, lattice symmetry forces t
masses of the pion modes to be the same before conde
tion. In order to use the continuum theory to estimatemp

'

after condensation, we need to turn to the cubic interac
terms inp. These are

E d3x g3p1p2p3 , ~32!

with a cubic coupling constantg3 that is generically of order
unity. Inserting an expectation value ofp of order m, we
obtain a quadratic term inp. Including this quadratic term in
(mp

2 )ab, this will cause the masses of the different pi
modes to differ by orderm so thatmp

' will be of orderm.
However, we can obtain a better estimate of the m

difference numerically from the the projected mean-field c
culation of energy; while we did not obtain pion condens
tion at the mean-field level, for a given expectation value
the pion field, we can use thedifferencein mean-field ener-
gies for various continuous rotations of the pion field to o
tain an estimate of the pion gap. Using the numerical e
mate for the triplet gap, and hence the estimate for
fermionic massm, we have calculated the projected mea
field energies for takingM5mM12 andM5mM6. The dif-
ference in energies is 0.000 396J per 12-site cell, so tha
mp

''A0.000 396mJ. This is small enough that we can igno
this mass for most purposes. Evidently, the cubic coup
constantg3 is very small.

While the pion is already gapped by lattice effects, inst
tons will gap the gauge field, leading to confinement of
spinons. The gauge field describes compact QED in 211
dimensions, which is confining for allgA .38 The gauge cou-
pling is proportional tom, so that the action for an instanto
will be of order

S}
L0

m
. ~33!

The instanton density is proportional toe2S. In the weak-
coupling limit, the instantons lead to a gap for the gauge fi
of order L0e2S. As this is exponentially small, we can ig
nore the gap in the gauge field.

VIII. FINITE-SIZE SYSTEMS AND CHERN NUMBERS

In this section we will consider some effects of finite-si
systems to begin comparison with numerics. First we w
consider some complications in defining the parent state
systems with an odd number of sites, which force the sys
to have some net flux. Then we will show how this leads
a degeneracy in the spectrum and nonvanishing Chern n
bers for the states under twist in the spin boundary con
tions. Finally, we will discuss some effects of finite size f
even-size systems.

One of the most interesting results found in numeri
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studies of odd size systems is a nonvanishing Ch
number19 for the ground state of61. This is a quantity that
provides an analog for a spin system of the quantum H
effect.39 Since the Hamiltonian of Eq.~1! does not explicitly
break time-reversal symmetry, a nonvanishing Chern num
requires a spontaneous breaking of time-reversal symme
However, the spontaneous breaking of time-reversal sym
try is not enough, as other spin systems that break this s
metry have vanishing Chern number;39 the kagome´ antifer-
romagnet may be the first Hamiltonian with time-revers
and parity symmetry where a nonvanishing Chern num
has been observed. In order to understand the appearan
the Chern number, we must first understand how to form
parent state on an odd-size system.

The systems studied numerically have periodic bound
conditions, so that they reside on a torus. On a system
fined on a torus the net flux penetrating the surface mus
an integer multiple of 2p. One can also add solenoid fluxe
u1 ,u2 defining the phase that the spinon acquires when
versing a topologically nontrivial closed loop around t
torus. For simplicity, we will use coordinates on the tor
which range from 0 to 2p in both directions, although in
actuality for thekagome´ lattice the systems considered a
not square.

The parent state hasp flux through each hexagon. On
system withN sites, there areN/3 hexagons, and so on
system with an oddN, one would like to have a net flux
through the system that is an odd multiple ofp. This is not
possible, and so the system must have some additional
so that the total is a multiple of 2p. For example, on a
system withN527, there are nine hexagons, so the syst
can putp6p/9 flux through each so that the total flux
either 8p or 10p. The system then must become chiral a
break time-reversal symmetry since it cannot construct
parent state.

A qualitative way of describing this effect is to say th
for a system with an odd number of sites, there is an
paired spinon, which has a chirality. The spinon then coup
to the gauge field and produces a flux. In this section, we
proceed within a mean-field calculation, assuming that
extra flux is smeared evenly over the system and that
spinons do not interact. In reality, the extra flux may bind
the unpaired spinon, but we will not deal with that possibil
in this paper. We will show that, at the mean-field level, t
extra flux produces Landau levels with a gap, and then
sume that as the Chern number is a topological property
the system, it will be stable against adding interaction.

