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Linked cluster expansion and 1Õd expansions for classical spin systems
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We consider 1/d expansions for classical spin systems based on the vertex renormalized linked cluster
expansion~LCE!. The free multiplicities of the LCE graphs on a hypercubic lattice in an arbitrary dimension
d are calculated using generating functions. The technique is applied to the Ising model and to a two-
component classical lattice gas corresponding to an extended Hubbard model at half filling in the zero-
bandwidth limit. We use a resummation of the LCE to generate 1/d expansions for the equation of state and for
the critical temperature. The method, which is rather general and applicable to a wide range of models, proves
convenient for calculating asymptotic power series expansions in 1/d. The vertex renormalized expansion is
shown to break down at low temperature in higher order approximations, barring attempts to construct simple
approximations that are both self-consistent and exact to some finite order in 1/d.
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I. INTRODUCTION

The molecular field approximation~MFA! for classical
spin systems becomes exact in the limit of infinite coordi
tion numberz of the lattice. The first attempts to formula
an expansion in terms of the inverse powers ofz for these
systems were made more than 30 years ago.1–3 A linked
cluster expansion~LCE! based on an expansion of the par
tion function in terms ofbJ, whereb is the inverse tempera
ture andJ is the exchange, was developed. The limit
infinite z corresponds to the sum of all Cayley tree diagra
in the linked cluster expansion, and corrections were sou
by classification of the remaining diagrams of the expans
in terms of higher powers of 1/z, complemented by variou
kinds of renormalizations to cure inconsistencies in
theories. The inconsistencies were later shown to be avoi
at least in principle, by constructing so-calledF-derivable
approximations,4,5 such as for quantum many-body pro
lems.6 The key feature of this approach is that one constru
a functionalF of the full propagator~s!, from which all cor-
relation functions and the grand canonical potential follo
The physical singularities are therefore guaranteed to ap
for the same parameter values in all quantities.

The expansion in inverse powers of the lattice dimensi
ality d for the critical temperature of the spin-1

2 Ising model,
as well as for other quantities, was successfully used
Fisher and Gaunt7 for the case of hypercubic lattices, fo
which z52d. They considered the high temperature ser
expansion, which was well known from investigations of t
model in two and three dimensions, and carefully examin
the d dependence of the weak lattice constants entering
expansion. They went to the fifth order in 1/d for the critical
temperature and found a good agreement with the resul
other methods. Later, this approach was applied to the g
eral n-vector models by Gerber and Fischer.8 They also in-
vestigated the spherical model~with n→`), for which the
critical point is exactly known in any dimension. This e
abled them to prove rigorously that an asymptotic 1/d expan-
0163-1829/2000/63~1!/014403~11!/$15.00 63 0144
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sion exists, at least for this model, although it is not conv
gent. Remarkably, the critical temperature was found to
an analytic function ofd in the interval 2,d,`, which goes
below the upper critical dimensionality. Therefore, ev
though a finite-order expansion in 1/d ~as any other mean
field-type theory! cannot give correct critical indices due t
its approximate treatment of long-range correlations, it d
give information about nonuniversal parameters such as
critical temperature below the upper critical dimensionali

The 1/z ~or 1/d) criterion in the early attempts to rea
range the LCE had only a suggestive meaning.5 In particular,
the first order correction was taken to be the sum of all r
diagrams.2 For the nearest neighbor interaction on a hyp
cubic lattice ind dimensions, the weight of a ring diagram
with 2k bonds isO(d2k), as pointed out by Fishman an
Vignale.9 Therefore, if one takes the limit diagram by dia
gram, as it is done in the weak embedding expansion
Fisher and Gaunt,7 only one ring diagram contributes t
O(1/d) in the vertex renormalized LCE. This approach to t
limit of infinite dimensions within the LCE was employed b
Abe,10 who simply took the vertex renormalized eight ord
expansion inbJ for the inverse susceptibility and restru
tured it into a 1/d expansion using Fisher and Gaunt’s res
as a guidance.

