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We show that there exists a long-range resonating valence (B8) state for thekagomeattice spin-1/2
Heisenberg antiferromagnet for which the spinons have a massless Dirac spectrum. By considering various
perturbations of the RVB state which give mass to the fermions by breaking a symmetry, we are able to
describe a wide-ranging class of known states onktgomelattice, including spin-Peierls solid and chiral
spin-liquid states. Using a renormalization group treatment of fluctuations about the RVB state, we propose yet
a different symmetry breaking pattern and show how collective excitations about this state account for the
gapless singlet modes seen experimentally and numerically. We make a further comparison with numerics for
Chern numbers, dimer-dimer correlation functions, the triplet gap, and other quantities. To accomplish these
calculations, we propose a variant of the (8 theory which enables us to include many of the effects of
Gutzwiller projection at the mean-field level.
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I. INTRODUCTION Variational RVB wave functions including ¢ order have
also been consideréd.
The spin-1/2 Heisenberg antiferromagnet on klagome An RVB state on th&kagomdattice would be particularly

lattice is a good candidate for a two-dimensional quantun@ttractive, given the intensive work on RVB states on the
system with a spin-disordered ground stathile it appears  square latticé” especially in connection with high

that on squareand triangulat® lattices an antiferrmomag- Materials’® In the absence of doping, the square magnet
net will acquire Nel order, on thekagomelattice strong eventually acquires N order and the spinon excitations
numerical evidence has accumulated that the system is spfisappear from the system. Since Kagjomeattice does not
disordered, as seen by the existence of a gap-to-triplet exccquire Nel order, it could be a very important model for a
tation and through consideration of the spectra of finite-size&pin-liquid or spin-solid state.

samples. Numerically, one finds a continuum of low-energy ~ The idea behind the present approach is a to start with a
states below the triplet gdpThe continuum of low-energy l0ong-range RVB treatment of thkagomelattice and con-

excitations provides a great puzzle to theory in the absenc@ider various ways of gapping the spinon excitation spec-
of an obvious broken symmetry. trum. We will first construct a “parent state” which will be

There are good experimenta| rea”zationg(agorﬁesys_ the best RVB state that does not break time-reversal symme-

tems, despite the presence of additional couplings, includin§y or any lattice symmetry.
the jarosites and SrCrGaO. While in iron jarositésthese We will then demonstrate an interesting massless Dirac
additional couplings produce long-range order, in deuteroStructure for this state. Various other known RVB states can
nium jarosité! and SrCrGad? no long-range order is seen. Pe obtained by perturbing the parent state, lowering the sym-
Additionally, in SrCrGaO a quadratic specific heat and verymetry and giving mass to the Dirac particles, so that the
weak field dependence of the specific hgdf are in agree- Pparent state unifies a wide class of states. Physically, we
ment with the picture of a continuum of low-energy singlet €xpect that the system will attempt to give mass to the Dirac
excitations seen in numerics, suggesting that the latter twBarticles and open a gap, picking out one of these other
compounds provide good realizations of #egomeantifer- lower-symmetry states. We will discuss the symmetry break-
romagnet. ing through a renormalization group treatment. We will ob-
Given the lack of spin order, resonating valence bondain some kind of spin-solid state and some low-energy
(RVB) ideas seem natural for this system, and indeed haveoldstone and gauge excitations, which we will argue pro-
stimulated much theoretical work on the system. Laxge- Vide the low-energy degrees of freedom seen experimentally.
calculations based on $N) have been used to suggest a The RVB states can be thought of by a decoupling proce-
spin-Peierls stat¥ Calculations based on Sp{} have sug- dure, in which we decompose spin-1 operators into pairs of
gested a phase with deconfined, gapped, bosonic splthonsSPin-1/2 operators. A general review of this procedure can be
Chiral states have also been propo¥edyt do not account found in the book by Fradkif'. Take a Hamiltonian
for the excitation spectrum and also are in disagreement with
the rapid decay of chirality-chirality correlation functions ..
seen in numeric¥!® States with BCS pairing have been H=> JSS;, (1)
suggested but again do not account for the excitation spec- &
trum; due to the nonbipartite nature of thkagomelattice, ] ) .
these states amot equivalent to flux state® In addition to ~ Where the sum extends over n$'9hb0“_ng sitgs
the long-range states, short-range RVB states based on a re-Introduce the spinon fieldg,(i), (i), wherea=u,d
duced Hilbert space of diméfs®*have also been considered labels up and down spinon fields. Let the spin operapke
and provide some explanation for the gapless continuuntepresented by bilinears in the fermion operators Sas
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=y}(1)o™ys(i) where o represents the Pauli matrices. The
Hamiltonian which is bilinear in the spin operators becomes
quartic in the spinons. 0

We can then introduce a Hubbard-Stratonovich figjd
=t such that

2
H= T i a. H.c. - i 2. 2 12
& Wity +Hel+y 2 [yl @ TC

The Hubbard-Stratonovich field decouples the Hamiltonian 1
into terms which are quadratic in the spinons. 5
By taking a mean field i, minimizing the total energy of 0
the fermions and the Hubbard-Stratonovich field, we obtain
an RVB state. One must at some point project results onto
the physical space in which each site is singly occupied. The
mean field int defines the expectation value of the local 4
singlet pairing. FIG. 1. Twelve-site unit cell, with fluxes indicated. Small num-
Later, we will find this projection to be eXtremer impOI’- bers are used to label points for reference.
tant. In the absence of projection, the ideal mean-field state is
almost always found by taking a dimer covering of the
lattice?® with tjj nonvanishing only on the given dimers.
Projection can stabilize RVB states, so although our first Although the short-range RVB calculations provide one
calculations will ignore the effects of projection, in a naive starting point for thekagomdattice antiferromagnet, we will
mean field, we will later discuss a projected mean field thabe interested in looking at long-range states instead. Cer-
includes some of the essential effects of projection. tainly, the short-range RVB calculations themselves suggest
We will then have to proceed beyond mean-field solu-that long-range antiferromagnetic correlations are important;
tions. We will consider a functional integral with fielggi) the variational energy of these states improves when second
andt;;, fluctuating about a saddle point of the action. Thereneighbor dimers are included. Further, while egomeat-
are a large number of possible fluctuations;jn including a  tice has a gap-to-triplet excitation, this gap is about an order
set of pure gauge fluctuations, as well as a set of gauge fieldsf magnitude smaller thad; from a short-range calculation
Most other fluctuations can be ignored because they do natne might expect a gap of orddras that is the energy to
contribute to the low-energy dynamics. However, there willbreak a dimer. However, Mila has suggested that within a
be a particular set of fluctuations tf) that produce a mass short-range state it is possible to have a triplet gap much
for the fermion field. Although these fluctuations are notsmaller thanl,?® so the small triplet gap does not necessarily
gapless, we will retain these fluctuations due to their impactule against a short-range state.
on the low-energy dynamics of the fermion field. We will see  The best RVB state on tHeagomeattice antiferromagnet
using a renormalization group that the effective action ofis a chiral spin liquidt®2° A similar chiral staté3!was ob-
these fields can differ greatly from that suggested by thdained using a hard-core boson representation of the spins
mean field. and transmuting the statistics from bosonic to fermionic us-
To outline the paper, we will first describe the parenting a Chern-Simons field. However, numerical calculattdns
state, and then discuss how to perturb the parent state to not support a large chirality-chirality correlation function
obtain other proposed RVB states. Then we will discuss naer expectation value of the chirality operator, which would
ive and projected mean-field theory treatments of thesseem to rule these states out. So we will look for the best
states. We will the proceed to a field-theoretic treatment oRVB state that is not chiral.
fluctuations about the mean field and a renormalization Assuming that we are looking for a long-range RVB state
group that will suggest one particular symmetry breakingin which allt;; have the same magnitude, the only choice we
pattern. We will discuss the pseudo-Goldstone and gaugeave is how much flux to put into the system. The state we
modes that arise from this symmetry breaking and thechoose involves puttingr flux through the hexagons and no
mechanism that ultimately gives them a very small energylux through the triangles. This state offers a better mean-
gap. field energy than any other nonchiral RVB state, including
Next, we proceed to a discussion of finite-system-size efthe state with no flux through the system at all.
fects as a first step in comparison with numerics. These ef- The unit cell of thekagomelattice consists of three sites
fects lead to an additional flux for odd system sizes whichon a triangle. Once we add flux to the system, the unit cell
leads to a nonvanishing Chern number for odd system sizedoubles, and requires six sites on two triangles. We will find
We will then compare the low-energy bosonic modes fromit convenient to double the unit cell again, to 12 sites, includ-
the field theory to the low-energy singlet modes found ining six sites on a hexagon and the six sites which neighbor
numerical calculations as well as checking dimer-dimer corthe hexagon. This cell is shown in Fig. 1. Tkegomeattice
relation functions and many-body density of states. is made up of a triangular lattice of these 12-site unit cells.

