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Effect of rare locally ordered regions on a disordered itinerant quantum antiferromagnet
with cubic anisotropy
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We study the quantum phase transition of an itinerant antiferromagnet with cubic anisotropy in the presence
of quenched disorder, paying particular attention to the locally ordered spatial regions that form in the Griffiths
region. We derive an effective action where these rare regions are described in terms of static annealed
disorder. A one-loop renormalization-group analysis of the effective action shows that for order-parameter
dimensionsp,4, the rare regions destroy the conventional critical behavior, and the renormalized disorder
flows to infinity. For order-parameter dimensionsp.4, the critical behavior is not influenced by the rare
regions; it is described by the conventional dirty cubic fixed point. We also discuss the influence of the rare
regions on the fluctuation-driven first-order transition in this system.
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I. INTRODUCTION

Quenched disorder can have very drastic influences on
critical behavior of a system undergoing a continuous ph
transition. According to the Harris criterion,1 the critical be-
havior of a clean system is unaltered by disorder, if the c
relation length critical exponentn obeys the inequalityn
.2/d, whered is the spatial dimensionality of the system.
the opposite case,n,2/d, the clean critical behavior is un
stable, and the disorder either leads to a new, different
versality class or to an unconventional critical point or ev
to the destruction of the phase transition.

Another, less well-understood consequence of quenc
disorder is the formation of rare locally ordered regions
the disordered phase. For a transition occurring at a fi
temperature, this can be explained in the following way.
general, disorder leads to the suppression of the critical t
perature from its clean valueTc

0 to Tc . In the temperature
region betweenTc

0 andTc , the system does not show long
range order. However, there will be arbitrarily large regio
that are devoid of impurities and thus order locally. T
probability of finding such regions usually decreases ex
nentially with their size; they represent nonperturbative
grees of freedom. These locally ordered regions are kno
as rare regions, and the order-parameter fluctuations ind
by them as local moments or instantons. Griffiths2 showed
that the rare regions lead to a nonanalytic free energy ev
where in the temperature region betweenTc

0 and Tc , now
called the Griffiths region or Griffiths phase. In generic cla
sical systems, this is a very weak effect, and the nonana
icity in the free energy is only an essential one. However,
Griffiths singularities become stronger if the disorder is s
tially correlated. McCoy and Wu3 studied a two-dimensiona
Ising model where the disorder is perfectly correlated in o
spatial direction and uncorrelated in the other. In this mod
the rare regions lead to the divergence of the susceptibilit
some temperatureTx within the Griffiths region.
0163-1829/2000/63~1!/014405~6!/$15.00 63 0144
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A very interesting question is what is the influence of t
rare regions on the critical behavior of a system? Dotse
et al.4 studied this question for a weakly disordered classi
ferromagnet. They found that the conventional theory
critical behavior5 in this system is unstable with respect
replica symmetry breaking. They also showed that the r
regions actually induce replica symmetry-breaking pertur
tions and thus destabilize the conventional critical fix
point. While so far no final conclusion about the fate of t
transition in the weakly disordered ferromagnet could
reached, the occurrence of replica symmetry breaking ra
the possibility of an unconventional transition with activat
scaling, as is believed to occur in the random-field Isi
model.6

For quantum phase transitions,7 which occur at zero tem-
perature as a function of some nonthermal control parame
one expects an even stronger influence of the rare reg
than for classical transitions. The reason is that a quan
model with uncorrelated quenched disorder is effectiv
equivalent to a classical model with the disorder being p
fectly correlated in one dimension~the imaginary time di-
mension!. Fisher8 investigated the critical behavior of a one
dimensional quantum Ising spin chain in a transverse fie
which is equivalent to the classical McCoy-Wu model. H
found that due to the rare regions, the critical behavior
controlled by an infinite-disorder fixed point, which leads
activated scaling. Recently, analogous behavior was foun
random quantum Ising systems in higher dimensions.9 These
results have been confirmed by numerical simulations
one10 and two11 dimensions. However, there are indication9

that a continuous order-parameter symmetry weakens th
fect of the rare regions. This could lead to a finite-disord
fixed point with more conventional scaling.