A great interest in the limit of infinite dimensions fo
correlated fermion systems has arisen within the last
years ~see Ref. 11 for reviews!. This followed the ob-
servations by Metzner and Vollhardt in their semin
paper12 that for tight-binding fermions on a hypercubic la
tice the appropriate scaling of the hopping matrix eleme
t;d21/2, has far reaching consequences. In general, the s
energy becomes site diagonal, and the nearest~or further!
neighbor interactions reduce to the Hartree approximation
this limit.13 Although a tremendous simplification of th
problem is achieved, the problem of interacting fermions
infinite dimensions is still far more complicated than t
MFA for classical spin models, and the calculation of 1d
corrections for correlated fermions is in general very dif
©2000 The American Physical Society03-1
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cult. In some special cases, however, this has been d
These include weak coupling treatments of correlated e
tron systems,14 variational wave functions approach,15 disor-
dered electronic systems,16 the spinless fermion model a
half filling,17 and the Falicov–Kimball model.18 A common
feature of some of these works is the use of theF potential
as the starting point for the 1/d expansions. This is quite
natural, because the limit of infinite dimensions itself can
considered aF-derivable approximation. Since the LCE wit
vertex renormalization for classical spin systems is qu
analogous to propagator renormalized expansions for la
fermions, it may be beneficial to use classical spin model
a testing ground for 1/d expansions based on resummation
graphs. Besides, since some quantum models have a cla
spin or a lattice gas model as a limiting case, 1/d expansions
for the classical models might be useful as benchmarks
other approximation schemes to the quantum models.
thermore, perturbation expansions for correlated elec
systems with the atomic limit as the unperturbed Ham
tonian are closely parallel to the LCE for classical sp
systems.19–21

Expansions in 1/d ~or 1/z) have been considered recent
by Georges and Yedidia22 for the Ising model and by Fish
man and co-workers9,23 for the Ising and Heisenberg model
Georges and Yedidia make an expansion at fixed order
rameter by introducing Lagrangian multipliers to enforce
constraint. Their expansion does not have a precise diag
matic language, but they were able to associate shorth
graphs to the terms. These graphs reflect the rough struc
of the expansion. In the works by Fishman and co-worke
mostly linear in 1/d corrections are considered, so that t
results are independent of the actual structure of the lat
except for the investigation of the random phase approxi
tion ~RPA! in Ref. 9, which goes to the second order. In bo
above approaches, the actual method is rather tightly bo
to the problem. The usefulness of the LCE, which is a v
general method, is acknowledged by the authors, but
exploited.

In this paper we present a systematic classification of
LCE diagrams for classical spin systems with respect
powers of 1/d. The results are quite general at this lev
because the details of the local part of the Hamiltonian
hidden in the vertices, i.e., semi-invariants. We restrict
considerations to interactions between nearest neighbor
and between one kind of variables only. The latter is no
serious limitation, since a generalization to several variab
effects only the algebraic level, and need not be reflecte
the diagrammatic language. Generalizations to quantum
models with nearest neighbor interaction should also
workable, but the additional complexity due to the time d
pendence may put serious practical limitations on how m
orders in 1/d can be included, just as for correlated electr
systems mentioned above.

In the following section we give a brief description of th
LCE for classical spin models and of the vertex renormali
tion of the diagrammatic expansion. This serves to settle
notation and define the basic concepts of the rearrangem
of the series in terms of the 1/d dependence. In Sec. III, w
analyze the dimensional dependence of the free multip
01440
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ties, which are the lattice constants in the LCE, and take
form of polynomials ind. Our main result is to express th
polynomial coefficients explicitly in terms of the free
multiplicities for the linear chain. In Sec. IV we discuss th
1/d expansion of theF potential for fixed semi-invariants
showing explicitly the series up toO(d23). In Secs. V and
VI we apply these results to two simple example system
the spin-s Ising model, and a two component lattice gas c
responding to an extended Hubbard model at half filling w
zero electron hopping between sites. An investigation of
phase diagram of the latter model in infinite dimensions
arbitrary filling was carried out by Micnaset al.,24 showing a
rich behavior. We restrict our treatment to pure power e
pansions in 1/d of the equation of state, which gives th
critical temperature, and, for the lattice gas model, also
tricritical point. In these calculations we have benefited fro
using the MuPAD package.25 The expansion ofF can also
be used as a starting point forF-derivable approximations
which are correct to a given order in 1/d, but necessarily
include terms of all higher orders. This has already be
done to the first order for spinless fermions.17 These approxi-
mations, which we will simply callself-consistent1/d expan-
sionshereafter, are discussed for the classical spin system
Sec. VII. We particularly emphasize higher order approxim
tions, which are shown to break down for the ordered pha
In Sec. VIII, we summarize our results and present the m
conclusions.