II. PARENT RVB STATE
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Eg=[vi(axket ayky) +M]e, ©)

whereM is some matrix, the projection @t;; onto the space

of the four states at the Dirac point. It may be shown that the

perturbationM will be most efficient at opening a gap when

it anticommutes withe, , «, . By efficient, we mean that we

wish to maximize the gap for a given ™?), as a first step

to maximizing the gap for givepst;;|. Since there is only a

16-dimensional space of matricks we can easily charac-

terize all matrices that have the needed anticommutation
FIG. 2. Band structure for the parent state. We scan along varyproperty; it is a four-dimensional vector space.

ing momenta in thex direction, at vanishing momentum in the  We will write three of the perturbations as matridds,

X/2+ \/3y/2 direction. for i=1,2,3. In terms ofx matrices, they will be

We have numbered the points in the cell for later reference. Mi=a,, M=, M3=ga,aya,. (6)

For now, let us assume that we pidksuch that|t|=1
within our RVB state. Then, the band structure for our RVB These perturbations anticommute with each other; in fact,
state is shown in Fig. 2 scanning along the given line ofone can make a change in basis in the Dirac equation which
momenta in the Brillouin zone. There is a degeneracy ofeavesa,,a, unchanged, but produces continugdg3) ro-
states: the bottom line in the figure actually consists of foutations in the space dfl;,M,,M3. This continuous symme-
bands, while the other four lines in the figure consist of twotry is only valid at low energy; it will be broken to a discrete
bands each, providing a total of 12 bands. At (0,0), foursymmetry by lattice effects as discussed below. By taking
bands meet at energy less than zero and another four meetMt=2;m;M;, for some numberm;,m,,m;, we open a gap
positive energy. Near this point the spectrum becomes relaqual to\/Ei(miz). We will refer to these as nonchiral mass
tivistic. terms.

The particles occupy the lowest six bands of the system, The fourth perturbation is of a different sort. It M
meaning that where the bands meet the spectrum becomesm M, with M =iaya, (here,c stands for chiral and we
gapless. The system can gain energy by perturbing about owill refer to this as a chiral mass teymThis perturbation
given RVB state; we expect that the greatest gain in energireaks parity and time-reversal symmetiM,. commutes
comes from opening a gap. For this reason, we will study thevith M,,M,,Mj. As mentioned above, we are interested in
Dirac point and look at possible perturbations to the Diracthe most efficient way for the system to open a gap; sMge

equation. ) does not anticommute witM;, it is most efficient for the
At the Dirac point, the Schrtinger equation for the fer- system to take either purely chiral mass or purely nonchiral
mions becomes mass, so that;=0 or m.=0.
Next, we would like to ask what perturbations in the
Ey=vi(aktayk))y, @ wil produce the desired mass matiik We will find that to

wherey is a four-component spinor, and the matriegsa, produceM; requires dimerizing the system by making the

are anticommutingx matrices. The particular basis chosenMagnitudes of thet;;| nonuniform; to produceV; requires
for ¢ and for thea matrices is unimportant. We find by adding additional fluxes to the system. Clearly, t.here is a
explicit computation that large degeneracy here, as there is a only 16-dimensional

space of matriced while in a given unit cell there is a
vi=(0.40828 .. .)|t|. (4) 48-dimensional space of perturbationgfa While some of
the degeneracy is due to the large number of possible gauge
Given the Dirac equatiof3), we would like to consider transforms ont;;, this does not completely alleviate the
the effect of perturbationst;; on the low-energy structure. problem. Again, the question of efficiency becomes impor-
This analysis will enable us to focus on those fluctuations irtant: for eachM, there is a class of;; which produce the
tj; which have the greatest impact on the low-energy dynamelesired perturbation, but only one element in the class mini-
ics and which must be kept when we proceed to a fieldmizesEi,j|tij|2. We will find one unique perturbation it;
theory treatment of fluctuations. (up to arbitrariness in gaugevhich produces the desired
From Eg.(2), the system pays an energy cost equal tomass matrix.
(1/J)|5tij|2, but it can gain energy by opening a gap for the  The perturbation that we will pick favl ; is shown in Fig.
Dirac particles. As a result, we look for the perturbations3. One can see that all the horizontal bonds have been either
which open the greatest gap for the Dirac particles for giverdecreased or increased in strength, such that along a horizon-
|b‘tij|2. Let us first proceed algebraically, considering pos-tal line the bonds alternate in strength while horizontal bonds
sible perturbations to the Dirac equation which will open awhich are in a vertical column all have the same strength.
gap, and only then ask how to obtain these perturbations This perturbation is a dimerization of tig. The spins

from 6t;; . form singlets most strongly across the larggst so that
A given perturbationst;; will perturb the Dirac equation dimerization oft;; tends to produce a spin solid and changes
to the long-range RVB to a short-range set of singlets.
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FIG. 3. Mass perturbation to produdé,. Bold lines are in-
creased in strength; dotted lines are reduced in strength.

This mass term breaks rotational and translational sym- FIG. 4. Mass perturbation to produdé,,. Bold lines are in-
metry of the lattice. We will pickM, and M5 to be lattice  creased in strength; dotted lines are reduced in strength.
rotations of M;. The continuous symmetry of the Dirac
equation will then be broken at the lattice level to a discrete It is interesting to compare to above characterization of
symmetry of permutations ah,,m,,m; under lattice rota- Possible perturbations in terms gfmatrices to the situation
tion, while lattice translations change the sign of any two ofin the m-flux phase on the square lattice, where there is again
the three mass terms;,m,,m;. We will find later that @ Dirac spectrum, and again various mass terms can be
while we obtain symmetry breaking and produce a mass, thistroduced®? We find that we are able to introduce one non-
discrete nature of the lattice group will leave us with only chiral mass term by dimerizing the horizontal bonds of the

pseudo-Goldstone modes. square lattice, so that the horizontal bonds alternate in
There are two mass terms which are symmetric undeftrength as one moves horizontally along the lattice; another
rotations. They are mass term can be introduced by dimerizing the vertical

bonds. In the limit of extreme dimerization, these states cor-
respond to short-range RVB states in which the dimers are

lzzw, (7)  stacked on top of each other, and all lie either horizontally or
V3 vertically 3 By taking sums of these two mass terms, we can
produce a short-range state in which dimers resonate around
—M;—M,—Ms, a square. The final nonchiral mass term can be obtained by
Mg=—M,= , (8) placing an on-site potential on one sublattice of the square
V3 lattice; this corresponds to introducing &leorder into the

systent:* Due to the highly frustrated nature of thagome
where “12” denotes the fact that thg are strongest on the |atice, in this paper we will not have any such terms involv-
12-site loop surrounding the unit cell, while “6” denotes the ing introducing on-site potentials.
fact that the bonds are strongest on the hexagons and tri-"For the square lattice, the chiral mass term can also be
angles. We show the perturbation tip to produceM;, in jntroduced. It requires adding additional couplings to the sys-
Fig. 4. ) ] o o tem, which connect diagonally across a given plaquette, and
To estimate dimerization later, it will be useful to know {en insertingm/2 flux through the triangle that is formed

connect the change irto the eigenvalues of the mass matrix \yhen a particle traverses two sides of a plaguette and then
that arises. One finds that if the bonds on the 12-site loop arggsses the plaquette on the diagdfial.

increased byst, while those on the hexagons and triangles
are decreased by the same amount, then one produces a te[ji -5\ NECTION TO OTHER VALENCE BOND STATES
m;,M 1, in the Dirac equation wittm;,=1.5773% . . . 6t.
For calculations later, it will be convenient to transformto  From the parent state, it is possible to continuously con-
a basis ofy matrices. Definey,=pB, y;=pB«a;. Then M; nect to other possible valence bond states, using the mass
— BM; in the basis ofy matrices, and Eq6) is replaced by terms we have found above. Let us first consider the chiral
spin liquid and then the spin-Peierls solid of Marston and
Mi=ys, Mp=1, Ms=iys, (9  Zeng.®
Let us consider a state such that the flux through each
while Mc=1iv;yxy,. While the nonchiral mass terms anti- triangle is equal to¥ and the flux through each hexagon is
commute in thew-matrix basis, their commutation rules are equal tor—26. Then, asf varies from 0 tow/2 we con-
different in they-matrix basis. tinuously deform from the parent state to the chiral spin lig-
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uid. By looking at howt;; changes along this deformation,  The perfect hexagons are then supposed to form a lattice.
and then projecting this change onto the Dirac point, we findVe can obtain this lattice by taking the triangular lattice of
that for smallg, the perturbation exactly produces the chiral 12-site cells and placing perfect hexagons inside the 12-site
mass termM.. Let us note that a#= m/4 there is a highly cells on two out of the three sublattices of the triangular
interesting band structure, discussed in the Appendix, withattice. In this case the cells containing perfect hexagons
multiple flat bands. form a honeycomb lattice. This gives rise to a staggered
The chiral spin-liquid state improves on our parent state amass state with an 18-site unit cell. We produce a mass term
the mean-field level. Since we will argue below that fluctua-Mg on two-thirds of the system, so that the Dirac particles
tions stabilize our state against the chiral mass term, let uteel a netM¢ at zero momentum, as well as a fluctuativig
here analyze why the chiral state works at the mean-fielét finite momentum.
level, and provide a qualitative explanation of why fluctua- Later, we will show that numerical results suggest that, at
tions destroy the chiral spin liquid. least for finite-size systems, such a staggered mass may arise.
The idea behind the chiral state results from the “RokshaOur theoretical computations will be confined to a slowly
rules,”®® which argue that one should put flux/2 through  varying mass. The arguments of Marston and Zeng show that
every triangle, no flux through the hexagons, and have a totalne can also have a staggered mass. The computation within
flux of 7 through the loop of length 12 that surrounds aour approach of staggered versus constant mass will require
hexagon and its six attached triangles. These rules are den involved projection onto a large number of sites and has
rived from considering individual hexagons and triangles innot yet been done.
isolation, and minimizing the mean-field energy.
While our parent state appears to violate every one of the |v. NAIVE MEAN FIELD AND PROJECTED MEAN

