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We consider d expansions for classical spin systems based on the vertex renormalized linked cluster
expansionLCE). The free multiplicities of the LCE graphs on a hypercubic lattice in an arbitrary dimension
d are calculated using generating functions. The technique is applied to the Ising model and to a two-
component classical lattice gas corresponding to an extended Hubbard model at half filling in the zero-
bandwidth limit. We use a resummation of the LCE to generateegpansions for the equation of state and for
the critical temperature. The method, which is rather general and applicable to a wide range of models, proves
convenient for calculating asymptotic power series expansionsdinThie vertex renormalized expansion is
shown to break down at low temperature in higher order approximations, barring attempts to construct simple
approximations that are both self-consistent and exact to some finite ordet. in 1/
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[. INTRODUCTION sion exists, at least for this model, although it is not conver-
gent. Remarkably, the critical temperature was found to be
The molecular field approximatioMFA) for classical an analytic function ofl in the interval 2<d<(e, which goes

spin systems becomes exact in the limit of infinite coordinabelow the upper critical dimensionality. Therefore, even
tion numberz of the lattice. The first attempts to formulate though a finite-order expansion indl{as any other mean-
an expansion in terms of the inverse powerszdbr these field-type theory cannot give correct critical indices due to
systems were made more than 30 years ‘aga linked its approximate treatment of long-range correlations, it does
cluster expansiofLCE) based on an expansion of the parti- give information about nonuniversal parameters such as the
tion function in terms of3J, whereg is the inverse tempera- critical temperature below the upper critical dimensionality.
ture andJ is the exchange, was developed. The limit of The 1Z (or 1/d) criterion in the early attempts to rear-
infinite z corresponds to the sum of all Cayley tree diagramsange the LCE had only a suggestive meariihgparticular,
in the linked cluster expansion, and corrections were sougtthe first order correction was taken to be the sum of all ring
by classification of the remaining diagrams of the expansiomliagrams> For the nearest neighbor interaction on a hyper-
in terms of higher powers of 2/ complemented by various cubic lattice ind dimensions, the weight of a ring diagram
kinds of renormalizations to cure inconsistencies in thewith 2k bonds isO(d™), as pointed out by Fishman and
theories. The inconsistencies were later shown to be avoideWjgnale® Therefore, if one takes the limit diagram by dia-
at least in principle, by constructing so-callégderivable gram, as it is done in the weak embedding expansion of
approximationg;® such as for quantum many-body prob- Fisher and Gaurlt,only one ring diagram contributes to
lems® The key feature of this approach is that one construct€)(1/d) in the vertex renormalized LCE. This approach to the
a functional® of the full propagatdis), from which all cor-  limit of infinite dimensions within the LCE was employed by
relation functions and the grand canonical potential follow.Abe ® who simply took the vertex renormalized eight order
The physical singularities are therefore guaranteed to appeaxpansion ingJ for the inverse susceptibility and restruc-

for the same parameter values in all quantities. tured it into a 1d expansion using Fisher and Gaunt’s result
The expansion in inverse powers of the lattice dimensionas a guidance.
ality d for the critical temperature of the spinising model, A great interest in the limit of infinite dimensions for

as well as for other quantities, was successfully used byorrelated fermion systems has arisen within the last few
Fisher and Gauhtfor the case of hypercubic lattices, for years (see Ref. 11 for reviews This followed the ob-
which z=2d. They considered the high temperature serieservations by Metzner and Vollhardt in their seminal
expansion, which was well known from investigations of thepapet? that for tight-binding fermions on a hypercubic lat-
model in two and three dimensions, and carefully examinedice the appropriate scaling of the hopping matrix element,
the d dependence of the weak lattice constants entering the~d ™12, has far reaching consequences. In general, the self-
expansion. They went to the fifth order irdlfor the critical ~ energy becomes site diagonal, and the neam@sfurthep
temperature and found a good agreement with the results afeighbor interactions reduce to the Hartree approximation in
other methods. Later, this approach was applied to the gerhis limit.® Although a tremendous simplification of the
eral n-vector models by Gerber and FisclieFhey also in-  problem is achieved, the problem of interacting fermions in
vestigated the spherical modg@lith n—), for which the infinite dimensions is still far more complicated than the
critical point is exactly known in any dimension. This en- MFA for classical spin models, and the calculation ofl 1/
abled them to prove rigorously that an asymptotit éXpan-  corrections for correlated fermions is in general very diffi-
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cult. In some special cases, however, this has been donges, which are the lattice constants in the LCE, and take the
These include weak coupling treatments of correlated eledorm of polynomials ind. Our main result is to express the
tron systems? variational wave functions approathdisor-  polynomial coefficients explicitly in terms of the free-
dered electronic systerﬁgythe spinless fermion model at Multiplicities for the linear chain. In Sec. IV we discuss the
half fi||ing,17 and the Ealicov—Kimball modéB A common  1/d expansion of theb potential for fixed semi-invariants,
feature of some of these works is the use of dhpotential ~ showing explicitly the series up t@(d®). In Secs. V and
as the starting point for the d/expansions. This is quite VI we apply these results to two simple example systems:
natural, because the limit of infinite dimensions itself can bethe spins Ising model, and a two component lattice gas cor-
considered a-derivable approximation. Since the LCE with responding to an extended Hubbard model at half filling with
vertex renormalization for classical spin systems is quiteZ€ro electron hopping between sites. An investigation of the
ana]ogous to propagator renormalized expansions for |attic@hase diagram of the latter model in infinite dimensions for
fermions, it may be beneficial to use classical spin models agrbitrary filling was carried out by Micnat al.** showing a
a testing ground for #/ expansions based on resummation offich behavior. We restrict our treatment to pure power ex-
graphs. Besides, since some quantum models have a classi@ansions in I of the equation of state, which gives the
spin or a lattice gas model as a limiting casel éxpansions critical temperature, and, for the lattice gas model, also the
for the classical models m|ght be useful as benchmarks foTyfiCI’itiC&l pOint. In these calculations we have benefited from
other approximation schemes to the quantum models. FutiSing the MUuPAD package. The expansion ofb can also
thermore, perturbation expansions for correlated electroRe used as a starting point fdr-derivable approximations
systems with the atomic limit as the unperturbed Hamil-which are correct to a given order indl/but necessarily
tonian are closely parallel to the LCE for classical spininclude terms of all higher orders. This has already been
systems2-21 done to the first order for spinless fermidfisThese approxi-
Expansions in H (or 1/z) have been considered recently mations, which we will simply calself-consistent/d expan-
by Georges and Yedidiafor the Ising model and by Fish- sionshereafter, are discussed for the classical spin systems in
man and co-worke?$3 for the Ising and Heisenberg models. Sec. VII. We particularly emphasize higher order approxima-
Georges and Yedidia make an expansion at fixed order pdions, which are shown to break down for the ordered phase.
rameter by introducing Lagrangian multipliers to enforce theln Sec. VI, we summarize our results and present the main
constraint. Their expansion does not have a precise diagraronclusions.
matic language, but they were able to associate shorthand
graphs to the terms. These graphs reflect the rough structure II. LINKED CLUSTER EXPANSION