Given the average flux through the system, let us cons
the effective Dirac equation for the spinons. The results
get for the Chern number do not rely on the Dirac descr
tion, and can be derived directly from the lattice model; w
feel that the Dirac method is more elegant and gives m
physical insight.

The Dirac particles feel the extra flux that has been add
and so the spinons move in a magnetic field, such that the
flux the spinons feel is exactly6p. Again, there seems to b
a contradiction, since it is not possible for the system to h
a net flux of6p flux through the torus. The answer to th
contradiction is that the Dirac particles have an extra chi
3-9
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M. B. HASTINGS PHYSICAL REVIEW B 63 014413
ity index. So in addition to including solenoid fluxes for th
Dirac equation, the Dirac particles can change chirality wh
completing a loop around the system. Let us then genera
the solenoid flux to a pair of 434 matricesU1 , U2, describ-
ing the change in the wave function when the particle co
pletes a loop.

Then, when the particle traverses a loop around the to
from (0,0) to (0,2p) to (2p,2p) to (2p,0) to (0,0), the
wave function gets multiplied by

2U1U2U1
†U2

† , ~34!

where the minus sign is from the magnetic flux through
torus. Since Eq.~34! must be equal to 1, we find thatU1 ,U2
necessarily anticommute.

One may regard the matricesU1 ,U2 as arising from a
non-Abelian gauge field connecting opposite chiralities
the spinons. The commutator of the matrices represent
additional flux of p from the non-Abelian field, giving a
total flux of 2p on the torus. The extrap flux from the
non-Abelian field is the flux that arises from having an o
number of hexagons on the lattice, so that when the par
completes the given loop around the lattice it has enclose
odd number ofp fluxes. One sees that the non-Abelian fl
is localized at a point, although one must be careful that
localization at a point does not imply a breaking of trans
tional symmetry.

The addition of matricesU1 ,U2 is natural from the lattice
point of view. The unit cell which includes both chiralities o
Dirac particles is 12 sites, while the smallest unit cell po
sible for the parent state is 6 sites. Since there is no wa
cover an odd size lattice with 6 or 12 site unit cells, som
thing must scatter between chiralities, as when the part
completes a loop it has changed between chiralities.

To give a very simple example of this, consider a on
dimensional ring with an odd number of sites. The natu
unit cell for the a one-dimensional chain is two sites,
include both Dirac points. If the particle moves around
odd-length ring, two sites at a time, it must return to t
starting point displaced by half a unit cell.

To give a slightly more complicated example, consid
the p-flux phase of the square lattice40 for a system of nine
sites, shown in Fig. 5. Solid lines represent bonds within
cell of nine sites, while dotted lines represent bonds to p

FIG. 5. p-flux phase on square lattice with odd number of sit
Numbers label different squares, each containingp6p/9 flux.
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vide toroidal boundary conditions. There are nine square
the system, and so there will bep6p/9 flux through each
square. Four of the squares lie within the cell and are labe
1–4, another four lie to the sides and are labeled 5–8, w
the ninth square lies in the corner. The natural unit cell
the Dirac particles is four sites, so when a particle comple
a loop around the torus it is displaced by half a unit cell. T
wave function is multiplied by a matrixU1 for a loop in the
x̂ direction and a matrixU2 for a loop in theŷ direction.
Precisely due to the odd number of squares, one finds
the matricesU1 ,U2 anticommute. It is natural to think of the
non-Abelian flux as arising from thep flux through the ninth
square, on the corners.

Returning to thekagome´ lattice, let us now look at the
wave functions of the Dirac equation with this magnetic flu
It is convenient to find the wave functions by enlarging t
torus by a factor of 2 in each direction, as shown in Fig.
The 1 and 2 symbols in the figure denote the chirality o
the particle in each quadrant. When the particle complete
circuit on the original torus, it changes chirality, and hen
moves into a different quadrant of the enlarged torus, wh
picking up a phase.

The net flux on the enlarged torus is equal to 4 times
flux on the original torus, or 4p. One might imagine that
there will be extra sources ofp flux on the enlarged torus a
the points where the quadrants meet. However, since thp
non-Abelian flux is purely a result of an odd number
hexagons on the original torus, we can drop the extra sou
of flux on the enlarged torus, and we are left with an expl
itly translationally invariant problem of a Dirac particle mov
ing in a constant magnetic field.