rules, except the rule for the length-12 loop, the chiral spin FIELD
liquid is in perfect agreement with these rules. Let us focus ) ) )
on one isolated triangle, witht|=1. If there is no flux To compare the energies of possible RVB states, includ-

through the triangle, there are two negative energy statd§d the various mass perturbations of our parent state, we
with energy— 1. We can put two particles in one state andtUrn to the RVB mean field. When r"];_’ge look for a mean-field
one in another for a total energy ef3. By addings/2 flux, ~ Solution oft;; in Eq. (2), it is knowrf™ that the best mean
we have one state at energyy/3 and another state at energy field is a dimer covering. S.t'”' let us sFart by looking at
zero. By putting two particles in the lowest-energy state, w esu!ts of the_ nave meanjfleld calculgtlon, and then later
improve the energy of the system and introduce a chirality.provlde a_prOjected mean-ﬂelq calcul_atlon. .

Now, consider the triangle coupled to the rest of the sys- I,‘et us introduce the Green's functl'on betwger) si@s,
tem. If the rest of the system strongly scatters the particles iffefined to be the sum over all occupied fermionic states,
the triangle, it may no longer by appropriate to think of two 0
particles in one state and one in another. One must instead o) (10)
think of each of the two negative energy states of the triangle '
as each having average occupation of one-and-a-half paThe fermionic energy is then equal to
ticles. In that case, it is most advantageous to put no flux
through the triangle. z

So if the system to which the triangle is coupled is chiral, 2<i’j> Gijtji
so that all triangles in the system have the same #iZ,
then the chiral spin liquid may work. But if the triangle is Where the factor of 2 arises from the presence of up and
coupled to states which are not chiral, then the chiral spirffown species of fermion.
liquid is destroyed. One sees this even at the mean-field For our parent state, explicit calculation shows that, for
level; a state in which triangles have alternating flux-/2 is ~ nearest neighborisj,
significantly worse in energy than our parent state. Similarly,
if one introduces sufficiently strong dimerization,,, one |Gij|:0-221 38 ... . (12)
finds that the system is stabled against wegk Within the  From the mean-field condition for Eq2), we find for the
renormalization group(RG) below, we will consider the parent state that=0.221 383, so by Eq.(4)
fluctuations in the masses; and show that they help stabi-
lize the parent state against the chiral perturbation. v;=(0.090% . ..)J. (13)

The spin solid of Marston and Zeng can also be obtained
from the parent state. In this spin-solid state, the idea is to We find that within the projected mean field that the par-
look for dimer coverings which maximize the number of ent stable is unstable to all of the massive fluctuations, in-
“perfect hexagons,” hexagons on which three of the bond<cluding the chiral mass fluctuation which will drive the sys-
are covered by dimers. Attached to these hexagons are “deéem to a chiral spin liquid.
fect triangles,” triangles on which no bonds are covered by For infinitesimal perturbations, the different nonchiral
triangles. Clearly, we wish to increasg;| on the perfect masses all provide an equivalent improvement in mean-field
hexagons, while decreasing it on the defect triangles. Thignergy. To some extent this is due to the approximate low-
will project onto the mass terivlg on the 12-site cell that energy symmetry of the Dirac equation to rotating continu-
includes the given perfect hexagon. ously among the different mass terms. However, it is inter-

(11)
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esting that lattice effects do not break this symmetry. Thanass term. In the largi-limit the interaction between fields
reason is the discrete lattice symmetry. The change in energg absent; in this case, the mean-field solufiobecomes
for takingM =m;M;+m,M,+msMj is, for smallm, a qua- exact. However, we know that the chiral spin liquid is in
dratic form inm; . Let this form be disagreement with numerics, so that at some filtehe
interactions must destabilize that state; in the next section,

2 o mm (14) we will use an RG treatment of the interacting field theory
e T derived in this section to show how fluctuations destabilize
the chiral spin liquid folN=2.
The coefficientscy;,C2,,C33 in this form must all be the The approximation of Hsu ammounts to minimizing Eq.

same due to lattice rotation symmetry. Lattice translation15). By introducing an auxiliary field\;; we can “de-

symmetry permits one to change the sign of any two of theouple” this sum of functions o6;; and instead extremize
m;, and prevents a nonvanishieg for i #j. Therefore, for  the function

small perturbations the energy gain for introducing a mass

must be dependent only on the magnitude of the mass, not 2 TN
the particular mass term used. For larger perturbations, the ~ i (N9,
energy gains may depend on the particular mass term used,

and of all the nonchiral mass terms, the system gains thehere f(|A\|®) is a Legendre transform of|G|%/(1
most energy by a magdd ;. +16G|%).

Now let us turn to the projected mean-field. Instead of Then, we can interchange the order of extremizations, and
doing a full Gutzwiller projection, we will use an approxi- extremize this quantity ovey; before extremizing ovex;; .
mation introduced by Hstf: Within a variational Gutzwiller ~ We find that this is extremized 8t =\j; . Then we proceed
projection, one minimizes the energy of the Hamiltonjadh  to extremizing over the one remaining set of variablgs
Hsu's idea at the lowest level of approximation is to note thaBut sincet;; = \;; , we are are equivalently trying to extrem-

the Hamiltonian is a sum of term3S-S; over different  iz€ the function

neighbors,j, and, when evaluating the expectation value of

each of these terms, to perform the projection only on the > Gyt + ([t [?) (17)
given sitesi,j. At this level, the variational principle corre- ]

sponds to minimizing

(16)

over allt;; . Note, now, thaiG;;t;; is exactly the kinetic en-
1G; |2 ergy of the fermions. So, finally, we are trying to extremize
ij

— 15
1+16G;|* 19

<i§;‘> (éié")%_«% °

' ‘ H=2> [yi(Dtva(i) +Hel+ 2 (). (18

over all possible;; , whereG;; is determined by;; . () D
t 2

For our parent state, we find that_GfGi” /(1 Returning to the language of functional integrals, we can

4 _ . . . . _
+ 16Gy|*) = 0.282 ... . Bygoing to the chiral spin lid- ir6qce an S(N) field theory for which the Hsu projection
uid, the system improves the ground-state energy by rothIKrocedure becomes exact. We take a Ia¥gémit in the

2.9% within the projected mean-field approximation. By 90-number of fermion fields in Eq(18), so thata=1 N

ing to a state with staggeresi /2 flux through each ti- Then, we integrate over all possiltlg in that equation, un-
angle, the systems worsens t_he ground-state energy ka’oing the decoupling procedure above, and rewrite the result
roughly 1.4%. Within this approximation the system is stabIeIn terms of spi t We find

/ . ) . pin operators. We fin
against the nonchiral mass perturbations as all the nonchiral
mass perturbations worsen the ground-state energy at this §i§
level of approximation. Again due to discrete lattice symme- H=>» — 3 (19)
try, the energy cost is independent of the particular mass L) 1+165- S
term for small mass, while for larger perturbations, the en-
ergy costs differ, and thé,, perturbation costs the least We should note a few facts about this procedure. When
energy. we demonstrate the equivalence of the lakyesean field
with the Hsu mean field, it is the lardédimit that permits us
to ignore fluctuations int;; ,\;;, so that the decoupling
amounts exactly to taking a Legendre transform; at fihite

Having discussed the naive and projected mean fields fdhe decoupling of an interaction is not exactly a Legendre
the problem, we must include fluctuations about the meatransform. Further, we used the word “extremize” above
field. To do this, we will use an SM) generalization of the with care: in some cases we maximize while in other cases
original problent’ such that the projection procedure of Hsu we minimize, as in some places the functid@|?/(1
becomes exact. After discussing how to do this in the ab-+16G|*) has positive curvature while in other cases it has
stract, we will present the field theory for our specific prob-negative curvature. This does not provide any formal prob-
lem: it will have a number of interacting fields, including lems when performing the decoupling at the level of func-
fermions, gauge fields, the nonchiral mass terms discussdbnal integrals, as long as we correctly choose the integra-
above, which we will refer to as “pion” fields, and the chiral tion contour of\;; .