II. LINKED CLUSTER EXPANSION

Here we briefly describe the basic concepts of the L
for classical spin systems. The emphasis is on the feat
important for development of a 1/d expansion in the follow-
ing sections. The notation and terminology is mostly adap
from the review by Wortis,5 and the readers can find a mo
complete account of the method there. We first discuss
bare expansion, then the renormalized LCE andF-derivable
approximations are introduced.

We consider a physical system at temperatureT described
by HamiltonianH,

2bH5
1

2 (
i,j

v~ i,j !s~ i!s~ j !1(
i

h~ i!s~ i!

1(
a,i

pa~ i!xa~ i!, ~1!

whereb51/(kBT), andkB is the Boltzmann constant. Her
2b is absorbed into the local fieldsh( i) and pa( i), which
couple at sitei to the commuting local variabless( i) and
xa( i), respectively, and into the interaction parameterv( i,j ),
which couples the variabless on sites i and j . We have
restricted our treatment to models with a nonlocal interact
between one type of variables, but generalization to inter-
actions between several commuting variables is straig
forward.5 The form ~1! is sufficiently general for our pur-
pose, and is more general than a conventional spin mo
The variabless andxa are not necessarily independent a
can be built up from classical spinlike variables. Includi
3-2
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several types of local variables allows us to consider Isi
type models with single-site anisotropy, as well as m
complicated classical lattice gas models such as that
scribed in detail in Sec. VI.

The partition function is

Z5Tr exp~2bH!, ~2!

which in the noninteracting case (v50) reduces to

Z05)
i

tr expFh~ i!s~ i!1(
a

pa~ i!xa~ i!G . ~3!

Here ‘‘Tr’’ denotes the sum over all configurations of th
entire system, whereas ‘‘tr’’ denotes the sum over all co
figurations of the single-site subsystem. The logarithm of
partition function,W5 ln Z, can be expanded in powers o
the interactionv, and the coefficients can be expressed
terms of the bare semi-invariantsMn

0(h), which are given by

M0
0~h!5 ln tr expS hs1(

a
pa xaD , Mn

0~h!5
]nM0

0

]hn
~h!.

~4!

These are purely local quantities dependent on the fieldh
5h( i) andpa5pa( i) at sitei.

The diagrammatic expansion is then given by the link
cluster theorem which states thatW is the sum of all topo-
logically different unrooted connected graphs. The weigh
a graph is calculated by assigning to then-valent vertexi
factor Mn

0(h( i)), to each bond between sitesi and j factor
v( i,j ), and summing all the dummy indices of the vertic
freely over the entire lattice. Finally, one must divide by t
symmetry factor of the graph. The symmetry factor is t
number of distinct ways in which the graph can be ma
isomorphic to itself.

It is often advantageous to do some kind of resumma
in order to reduce the number of contributing graphs. Thi
also necessary to get symmetry-broken solutions with a fi
number of graphs, and we will find it also convenient wh
generating the 1/d expansion. For the case of rooted grap
~i.e., for expectation values of local variables or for corre
tion functions!, the vertex renormalized expansion is we
defined by absorbing all kinds of decorations to the verti
of the 1-irreducible 1-skeletons into renormalized sem
invariants. The sums of decorations are described in term
the self-fieldsGn , where n is the valence of the externa
vertex of the decorations. The self-fieldGn is the sum of all
n-valent 1-insertions. Then we can define the renormali
semi-invariants by adding all kinds of decorations to the b
semi-invariants. This is formally expressed by

Mn~ i!5expS (
l 51

`

Gl~ i!
] l

]h̃l D Mn
0~ h̃!U

h̃5h( i)

. ~5!