On the enlarged torus, the Dirac equation becomes a t
component equation

@ iEsz1sx~Ax1 i ]x!1sy~Ay1 i ]y!#c50. ~35!

Taking the square we find

E2c5@~ i ]x2Ax!
21~ i ]y2Ay!21szB#c. ~36!

This is the well-known equation for a Dirac particle in
magnetic field and has Landau levels.

Since the net flux through the enlarged torus is equa
4p, there are two states in each Landau level for eachsz ,
hence four states for each Landau level in total. As we

. FIG. 6. Enlarged torus to compute wave functions.
3-10
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dealing with a two-component equation, only one sign oE
is allowed in Eq.~36! for a givensz .

Therefore, the energy levels on the enlarged torus
doubly degenerate. However, the enlarged torus has an
physical degree of freedom: opposite quadrants describe
state of the particle on the original torus. So the energy lev
on the original torus are only singly degenerate and the s
trum is discrete with one level at zero energy. This is
relativistic generalization of Landau levels. For an odd-s
system, all Landau levels below the zero energy are oc
pied, and hence filled, for both spin-up and spin-down p
ticles, while the zero-energy level is occupied only by o
unpaired spinon.

Numerically, the ground state of the many-body syst
has been seen to have an extra degeneracy factor of 2
yond the trivial spin degeneracy. This is a consequence
the spontaneous generation of the magnetic field, so tha
system can pick either sign for the field.

An interesting way of viewing the Landau levels is th
we havep Abelian flux, implying that there are 1/2 state
per Landau level. Multiplying the 1/2 by a factor of 2 fo
chirality degeneracy, we get one state per Landau level.

We can now introduce the Chern number of the syste
which characterizes a transverse response of spin curr
Let us adjust the boundary conditions of the system so t

S6~x,y!5e6 if1S6~x12p,y!, ~37!

S6~x,y!5e6 if2S6~x,y12p!, ~38!

wheref1 ,f2 are angles.
If the ground state is a wave functionC, then the Chern

number is defined as the integral

1

2pE E K ]C

]f1
U ]C

]f2
L df1 df2 . ~39!

This number is quantized and nonvanishing only for co
plex states. Since the Hamiltonian does not break tim
reversal symmetry, complex conjugate states are degen
with opposite Chern numbers.

In the presence of these boundary conditions, the spi
boundary conditions, with additional self-generated flux
u1 ,u2, become

cu
†~x,y!5eir1

u/2cu
†~x12p,y!, ~40!

cd
†~x,y!5eir1

d/2cd
†~x12p,y!, ~41!

where

ru,d5~2u16f1! ~42!

and similarly for the other direction. The 2p periodicity inf
is not obvious from Eqs.~40! and~41!, but the ability of the
system to adjustu produces the desired periodicity.

To give a simple example of how a system can adjusu,
consider a system of four sites on a ring. In the absence
twist in boundary conditionsf, the system placesu5p flux
through the ring. Asf increases,u remains equal top, and
the mean-field energy of the system gradually increases
01441
re
n-
he
ls
c-
e
e
u-
r-
e

be-
of
he

,
ts.
t

-
-

ate

n
s

a

til

f5p. At this point,u jumps to 0, and the mean-field energ
begins to decrease for increasingf. So asf varies from 0 to
2p andu jumps as described above, we find thatr/25(2u
1f)/2 varies fromp to 3p/2 to p/2 to p. In order foru to
jump like this, the spinon states withr/25p6p/2 must be
degenerate.

Now, we can look at the Chern number of the syste
assuming noninteracting spinons. It then amounts to a Ch
number calculation of the fermionic wave functions. Assu
ing noninteracting spinons, we can get the change inC in
Eq. ~39! from the change in the spinon wave functions.