V. FIELD THEORY OF FLUCTUATIONS
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The fractional operatot; j>(§i . §J. /(1+ 16§i'§j) in Eq. In addition to the terms we have written, there must be a
(19) may be interpreted as a formal power Series’ so that iﬂuartic interaction term for ther and o fields. This term is

includes operators of the forrréi(- §j)k for all k. At N=2,  necessary to stabilize the action if the system spontaneously

. . . R breaks a symmetry and has eithmr.<0 or m,<0. Since
this operator is equivalent t§ - S;, up to a constant factor. y y h -

Finally. the ab dure is similar to the techni fwe will be initially starting the renormalization group of the
inafly, the above procedure 1S similar to the lechnique Ol qy section with both such masses positive, we can tempo-

introducing biquadratic interaction$( S;)? into the Hamil-  rarily ignore the quartic term at high energy under the as-
tonian to stabilize RVB states against dimerization. We Sim'sumption that this term is small. If the system acquires an
ply prefer the above Hamiltonian as it reproduces exactly ougxpectation value for the fields, the quartic term will break
desired mean-field theory. the continuous symmetry down to the lattice symmetry, and
Having defined a largét theory with no fluctuations in  give a small mass’ for the approximate Goldstone modes.

the decoupling fields, we next add in fluctuations. Formally,There will also be cubic terms that give a mass to these
this can be handled by aN/expansion. We will directly mpodes.

write the field theory aN=1 without including explicit fac-
tors of N.

The theory includes several modes. There is the Dira
fermion field ¢(x). This is coupled to a fluctuating (W)
gauge fieldA*(x), u=t,X,y. By considering other fluctua-
tions int;; we will also obtain a fluctuating chiral mass field
that we will refer to aso(x) and a triplet of fluctuating
nonchiral mass terms that we will group into one “pion”
field w3(x), a=1,2,3. If the pion field acquires an expecta-

Another interesting term we have left outygsy,, v, F*",
which can be added to change théactor of the Dirac fer-
Fnions. In the absence of external fields, there are two degen-
erate states of the Dirac equation at each energy. For physi-
cal electrons, this reflects a spin degeneracy. For the spinons
we consider, which already have a definite spin, this degen-
eracy instead reflects ehirality degeneracy, and we will
refer to it as such. If the system has an odd number of sites,
. . ) ; o and hence an unpaired spinon, not only does the system have
tion value, then the fermions will acquire a masg=(7%). 5 et spinon, but it also has a net chirality, which can be

For the field theory, we will suppress the velocity. At 51en to be positive or negative. Generically ghiactor will
the level of the bare action the, o, and gauge fields can o nonzero.

have different velocities from the Fermi fields. However, the
greatest contribution to the effective action of the bosonic

fields arises from ir)tegrating over the relativist_ic fermions, VI. RENORMALIZATION GROUP
so that at low energies the velocity of the bosonic fields must
be roughly equal to that of the fermionic fields. We will consider the one-loop RG from the field theory.
The Lagrangiari. we will take is We will see that it is indeed possible for fluctuations to lead
to a condensation of the pion field.
_ 3 For the gauge, pion, and fields we will use a simple
L_f dxLitlatlm, 20 ode elimi%ati%n IE){G, with a cutoff\. For the fermign

fields, we will introduce a set of massive regulator fields with
masses of ordek and reduce the regulator mass. The choice
L= OO VEA +id )+ vaM a2+ vaM X), of the particular mass terms for the regulator fields represents
= PugILY A+ 19,)F yoMam™+ YoM o], of ()21) a lattice breaking of the Goldstone symmetry. It is possible
to preserve the needed lattice symmetry of @4) by intro-
ducing seven regulator fields. Four are ghost fields with
NGl awrF" (22 masses proportional tf;+M,+M3z,M;—M,—M5,—M,
Ya +M,—Mj;, and—M;—M,+ M, and the other three are not
ghosts and have masses proportionaMtp, M,, andM .
Initially the theory will have a cutoffA,, defining the

where

LA:

_ 2 2
Lv= 2Ag> o (X)(9,+m;)o(X) lattice scale. As we renormalize, we lower the cutdffand
7 rescale all distances and fields to kekegdixed.
1 We must take into account self-energy corrections to the
+—— (X[ + (M3) 2] 7(x). (23)  fermions from interactions with the bosonic fields, vertex
2A07 corrections, and self-energy corrections to the bosonic fields

We have written the mass for the pion field as a matrix.from vacuum polarization bubbles. If we were to take into
However, following the arguments for E¢l4), the masses account only the self-energy corrections to the bosonic fields,
of the different pion modes must be the same. It is only afte@nd not the vertex and fermionic self-energy terms, we
condensation of the pion field, breaking the lattice symmetryWould find that we are considering just the mean-field theory
that the masses can differ. in the bosonic fields. .

We have inserted factors of, representing a lattice cut- ~ We find the following RG equations:
off scale, into the action to make the coupling constants di-
mensionless. We have chosen to scale the bosonic fields so )
that all coupling constant dependence appears in the action dinga 9a

L, andLy, notL;. dIn(AOIA):l_ZE’ @49
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302 + 02 — g2 We can also estimate the strength of dimerization at the
gA g7T go’ . . . . L.
+vacuum polarization, mean-field level, by asking how large a changetiinis
needed to produce the desired mass term. Assuming that the
(25 dimerization is provided by a perturbation of the foNn,
one finds that the;; 12-site loops are increased by approxi-
dl 30%2-3g2—g? mately 3.5%, while the other bonds are decreased by 3.5%.
ngo’ gA g'n' go’ . . L . . . .
dn(Ao/A) =1+ 5 +vacuum polarization, This is a relatively small amount of dimerization, and we
0 2m expect that only after a significant increase in system size

ding, N
din(Ag/A) 272

(26) Wil numerical studies be able to detect this directly from a
dimer-dimer correlation function.
dmab
din(Ag/A) =2-+vacuum polarization, (27 VIl LOW-ENERGY MODES

The remaining low-energy modes after the pion field con-
dm, L denses are the Goldstone excitations of the pion field and the
din(Ag/A) 2+vacuum polarization.  (28)  yage excitations, which we will argue provide the low-
energy singlet modes seen in numerics. While numerical cal-
We have avoided explicitly writing the vacuum polariza- _culatlons have only pro_bed_ systems upNe 36 sites, which
is relatively small considering that we take a unit cell of 12

tion contributions to ther and pion fields. The vacuum po- sites, experiment also reveals a quadratic low-temperature
larization contribution to the mass is regularization depen- : €XP q P

dent, while the vacuum polarization contribution to the specific heat. This specific heat suggests that a bosonic mode

coupling constant is ultraviolet convergent and is dominate(Y\”t.h a Ilne_ar den_s_|t)_/ of states survives to much larger Sca'?s*
by the infrared contribution. while the insensitivity of the specific heat to weak magnetic

fields suggests that the mode is still a singlet. In this section

Fluctuations in the gauge field increase the coupling con- o will first discuss the nature of the low-enerav modes and
stants for the pion and sigma fields. This reflects the bindinﬁV wit Tl Iscu u w 9y

force due to the gauge field between charged spinons and t I%en tg‘.a uItlmate_fatledqf our pion fand hgauge e;<0|tat||on$ at
resulting tendency to break chiral symmetry. Further, we se’eé}]tge |stanCﬁs, inciu '?.g. a g:’;:p orf t eh pion rorp I:tt'ce
that the coupling constant for the pion field increases mor ects as well as a confining phase for the gauge fields.
rapidly than that for ther field, reflecting the destabilization __On¢e the pion field condenses, the system is left with two
of the chiral state by fluctuations in the pion field. pseudo—G(_)Ids_tone pion modes as well as gauge modes. The

Thus, we see from the renormalization group that there igauge action Is
a range of bare parameters such that the theory will condense 1
the pion field, producing a nonchiral mass term for the fer- La=——F, F*, (29)
mions, even though at the mean-field level the theory would 4Agi .
rather produce a nonchiral mass term for the fermions. .

. . . . with

In the next section we will consider the low-energy action
after condensation. We will first discuss the mass term for gim m, (30)
the fermions that appears.