The self-fields themselves can be expressed in terms o
renormalized semi-invariants, so that their diagrammatic r
resentations consist of 1-irreducible graphs only. Hence,
problem reduces to solving~5! for the Mn’s.
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The logarithm of the partition function can also be e
pressed through a vertex renormalized expansion. It is gi
by

W5(
i

M0~ i!1F2(
i

(
n51

`

Gn~ i!Mn~ i!, ~6!

where the functionalF is the sum of all unrooted
1-irreducible graphs, as depicted in Fig. 1. The self-fields
then given by

Gn~ i!5
dF

dMn~ i!
. ~7!

The general procedure to construct self-consistent and
serving approximations calledF-derivable approximations is
to choose a~finite or infinite! subset of graphs in the series
Fig. 1 as the approximateF, and use it to define the self
fields Gn by ~7!. These approximateGn’s are then put into
~5!, and the resulting nonlinear equations are solved
Mn’s.

The simplest possibleF-derivable approximation is to
take only the first graph in Fig. 1. This is equivalent to t
ordinary mean field theory for the classical spin system
which becomes exact whend→`. In the following sections
we use the dimensional dependence of the graphs in the
pansion forF to control the expansion around this limit, an
to select the most important contributions toF. The dimen-
sional dependence of the weight of a graph enters thro
the scaling of the parameters in the Hamiltonian with t
dimension of the lattice, and through the free lattice sums
each vertex in the graphs. The scaling is necessary to re
physical quantities~free energy per site, for instance! finite in
the limit of infinite dimensions. For simple phases, the s
over lattice sites gives a multiplying factor called free mu
tiplicity, which is simply the number of ways to embed th
graph in the lattice. There are no restrictions on vertices
cupying the same site.

In the following we restrict our treatment to models wi
nearest neighbor interaction on hypercubic lattices ind di-
mensions. Thus the triangular graph in Fig. 1 vanishes du
the topology of the lattice. The same applies to all oth
graphs containing closed loops with an odd number of ne
est neighbor bonds. For the interaction between sites atr and
r 8 we write

FIG. 1. First few diagrams of theF potential.
3-3
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v~r ,r 8!5
v

2d
n~r2r 8!, ~8!

where

n~r !5H 1 whenr is a nearest neighbor distance,

0 otherwise,
~9!

andv(r ,r 8);O(1/d) is the necessary scaling whend→`.7

III. FREE MULTIPLICITIES
FOR HYPERCUBIC LATTICES

For hypercubic lattices, the free multiplicities of grap
can be expressed as polynomials in the dimensiond only.
The free multiplicities have previously been investigated
relation to the weak embedding lattice constants.5,26 For
simple approximations, it is also possible to calculate th
by hand, or reduce the problem to simple momentum in
grations, as was done in several other papers. Howeve
construct a 1/d expansion we need not only the free mul
plicities of the graphs that we include in the expansion,
also estimates of those that we discard. This is necessa
make sure that no important contributions are lost. Here
analyze the graphs directly to find their dependence on
dimensionality of the hypercubic lattice. Starting from m
mentum integral representation we construct genera
functions for the free multiplicities of large families o
graphs.

Clearly, we only have to consider irreducible graphs,
the multiplicities of the reducible graphs are the products
their irreducible parts. A Cayley tree withn bonds, for ex-
ample, has the free multiplicity (2d)n. The 1-rooted and un
rooted graphs have the same free multiplicity, because
free multiplicity of an unrooted graph is defined as the nu
ber of embeddings per lattice site. As an example, we
reconsider simple graphs: chains with fixed endpoints
rings. Then we move on to the discussion of more gen
topologies.