While in general the wave function gets multiplied by
matrix on moving around the original torus, only the U~1!
part of this matrix adjusts in response to changes inf. The
U~1! part of the matrix is just the angleu. Carrying out the
calculation on the enlarged torus, we find that the bound
conditions become

cu
†~x,y!5eir1

u
cu

†~x14p,y! ~43!

and similarly for down spinons.
So we wish to compute

1

2pE E K ]c

]r1
u,dD U ]c

]r2
u,dD ]r1

u,d

]f1

]r2
u,d

]f2
df1 df2 ~44!

summed over all spinon wave functionsc.
In Eq. ~43! the periodicity inf seems obvious even with

out u, as on the enlarged torus the periodicity of the spin
wave functions in response to a twist in boundary conditio
is halved in both directions. However, we have introduc
the degeneracy of 2 on the enlarged torus representing
fact that on the original torus the wave functions are perio
in (r1 ,r2) with periods (0,2p) and (p,p) but not with pe-
riod (0,p), and as a result only half the possible wave fun
tions on the enlarged torus are physical.

In order to keep the wave function in the physical sect
u must jump discontinuously byp as f changes, and as
result for a given spinon state we only integrate Eq.~44! over
half the torus of possible phases (r1 ,r2). The fact of inte-
grating over half the torus, or equivalently the fact that t
Landau levels contain one physical and one unphysical w
function, does not prevent a defining of the Chern num
for the spinon wave functions. Whenu jumps it connects two
degenerate states, and so the contribution of Eq.~44! to Eq.
~39! must still be quantized as an integer which we can s
refer to as a Chern number for the spinon.

Within the lattice formulation there are no further conce
tual problems and we must simply compute the integrals,
within the continuum Dirac equation we must account for t
negative energy sea. The correct understanding of this
found by Haldane.41

One must add a massive regulator field, and compare
difference in Chern number between the massless and m
sive fields. The massive field has the same Landau le
spectrum, but no zero mode. So the difference in Chern n
bers is due to the zero mode, which sits in the lowest Lan
level. There are two states in the lowest Landau level,
physical and one unphysical. It is the physical state that c
3-11
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ries the Chern number of61, giving the ground state of th
spin system a net Chern number of61, as seen
numerically.19

We expect that the low-lying states will continue to ha
an odd Chern number, in agreement with numerical resu
If a particle-hole pair is excited within the Dirac band ne
the Dirac point, the Chern number will not change. If t
particle is excited from the band edge, the Chern number
change by62. Only if a particle is excited from the flat ban
to the Dirac band can the Chern number change by61,
giving rise to an even Chern number. However, these st
will be much higher in energy. One can also consider exc
states with net Abelian flux be equal to 3p,5p, . . . .

It is very interesting to think about these possible exci
states which may have more thanp flux for the Dirac par-
ticles. The two-component particles carry asz index, which
will couple to the magnetic field. If a large field is induced
number of spinons of the samesz will be produced in the
zero mode, so that the total number of spinons in the z
mode is odd. For one spinon we had one filled Landau le
with one particle. With several spinons one might be able
construct fractional Hall states of spinons.

We have argued that in the thermodynamic limit the s
tem will acquire a mass. On an odd-size lattice, the m
term must change sign somewhere, as the lattice canno
tiled with 12-site unit cells. At the domain wall where th
mass changes sign, one expects to trap a midgap stat
there still should be a zero mode, even with mass. This m
permit the nonvanishing Chern number to survive.

Returning to even system size, let us consider the
dependence of the triplet gap. The energy of the spino
E5A(v fk)21m2. In the absence of a solenoid flux, th
smallestk would be equal to zero, but by creating a soleno
flux the energy can be improved and the smallestk will be of
order the inverse linear dimension of the system, orN21/2.
As a result, the triplet gap is decreasing with system size
agreement with numerics. By twisting the spin bounda
conditions one may be able to reduce the gap toSz561
excitations. It would be interesting to look for this effect.

Further, in the presence of these solenoid fluxes, o
fermionic states withkÞ0 will become approximately de
generate with thek50 fermionic state. This means that
spatially varying mass term which scatters betweenk states
can open a gap just as well as the spatially constant m
term can. This will be important when we consider the lo
energy Goldstone excitations on finite-size systems, belo

IX. GOLDSTONE MODES, TOWER STATES,
AND NUMERICS

After breaking a symmetry and giving mass to the ferm
ons, the system is left with low-energy pion and gau
modes. Above, we argued that the gap for these modes is
small to be seen in numerical calculations. In this section,
will treat these modes as gapless and discuss the en
spectrum that results for finite-size systems to compare w
numerical calculations.