of the expansion. In the works by Fishman and co-workers, ) ) )
mostly linear in 1d corrections are considered, so that the Here we briefly describe the basic concepts of the LCE

results are independent of the actual structure of the latticdOr classical spin systems. The emphasis is on the features
except for the investigation of the random phase approximalmportant for development of ad/expansion in the follow-

tion (RPA) in Ref. 9, which goes to the second order. In bothing sections. The notation and terminology is mqstly adapted
above approaches, the actual method is rather tightly bouniom the review by Worti$,and the readers can find a more
to the problem. The usefulness of the LCE, which is a Verycomplete account of the method there. We first discuss the

general method, is acknowledged by the authors, but ndiare expansion, then the renormalized LCE dnderivable
exploited. approximations are introduced.

In this paper we present a systematic classification of the We consider a physical system at temperaficescribed
LCE diagrams for classical spin systems with respect ty Hamiltonian?,
powers of 1d. The results are quite general at this level,
because the details of the local part of the Hamiltonian is
hidden in the vertices, i.e., semi-invariants. We restrict the
considerations to interactions between nearest neighbor sites
and between one kind of variables only. The latter is not a . .
serious limitation, since a izati i +2 Pa()Xa(D), @

, generalization to several variables X

effects only the algebraic level, and need not be reflected in
the diagrammatic language. Generalizations to quantum spiwnhere 8= 1/(kgT), andkg is the Boltzmann constant. Here
models with nearest neighbor interaction should also be- is absorbed into the local fields(i) and p,(i), which
workable, but the additional complexity due to the time de-couple at sitei to the commuting local variables(i) and
pendence may put serious practical limitations on how many,(i), respectively, and into the interaction parametérj),
orders in 1d can be included, just as for correlated electronwhich couples the variables on sitesi andj. We have
systems mentioned above. restricted our treatment to models with a nonlocal interaction

In the following section we give a brief description of the between one type of variable, but generalization to inter-
LCE for classical spin models and of the vertex renormalizaactions between several commuting variables is straight-
tion of the diagrammatic expansion. This serves to settle théorward® The form (1) is sufficiently general for our pur-
notation and define the basic concepts of the rearrangemepbse, and is more general than a conventional spin model.
of the series in terms of thed.dependence. In Sec. Ill, we The variablesr andx, are not necessarily independent and
analyze the dimensional dependence of the free multiplicican be built up from classical spinlike variables. Including

1
~BH=> .2,: o(ii)a(Da(+2 hial)

014403-2



LINKED CLUSTER EXPANSION AND 18 EXPANSIONS . .. PHYSICAL REVIEW B 63 014403

several types of local variables allows us to consider Ising-
type models with single-site anisotropy, as well as more ¢ = 12| + 14 + 112 + 16
complicated classical lattice gas models such as that de-
scribed in detail in Sec. VI.
1/48 @ + 1/4? + 1/8 O

The partition function is
FIG. 1. First few diagrams of thé potential.

+

Z=Trexp— BH), (2)

which in the noninteracting case € 0) reduces to

+

Z":H trexp{h(i)o(i)+2 ()X, (0) |. (3

Here “Tr” denotes the sum over all configurations of the ) » )
entire system, whereas “tr” denotes the sum over all con- 1he logarithm of the partition function can also be ex-
figurations of the single-site subsystem. The logarithm of thd’réssed through a vertex renormalized expansion. Itis given
partition function,)W=InZ, can be expanded in powers of by
the interactionv, and the coefficioents can be expressed in _
terms of the bare semi-invariant,(h), which are given b ) . )
) eny W=2 Mo(i)+® =2 3 Gu(My(i),  (6)
nMg i i n=1
0 0
Mo(h):Intrex;{ h‘7+§ paxa)’ Mn(h)= P (M- \where the functional® is the sum of all unrooted
(4) 1-irreducible graphs, as depicted in Fig. 1. The self-fields are
then given by
These are purely local quantities dependent on the fields
=h(i) andp,=p,(i) at sitei. 5P
The diagrammatic expansion is then given by the linked G,()= —.
cluster theorem which states that is the sum of all topo- OMi(1)
logically different unrooted connected graphs. The weight o
a graph is calculated by assigning to thevalent vertexi
factor Mg(h(i)), to each bond between siteand]j factor