For a chain ofn nearest neighbor bonds with endpoin
fixed at sitesi and j , the number of embeddingsen( i2 j ) is
given by

en~ i2 j !5 (
r1 ,r2 , . . . ,rn21

n~ i2r1!n~r12r2!•••n~rn222rn21!

3n~rn212 j !, ~10!

wheren(r ) is defined in~9!. Let the site vectors have intege
components~we set the lattice constant to unity!. Then we
have

en~r !5
1

~2p!dE ddk~nk!n exp~ ik•r !5
]n

]xn
gr~x!U

x50

,

~11!

nk5(
r

n~r !exp~2 ik•r !52(
i 51

d

cos~ki !, ~12!
01440
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gr~x!5
1

~2p!dE ddk exp~xnk1 ik•r !5)
i 51

d

I ur i u~2x!.

~13!

The i th component ofr is r i , and I n(x) is the modified
Bessel function of the first kind and ordern ~see Ref. 27!.
The integrals are over the first Brillouin zone. The generat
function gr(x) can be rewritten as

gr~x!5I 0~2x!dD r~x!, D r~x!5)
i 51

` I ur i u~2x!

I 0~2x!
. ~14!

The functionD r(x) does not depend ond for fixed r ~by
‘‘fixed’’ we mean that the number of nonzero componen
and their values are fixed asd, and hence the total number o
the components, is allowed to grow!. In terms ofD r , the
final result for the multiplicity of the chain is

en~r !5 (
m50

n S n

mD S dm

dxm
I 0~2x!dD dn2m

dxn2m
D r~x!U

x50

. ~15!

From this general expression we can extract, for exam
the leading contribution ind. It is given by the term with the
largest possiblem. We have

D r~x!5
xir i

)
i

ur i u!
„11O~x2!…, ~16!

whereir i5(ur i u, so we must choosem5n2ir i . The result
is

en~r !5
n!

S n2ir i
2 D !)

i
ur i u!

d
n2ir i

2 ~11O~d21!! ~17!

whenn2ir i is even and non-negative, anden(r )50 other-
wise.

To obtain the free multiplicityr 0(2k) of a ring graph with
2k bonds, we just have to close the chain, i.e., we have to
r50 in Eq. ~11!:

r 0~2k!5e2k~0!5
~2k!!

k! (
m50

k
d!

~d2m!! (
k!

)
i 51

k

bi ! ~ i ! !2bi

,

~18!

where the rightmost sum is over all non-negative integersbi
( i 51, . . . ,k), such that

b11b21•••1bk5m, b112b21•••1kbk5k. ~19!

From~18!, we find that the leading terms ind for the ring are
3-4
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r 0~2k!5
~2k!!

k!
dkF12

1

4
k~k21!d21

1
1

288
k~k21!~k22!~9k15!d221O~d23!G .

~20!

The two simple examples above show that chains
various lengths are conveniently described as a whole
their generating functions. Moreover, graphs that differ o
by the length of their chains are described by the same g
erating function and form a family. Therefore, we ne
to consider only the number ofn-valent vertices (n.2) and
the way in which they are connected. A family of grap
described by the same generating function can then
represented by a generic graph, such as the examples in
2. There, a line correspond to the generating function o
chain and all vertices except one should be summed fr
over. These graphs correspond to the homeomorphicall
reducible stars used in classification of graphs,28 but we do
not make any use of this fact, since we must allow for ze
length chains. Consequently, the scheme is also not a dis
partition of 1-irreducible graphs. Each family generally i
cludes reducible graphs, and may also include graphs of
other family. However, the approach reduces the work c
siderably.

We denote the generating function for the free multipli
ties of graphs in the familyG in d dimensions bygG(d; x̄)
where x̄5(x1 ,x2 , . . . ,xk) is a k-tuple corresponding to the
variables for each of thek chains. The corresponding fre
multiplicity for a graph within this family is denoted b
r G(n̄), wheren̄5(n1 ,n2 , . . . ,nk) is the number of bonds in
each chain.