It is known42 that breaking a continuous symmetry giv
rise to two kinds of low-energy modes. First, there are
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Goldstone modes with nonzero wave vectork. In the case of
our pion and gauge modes, the energy is then proportiona
k. For a (211)-dimensional system withN sites, the lowest
k is proportional toN21/2 and so the lowest Goldstone exc
tation has energy proportional toN21/2.

Second, there is the ‘‘tower’’ ofk50 modes. These cor
respond to global rotations of the entire system and have
energy proportional toN21. Let us note that in this casek
50 refers to the momentum with respect to the 12-site u
cell; at the end of this section we will discuss the repres
tations of these tower states under the space group of
kagome´ lattice and compare to the states found numerica

Numerical diagonalization43,5 of the triangular lattice
Heisenberg antiferromagnet, which has Ne´el order, shows
very clearly the distinction between the tower of states a
thekÞ0 states~spin waves!. However, no such distinction is
found in the kagome´ lattice,8 no separation between low
energy modes of energyN21 andN21/2. Within our model,
this is to be expected forN536. Since the effective action o
the pion and gauge fields arises from integrating out the
mions, this action must be approximately relativistic, w
the same velocity as the fermions. So even without expl
calculation, we can obtain the energy of the lowestkÞ0
mode directly from the velocity appearing in Dirac equatio
For the largest numerical diagonalizations, systems withN
536 total sites or 3 of our 12-site unit cells, this energy tur
out to be of order the triplet gap, and so this Goldstone m
is too high in energy to appear in the continuum of lo
energy singlets.

Within our approach, the only low-energy states that w
be observed in numerics are states in the tower, due to
energy of the lowestkÞ0 Goldstone mode. This resolve
what would seem to present a contradiction in any ot
theoretical approach based on a spontaneously broken
tinuous symmetry, that one should expect to find both tow
and Goldstone modes. Within the next section we will a
dress the density of states of the higher Goldstone mode

We can obtain the energy of the tower states from E
~31!, assuming thatp(x) is constant. Then we get, assumin
small mp

' ,

L5
NL0

22

g2
~] tp

a!2, ~45!

whereNL0
22 is the area of the system. The states of this w

be spherical harmonics, perturbed by a mass term. Withg2

}m21, these states will have an energy proportional to

L0
2

Nm
~46!

and so for sufficiently largeN will be below the triplet gap.
A more precise knowledge of the prefactors will be need
to determine whether this is low enough to correspond to
low-energy modes seen numerically.

There will also be ‘‘tower’’ states for the gauge field
which correspond to different solenoid fluxes through t
system. The energy for these can be obtained from Eq.~29!
assuming thatAm is constant over the sample. To get th
3-12
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energy for these we have to remember that the gauge g
is compact, and realize thatFmn is derived from a set of U~1!
matrices with a lattice lengthL0. Then, the energy of the
gauge states is proportional to

m

N
, ~47!

which is definitely below the triplet gap and certainly sm
enough to be the origin of some of the low-energy modes
numerics.

There is one puzzle involved in the tower states. It w
observed numerically that, on 36-site samples, the energ
the lowest-energy state of the system at given total mom
tum did not vary appreciably across the Brillouin zone19

This may seem to be in contradiction to the hypothesis
the low-energy states come from the tower. However, fo
36-site sample there are only 4 inequivalent points in
Brillouin zone of the system. One of these is atk50, while
the tower states with constant, nonvanishingM12 preserve
translational symmetry on the 12-site unit cell, but bre
translational symmetry on thekagome´ lattice with 3-site unit
cell, and give one more point in the Brillouin zone. To obta
the last two points in the Brillouin zone, one must inclu
states corresponding to other symmetry breaking patte
with staggered mass, and an enlarged unit cell.

One way to obtain these states is that for small syste
there can be other symmetry breaking patterns with s
gered mass, breaking translational symmetry in differ
ways, as discussed at the end of Sec. VIII on finite-size
fects. This would imply that for sufficiently large syste
sizes one would find a more significant variation in the e
ergies across the Brillouin zone, as only some of the st
could be obtained from the tower. One would also find
36-site systems that the spinon solenoid fluxes would cha
under a twist in spin boundary conditions, and so the fer
onic states at differentk would lose their degeneracy, leadin
to a change in energy of some of thekÞ0 states when vary
ing boundary conditions.