Unfortunately, it is beyond our ability to calculate the wherem=|()| is the fermion mass. The pion action will be
bare parameters in the field theory with any precision, and s8 sigma model. If we change the normalization on the pion
the mass of the fermion field is not something we can comfield so that7|=1, we get the model
pute. Let us instead take the mass of the fermion as an input e
from numerics, and use that to check for consistency of our (m)* |, 5
theory. Extrapolating finite-size results from systems of up to 292 ™,
36 sites, one finds that the system has a gap-to-triplet exci-
tation which is of orderd/20 or lesst® While the gap is Where the coupling constagf is proportional tom™* and
decreasing even at the largest sizes, it appears to be boundéeé massn.. represents the breaking of continuous symmetry
below by roughlyd/40. Assuming that the triplet excitations by lattice effects.
are made of pairs of spinons, we can estimate the spinon gap We have chosen the mass term for the pion to cause the
as being half the triplet gap. Further evidence for the spinompion to prefer to condense in a way that gives rise to a mass
gap being roughly half the triplet gap comes from odd-everM 1,. In the projected mean-field calculation above, we con-
studies of the energy dependence of°Nhe fermion mass sidered states invariant under the rotational symmetry, so
is half the spinon gap or one-quarter the triplet gap. that|my|=|m,|=|mjs|. This provided two inequivalent per-

Using this estimated spinon gap and the calculated velodurbations. In one, we increasét};| on hexagons and tri-
ity of our Dirac particles from RVB theory, we can obtain angles; in the other we increask!q‘ on a loop of length 12.
the correlation length of the Dirac particles. Taking the esti-While at the mean-field level symmetry breaking does not
mate ofJ/20 for the triplet gap, we find that the correlation occur, from the projected mean-field calculation we can still
length is roughly 8 of our 12-site unit cells, large enough toargue that the preferred symmetry breaking pattern would be
include theN=36 numerical studies. given by a mass matrid ,. Other patterns are of course

1
LM:_((?MTTa)Z‘I‘

o (3D
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possible, and comparison with numerics provides some evistudies of odd size systems is a nonvanishing Chern
dence that a staggered mass is also a possibility, at least faumbet® for the ground state of-1. This is a quantity that
small systems; in the Conclusion we discuss possibilities oprovides an analog for a spin system of the quantum Hall
numerically testing the preferred mass pattern. effect®® Since the Hamiltonian of Eq1) does not explicitly

In the continuum field theory, the pion mas®%)2° is  break time-reversal symmetry, a nonvanishing Chern number
ultraviolet divergent. However, lattice symmetry forces therequires a spontaneous breaking of time-reversal symmetry.
masses of the pion modes to be the same before condengadewever, the spontaneous breaking of time-reversal symme-
tion. In order to use the continuum theory to estimate  try is not enough, as other spin systems that break this sym-
after condensation, we need to turn to the cubic interactiometry have vanishing Chern numb@rthe kagomeantifer-
terms in7r. These are romagnet may be the first Hamiltonian with time-reversal
and parity symmetry where a nonvanishing Chern number
has been observed. In order to understand the appearance of
the Chern number, we must first understand how to form the
parent state on an odd-size system.

The systems studied numerically have periodic boundary
conditions, so that they reside on a torus. On a system de-
fined on a torus the net flux penetrating the surface must be
an integer multiple of zZ-. One can also add solenoid fluxes

J d*x gy o3, (32

with a cubic coupling constarmy; that is generically of order
unity. Inserting an expectation value af of order m, we
obtain a quadratic term itr. Including this quadratic term in
(mfr)ab, this will cause the masses of the different pion

. L .
modes to differ by ordem so thatm,, will be of orderm. 6,6, defining the phase that the spinon acquires when tra-

_However, we can obtain a better estimate of the masge ging 4 topologically nontrivial closed loop around the
difference numerically from the the projected mean-field cal+,. ;s For simplicity, we will use coordinates on the torus

culation of energy; while we did not obtain pion condensa-nich range from 0 to 2 in both directions, although in

tion "%‘ thg mean-field level, fqr agiven expectapon value Ofactuality for thekagomelattice the systems considered are
the pion field, we can use ttdifferencein mean-field ener-

. . . X S not square.
gies for various continuous rotations of the pion field to ob- The parent state has flux through each hexagon. On a
tain an estimate of the pion gap. Using the numerical esti '

. ) system withN sites, there ardN/3 hexagons, and so on a
mate fqr the triplet gap, and hence the estimate for thesystem with an oddN, one would like to have a net flux
fermionic massm, we have calculated the projected mean'through the system that is an odd multiple7of This is not

field energies for_takl_ng/l =mM,, andM =mMe. The dif- possible, and so the system must have some additional flux
feience In_energies IS Q'OOO 3per 12-site cell, S0 that so that the total is a multiple of 2 For example, on a
m,~/0.000 396nJ. This is small enough that we can ignore gy stem withN =27, there are nine hexagons, so the system
this mass for most purposes. Evidently, the cubic couplingan hytz+ 7/9 flux through each so that the total flux is
constanigs is very small. _ _ either 87 or 107. The system then must become chiral and
While the pion is already gapped by lattice effects, instanyeay time-reversal symmetry since it cannot construct the
tons will gap the gauge field, leading to confinement of theparent state.
spinons. The gauge field describes chmpact QED - 2 A qualitative way of describing this effect is to say that
dimensions, which is confining for aj, .™ The gauge cou- ¢or 5 system with an odd number of sites, there is an un-
pling is proportional tam, so that the action for an instanton paireqd spinon, which has a chirality. The spinon then couples
will be of order to the gauge field and produces a flux. In this section, we will
A proceed within a mean-field calculation, assuming that the
Soc 9 (33 extra flux is smeared evenly over the system and that the
m spinons do not interact. In reality, the extra flux may bind to
The instanton density is proportional & 5. In the weak-  the unpaired spinon, but we will not deal with that possibility
coupling limit, the instantons lead to a gap for the gauge field" this paper. We will show that, at the mean-field level, the
of order Age™S. As this is exponentially small, we can ig- €xtra flux produces Landau levels with a gap, and then as-
nore the gap in the gauge field. sume that as the Chern number is a topological property of
the system, it will be stable against adding interaction.
Given the average flux through the system, let us consider
the effective Dirac equation for the spinons. The results we
In this section we will consider some effects of finite-size get for the Chern number do not rely on the Dirac descrip-
systems to begin comparison with numerics. First we willtion, and can be derived directly from the lattice model; we
consider some complications in defining the parent state ofeel that the Dirac method is more elegant and gives more
systems with an odd number of sites, which force the systemhysical insight.
to have some net flux. Then we will show how this leads to The Dirac particles feel the extra flux that has been added,
a degeneracy in the spectrum and nonvanishing Chern nunand so the spinons move in a magnetic field, such that the net
bers for the states under twist in the spin boundary condiflux the spinons feel is exacthty 7. Again, there seems to be
tions. Finally, we will discuss some effects of finite size for a contradiction, since it is not possible for the system to have
even-size systems. a net flux of = 7r flux through the torus. The answer to the
One of the most interesting results found in numericalcontradiction is that the Dirac particles have an extra chiral-

VIII. FINITE-SIZE SYSTEMS AND CHERN NUMBERS
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FIG. 5. m-flux phase on square lattice with odd number of sites. FIG. 6. Enlarged torus to compute wave functions.

Numbers label different squares, each containing /9 flux.
vide toroidal boundary conditions. There are nine squares in

ity index. So in addition to including solenoid fluxes for the the system, and so there will be* 7/9 flux through each
Dirac equation, the Dirac particles can change chirality whersquare. Four of the squares lie within the cell and are labeled
completing a loop around the system. Let us then generalizé—4, another four lie to the sides and are labeled 5-8, while
the solenoid flux to a pair of 44 matricesU,, U,, describ-  the ninth square lies in the corner. The natural unit cell for
ing the change in the wave function when the particle comthe Dirac particles is four sites, so when a particle completes
pletes a loop. a loop around the torus it is displaced by half a unit cell. The

Then, when the particle traverses a loop around the torug/ave function is multiplied by a matri¥, for a loop in the
from (0,0) to (0,2r) to (27,2m) to (2,0) to (0,0), the x direction and a matrixJ, for a loop in they direction.

wave function gets multiplied by Precisely due to the odd number of squares, one finds that
ot the matriced);,U, anticommute. It is natural to think of the
—U,;UU, U, (34)  non-Abelian flux as arising from the flux through the ninth

. L ) square, on the corners.

where the minus sign is from the magneuc'ﬂux through the Returning to thekagonielattice, let us now look at the
torus. Since Eq(34) must be equal to 1, we find thely Uz \yave functions of the Dirac equation with this magnetic flux.
hecessarily anticommute. , . It is convenient to find the wave functions by enlarging the

One may regard the matricds,,U, as arising from & 1orys py a factor of 2 in each direction, as shown in Fig. 6.
non-Apellan gauge field connecting opposite chiralities ofrpe + and — symbols in the figure denote the chirality of
the spinons. The commutator of the matrices represents gfje particle in each quadrant. When the particle completes a
additional flux of 7 from the non-Abelian field, giving & cjrcyit on the original torus, it changes chirality, and hence

total flux of 27 on the torus. The extrar flux from the  oyes into a different quadrant of the enlarged torus, while
non-Abelian field is the flux that arises from having an Oddpicking up a phase.