If we consider any particular familyG, we can immedi-
ately write down the generating function for the free mu
plicities by using the integral representation in Eq.~13! for
each of the chains. Summing over the site vectors for ei
of the vertices simply results in a ‘‘momentum conserv

FIG. 2. Examples of generic graphs. The lines denote ch
and their numbering corresponds to the variables in the genera
function.
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tion’’ at the vertices. Due to the special form ofnk for hy-
percubic lattices, the momentum integrals factor into pro
ucts of multiple integrals. As a result, the generating funct
can be written as a powerd of the one-dimensional genera
ing function:

gG~d; x̄!5gG~1;x̄!d. ~21!

For example, if we consider family 2 in Fig. 2, we get

r 2~ n̄!5
]n11n21n3

]x1
n1 ]x2

n2 ]x3
n3

g2~1;x̄!dU
x̄50̄

, ~22!

where

g2~1;x̄!5
1

~2p!2E2p

p

dkE
2p

p

dq exp@2x1 cos~k!

12x2 cos~k1q!12x3 cos~q!# ~23!

and the leadingd behavior~for d50,1) is

r 2~2k11d,2k21d,2k31d!

52d
~2k11d!!

k1!

~2k21d!!

k2!

~2k31d!!

k3!

3dk11k21k31d
„11O~d21!…. ~24!

The one-dimensional generating function can always
expressed as a multiple momentum integral, as in the ab
example. The integrand can be expanded to sufficiently h
order in x1 ,x2 , . . . ,xk and integrated term by term. Thi
approach is quite feasible for simple graph families, us
modern computer algebra packages. Alternatively, one
simply count the number of embeddings in the linear cha
which is a problem easy to code in most computer langua

In the general case, we proceed by writing~21! as

gG~d; x̄!5 (
p50

` S d

pD cG~ x̄!p, cG~ x̄!5gG~1;x̄!21,

~25!

then differentiating, and settingx̄50. Since there is always
more than one path connecting any pair of vertices in
generic graph, each factorcG must be differentiated at leas
twice to yield a nonzero contribution. Thus, we get nonze
contributions to the sum only forp<@n/2#, where n5n1
1n21•••1nk and @•••# means integer part. Taking thi
into account, and writing out the binomial coefficient as
polynomial ind, we find that

r G~ n̄!5 (
m50

[n/2]

dm (
p5m

[n/2] Sp
(m)

p!

]n11n21 . . . 1nk

]x1
n1 ]x2

n2
•••]xk

nk
cG~ x̄!pU

x̄50

,

~26!

whereSp
(m) is the Stirling number of the first kind~see Ref.

27!. This expression gives the free multiplicity directly as
polynomial ind. The coefficients are completely specified b
the free multiplicities of the graphs within the same family
one dimension and with fewer or equal number of edges

s
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each chain. In practical calculations, the derivatives ofcG are
found by expandingcG and using polynomial algebra o
equivalently, direct convolution of the coefficients in the e
pansion. From this explicit calculation, it follows immed
ately that the free multiplicity of an arbitrary 1-irreducib
graph with n nearest-neighbor bonds~except forn51) is
O(d[n/2]) or higher in 1/d, in agreement with the results o
previous works.7,20

IV. 1Õd EXPANSION OF F

From the preceding section, we know how to calculate
free multiplicity of various irreducible graphs contributing
F. They are all in the form of polynomials ind. Furthermore,
due to the scaling of the interaction, each bond carrie
factor;d21. We can therefore easily find thed-dependence
of the graphs in Fig. 1~assuming a simple symmetry brea
ing, if any!. The first graph has free multiplicity 2d and one
interaction line, so it isO„(1/d)0

…. Likewise, the second, the
third, and the fifth graphs are of order one, two, and three
1/d, respectively. The fourth and the sixth graphs, of cour
vanish on the hypercubic lattice, whereas the seventh g
is O(1/d2).