Another possibility is that, even for infinite system
short-distance effects lead to the production of a stagge
mass pattern, in the style of the ‘‘perfect hexagon’’ stat16

discussed above, at the end of Sec. III. The staggered-m
pattern gives rises to an enlarged unit cell, and will produ
low-energy states at the other points in the Brillouin zone

From the mean-field arguments, we suggested theM12
dimerization pattern. However, this is just a qualitative arg
ment; the RG procedure requires the fermions to open a
by some form of dimerization but does not specify t
dimerization pattern. Looking at the symmetries of the lo
lying states found in numerics, we see that theM12 state can
be found at low energy, but is not the lowest-energy exc
tion above the ground state. The lowest-energy excitation
the symmetries to arise from a staggered-mass state, w
unit cell of more than 12 sites. The theoretical calculation
the short-distance effects to determine whether some form
staggering in the mass is preferred would require going
yond the mean field and including projections on a la
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number of sites; the projection would be very involved a
we have not yet been able to perform these calculations

X. FURTHER COMPARISON WITH NUMERICS

In addition to the existence of the low-energy states,
make further comparison with numerics for the many-bo
density of states and the dimer-dimer correlation function

Assuming the existence of a low-energy bosonic mo
with linear dispersion relation, so that the single-particle d
sity of states scales linearly with energy, one would exp
the many-body density of states at energyE to scale for large
systems as an exponential ofE2/3. The quadratic behavior o
experimentally measured specific heat is in agreement w
this.

In contrast to this result within our approach, it has be
observed numerically that the density of states scales a
exponential ofN.8,19 While this exponential scaling has bee
given a theoretical explanation,23 we feel that it is unlikely
that the density of states continues to scales as an expo
tial of N in the thermodynamic limit, as any system
weakly interacting low-energy modes with a dispersionE
}ukuq, for any powerqÞ0, will have a density of states
scaling more slowly thaneN. Only if the system has gaples
nondispersive modes would there be a density of states s
ing exponentially withN; this possibility seems unlikely and
is not seen in any ordinary field theory, but would be ve
striking if it were true. If true in the thermodynamic limit, i
would contradict our approach.

However, since we have argued that the low-energy st
in numerical calculations are largely ‘‘tower’’ states, it
impossible to extract the density of states in a large sys
from the finite-size density of states. The true exponen
growth can only be seen when thekÞ0 modes become im
portant. Thus, we feel that the scaling of the density of sta
as an exponential ofN seen in numerics8,19 is not descriptive
of the true thermodynamic limit, and is instead a result o
proliferation of a large number of different pion modes, wi
different dimerization patterns and different gauges mode
the tower.

In this regard, the numerically measured19 quadratic
many-body density of statesat very low energies does no
say anything about the dispersion of the Goldstone mod
Instead, it is a reflection of the fact that if a finite number
‘‘tower’’ modes are excited, then the many-body density
states is a power law.

For the dimer-dimer calculations we can make a m
direct comparison with a numerical calculation of these c
relations on a 36-site system.7 In the thermodynamic limit,
the dimer-dimer correlation function should be long rang
reflecting the existence of a nonzerom12.

However, there is also a short-range fermionic contrib
tion to the dimer-dimer correlation functions, and for 36-s
systems, so that the system size is smaller than the cor
tion area of the fermions, we can ignore the effect of a n
zero m12 on the dimer-dimer correlation function and d
rectly study the correlation functions of massless fermion

If we are interested in a dimer-dimer correlation functi
3-13
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TABLE I. Comparison ofC( i , j )(k,l ) between numerical and spinon calculations. See Fig. 1 for labelin
points in unit cell. See text for discussion of various approximations.

( i , j )(k,l ) Numerics Theory I Theory II Theory III ~m!

~6,7!~1,8! 0.04337 0.08242 0.06249
~6,7!~8,2! 20.01416 20.01107 20.001318 20.01686 ~1!

~6,7!~9,3! 20.00646 20.001041 20.0004279 20.022153 ~8!

~6,7!~10,3! 0.01178 0.001043 0.0005004
~6,7!~10,4! 20.01045 20.001040 20.0005008
~6,7!~11,5! 20.06510 20.02499 20.0112132 20.083829 ~12!

~11,10!~7,8! 0.01221 0.018885 0.00938
~11,10!~9,8! 20.00113 20.01824 20.0025 20.01395 ~3!