In two recent papers,12 we developed a systematic ap
proach to rare regions at quantum phase transitions of iti
ant electrons ind.1. In this approach, the rare regions we
identified nonperturbatively as the inhomogeneous sad
point solutions of the order-parameter field theory. The
©2000 The American Physical Society05-1
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teraction between the rare regions and the order-param
fluctuations led to a new term in the effective action that w
of the form of annealed static disorder. The resulting eff
tive field theory was then studied using renormalizatio
group methods. In the case of the quantum antiferromagn
transition, this new term resulted in the destruction of
conventional critical fixed point if the numberp of order-
parameter components was smaller than 4. No new fi
point could be identified, and the system displayed runaw
flow to large disorder strength. On the other hand, for
quantum ferromagnetic transition, the rare regions did
affect the critical behavior, since a self-induced long-ran
interaction suppressed all fluctuations including those p
duced by the local moments.

In this paper, we apply the approach developed in Ref
to a model of an itinerant antiferromagnet with an additio
interaction term with cubic symmetry. This model is equiv
lent to a weakly disordered classical ferromagnet with cu
anisotropy, in which the disorder is perfectly correlated
some of the spatial dimensions but uncorrelated in the
maining dimensions. The conventional theory for this mo
~without taking rare regions into account! has been devel
oped by Yamazaki, Holz, Ochiai, and Fukuda.13

The purpose for this work is threefold. We want to inve
tigate ~i! whether the conventional critical fixed point
stable under the influence of the rare regions. If it is unsta
we want to find out~ii ! whether a new stable fixed poin
exists that describes a rare region-driven transition. Fin
we want to study~iii ! the influence of the rare regions on th
fluctuation-driven first-order transition occurring in our sy
tem. The layout of the paper is as follows. In Sec. II w
derive the effective field theory by taking into account t
disorder-induced rare regions. In Sec. III, we carry out
renormalization-group analysis. Finally, Sec. IV is left for
summary of our results.

II. AN EFFECTIVE ACTION FOR DISORDERED
ANTIFERROMAGNETS WITH CUBIC ANISOTROPY

A. The model

In 1976, Hertz14 derived an order-parameter field theo
for the description of the antiferromagnetic quantum ph
transition of itinerant electrons. Later this model was gen
alized to the dirty case by making the distance from
critical point a random function of position.12,15 Here we
consider an extension of this order-parameter field theory
incorporating an additionalf4 term which possesses a~hy-
per!cubic symmetry.

In terms of thep-component order-parameter fieldf
~with componentsf i), the total action can be written as

S@f#5SG@f#1Sint@f#1Scubic@f#, ~2.1a!

with the Gaussian part, the interaction part, and the cu
anisotropic part given by

SG@f#5
1

2E dx dy(
i

f i~x!G~x2y!f i~y!, ~2.1b!
01440
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Sint@f#5uE dx(
i , j

f i~x!f i~x!f j~x!f j~x!, ~2.1c!

Scubic@f#5lE dx(
i

f i
4~x!. ~2.1d!

Here we use a four-vector notation to combine the real-sp
coordinate x and imaginary time t, x5(x,t), *dx
5*dx*0

1/Tdt. The bare two-point function

G~x2y,t2t8!5G0~x2y,t2t8!1d~x2y!d~t2t8!dt~x!
~2.2!

consists of the deterministic part derived by Hertz,14 whose
Fourier transform reads

G0~q,vn!5t01q21uvnu, ~2.3!

and a disorder part in the form of a ‘‘random mass’’ term
Here,q is the wave vector,vn is a bosonic Matsubara fre
quency, anddt(x) is a random function of position and i
endowed with the following statistical properties:

^dt~x!&50, ~2.4a!

^dt~x!dt~y!&5Dd~x2y!. ~2.4b!

B. Inhomogeneous saddle points and annealed disorder

In the conventional approach to critical behavior in sy
tems with quenched disorder,5 the disorder average is carrie
out at the beginning of the calculation by means of the r
lica trick.16 A subsequent perturbative analysis of the resu
ing, spatially homogeneous effective theory misses the
regions we are interested in since they are nonperturba
degrees of freedom.