)

tI'he general procedure to construct self-consistent and con-
serving approximations callefi-derivable approximations is

(i.j), and summing all the dummy indices of the verticesto choose dfinite or infinite) subset of graphs in the series in
vill), 9 y Fig. 1 as the approximat®, and use it to define the self-

freely over the entire lattice. Finally, one must divide by thefields G, by (7). These approximaté,’s are then put into

symmetry fag:tqr of the gfaph- _The symmetry factor is the(5), and the resulting nonlinear equations are solved for
number of distinct ways in which the graph can be madeNI s
n'S.

isomorphic to itself. . e S
It is often advantageous to do some kind of resummation The simplest possibleb-derivable approximation is to

in order to reduce the number of contributing graphs. This ié[ake only the first graph in Fig. 1. This is equivalent to the

also necessary to get symmetry-broken solutions with a finité’v rﬂ?ﬁgegﬁgs f('aexlgc,:hva? ryl f(zz tIP;ethc(Iaa% Slllg\?vlinsplsnecst)ilsaim&
number of graphs, and we will find it also convenient when . . ¥ 9 .

. . we use the dimensional dependence of the graphs in the ex-
generating the & expansion. For the case of rooted graphs ansion for® to control the expansion around this limit, and
(i.e., for expectation values of local variables or for correla—,f)0 select the most important cpontributionSCDo The dimén-
tion functiong, the vertex renormalized expansion is well sional dependence 0? the weiaht of a araoh enters throuah
defined by absorbing all kinds of decorations to the vertice P 9 grap 9

of the 1-irreducible 1-skeletons into renormalized semi-%he scaling of the parameters in the Hamiltonian with the

. . . . . mension of the lattice, and through the free lattice sums for
invariants. The sums of decorations are described in terms g . L

. : each vertex in the graphs. The scaling is necessary to render
the self-fieldsG,,, wheren is the valence of the external

vertex of the decorations. The self-fig®}, is the sum of all physical quantitiesfree energy per site, for instandnite in

n-valent 1-insertions. Then we can define the renormalizeéhe limit of infinite dimensions. For simple phases, the sum

semi-invariants by adding all kinds of decorations to the baré?vﬁgi:attﬁﬁisg eI: gilxqesl atr:gurl;{hprm)r;? Laf\c\;[voar (;atl(lje(; n];rs:dn:ﬁg
semi-invariants. This is formally expressed by plctty, Py Y

graph in the lattice. There are no restrictions on vertices oc-
cupying the same site.

(5) In the following we restrict our treatment to models with
nearest neighbor interaction on hypercubic lattices! idi-
mensions. Thus the triangular graph in Fig. 1 vanishes due to

The self-fields themselves can be expressed in terms of thtae topology of the lattice. The same applies to all other

renormalized semi-invariants, so that their diagrammatic repgraphs containing closed loops with an odd number of near-

resentations consist of 1-irreducible graphs only. Hence, thest neighbor bonds. For the interaction between sitesatl
problem reduces to solving) for the M,’s. r' we write

* |
Mn<i>=exp(2 Glm‘% Ma(h)
=1 dh

hi=h(i)
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d
ry — v ! 1 .
v(r,r')=ggn(r=r’, 8 gr(x)z(ZW)dJ ddkexp(xnkJrlk-r):i]:[l 1r (2%).
where (13
: : : The ith component ofr is r;, and|,(x) is the modified
1 wh t hbor dist , ! S v
n(r)= WhEnr IS & hearest heighbor distance Bessel function of the first kind and order(see Ref. 2¥.

0 otherwise, The integrals are over the first Brillouin zone. The generating

andu(r,r')~O(1/d) is the necessary scaling whep-.’ functiong,(x) can be rewritten as

“ 1 (2%)

ll. FREE MULTIPLICITIES _ d _
X)=15(2X)°D,(X), D,(X)= .
FOR HYPERCUBIC LATTICES 9r()=10(2X)"D(x) (x) Hl 1o(2X)

(14

For hypercubic lattices, the free multiplicities of graphs
can be expressed as polynomials in the dimensianly.
The free multiplicities have previously been investigated in
relation to the weak embedding lattice constaritsFor
simple approximations, it is also possible to calculate the
by hand, or reduce the problem to simple momentum inte-
grations, as was done in several other papers. However, to
construct a M expansion we need not only the free multi- “ofn\ [ dm g anm
plicities of the graphs that we include in the expansion, but en(r)= 20 m ﬁIO(ZX) dxn—m
also estimates of those that we discard. This is necessary to
make sure that no important contributions are lost. Here we _ _
analyze the graphs directly to find their dependence on thErom this general expression we can extract, for example,
dimensionality of the hypercubic lattice. Starting from mo- th€ leading contribution idl. It is given by the term with the
mentum integral representation we construct generatinfir9est possiblen. We have
functions for the free multiplicities of large families of

The functionD,(x) does not depend od for fixed r (by
“fixed” we mean that the number of nonzero components
and their values are fixed d@sand hence the total number of
he components, is allowed to grawin terms ofD,, the
inal result for the multiplicity of the chain is

D (x) (15

m=
x=0

graphs. Il ,
Clearly, we only have to consider irreducible graphs, as Di(x)= A+0(x)), (16)
the multiplicities of the reducible graphs are the products of H |ril!
|

their irreducible parts. A Cayley tree with bonds, for ex-
ample, has the free multiplicity (®". The 1-rooted and un-
rooted graphs have the same free multiplicity, because t
free multiplicity of an unrooted graph is defined as the num->
ber of embeddings per lattice site. As an example, we first

nwherel|r|==[r;|, so we must choose=n—|r|. The result

reconsider simple graphs: chains with fixed endpoints and B n! n—r 1
rings. Then we move on to the discussion of more general en(r= n—||r|| d27(1+0d™ %) 17
topologies. ( !H Iri]!