~11,10!~2,9! 0.00108 0.0001619 0.00559 20.007171 ~3!

~6,7!~11,4! 0.01322 20.0009778 20.000327 0.001416 ~12!

~11,10!~2,8! 0.00045 20.004377 20.001964 0.00386 ~9!

~6,7!~9,2! 0.01322 20.0009788 20.000328 0.001415 ~8!
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C( i , j )(k,l )5^~SW i•SW j !~SW k•SW l !&2^~SW i•SW j !&^~SW k•SW l !&,
~48!

we can express this, under the assumption of weak sp
interaction, directly in terms of the spinon Green’s functio
Writing each spin operator in terms of spinons and cons
ering various contractions we obtain

C( i , j )(k,l )524 Re~Gi j GjkGklGli !24 Re~Gi j Gjl GlkGki!

2Re~GikGk jGjl Gli !1
1

2
uGiku2uGjl u2

1
1

2
uGi j u2uGjl u2. ~49!

To obtain quantitatively accurate answers, we must incl
the effects of projection within an approximation like th
used above, projecting on sitesi , j ,k,l , requiring that there be
one fermion on each of these four sites. We have done th
three different levels of approximation.

At the lowest level, we have noted that the probabil
that the wave function before projection will have one fe
mion on each of these sites is roughly the product of
probability that it will have one fermion on each ofi , j by the
probability that it will have one fermion on each ofk,l .
Given that uGi j u50.221 383 . . . for neighboring i , j , we
should replace Eq.~49! by

C( i , j )(k,l )5kF24 Re~Gi j GjkGklGli !24 Re~Gi j Gjl GlkGki!

2Re~GikGk jGjl Gli !1
1

2
uGiku2uGjl u2

1
1

2
uGi j u2uGjl u2G , ~50!

where

k5~1.9264!2 ~51!

is the desired factor of@4/(1116uGu4)#2.
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At a more refined level, we have carried out the comp
tation projecting on all four sites exactly. At the third level
approximation we have started to project out onto additio
sites as well. We have calculated the correlation function
this approximation, in the limit of an infinite system size, f
pairs of bonds that can both be written in the same 12-
unit cell. We compare the result to results from numerics
a 36-site system.7 We do not consider pairs of bonds th
cannot be written in the same unit cell, as at this separat
finite-size effects will become important in the numerics a
the comparison will become impossible. We could in pr
ciple improve on our comparison with numerics by comp
ing the spinon correlation functions in a 36-site system a
in which case it should be possible to compare all bonds,
we have not done this.

The results are shown in Table I, where in the colum
‘‘Theory I’’ we show the simplest approximation, and in th
column ‘‘Theory II’’ we show the second level of approx
mation. Qualitatively, the theory works quite well on th
signs even at this level, getting 9 out of 12 correct. The o
signs that the theory gets wrong at this level occur when
theory predicts a very small value (,0.01) for the correla-
tion function.

To improve this result, we included the third level of a
proximation in which we also project out onto a fifth site~m!
for those dimer correlation functions such that there is o
and only one site~m! which neighbors both dimers. In th
column ‘‘Theory III’’ we show this level of approximation
as well as the particular site~m! that we picked. Once this is
done all the signs work out for 11 out of 12 correlations, a
the qualitative agreement is almost perfect.

The magnitudes work out less well, as most of the dim
dimer correlations are far too small within the spinon calc
lation. However, RVB calculations are quite poor at getti
long-range correlations without including some gauge fl
tuations. For example, in the one-dimensional Heisenb
antiferromagnet, the spins on the same sublattice
uncorrelated.44 By including gauge fluctuations, this resu
can be substantially improved.45,46
3-14
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For the largest positive correlation functionC(6,7)(1,8), the
magnitude does work out well even at the simplest appro
mation. However, for the largest negative functi
C(6,7)(11,5), the magnitude is off by roughly a factor of 5
until we go to the third level of approximation, at whic
point the magnitude becomes roughly correct. We can h
that a better inclusion of fluctuations will improve these
sults, just as it has done for the one-dimensional chain.
haps projecting on an entire 12-site cell would give be
results, as suggested by the improvement in the result
column III. Detailed calculations of projection for some tri
wave functions on thekagome´ lattice have been performe
by Hsu and Schofield.20 A similarly detailed calculation for
our parent state would be of interest.