We therefore follow the approach developed in Ref. 1
and work with a particular realization of the disorder rath
than integrating it out. Let us consider spatially inhomog
neous, but time-independent saddle-point solutions of the
tion ~2.1! ~time-dependent saddle-point solutions—if any
will always have a higher free energy since the disorde
static!. Depending on the sign of the cubic interaction ter
the structure of the saddle points in thep-dimensional order-
parameter space will be different. Whenl.0, the free en-
ergy is minimized by saddle-point solutions that lie on t
diagonals of ap-dimensional hypercube, while whenl,0,
the free energy is minimized by solutions that lie on the a
of the hypercube. In either case, the modulusfsp of these
minimizing saddle-point solutions fulfills the equation

@ t01dt~x!2]x
2#ufsp~x!u14ueffufsp~x!u350, ~2.5a!

ueff5H u1
l

p
for l.0

u1l for l,0.

~2.5b!

Although fsp(x)50 is always a solution, there will be spa
tially inhomogeneous solutions ifdt(x) has sufficiently deep
and wide troughs.12 Let us now consider the Griffiths region
i.e., the region where the average distancet0 from the critical
5-2
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EFFECT OF RARE LOCALLY ORDERED REGIONS ON A . . . PHYSICAL REVIEW B63 014405
point is positive but where there are isolated islands t
support a nonzerofsp. If we haveN such islands that are
sufficiently apart from each other, the global saddle-po
solutions may be written as

fsp
$s I %~x![F$s I %~x!5(

I 51

N

c I~x!s I , ~2.6!

wherec I(x) is a solution of Eq.~2.5! on the islandI, ands I
is a unit vector in spin space~on one of the axes forl,0 or
on one of the diagonals forl.0).

Since the direction of the order parameter on each of
N islands can be chosen independently, Eq.~2.6! describes
an exponentially large number of degenerate saddle po
(2p)N for l,0 and (2p)N for l.0. To be precise, the
saddle points are not exactly degenerate due to the res
interaction of the~exponentially small! tails of the order pa-
rameter between the islands. The complicated structur
the free-energy landscape connected with the existence o
exponentially large number of almost degenerate sad
points will finally turn out to be responsible for the failure
the conventional approach.

We now consider fluctuations around the saddle po
~2.6!. Since the saddle points are separated by large f
energy barriers, an expansion around one of them will
give a good representation of the partition function of t
entire system. Instead we will restrict ourselves to small fl
tuations and simply add the contributions coming fromall of
the saddle points. Thus the partition function for a particu
realizationdt(x) of the disorder can be written as

Z@dt~x!#'(
$s I %

E
,

D@w~x!#e2S[F$s I %(x)1w(x),dt(x)] .

~2.7!

Here,*, indicates that the integration is restricted to sm
fluctuationsw only.

We now carry out the sum over the saddle-point confi
rations. The residual interaction between the islands will le
to slight deviations of the saddle-point function from t
ideal one given in Eq.~2.6!. This is taken into account by
replacing the sum over the saddle points by an integral o
a probability distribution

P@F#;expS 2
1

TE dxLsp~F!D . ~2.8!

The temperature factor in the exponent reflects the fact
the saddle points are classical~static! degrees of freedom.18

Expanding in powers of the fluctuations, we obtain the f
lowing effective action for the fluctuationsw ~still for a par-
ticular disorder realization!:

Seff2SSP5SG@w#1Sint@w#1Scubic@w#

1Tw̄E dxdy C~x,y!(
i , j

w i
2~x!w j

2~y!

1higher-order terms. ~2.9!
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The correlation functionC(x,y) measures, up to a consta
factor determined by the precise form ofL, whetherx andy
belong to the same island, andw̄5@(214/p)u16l/p# is a
positive constant. Thew̄ term is produced by the interactio
of the fluctuations with the rare regions. It is our approxim
tion of the effect of these nonperturbative degrees of fr
dom. Terms of higher than fourth order inw also arise, but
they are renormalization-group irrelevant at both the Gau
ian and the nontrivial fixed points of the conventional theo
~see below!.

Having identified the effects of the rare regions, we no
use the replica trick16 to perform the quenched disorder a
erage overdt(x), which implies an average over position an
size of the rare regions. The resulting effective action rea

Seff@wa~x!#

5
1

2 (
a

(
i
E dx dyG0~x2y!wi

a~x!wi
a~y!