For a chain ofn nearest neighbor bonds with endpoints

fixed at sites andj, the number of embeddings,(i—j) is whenn—|lr[| is even and non-negative, amg(r)=0 other-

given by wise.
To obtain the free multiplicity o(2k) of a ring graph with
e(i—j)= > N(i—ry)n(ri—ro)---N(rp_o—rp_1) 2k bonds, we just have to close the chain, i.e., we have to set
1.2, et r=0 in Eq.(12):
Xn(ra-1-J), (10 ’

. N . _ (2k)! d! k!
wheren(r) is defined in(9). Let the site vectors have integer rq(2k)=e,,(0)= K > | > = ,
componentgwe set the lattice constant to unityrhen we b a0 (d—m)! IT b (i)
have LL D

(18
1 n
en(r)= (27T)df dk(n)" exp(ik-r)= ﬁgr(x) ; where the rightmost sum is over all non-negative integers

x=0 (i=1,... k), such that
(11

d bl b2 tet bk—|||, bl+ 2b2+ tet +kbk—k (19)
nk——E n(r)exp(—ik-r)——ZE cogk;), (12
r =1

From(18), we find that the leading terms @hfor the ring are
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El tion” at the vertices. Due to the special form of for hy-

percubic lattices, the momentum integrals factor into prod-
1 1 2 3 1 ucts of multiple integrals. As a result, the generating function
can be written as a powerof the one-dimensional generat-
ing function:
0 2 4a gr(d;x)=gr(1;)°. (D)

For example, if we consider family 2 in Fig. 2, we get

12 o gNitnz+ng .
r =———05(1;X , 22
0 2(N) X X2 303 92(1;x) . (22
3 where
4b
FIG. 2. Examples of generic graphs. The lines denote chains go(1;X)= 2fw ko'w dgexd 2x, cogk)
and their numbering corresponds to the variables in the generating (2m)c)—m -
function. +2x, cogk+q)+2x5 cogq)] (23
(2k)! 1 and the leadingl behavior(for §=0,1) is
ro(2k)=——d¥ 1— —k(k—1)d?!
k! 4 ro(2k,+ 8,2k + 6,2k3+ 6)
1 B Py _3 B 5(2k1+ O)! (2ky+ 6)! (2kg+ 5)!
+288k(k 1)(k—=2)(9k+5)d “+0O(d™°)|. =2 n n ol
(20) x dkatketkst o1+ O(d1)). (29)

The two simple examples above show that chains of The one-dimensional generating function can always be
various lengths are conveniently described as a whole b§xpressed as a multiple momentum integral, as in the above
their generating functions. Moreover, graphs that differ onlyexample. The integrand can be expanded to sufficiently high
by the length of their chains are described by the same geder in x;,xz, ... X, and integrated term by term. This
erating function and form a family. Therefore, we need@pproach is quite feasible for simple graph f§m|l|es, using
to consider only the number ofvalent verticesii>2) and ~Modern computer algebra packages. Alternatively, one can
the way in which they are connected. A family of graphss'mF"y_ count the number of empeddlngs in the linear chain,
described by the same generating function can then b&hich is a problem easy to code in most computer languages.
represented by a generic graph, such as the examples in Fig. In the general case, we proceed by writii) as
2. There, a line correspond to the generating function of a = /g
chain and all vertices except one should be summe_d fregly gr(dix)= 2 ( )CF(X)p’ cr()=gr(1x)—1,
over. These graphs correspond to the homeomorphically ir- p=0 \P
reducible stars used in classification of graghbut we do (25

not make any use of this fact, since we must allow for zero-

length chains. Consequently, the scheme is also not a disjoitr'lli]en dtirf]ferentiatingihand settitrpg=0. Sincg thfere its. alwgysth
partition of 1-irreducible graphs. Each family generally in- more than one path connecling any pair of Vertices in the

cludes reducible graphs, and may also include graphs of arg};_eneric graph, each factor must be differentiated at least

other family. However, the approach reduces the work con!Wice, to yield a nonzero contribution. Thus, we get nonzero
siderably contributions to the sum only fop<[n/2], wheren=n;

We denote the generating function for the free multiplici-_+r|2+ - and[-- -] means integer part. Taking this
. . S . . — into account, and writing out the binomial coefficient as a
ties of graphs in the family" in d dimensions bygy(d;x)

polynomial ind, we find that

wherex=(X1,X,, . .. X is ak-tuple corresponding to the

variables for each of th& chains. The corresponding free _ [ 2] S gzt
multiplicity for a graph within this family is denoted by rr(n>=mZ:0 dm,gm?mcr(x)p ,
rr(n), wheren=(ny,n,, ... ny) is the number of bonds in Lo K x=0
each chain. (26)