XI. CONCLUSION

In conclusion, we have constructed an RVB state on
kagome´ lattice, the ‘‘parent state,’’ which has a Dirac stru
ture. Consideration of the various mass perturbations to
Dirac equation unifies several other previously sugges
long-range states of thekagome´ lattice Heisenberg antiferro
magnet, with the exception of the BCS~Ref. 20! state and
the bosonic Sp(2N) state.17

While at the projected mean-field level the chiral sp
liquid appears to be the best RVB state, we have argued
renormalization group treatment that fluctuations provid
mechanism for stabilizing a state with a nonchiral mass te
The numerical evidence also argues against a chiral state
have then proceeded to explicit comparison with numer
taking as input only one quantity, the triplet mass gap.

The physical idea behind our construction is that, giv
massless fermions, the system must ultimately try to br
some symmetry to give mass to the fermions. There
many ways of doing this, but they all correspond to eith
introducing chirality or to introducing some kind of spin
solid state in which the system dimerizes thet i j . If we ig-
nore the chiral state, we must have some kind of spin so
we have proposed one possible spin solid and its atten
pseudo-Goldstone excitations. Other spin solids are poss
and may in fact be realized in favor of our proposal, but
general principle that the massless fermions must brea
symmetry and produce pseudo-Goldstone excitations sh
be robust. Two other possibilities for spin solids that must
considered are the constantM6 solid and the perfect hexago
system with spatially varyingM6.

Experimentally, it may be possible in principle to dete
the spin-Peierls order. Although this as appears as long-ra
order only in four-spin correlation functions, it should giv
rise to a short-range oscillatory piece in the spin-spin co
lation function. Since the spin-spin correlation function d
cays exponentially and the dimerization is weak, this wo
be very difficult to detect, but in principle it is possible v
neutron scattering.

Theoretically, more work is needed on the fluctuatio
about the parent state. Doing a Gutzwiller projection of
wave functions on a 36-site lattice should enable much m
direct comparison with numerics, especially for the dim
dimer correlation functions.
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Numerically, it may be possible to confirm the identific
tion of the low-energy states with tower states from symm
try breaking. If one computes a dimer-dimer correlati
function with the same pair of sites taken at two differe
times, it may be possible to see the oscillations in the m
field. This may be difficult, though, given the relatively wea
amount of dimerization present and the problem of extra
ing the contribution of the mass term to dimer-dimer cor
lation functions from the background of the fermionic co
tribution. Similarly, one can try to compute a susceptibil
to spin-Peierls ordering by explicitly dimerizing couplin
constantsJ in Eq. ~1!. If indeed the system wishes to spo
taneously order in the thermodynamic limit, then the susc
tibility to dimerization should be large. This may make
possible to unambiguously determine whether the sys
prefers theM12 or other ordering pattern.

It might also be interesting numerically to look at mod
systems in which the Hamiltonian has additional terms c
pling to the chirality operator on each triangle. This mig
make it possible to probe the stability of the system to
chiral mass term, as well as providing some interesting st
in which the Dirac fermions are moving in a large net ma
netic field.
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APPENDIX: AN INTERESTING FLATBAND CASE

When the system has fluxp/4 through each triangle an
flux p/2 through each hexagon the band structure beco
very peculiar. Using a 12-site unit cell, we find that the lo
est band is doubly degenerate and almost exactly flat.
next band above that is quadruply degenerate and exa
flat. The higher bands, which are all empty, are not flat.

It is very unlikely that any such state could be stabilize
We have argued above the thekagome´ lattice is not a chiral
spin liquid. However, it may be possible to add chirali
operators to the Hamiltonian to tune the flux through t
triangles.

In this case, the physics of the flatband state would
very amusing. We are used to the fact that in, for examp
the one-dimensional Heisenberg antiferromagnet, one
deduce that the spin-1 excitations are composite object
two spinons by looking at the excitation spectrum. Since
energy of the spin-1 object is a sum of two different energi
there is a continuum of possible energies. When, howe
one of the two spinons is a hole excitation from a flatba
the energy is constant over the band, and there is no sig
the composite nature of the spin waves when looking at th
energy spectrum. One would have a situation with o
spinon hopping freely over the lattice, while the other spin
sits unmoving on a given unit cell.
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