1u(
a

(
i , j

E dx dt@wi
a~x,t!#2@wj

a~x,t!#2

1l(
a

(
i
E dx dt@wi

a~x,t!#4

2D(
a,b

(
i , j

E dx dtdt8@wi
a~x,t!#2@wj

b~x,t8!#2

2Tw̄(
a,b

(
i , j

E dx dtdt8@wi
a~x,t!#2@wj

a~x,t8!#2.

~2.10!

Here, the first four terms are identical to the result of t
conventional treatment. The fifth term has the form of sta
annealed disorder and represents the interaction of the
tuations with the rare regions in the Griffiths phase. For m
details of this derivation, see Ref. 12.

III. RENORMALIZATION-GROUP ANALYSIS

A. Flow equations

We first consider the effective action~2.10! at tree level.
As usual, let us define the scale dimension of a lengthL to be
@L#521, and that of imaginary timet to be@t#52z, with
z being the dynamical critical exponent. We first analyze
Gaussian fixed point. From the Gaussian part of the ac
~2.10!, we see thatvn scales asq2, implying thatz52. The
scale dimension of the field is@w#5d/2. Power counting for
the interaction and disorder terms of the action gives
scale dimensions ofu, l, D, andw̄ as @u#5@l#5@w̄#52
2d, and @D#542d. Here we have used the fact that
Matsubara formalism the temperature scales like a freque

@T#5z. Consequently,u,l, and w̄ are irrelevant ford.2,
while D is irrelevant only ford.4. This implies that in the
physical dimensiond53, the Gaussian fixed point is un
stable, and we must carry out a loop expansion of the ef
tive action~2.10! close tod54. All terms of higher order in
w that arise in addition to those given in Eq.~2.10! have
negative scale dimensions at and close tod54. Thus, they
5-3
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TABLE I. Fixed points of the flow equations;p is the number of order-parameter components.

No. FP values
u* l* D* w̄*

1 0 0 0 0
2 ẽ/4(p18) 0 0 0

3 0 ẽ/36 0 0

4 ẽ/12p ẽ(p24)/36p 0 0

5 0 0 2e/32 0
6 (3e22ẽ)/16(p21) 0 @(p18)e22(p12)ẽ #/64(p21) 0

7 0 O(e1/2) O(e1/2) 0
8 (3e22ẽ)/24(p22) @(3e22ẽ)(p24)#/72(p22) @3pe24(p21)ẽ #/96(p22) 0

9 0 0 0 2 ẽ/4p
10 ẽ/4(p18) 0 0 @(p24)ẽ #/4p(p18)
11 0 ẽ/36 0 2 ẽ/12p
12 ẽ/12p @(p24)ẽ #/36p 0 (p24)ẽ/12p2

13 0 0 (e22ẽ)/64 (2ẽ23e)/16p
14 (3e22ẽ)/8(102p) 0 @(p18)e212ẽ #/32(102p) @(3e22ẽ)(p24)#/8p(102p)
15 0 (3e22ẽ)/72 (9e212ẽ)/288 23(3e22ẽ)/72p
16 (3e22ẽ)/48 (3e22ẽ)(p24)/144 @3pe22(p12)ẽ #/192 (3e22ẽ)(p24)/48p
th
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are irrelevant by power counting with respect to both
Gaussian and the conventional nontrivial fixed points.

As in the conventional theory,13,15,17we carry out the per-
turbation theory ind542e spatial dimensions andet time
dimensions. In this way, the perturbation expansion beco
a double expansion in terms ofe and et . The
renormalization-group flow equations are obtained by p
forming a frequency momentum shell renormalization-gro
~RG! procedure.14 To one-loop order, we obtain the follow
ing flow equations:

du

dl
5 ẽu24~p18!u2148uD224ul, ~3.1a!

dl

dl
5 ẽl236l2148lD248ul, ~3.1b!

dD

dl
5eD132D228~p12!uD18pDw̄224Dl,

~3.1c!

dw̄

dl
5 ẽw̄14pw̄228~p12!uw̄ 148Dw̄224lw̄.

~3.1d!

Here we have definedẽ5e22et . Of course, the distancet
from the critical point will also be renormalized. Howeve
we only consider the flow on the critical surfacet50 since
we are interested in the stability of the critical fixed poin
Note that the coefficient of the rare region termw̄ only
couples toD. The flow of u and l is only indirectly influ-
01440
e
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enced by the rare regions~via a modification of the flow of
D). This will be important later on.