If we consider any particular family’, we can immedi- whereS™ is the Stirling number of the first kintsee Ref.
ately write down the generating function for the free multi- 27). This expression gives the free multiplicity directly as a
plicities by using the integral representation in E&3) for  polynomial ind. The coefficients are completely specified by
each of the chains. Summing over the site vectors for eithethe free multiplicities of the graphs within the same family in
of the vertices simply results in a “momentum conserva-one dimension and with fewer or equal number of edges in
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& = 1/21 @ = 1/40 G = I
@ = 1/48@ + 1/4@ + V12 . % + 1 + O

+ 1/12<:> G, = 6 ® + 112 @ + /6 ®+ od

FIG. 3. Thenth order in 1d contributions®,, to ®.
G, = 124 @ + O™

each chain. In practical calculations, the derivativesioére

found by expandingc and using polynomial algebra or,

equivalently, direct convolution of the coefficients in the ex- FIG. 4. Leading order in &/ terms for the self-fields.
pansion. From this explicit calculation, it follows immedi-

ately that the free multiplicity of an arbitrary 1-irreducible graphs are almost the same as the “shorthand graphs” of
graph with n nearest-neighbor bondgxcept forn=1) is  Ref. 22 for the free energy. The exceptions are the third
O(d™y or higher in 1d, in agreement with the results of graph from the left forP3, which is absent in their expan-

previous works.?° sion, and the single vertex which does not enter the expan-
sion for ®.
IV. 1/d EXPANSION OF & Using Eq.(7), we can also conveniently calculate the self-

fields in a controlled way. The results are shown in Fig. 4.
From the preceding section, we know how to calculate therhe leading contribution t&,, in high dimensions is from
free multiplicity of various irreducible graphs contributing to the graph wittn bonds and twa-valent verticesthe clipped
®. They are all in the form of polynomials th Furthermore, away vertex including and its weight is~d~ ("1, To
due to the scaling of the interaction, each bond carries @rove that all other terms are of higher order, we consider an
factor ~d ™. We can therefore easily find tliedependence arbitrary 1-irreducible graptD with at least onen-valent
of the graphs in Fig. 1lassuming a simple symmetry break- vertexV, total number of edgesi+n, and weightW, . Let
ing, if any). The first graph has free multiplicityd2and one  m>0. If there are any multiple edges joining and any
interaction line, so it ig)((1/d)?). Likewise, the second, the other vertex in the remainder of the graph, these can be re-
third, and the fifth graphs are of order one, two, and three irjuced to one edge without altering the free multiplicity of
1/d, respectively. The fourth and the sixth graphs, of coursethe graph. If there are in totaj<n—2 such edges that are
vanish on the hypercubic lattice, whereas the seventh grapemoved to obtain a grapB’ with weight Wy, and total
is O(1/d?). number of edgesn+n’ (wheren’=n—q), then we have
The 1-irreducible graphs with bonds(except, againn ~ Wp~d 9W,, . LetV’ be the vertex irD’ corresponding to
=1) areO(d!™@~") or higher order in M. Therefore, one Vin D. Any vertex connected t9’ by a single edge must be
need only check graphs with up to, and including) Bonds  joined to any other such vertex by a path composed of at
in order to find all terms of ordem or lower in 14. In a  |east two edges and not visiting’ for the graph to be
vertex renormalized expansion we need then only consider &-irreducible and embeddable in a hypercubic lattice. There-
finite number of 1-irreducible graphs to be sure that all congore m=p’ andWp, is O(d~"") or higher. Thus, we have

tributions to a given finite order in d/are included. We can thatWp is O(d ") or higher, which is smaller by at least one

therefore write theb potential as the sum order than the graph with bonds and twar-valent vertices.
" In conclusion, we have
q)zngo Q)n, (27) vn 1 n-1
G=—| | M +Od™". (29)
nl\2d
where
®,=0(d™ "), whend—co. (28 V. THE ISING MODEL

d,, is the sum of a finite subset of 1-irreducible graphs from In this section we construct d/expansion for the equa-
the expansion of. The exact diagrammatic expressions fortion of states of the Ising model, using the approach de-
¢, for n=0,...,3 areshown in Fig. 3. Note that these scribed above. For the spsmising model, the parameters in

014403-6



LINKED CLUSTER EXPANSION AND 18 EXPANSIONS . .. PHYSICAL REVIEW B 63 014403

TABLE I. Critical temperatures normalized by tlde=~ (MFA) value.

d S Order of 14 approximation Best estimat®efs. 28 and 2P
1 2 3
2 % 0.7500 0.6667 0.5990 0.5673
1 0.8125 0.7363 0.6748
g 0.8300 0.7579 0.6991
e 0.8500 0.7836 0.7289
3 % 0.8333 0.7963 0.7762 0.7518
1 0.8750 0.8411 0.8229 0.7989
g 0.8867 0.8546 0.8372 0.8138
o0 0.9000 0.8705 0.8543 0.8320

Eq. (1) are:v(i,j)=*+BIn(i—j)/2d for the ferromagnetic ~ semi-invariants in the expression for the full first semi-
(+) or antiferromagnetic £) model, andh(i)=—gH(i), invariantM, are reduced to the mean-field semi-invariants,
where H(i) is the external magnetic field. The variables With the mean-field given by, itself. M, is the magneti-
a(i)=S,(i)/s are normalized spin operators. The above scalzation, and the zero-field susceptibilify for the paramag-
ing of the parameters withandd ensures well defined limits Nnetic phase is found by differentiating with respechtand
when either of the parameters tends to infinity. The zerosettingh andM; to zero.

order bare semi-invariant for the model is The critical temperature for the spiising model is a
function of the spin and the lattice dimensionality,
o sinh(h(2s+1)/(2s)) =T.(d,s). Its 1d expansion is easily found from thedl/
Mg(h)=In Snh/(2s)) (30) eX{:)ansmn of the zero-field susceptibility by inserting the an-
satz

We find the 1d expansion for the renormalized semi-
invariants of the ferromagnetic Ising model by solving Eqg. B 71(s) 72(S)  73(S)
(5) iteratively, using the self-fields in Fig. 4, and always Te(d,$)=Te(,5)| 1+ d + d2 + a3
truncating to the third order at each step of the iteration.