number of hexagons on the lattice, so that when the particle The net flux on the enlarged torus is equal to 4 times the

completes the given loop around the lattice it has enclosed &, on the original torus, or #. One might imagine that
odd number ofr fluxes. One sees that the non-Abelian fluX there will be extra sources of flux on the enlarged torus at

is localized at a point, although one must be careful that thig,,o points where the quadrants meet. However, sincerthe
localization at a point does not imply a breaking of transla-,q4_aApelian flux is purely a result of an odd number of

tional symmetry. _ _ _ hexagons on the original torus, we can drop the extra sources
The addition of matriced,, U, is natural from the lattice  f fiux on the enlarged torus, and we are left with an explic-
point of view. The unit cell which includes both chiralities of jy transiationally invariant problem of a Dirac particle mov-
Dirac particles is 12 sites, while the smallest unit cell POS+ng in a constant magnetic field.
sible for the parent state is 6 sites. Since there is no way t0 "o, the enlarged torus, the Dirac equation becomes a two-
cover an odd size lattice with 6 or 12 site unit cells, SOMe-component equation
thing must scatter between chiralities, as when the particle
completes a loop it has changed between chiralities. ; ; : _
To give a very simple example of this, consider a one- [Eost o Actid) T oy(AyTid)]Y=0. (39
dimensional ring with an odd number of sites. The naturalTaking the square we find
unit cell for the a one-dimensional chain is two sites, to
include both Dirac points. If the particle moves around an E2¢=[(iﬁx—Ax)2+(iﬁy—Ay)2+UzB]w- (36)
odd-length ring, two sites at a time, it must return to the
starting point displaced by half a unit cell. This is the well-known equation for a Dirac particle in a
To give a slightly more complicated example, considermagnetic field and has Landau levels.
the 7-flux phase of the square lattf&or a system of nine Since the net flux through the enlarged torus is equal to
sites, shown in Fig. 5. Solid lines represent bonds within thel, there are two states in each Landau level for each
cell of nine sites, while dotted lines represent bonds to prohence four states for each Landau level in total. As we are
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dealing with a two-component equation, only one sigreof ¢= 7. At this point, 8 jumps to 0, and the mean-field energy
is allowed in Eq.(36) for a giveno,. begins to decrease for increasigSo as¢ varies from 0 to
Therefore, the energy levels on the enlarged torus ar@s and @ jumps as described above, we find tpé2= (26
doubly degenerate. However, the enlarged torus has an ur-¢)/2 varies froms to 37/2 to /2 to 7. In order for 6 to
physical degree of freedom: opposite quadrants describe thamp like this, the spinon states wiil/2= 7+ /2 must be
state of the particle on the original torus. So the energy leveldegenerate
on the original torus are only singly degenerate and the spec- Now, we can look at the Chern number of the system,
trum is discrete with one level at zero energy. This is theassuming noninteracting spinons. It then amounts to a Chern
relativistic generalization of Landau levels. For an odd-sizenumber calculation of the fermionic wave functions. Assum-
system, all Landau levels below the zero energy are occling noninteracting spinons, we can get the chang& iin
pied, and hence filled, for both spin-up and spin-down par£q. (39) from the change in the spinon wave functions.
ticles, while the zero-energy level is occupied only by one While in general the wave function gets multiplied by a
unpaired spinon. matrix on moving around the original torus, only thé1y
Numerically, the ground state of the many-body systenpart of this matrix adjusts in response to changeg.iirhe
has been seen to have an extra degeneracy factor of 2, bgf1) part of the matrix is just the angleé. Carrying out the
yond the trivial spin degeneracy. This is a consequence dfalculation on the enlarged torus, we find that the boundary
the spontaneous generation of the magnetic field, so that theonditions become
system can pick either sign for the field.
An interesting way of viewing the Landau levels is that wl(x,y)=e"’5w3(><+4my) (43)
we haver Abelian flux, implying that there are 1/2 states
per Landau level. Multiplying the 1/2 by a factor of 2 for and similarly for down spinons.
chirality degeneracy, we get one state per Landau level. So we wish to compute
We can now introduce the Chern number of the system,
which characterizes a transverse response of spin currents. 1 Y
Let us adjust the boundary conditions of the system so that EJ f pY d

dp,do, (44

o \opy” opy”
&pg’d dy Iy

* —_atig +
ST(xy)=e7I ST (x+2my), (37) summed over all spinon wave functiogis
+ IR In Eq. (43) the periodicity in¢p seems obvious even with-
+ —atidgrat
S (xy)=e7 %S (xy+2m), (38) out 6, as on the enlarged torus the periodicity of the spinon
where ¢4, ¢, are angles. wave functions in response to a twist in boundary conditions
If the ground state is a wave functioh, then the Chern is halved in both directions. However, we have introduced
number is defined as the integral the degeneracy of 2 on the enlarged torus representing the

fact that on the original torus the wave functions are periodic
1 oV | gV e d 39 in (p1,p,) with periods (0,2r) and (,7) but not with pe-
2 by |Is $1d¢2. 39 tiod (0,), and as a result only half the possible wave func-
. . . o tions on the enlarged torus are physical.
This number is quantized and nonvanishing only for com- | order to keep the wave function in the physical sector,
plex states. Since the Hamiltonian does not break timey st jump discontinuously byr as ¢ changes, and as a
reversal symmetry, complex conjugate states are degenergigsit for a given spinon state we only integrate &d) over
with opposite Chern numbers. . _half the torus of possible phaseg;(p,). The fact of inte-
In the presence of these boundary conditions, the Spinogating over half the torus, or equivalently the fact that the
boundary conditions, with additional self-generated fluxe§ 5nqau levels contain one physical and one unphysical wave

01,06, become function, does not prevent a defining of the Chern number
+ T for the spinon wave functions. Whehjumps it connects two
py(Xy) =€ %, (x+2m,y), (40 degenerate states, and so the contribution of(&4). to Eq.
4 (39) must still be quantized as an integer which we can still
Phx,y) =€yl (x+2m,y), (41)  refer to as a Chern number for the spinon.

Within the lattice formulation there are no further concep-
tual problems and we must simply compute the integrals, but
pUd=(26,% ¢by) (42) within.the continuum Dirac equation we must account fqr the
negative energy sea. The correct understanding of this was
and similarly for the other direction. Ther2periodicity in¢  found by Haldané!
is not obvious from Eq940) and(41), but the ability of the One must add a massive regulator field, and compare the
system to adjust) produces the desired periodicity. difference in Chern number between the massless and mas-
To give a simple example of how a system can adfyst sive fields. The massive field has the same Landau level
consider a system of four sites on a ring. In the absence of spectrum, but no zero mode. So the difference in Chern num-
twist in boundary conditiong, the system placegé= 7 flux  bers is due to the zero mode, which sits in the lowest Landau
through the ring. Asp increasesf remains equal ter, and level. There are two states in the lowest Landau level, one
the mean-field energy of the system gradually increases untihysical and one unphysical. It is the physical state that car-

where
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ries the Chern number af 1, giving the ground state of the Goldstone modes with nonzero wave vedtom the case of
spin system a net Chern number of1l, as seen our pion and gauge modes, the energy is then proportional to
numerically*® k. For a (2+1)-dimensional system witN sites, the lowest

We expect that the low-lying states will continue to havek is proportional toN~*2 and so the lowest Goldstone exci-
an odd Chern number, in agreement with numerical resultgation has energy proportional t~ /2.

If a particle-hole pair is excited within the Dirac band near Second, there is the “tower” ok=0 modes. These cor-
the Dirac point, the Chern number will not change. If therespond to global rotations of the entire system and have an
particle is excited from the band edge, the Chern number caenergy proportional t&N~ 1. Let us note that in this cade
change by+2. Only if a particle is excited from the flat band =0 refers to the momentum with respect to the 12-site unit
to the Dirac band can the Chern number changetidy, cell; at the end of this section we will discuss the represen-
giving rise to an even Chern number. However, these stataations of these tower states under the space group of the
will be much higher in energy. One can also consider exciteckagomelattice and compare to the states found numerically.
states with net Abelian flux be equal tar®r, . . . . Numerical diagonalizatidi® of the triangular lattice

It is very interesting to think about these possible excitecHeisenberg antiferromagnet, which haseNerder, shows
states which may have more thanflux for the Dirac par- very clearly the distinction between the tower of states and
ticles. The two-component particles carryraindex, which  thek+ 0 stategspin waves However, no such distinction is
will couple to the magnetic field. If a large field is induced, afound in the kagomelattice® no separation between low-
number of spinons of the same, will be produced in the energy modes of energy~* and N~ 2. Within our model,
zero mode, so that the total number of spinons in the zerthis is to be expected fod= 36. Since the effective action of
mode is odd. For one spinon we had one filled Landau levelthe pion and gauge fields arises from integrating out the fer-
with one particle. With several spinons one might be able tamions, this action must be approximately relativistic, with
construct fractional Hall states of spinons. the same velocity as the fermions. So even without explicit

We have argued that in the thermodynamic limit the sys-calculation, we can obtain the energy of the lowkstO
tem will acquire a mass. On an odd-size lattice, the masmode directly from the velocity appearing in Dirac equation.
term must change sign somewhere, as the lattice cannot If&r the largest numerical diagonalizations, systems With
tiled with 12-site unit cells. At the domain wall where the =36 total sites or 3 of our 12-site unit cells, this energy turns
mass changes sign, one expects to trap a midgap state, sot to be of order the triplet gap, and so this Goldstone mode
there still should be a zero mode, even with mass. This majs too high in energy to appear in the continuum of low-
permit the nonvanishing Chern number to survive. energy singlets.