B. Fixed points and their stability

The flow equations~3.1! possess 16 fixed points. The
fixed point ~FP! values are given in Table I, and the eige
values of the corresponding linearized renormalization-gro
transformations are listed in Table II.
For eight of the 16 fixed points~Nos. 1–8 in Table I!, the
fixed-point value of the rare region term isw̄* 50. These
fixed points have already been studied in Ref. 13 using
conventional approach. In the following, we concentrate
the casee.0 and ẽ5e22et,0 relevant for the itinerant
quantum antiferromagnet.

We first consider the dirty Heisenberg fixed point~No. 6!
and the dirty cubic fixed point~No. 8!. These are the stabl
fixed points of the conventional theory for the cases ofp
,4 and p.4, respectively. Analyzing the stability matri
for the dirty Heisenberg fixed point shows that it is unsta
since the eigenvaluee4 is positive forp,4. In contrast, the
dirty cubic fixed point remains stable forp.4 since all ei-
genvalues of the stability matrix are negative. Thus, we c
clude that the rare regions destroy the conventional d
Heisenberg critical behavior forp,4 while they do not in-
fluence the conventional dirty cubic critical behavior forp
.4.

We now turn to the new fixed points withw̄* Þ0 ~Nos.
9–16 in Table I!. Fixed points 9, 11, 13, and 15 are unphy
cal because their fixed-point valuesw̄* are negative. Since
the barew̄ is positive, and according to Eq.~3.1d! the flow
cannot cross the (w̄50) plane, these fixed points can nev
5-4
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TABLE II. Eigenvalues of the corresponding linearized RG transformation.p is the number of order-parameter components.A, B, C, and

D are defined asA5(p18)e22(p24)ẽ, B516(p21)(3e22ẽ)@(p18)e22(p12)ẽ #, C5(p18)e22(p24)ẽ, andD58(102p)(3e

22ẽ)@8e212ẽ1pe#. Analogously,E53pe12(p24)ẽ, F524(p22)(3e22ẽ)@4ẽ13pe24pẽ #, G58ẽ13pe22pẽ, and H548(3e

22ẽ)@24ẽ13pe22pẽ #.

No. Eigenvalues
e1 e2 e3 e4

1 ẽ ẽ e ẽ
2 2 ẽ (p24)ẽ/(p18) e22(p12)ẽ/(p18) 2(p24)ẽ/(p18)
3 ẽ/3 2 ẽ e22ẽ/3 ẽ/3

4 2 ẽ 2 ẽ(p24)/3p e24ẽ(p21)/3p 2 ẽ(p24)/3p

5 eigenvalues not calculated since FP is unphysical

6
2A1AA22B

p21

2A2AA22B

p21
(p24)(3e22ẽ)/4(p21) 2(p24)(3e22ẽ)/4(p21)

7 O(e1/2) O(e1/2) O(e1/2) O(e1/2)

8
2E1AE22F

12~p22!

2E2AE22F

12~p22!
2(3e22ẽ)(p24)/6(p22) 2(3e22ẽ)(p24)/6(p22)

9 eigenvalues not calculated since FP is unphysical

10 2 ẽ (p24)ẽ/(p18) e212ẽ/(p18) (p24)ẽ/(p18)
11 eigenvalues not calculated since FP is unphysical

12 2 ẽ 2 ẽ(p24)/3p e22ẽ(p12)/3p ẽ(p24)/3p

13 eigenvalues not calculated since FP is unphysical

14
2C1AC22D

4 ~102p!

2C2AC22D

4 ~102p!
(p24)(3e22ẽ)/2(102p) (p24)(3e22ẽ)/2(102p)

15 eigenvalues not calculated since FP is unphysical

16
2G1AG22H

24

2G2AG22H

24
(3e22ẽ)(p24)/12 2(3e22ẽ)(p24)/12
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be reached. Depending on the numberp of order-parameter
components, the remaining fixed points~Nos. 10, 12, 14, and
16! are either also unphysical or they are unstable. Con
quently, for p,4 and to one-loop order, there is no stab
fixed point. Renormalization-group trajectories, which in t
conventional theory would go to the dirty Heisenberg fix
point, show runaway flow to large disorder strength. T
runaway flow could either indicate a unconventional ph
transition, e.g., an infinite-disorder critical point as in t
one-dimensional random Ising model,8 or a percolative
rather than a homogeneous transition, or even a destruc
of the phase transition. Within the present approach, we c
not decide between these alternatives.