+0(d™4 |,

Such an approach has also been used to generate high tem- (3D)
perature series expansioh$he iteration is stopped when all which gives
T J(s+1) 32
o0 =
C( vs) 3kBS 1 ( )
3 25°+2s+1 23
m(9=7 10 2s(s 1) (33
3 496"+99%°+67X%+1765— 61 a4
TZ(S)_ 1400 2252(S+ 1)2 ’ ( )
3 4084°+1225%°+1351&%+ 66165+ 719%5°— 5475+ 108
ra(s) = - 39
3500 23s3(s+1)°
|
The leading terniT.(e,s) is the well known MFA result, and
and it is not very sensitive te. Also the coefficientsr;(s) . . 2063
have a rather weak dependence s 3,%]. The limiting n(®)==1, 7*®)="350 73(*)=" 7500 (37)
cases are Of course, wherever applicable, the above results agree with
those of previous works mentioned in the Introduction.
(U2)=-% 1(112=—3, m3(1/2=—%, (36 In order to illustrate the above results, in Table |, we
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present explicifl; values ford=2 andd=3 obtained in the in the A or B sublattice. The order parametgis taken to be
first three orders in &, together with the exact result far  half the difference between the site occupation numbers on
=2 and the best numerical estimates flor 3 coming from  the two sublattices,

high-order high-temperature series expansienSE).?82° |t

is seen that the subsequent corrections theipansion de- q=3(M7—M?). (40)
crease rapidly and that the third-order results come ver
close to theT, values obtained from the exact solution and
from the HTSE.

¥n d=< the charge-order equation of state can be written as

1 [1+q \/1+()\7—1)q2+)\q
h=-vqg+ zIn ,
2 11-9 J1+(\?-1)g°—\q

Exactly the same approach as above is applicable to th@hich is valid for large enough temperatures and can be
Hamiltonian converted into a physical equation of state at all temperatures
by a Maxwell construction. The above expression is analytic
for smallg and can be expanded as

(41)
VI. A TWO-COMPONENT LATTICE GAS

W
Hzm% (n,T-I—n,L)(n”-l—n”)-i—UZ n”nu
h=(A+1-v)qg—:t(A+1)2(A—2)q°
—MZ (”n“‘u)—Z Hi(ni; +n;)) + 2+ 1)3(3N2— 7\ +8)dP. (42

1 From this, we can read off directly that there is a continuous
- 2 His(n”— ni,). (39 zero-field phase transition at=1+\ whenA<2, and a first
25 order zero-field transition fox>2. This well known way of
. . . analyzing a continuous or weakly first order transition is also
It describes a two-component classical lattice gas of, say

spin-up and spin-down electrons with the occupation opera@\aSIIy applicable to the d/expansion, which gives us an

. s . : :
torsn;; andn; , respectively, with the on-site interactiah equation forM;, and thusg, to a given order in 1. This

the nearest-neighbor interactiv2d, the chemical potential equation can then ea;ﬂy b.e solved foas a POWET €xpan-
. . s X . sion ingand 14. The linear ing term of the equation of state

wm, and site dependent fieldd; and H;. The fields are in- for larged reads
cluded here mainly for technical reasons. The model corre-
sponds to an extended Hubbard model with zero electron 1 1 1 3
hopping between sites. Here we limit our considerations to y~1=——y+ =| — =2+ —rp?|d 1+ -
the half-filled lattice, i.e., with one particle per site, on aver- r 2 2 2 4
age. In this case, due to the electron-hole symmetry of the 1 3 3 3
system,u=W+U/2, and the extended Hubbard mod&8) ——rot—=r%3+ -r2vt+ —r3u4)
can be mapped to the Blume—Capel model with anisotropy 8 2 8 4
constantD =U/2+In(2)/8 (Ref. 24. 1

The form(1) is obtained by defining the interacting vari- + 3
ableso(i)=n;; +n; — 1, which are coupled to the external
field h;=8H; and mutually by(8) with v=8W, and the 1 1
additional local variables: x;(i)=o(i)2,  X,(i)=%(n; — ot er®®-art®
—n), x3(i) =%,(i)?, and x,(i)=1, which couple to the
fields: p,(i) = — BU/4, p,(i)=BH?, ps(i)=BU, andp4(i) 5 15 B B
= B(H;+ u—W/2—U/4), respectively. We do not need the + 1_6r406+ erve)d S+O(d™Y), (43)
field coupling to the spin degrees of freedom here, so we set
p,=0 for the sake of simplicity. where

The first order bare semi-invariant is then given by

1 1
- gl)s-f—l’l)3

1 3 13 3
_ A, S 4 TN 2 4 Y 3.4
24v +4rv 8rv 4rv

1
sinh(h) ST
i S = @BUI2
N+coshh)’ r=e ' (39

(44)
M3(h)
The higher-order i terms are too long to be presented here.
The system may order into a charge density wave with & he tricritical point is given by the common zero of the first
simple A-B sublattice ordering on hypercubic lattices in and the third order i terms of the equation of state. The
high dimensions. We will therefore let the fiell(i) be a  resultis
staggered field with valué on sublatticeA, and —h on
sublattice B. The renormalized semi-invariants will then
have spatial dependence only according to the sublattice, and
we need not distinguish between sites on the same sublattice.
We will therefore denote the renormalized semi-invariant
M, (i)=M; wheres=A or s=B, depending on whetheris