Returning to even system size, let us consider the size Within our approach, the only low-energy states that will
dependence of the triplet gap. The energy of the spinon ibe observed in numerics are states in the tower, due to the
E=(v;k)2+m?. In the absence of a solenoid flux, the energy of the lowesk#0 Goldstone mode. This resolves
smallestk would be equal to zero, but by creating a solenoidwhat would seem to present a contradiction in any other
flux the energy can be improved and the smakestll be of  theoretical approach based on a spontaneously broken con-
order the inverse linear dimension of the systemNor2.  tinuous symmetry, that one should expect to find both tower
As a result, the triplet gap is decreasing with system size, imnd Goldstone modes. Within the next section we will ad-
agreement with numerics. By twisting the spin boundarydress the density of states of the higher Goldstone modes.
conditions one may be able to reduce the gaSie +1 We can obtain the energy of the tower states from Eg.
excitations. It would be interesting to look for this effect.  (31), assuming thatr(x) is constant. Then we get, assuming

Further, in the presence of these solenoid fluxes, othesmallm.,
fermionic states withk#0 will become approximately de-
generate with the&k=0 fermionic state. This means that a NA(;2
spatially varying mass term which scatters betwkestates L=——(4;7%?, (49
can open a gap just as well as the spatially constant mass 9
term can. This will be important when we consider the low-\hereNA ;2 is the area of the system. The states of this will
energy Goldstone excitations on finite-size systems, belowpe spherical harmonics, perturbed by a mass term. Wath

«m™ !, these states will have an energy proportional to

IX. GOLDSTONE MODES, TOWER STATES, 2
AND NUMERICS Ag
N (46)
. . . Nm

After breaking a symmetry and giving mass to the fermi-
ons, the system is left with low-energy pion and gaugeand so for sufficiently larg® will be below the triplet gap.
modes. Above, we argued that the gap for these modes is td® more precise knowledge of the prefactors will be needed
small to be seen in numerical calculations. In this section, wéo determine whether this is low enough to correspond to the
will treat these modes as gapless and discuss the enerfpw-energy modes seen numerically.
spectrum that results for finite-size systems to compare with There will also be “tower” states for the gauge field,
numerical calculations. which correspond to different solenoid fluxes through the

It is knowrf? that breaking a continuous symmetry gives system. The energy for these can be obtained from(Zg).

rise to two kinds of low-energy modes. First, there are theassuming tha®\, is constant over the sample. To get the
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energy for these we have to remember that the gauge groupumber of sites; the projection would be very involved and
is compact, and realize thet*” is derived from a setof 1)  we have not yet been able to perform these calculations.
matrices with a lattice lengtth,. Then, the energy of the

gauge states is proportional to

X. FURTHER COMPARISON WITH NUMERICS

(47) In addition to the existence of the low-energy states, we
make further comparison with numerics for the many-body
density of states and the dimer-dimer correlation functions.

which is definitely below the triplet gap and certainly small  Assuming the existence of a low-energy bosonic mode
enough to be the origin of some of the |0W_energy modes ivith linear dispersion relation, so that the single-particle den-
numerics. sity of states scales linearly with energy, one would expect
There is one puzzle involved in the tower states. It waghe many-body density of states at eneEgtp scale for large
observed numerically that, on 36-site samples, the energy afystems as an exponential 8. The quadratic behavior of
the lowest-energy state of the system at given total momerexperimentally measured specific heat is in agreement with
tum did not vary appreciably across the Brillouin zdfle. this.
This may seem to be in contradiction to the hypothesis that In contrast to this result within our approach, it has been
the low-energy states come from the tower. However, for abserved numerically that the density of states scales as an
36-site sample there are only 4 inequivalent points in theexponential ofN.2° While this exponential scaling has been
Brillouin zone of the system. One of these iskat0, while  given a theoretical explanatidf,we feel that it is unlikely
the tower states with constant, nonvanishivig, preserve that the density of states continues to scales as an exponen-
translational symmetry on the 12-site unit cell, but breaktial of N in the thermodynamic limit, as any system of
translational symmetry on tHeagomedattice with 3-site unit  weakly interacting low-energy modes with a dispersi®n
cell, and give one more point in the Brillouin zone. To obtainx|k|9, for any powerq#0, will have a density of states
the last two points in the Brillouin zone, one must includescaling more slowly thae". Only if the system has gapless,
states corresponding to other symmetry breaking patternsiondispersive modes would there be a density of states scal-
with staggered mass, and an enlarged unit cell. ing exponentially withN; this possibility seems unlikely and
One way to obtain these states is that for small systems not seen in any ordinary field theory, but would be very
there can be other symmetry breaking patterns with stagstriking if it were true. If true in the thermodynamic limit, it
gered mass, breaking translational symmetry in differentvould contradict our approach.
ways, as discussed at the end of Sec. VIII on finite-size ef- However, since we have argued that the low-energy states
fects. This would imply that for sufficiently large system in numerical calculations are largely “tower” states, it is
sizes one would find a more significant variation in the enimpossible to extract the density of states in a large system
ergies across the Brillouin zone, as only some of the statefsom the finite-size density of states. The true exponential
could be obtained from the tower. One would also find forgrowth can only be seen when thet0 modes become im-
36-site systems that the spinon solenoid fluxes would changeortant. Thus, we feel that the scaling of the density of states
under a twist in spin boundary conditions, and so the fermias an exponential df seen in numeriés-®is not descriptive
onic states at differerkwould lose their degeneracy, leading of the true thermodynamic limit, and is instead a result of a
to a change in energy of some of the 0 states when vary- proliferation of a large number of different pion modes, with
ing boundary conditions. different dimerization patterns and different gauges modes in
Another possibility is that, even for infinite systems, the tower.
short-distance effects lead to the production of a staggered- In this regard, the numerically measutédquadratic
mass pattern, in the style of the “perfect hexagon” state many-body density of states very low energies does not
discussed above, at the end of Sec. Ill. The staggered-masay anything about the dispersion of the Goldstone modes.
pattern gives rises to an enlarged unit cell, and will producdnstead, it is a reflection of the fact that if a finite number of
low-energy states at the other points in the Brillouin zone. “tower” modes are excited, then the many-body density of
From the mean-field arguments, we suggestedMhge  states is a power law.
dimerization pattern. However, this is just a qualitative argu- For the dimer-dimer calculations we can make a more
ment; the RG procedure requires the fermions to open a gaflirect comparison with a numerical calculation of these cor-
by some form of dimerization but does not specify therelations on a 36-site systefrin the thermodynamic limit,
dimerization pattern. Looking at the symmetries of the low-the dimer-dimer correlation function should be long ranged,
lying states found in numerics, we see that kg, state can reflecting the existence of a nonzerg,.
be found at low energy, but is not the lowest-energy excita- However, there is also a short-range fermionic contribu-
tion above the ground state. The lowest-energy excitation hason to the dimer-dimer correlation functions, and for 36-site
the symmetries to arise from a staggered-mass state, withsystems, so that the system size is smaller than the correla-
unit cell of more than 12 sites. The theoretical calculation oftion area of the fermions, we can ignore the effect of a non-
the short-distance effects to determine whether some form afero m;, on the dimer-dimer correlation function and di-
staggering in the mass is preferred would require going berectly study the correlation functions of massless fermions.
yond the mean field and including projections on a large If we are interested in a dimer-dimer correlation function

m
N
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TABLE I. Comparison ofC; j)«) between numerical and spinon calculations. See Fig. 1 for labeling of
points in unit cell. See text for discussion of various approximations.