The influence of the rare regions on the stability of t
fixed points in our model is similar to that in the isotrop
case.12 For p,4, the conventional fixed point is destroyed
both models. Forp.4, the conventional fixed point is stabl
In our model, this is the dirty cubic fixed point, while in th
isotropic case this stable fixed point is the dirty Heisenb
fixed point.

C. The fluctuation-driven first-order transition

In addition to the continuous phase transitions associa
with the critical points discussed above, there is also
01440
e-
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e

on
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e

possibility for a first-order transition in the model consider
here. Let us first discuss the mechanism for a clean sys
and discuss the effects of disorder and rare regions later

According to a mean-field stability analysis of the effe

tive action ~2.10! with D5w̄50, the inequalitiesu1l.0
~for u.0) andu1l/p.0 ~for u,0) have to be fulfilled for
the theory to be stable. Now consider a bare theory withu
,0,l.0 or u.0,l,0, but still fulfilling the above stability
conditions. In these cases, the flow equations~3.1! can lead
the renormalization-group trajectories to the mean-field
stable region. This indicates a fluctuation-driven first-ord
transition.19,20 It was later shown21,22 that the fluctuation-
driven first order in this model survives the presence
quenched disorder, at least within the conventional theo
Let us now consider the influence of the rare regions.
already mentioned, the rare region coefficientw̄ does not
couple into the flow equations foru andl, but only into the
flow equation forD. Thus a renormalization-group trajector
going to the mean-field unstable region within the conve
tional theory will generically also do so in the presence
rare regions, the only modification being a different disord
value at the stability boundary.

Therefore, we conclude that the fluctuation-driven fir
order transition also occurs when taking the rare regions
5-5
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RAJESH NARAYANAN AND THOMAS VOJTA PHYSICAL REVIEW B63 014405
account. However, since the rare regions modify the flow
the disorder strengthD, the boundaries of the first-order re
gion may change.

IV. SUMMARY AND CONCLUSIONS

We have investigated the influence of rare regions on
quantum phase transition of a disordered itinerant antife
magnet with cubic anisotropy. In this final section we wa
to summarize the results and discuss the potential and l
tations of our approach.

Our method consists of two main parts: First, we consi
a particular realization of the disorder potential. We ident
the inhomogenous saddle-point solutions of the field the
for this disorder realization. Physically, the inhomogeneo
saddle points describe the formation of local magnetic m
ments on the rare regions. The interaction between the l
moments and the order-parameter fluctuations generat
new term in the effective field theory, which has the form
static annealed disorder. This first part of our method is n
perturbative with respect to the rare regions.

Once we have identified the rare regions and their c
pling to the order-parameter fluctuations, we perform the
erage over all possible disorder realizations. Next, in orde
study the critical properties of the model in question,
perform a momentum-shell renormalization procedure. In
der to control the perturbation theory, we implement
double expansion in terms of (42e) spatial dimensions and
et imaginary time dimensions. This part of our procedure
perturbative, and hence, it is clear that it will be useful
describe fixed points at which the renormalized disorde
zero or finite. Our method cannot describe infinite-disor
.
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fixed points as those found in random Ising systems.8,9 How-
ever,a priori, one does not know whether a given transiti
is described by a fixed point with finite or infinite disorde

Applying our method to the disordered itinerant antiferr
magnet with cubic anisotropy, we have found that for ord
parameter dimensionp.4 the rare regions do not change th
critical behavior, which is characterized by the dirty cub
fixed point. In contrast, forp,4, the rare-region term ren
ders the conventional critical fixed point unstable. T
renormalization-group trajectories show runaway flow
large disorder. Within our approach, we cannot determ
the ultimate fate of the transition. It could be an infinit
disorder critical point as in the random quantum Ising s
tems; however, there are other possibilities, e.g., an inho
geneous transition, a first-order transition, or even
complete destruction of the phase transition. We have a
found that the fluctuation-driven first-order transition occu
ring in this model in certain parameter regions remains qu
tatively unchanged by the local moments, while the prec
position of the first-order region in parameter space w
change.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with D. B
litz, J. Cardy, and T. R. Kirkpatrick. R.N. thanks the hosp
tality of TU Chemnitz during two visits where part of th
research was performed. This work was supported in par
the DFG under Grants Nos. SFB393/C2 and Vo659/2, by
NSF under Grant No. DMR-98-70597, and by EPSRC un
Grant No. GR/M 04426.
ev.

s.