1 1
Uy IW=K, + E(l_ Kw)d*1+§(1— K.)d ?
11
+E(1—Kw)d*3+(9(d*4), (45)
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1 11

TA4-2_ 743 —4

6d 48d +0O(d™ %), (46)
where K.,=2 In(2)/3. The critical lineT,=T.(d,K) vs K
=U/W in the T—U plane at zero staggered field in infinite
dimensions is given by

11,
kBTtri /W: §— Ed -

kgTe(,K)/W=rq(K)= (47)

+1

ex"(Zro(m

For general high dimensions, atb<U ; , we write
TC(de)

71(K) +7'2(K) N 73(K)

:TC(OOIK) d d2 d3

1+

+O(d_4)),

(48)
where the coefficients are

3I’0— 1

oK 2r,Krg)! “

71

Tp=(4Krq—K2—r3—3r3+36r§— 10Kr3+2K?r,— 30Kr3
+36Krg+11K2r2— 21K 2r 3+ 9K?rg)
1
X L
12r o(K—2ry—Krg)®

(50

T3=(K*+48r§— 2805+ 168 5+ 1728 [ — 108Kr 3— 12K 3r,
+812Kr§— 20K*r o— 1436Kr5— 2724Kr §+ 3456Kr
+56K2r3—560K2r 3+ 172K 53r 2+ 146K ?r§— 596K °r 3
+ 81K A3+ 127K ?r 3 — 156K 3r 5+ 4K *r3— 4824 ?r§
+2344K5r 5 — 41K *r g+ 259K ?r [ — 2616<3r§
+692KAr g+ 864K °r {— 45K *rS+ 108K *r{)

1
Xgerg(K—zro— Kro)®

(51)
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uw

FIG. 5. Critical line and tricricritcal poinfTCP) for the simple
cubic lattice @=3) up to (18)3. The sixth-order HTSE result for
T. (Ref. 30 is shown for comparison.

VII. SELF-CONSISTENT 1/d EXPANSIONS

The possibility of performing self-consistentdlapproxi-
mations, which then necessarily include infinite-order terms,
deserves some comments. We will consider the ferromag-
netic spin-1/2 Ising model as an example in the remainder of
this section. The idea is to construbtderivable approxima-
tions, choosing the diagrams for the approxim@&t@ccord-
ing to the 14 criterion. A crucial step in using this approach
is to resum Eq(5) to all orders in the nonvanishing self-
fields. With®d taken to beb in Fig. 3, onlyG; is nonzero,
and the serie€s) is simply a Taylor series, which is trivial to
resum. The result is the MFA. In this case, the resummation
can even be avoided by expanding in the fluctuations around
the mean field, such that all graphs with Cayley tree inser-
tions vanish in all orders of the expansion.

Including the diagram®, in Fig. 3, i.e., taking the ap-
proximate®d to be of the first order in &, makes alsds,

This expansion is of little use near the tricritical point, sincenonvanishing. Actually, this self-consistentd1torrection
its location depends on the dimension of the lattice, but iwas considered in Ref. 31, although the author apparently
is useful elsewhere. The critical line near the tricritical was not aware of this way of looking at the approximation.

point can be found by usiny,; —U as a free parameter
instead ofU.

The results are quite beautiful and reasonable for all values
of the Hamiltonian parameters and in the whole range of the

In order to illustrate the above results and compare thentemperature, and give considerably better estimation for the
with those of the HTSE, in Fig. 5, we plot the critical lines critical temperature than the MFA. However, one can easily

and the tricritical points obtained from Eqg5)—(51) for the
fixed finite value ofd=3, i.e., for the case of the simple

cubic lattice. It is seen that the subsequent corrections dehe
crease rapidly up to the number of terms considered hersemi-invariant

Moreover, the third order in @/ result for the critical tem-
peratureT. is in very good agreement with that from the
sixth order of the HTSE?

convince oneself that the seri€S) is not convergent for
arbitrary nonzero value d&,. This is particularly clear from
resulting integral formulas for the renormalized
453132 which are manifestly nonanalytic
functions ofG, at G,=0. The integral equation is however
well defined for anyG,=0, which is the physically relevant
region.
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Following Ref. 5 the renormalized semi-invariants for thebreaks down at low temperature when carried beyond the
translationally invariant case can be written as first few orders. Even if one could analytically continue Eq.
(52) to arbitrary values of5,, one would still not avoid an
» dk * N unphysical singularity whem, crosses zero. The leading-
Mn(h)= Z—GXF{ ikh+ 2>, (ik)'G|) Ma(k), (52  order term ofG,, in high dimensions is proportional to, and
i =1 depends only oM, [Eg. (29)], so that sign changes in the
ordered phase occur also for self-fields of higher orders. The
K10(k) = fw dh MO(h)e~kh, (53 problems are therefore not specific to the order considered
" —w " above as an example. If the highest nonvanishing self-field is
) . _ of odd order, the integrand is controlled by the term arising
The Fourier transforms of the bare semi-invariants or ¢4 the self-field of one order lower.