(i) (k1 Numerics Theory | Theory Il Theory Il (m)
(6,7(1,8 0.04337 0.08242 0.06249

(6,7(8,2 —0.01416 —0.01107 —0.001318 —0.01686 (1)
(6,7(9,3 —0.00646 —0.001041 —0.0004279 —0.022153 (8
(6,7(10,3 0.01178 0.001043 0.0005004

(6,7(10,9 —0.01045 —0.001040 —0.0005008

(6,7(11,5 —0.06510 —0.02499 —0.0112132 —0.083829 (12
(11,10(7,8 0.01221 0.018885 0.00938

(11,10(9,8 —0.00113 —0.01824 —0.0025 —0.01395 (3)
(11,10(2,9 0.00108 0.0001619 0.00559 —0.007171 (3)
(6,7(11,9 0.01322 —0.0009778 —0.000327 0.001416 (12
(11,10(2,8 0.00045 —0.004377 —0.001964 0.00386 (9)
(6,7(9,2 0.01322 —0.0009788 —0.000328 0.001415 (8

Ciiinkn ={(S-S$)(Se- S —((S- SHN(Sc- S)),
(48

At a more refined level, we have carried out the compu-
tation projecting on all four sites exactly. At the third level of
approximation we have started to project out onto additional

we can express this, under the assumption of weak spinogjies as well. We have calculated the correlation functions in

interaction, directly in terms of the spinon Green'’s functions.
Writing each spin operator in terms of spinons and consid
ering various contractions we obtain

Cii.hky= — 4 REG;;Gjk G Gi) —4 REG;;G; G| Gy)
1 2~ |2
—Re(GikajGj|G|i)+§|Gik| |Gj |

1
+§|Gij|2|Gjl|2- (49

this approximation, in the limit of an infinite system size, for
pairs of bonds that can both be written in the same 12-site
unit cell. We compare the result to results from numerics on
a 36-site systerh.We do not consider pairs of bonds that
cannot be written in the same unit cell, as at this separation,
finite-size effects will become important in the numerics and
the comparison will become impossible. We could in prin-
ciple improve on our comparison with numerics by comput-
ing the spinon correlation functions in a 36-site system also,
in which case it should be possible to compare all bonds, but

To obtain quantitatively accurate answers, we must includ&ve have not done this.

the effects of projection within an approximation like that
used above, projecting on site$,k, I, requiring that there be

The results are shown in Table I, where in the column
“Theory I” we show the simplest approximation, and in the

one fermion on each of these four sites. We have done this ablumn “Theory II" we show the second level of approxi-

three different levels of approximation.
At the lowest level, we have noted that the probability
that the wave function before projection will have one fer-

mation. Qualitatively, the theory works quite well on the
signs even at this level, getting 9 out of 12 correct. The only
signs that the theory gets wrong at this level occur when the

mion on each of these sites is roughly the product of thgheory predicts a very small value<Q.01) for the correla-

probability that it will have one fermion on eachigf by the
probability that it will have one fermion on each &fl.
Given that |G;;|=0.22138 ... for neighboringi,j, we
should replace Eq49) by

Cii.k= k| —4 REG;;Gjk Gy Gji) —4 REG;; G G Gy)

1
—Re(GikajGuG|i)+§|Gik|2|Gj||2

1
+§|Gij|2|Gj||2}' (50
where

k=(1.92642

is the desired factor df4/(1+16/G|%)]2.

(51)

tion function.

To improve this result, we included the third level of ap-
proximation in which we also project out onto a fifth sitg)
for those dimer correlation functions such that there is one
and only one sitdm) which neighbors both dimers. In the
column “Theory III"” we show this level of approximation,
as well as the particular siten) that we picked. Once this is
done all the signs work out for 11 out of 12 correlations, and
the qualitative agreement is almost perfect.

The magnitudes work out less well, as most of the dimer-
dimer correlations are far too small within the spinon calcu-
lation. However, RVB calculations are quite poor at getting
long-range correlations without including some gauge fluc-
tuations. For example, in the one-dimensional Heisenberg
antiferromagnet, the spins on the same sublattice are
uncorrelated? By including gauge fluctuations, this result
can be substantially improvéd®
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For the largest positive correlation functi@s 7y(1,s), the Numerically, it may be possible to confirm the identifica-
magnitude does work out well even at the simplest approxition of the low-energy states with tower states from symme-
mation. However, for the largest negative functiontry breaking. If one computes a dimer-dimer correlation
C.7)(11.5, the magnitude is off by roughly a factor of 5, function with the same pair of sites taken at two different
until we go to the third level of approximation, at which times, it may be possible to see the oscillations in the mass
point the magnitude becomes roughly correct. We can hop#eld. This may be difficult, though, given the relatively weak
that a better inclusion of fluctuations will improve these re-amount of dimerization present and the problem of extract-
sults, just as it has done for the one-dimensional chain. Peing the contribution of the mass term to dimer-dimer corre-
haps projecting on an entire 12-site cell would give bettedation functions from the background of the fermionic con-
results, as suggested by the improvement in the results itibution. Similarly, one can try to compute a susceptibility
column IIl. Detailed calculations of projection for some trial to spin-Peierls ordering by explicitly dimerizing coupling
wave functions on théagomelattice have been performed constants] in Eq. (1). If indeed the system wishes to spon-
by Hsu and Schofielé? A similarly detailed calculation for taneously order in the thermodynamic limit, then the suscep-
our parent state would be of interest. tibility to dimerization should be large. This may make it

possible to unambiguously determine whether the system
prefers theM 4, or other ordering pattern.
XI. CONCLUSION It might also be interesting numerically to look at model

In conclusion, we have constructed an RVB state on théYystems in which the Hamiltonian has additional terms cou-
kagomelattice, the “parent state,” which has a Dirac struc- Pling to the chirality operator on each triangle. This might
ture. Consideration of the various mass perturbations to thBake it possible to probe the stability of the system to the
Dirac equation unifies several other previously suggeste&h'ra[mass term, as we_II as prowdlng some interesting states
long-range states of tHeagonidattice Heisenberg antiferro- N Which the Dirac fermions are moving in a large net mag-
magnet, with the exception of the BARef. 20 state and Netic field.
the bosonic Sp(R) state’’ ACKNOWLEDGMENTS

While at the projected mean-field level the chiral spin ) ) )
liquid appears to be the best RVB state, we have argued by a | would like to thank S. Sondhi for suggesting the prob-
renormalization group treatment that fluctuations provide dem of thekagomeantiferromagnet, and for many useful dis-
mechanism for stabilizing a state with a nonchiral mass termgussions and insights. | would also like to thank R. Moessner
The numerical evidence also argues against a chiral state. We" 'useful discussions on theory and experiment in frustrated
have then proceeded to explicit comparison with numerics@ntiferromagnets, V. N. Muthukumar for discussions on
taking as input only one quantity, the triplet mass gap. RVB ideas, A. Vishwanath fo_r o_hscussmns_ on Chern num-

The physical idea behind our construction is that, gi\,enbers, and S. Sachdev for clarifying the estimate of the pion
massless fermions, the system must ultimately try to brealkap-
some symmetry to give mass to the fermions. There_: aré A\ bPENDIX: AN INTERESTING ELATBAND CASE
many ways of doing this, but they all correspond to either
introducing chirality or to introducing some kind of spin-  When the system has flux/4 through each triangle and
solid state in which the system dimerizes thje If we ig-  flux #/2 through each hexagon the band structure becomes
nore the chiral state, we must have some kind of spin solidvery peculiar. Using a 12-site unit cell, we find that the low-
we have proposed one possible spin solid and its attendaet band is doubly degenerate and almost exactly flat. The
pseudo-Goldstone excitations. Other spin solids are possiblaext band above that is quadruply degenerate and exactly
and may in fact be realized in favor of our proposal, but theflat. The higher bands, which are all empty, are not flat.
general principle that the massless fermions must break a It is very unlikely that any such state could be stabilized.
symmetry and produce pseudo-Goldstone excitations shoull/e have argued above the tkeagomelattice is not a chiral
be robust. Two other possibilities for spin solids that must bespin liquid. However, it may be possible to add chirality
considered are the constavig solid and the perfect hexagon operators to the Hamiltonian to tune the flux through the
system with spatially varying/g. triangles.

Experimentally, it may be possible in principle to detect In this case, the physics of the flatband state would be
the spin-Peierls order. Although this as appears as long-rangery amusing. We are used to the fact that in, for example,
order only in four-spin correlation functions, it should give the one-dimensional Heisenberg antiferromagnet, one can
rise to a short-range oscillatory piece in the spin-spin corrededuce that the spin-1 excitations are composite objects of
lation function. Since the spin-spin correlation function de-two spinons by looking at the excitation spectrum. Since the
cays exponentially and the dimerization is weak, this wouldenergy of the spin-1 object is a sum of two different energies,
be very difficult to detect, but in principle it is possible via there is a continuum of possible energies. When, however,
neutron scattering. one of the two spinons is a hole excitation from a flatband,

Theoretically, more work is needed on the fluctuationsthe energy is constant over the band, and there is no sign of
about the parent state. Doing a Gutzwiller projection of thethe composite nature of the spin waves when looking at their
wave functions on a 36-site lattice should enable much morenergy spectrum. One would have a situation with one
direct comparison with numerics, especially for the dimer-spinon hopping freely over the lattice, while the other spinon
dimer correlation functions. sits unmoving on a given unit cell.
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