B

y to
tor

B

1A.B. Harris, J. Phys. C7, 1671~1974!; J. Chayes, L. Chayes, D.S
Fisher, and T. Spencer, Phys. Rev. Lett.57, 2999~1986!.

2R.B. Griffiths, Phys. Rev. Lett.23, 17 ~1969!.
3B.M. McCoy and T.T. Wu, Phys. Rev.176, 631~1968!; 188, 982

~1969!; B.M. McCoy, ibid. 188, 1014~1969!; See also R. Shan
kar and G. Murthy, Phys. Rev. B36, 536 ~1987!.

4Viktor Dotsenko, A.B. Harris, D. Sherrington, and R.B. Stinc
combe, J. Phys. A28, 3093 ~1995!; Viktor Dotsenko and D.E.
Feldman,ibid. 28, 5183~1995!.

5For a pedagogical discussion, see G. Grinstein, inFundamental
Problems in Statistical Mechanics VI, edited by E.G.D. Cohen
~Elsevier, New York 1985!, p. 147, and references therein.

6J. Villain, J. Phys.~Paris! 46, 1843 ~1985!; D.S. Fisher, Phys.
Rev. Lett.56, 416 ~1986!; A.E. Nash, A.R. King, and V. Jac
carino, Phys. Rev. B43, 1272~1991!.

7For recent reviews of quantum phase transitions, see, e.g.,
Sondhi, S.M. Girvin, J.P. Carini, and D. Shahar, Rev. Mo
Phys. 69, 315 ~1997!; D. Belitz and T.R. Kirkpatrick,
cond-mat/9811058 ~unpublished!; T. Vojta, Ann. Phys.
~Leipzig! 9, 403 ~2000!.

8D.S. Fisher, Phys. Rev. B51, 6411~1995!.
9O. Motronich, S.-C. Mau, D.A. Huse, and D.S. Fisher, Phys. R

B 61, 1160~2000!.
.L.

.

.

10H. Rieger and F. Iglo´i, Europhys. Lett.39, 135 ~1997!; J. Kisker
and A.P. Young, Phys. Rev. B58, 14 397~1998!.

11C. Pich, A.P. Young, H. Rieger, and N. Kawashima, Phys. R
Lett. 81, 5916~1998!.

12R. Narayanan, T. Vojta, D. Belitz, and T.R. Kirkpatrick, Phy
Rev. Lett.82, 5132~1999!; Phys. Rev. B60, 10 150~1999!.

13Y. Yamazaki, A. Holz, M. Ochiai, and Y. Fukuda, Phys. Rev.
33, 3460~1986!.

14J. Hertz, Phys. Rev. B14, 1165~1976!.
15T.R. Kirkpatrick and D. Belitz, Phys. Rev. Lett.76, 2571~1996!;

78, 1197~1997!.
16S.F. Edwards and P.W. Anderson, J. Phys. F: Met. Phys.5, 965

~1975!.
17S.N. Dorogovtsev, Phys. Lett.76A, 169 ~1980!; D. Boyanovsky

and J.L. Cardy, Phys. Rev. B26, 154 ~1982!.
18In Ref. 12, the temperature factor was found to be necessar

give sensible flow equations. Its relation to the Boltzman fac
of the static saddle points was realized only later.

19J. Rudnick, Phys. Rev. B18, 1406~1978!.
20H. Jacobsen and D.J. Amit, Ann. Phys.~N. Y.! 133, 57 ~1981!.
21Y. Yamazaki, M. Ochiai, A. Holz, and Y. Fukuda, Phys. Rev.

33, 3474~1986!.
22J. Cardy, J. Phys. A29, 1897~1996!.
5-6