>1 are V\{ell defined, but the casa;Q andn=1 must be ) Any additional correction to the highest nonvanishing
treated with care to rr_lake mathematical sense. For the firskqi_ield will be smaller than the leading term by at least a
order bare semi-invariant, for example, we have factor 14, and, by considering sufficiently high dimensions,
Cim can be made small enougiot to cure the problem. There-
MO(K) =Py, (54)  fore, if Eq. (52 is a correct resummation of the generally
sinh(7k/2) divergent serieg5), the only possibility is to include all
higher order self-fields in an approximate way. Since our

where Pv denotes the principal value, i.e., it must be inter oal was to make a self-consistent approximation that is cor-
preted in the sense of a distribution. 9 bp

Bloch and Langérhave specially constructed an artificial rectto a given_order in & _and the only reason for including
model in which sgmi-invaria[\)nts ofyorder higher than a givenself'ﬁe'dS of higher order is to regularize the integef) for

order vanish, and consequently, there is only a finite numbez?II parameter values, it appearls'natural 'to use the qudlng
of nonvanishing self-fields. They have shown that in thisorder in 14 for each of the remaining self-fields as a starting

case the form of the Dyson equati) implies a restricted point. It remains to be seen if this is workable.

domain of validity of the renormalized expansion in terms of The breakdown of the renormalized expansion can also

the values of the renormalized semi-invariants. In our case%i‘ke place within other approximation schemes involving a

©

there are an infinite number of nonzero semi-invariants, but n't? :\tgmper o;fsglf-fileldhgrr?pgs when :Ee dlrlr;insléonallty zf
finite number of nonzero self-fields that contribute in Eq. € lattice 1S sutticiently high, because he Seli-ields may be

(52). We find that in some regions of the ordered phase, thgominated by the terms considered here.

values of higher-order renormalized semi-invariants become It is quite plausible that this problt_am may arise al_so_ for
such that the integral if62) is ill defined. other models, whenever the LCE using the atomic limit as

To see this, we first consider the highest nonvanishin%he unpe_rturbed Hgmiltonian is applied. In pa.rticular, dia-
self-field to be of even orderr2 The integral in(52) will rammatic expansions fqr some guantum spin models_or
converge when £ 1)"G,, <0, but not for ( 1)"G,,>0. If models of correla?ed fermlons, in which the atomic states are
n=1, as for the self-consistentdLApproximation to the lin- used as the basis statég, using the Hl_Jbbard operator

ear order, this problem does not arise, but if we Considel;ormahsrrj, have the graphical and algebraic structures of the

higher-order self-consistent approximations, it might. An os.classical spin systems considered here, and will therefore be

e, vl i high cimensions, can e e for e oL 2 1 Same prolems of Ngherorder enomalze:
order in 14 self-consistent approximation, for which the ' . 19 & N . :

: e . of the renormalized expansion is associated with the particu-
self-field graphs are shown in Fig. 4. In this case;2 and

= ) . . L lar form of the Dyson equation, no conclusion can be drawn
—,44-3 '
Gy v d™"M,/192 is p_r(_)porn_onal tM,. It is sufficient to from this finding for perturbation expansions of correlated
consider the bare semi-invariant,

fermion models with the band part as the unperturbed Hamil-
tonian.
M3=—2(1-(MDH(A-3(MD?), (55 ~fonan

and we see thait/l?1 becomes positive when the magnetiza- Vill. SUMMARY AND CONCLUSIONS

tion M goes above 1/3. The same happens with the semi-  Within the framework of the LCE for classical spin sys-
invariant M4 (and consequently, alsG,) renormalized by tems with nearest neighbor interaction, we have considered
Cayley trees, because it is equal to the unrenormalized ongower series expansions indl/as well as self-consistentdL/
with the argument shifted by the mean field. We have veri-expansions. Generating functions turned out to be particu-
fied numerically that this is also the case fbt, self- larly useful for analyzing the free multiplicities of the graphs
consistently renormalized within the third-order self- for hypercubic lattices in arbitrary dimensiah They are
consistent I approximation, as well as within a self- uniquely given by the free multiplicities or generating func-
consistent approximation including all 1-irreducible graphstions ford=1, which can be relatively easily calculated. For
up to fourth order inv, inclusive in finite dimensions. The the simple examples considered in this paper, the method is
problem appears when the temperature is low enough oprobably an overkill, but it is quite general, and its applica-
equivalently, when the magnetization is large enough, just aon is not limited to 1d expansions for classical spin sys-
one would expect from the above considerations. Thus, theems considered here.

appealing scheme of a self-consistertt @&kpansion actually We have presented a systematic classification of
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1-irreducible graphs that contribute to tlde potential for  considered here as limiting cases, the presented results
classical spin systems with respect to powers df $howing  should serve as a useful reference.

explicitly the series up t@(d~°). These results have been ~ We have discussed the possibility of constructing self-
applied to obtain the expansions irdifor the critical tem- ~ consistent I approximations within the renormalized LCE
perature of the spis-Ising model, and a two-component for classical spin systems, using spin-1/2 Ising model as an
lattice gas corresponding to the zero-bandwidth extende@xample. Except for the first few lowest orders, this approach
Hubbard model at half-filling. For the latter, we have alsoWas found to break down at low temperatures. The same
calculated the H expansion for the tricritical point. To the applles to a self-consistent approximation mcludmg all
best of our knowledge, these are new results, except for th%—lrredu_(:lble_z graphs up to fo_urth qrder n Fhe interaction. The
zero-orderlMFA) results, and the spin-1/2 Ising limits. The qonclu_spn 1S _th_at a truncation with a f|n|te_ number of .Self'
general expressions have been applied to the finite dimensicﬂ’f’ldS IS ms_ufﬁmgnt, so that one must also include all higher
d=3, i.e., for the simple cubic lattice. The results Ty of order self-fields in some approximate way.
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