The 1-irreducible graphs withn bonds~except, again,n
51) areO(d[n/2]2n) or higher order in 1/d. Therefore, one
need only check graphs with up to, and including, 2m bonds
in order to find all terms of orderm or lower in 1/d. In a
vertex renormalized expansion we need then only consid
finite number of 1-irreducible graphs to be sure that all c
tributions to a given finite order in 1/d are included. We can
therefore write theF potential as the sum

F5 (
n50

`

Fn , ~27!

where

Fn5O~d2n!, whend→`. ~28!

Fn is the sum of a finite subset of 1-irreducible graphs fro
the expansion ofF. The exact diagrammatic expressions f
Fn for n50, . . . ,3 areshown in Fig. 3. Note that thes

FIG. 3. Thenth order in 1/d contributionsFn to F.
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graphs are almost the same as the ‘‘shorthand graphs
Ref. 22 for the free energy. The exceptions are the th
graph from the left forF3, which is absent in their expan
sion, and the single vertex which does not enter the exp
sion for F.

Using Eq.~7!, we can also conveniently calculate the se
fields in a controlled way. The results are shown in Fig.
The leading contribution toGn in high dimensions is from
the graph withn bonds and twon-valent vertices~the clipped
away vertex including!, and its weight is;d2(n21). To
prove that all other terms are of higher order, we consider
arbitrary 1-irreducible graphD with at least onen-valent
vertexV, total number of edgesm1n, and weightWD . Let
m.0. If there are any multiple edges joiningV and any
other vertex in the remainder of the graph, these can be
duced to one edge without altering the free multiplicity
the graph. If there are in totalq<n22 such edges that ar
removed to obtain a graphD8 with weight WD8 and total
number of edgesm1n8 ~where n85n2q), then we have
WD;d2qWD8 . Let V8 be the vertex inD8 corresponding to
V in D. Any vertex connected toV8 by a single edge must b
joined to any other such vertex by a path composed o
least two edges and not visitingV8 for the graph to be
1-irreducible and embeddable in a hypercubic lattice. The
fore, m>n8 andWD8 is O(d2n8) or higher. Thus, we have
thatWD is O(d2n) or higher, which is smaller by at least on
order than the graph withn bonds and twon-valent vertices.
In conclusion, we have

Gn5
vn

n! S 1

2dD n21

Mn1O~d2n!. ~29!

V. THE ISING MODEL

In this section we construct 1/d expansion for the equa
tion of states of the Ising model, using the approach
scribed above. For the spin-s Ising model, the parameters i

FIG. 4. Leading order in 1/d terms for the self-fields.
3-6
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TABLE I. Critical temperatures normalized by thed5` ~MFA! value.

d s Order of 1/d approximation Best estimate~Refs. 28 and 29!

1 2 3

2 1
2 0.7500 0.6667 0.5990 0.5673
1 0.8125 0.7363 0.6748
3
2 0.8300 0.7579 0.6991
` 0.8500 0.7836 0.7289

3 1
2 0.8333 0.7963 0.7762 0.7518
1 0.8750 0.8411 0.8229 0.7989
3
2 0.8867 0.8546 0.8372 0.8138
` 0.9000 0.8705 0.8543 0.8320
es
a

ro

i-
q

ys
on
t

ll

i-
ts,

n-
Eq. ~1! are: v( i,j )56bJn( i2 j )/2d for the ferromagnetic
(1) or antiferromagnetic (2) model, andh( i)52bH( i),
where H( i) is the external magnetic field. The variabl
s( i)5Sz( i)/s are normalized spin operators. The above sc
ing of the parameters withs andd ensures well defined limits
when either of the parameters tends to infinity. The ze
order bare semi-invariant for the model is

M0
0~h!5 ln

sinh„h~2s11!/~2s!…

sinh„h/~2s!…
. ~30!

We find the 1/d expansion for the renormalized sem
invariants of the ferromagnetic Ising model by solving E
~5! iteratively, using the self-fields in Fig. 4, and alwa
truncating to the third order at each step of the iterati
Such an approach has also been used to generate high
perature series expansions.5 The iteration is stopped when a
01440
l-

-

.

.
em-

semi-invariants in the expression for the full first sem
invariant M1 are reduced to the mean-field semi-invarian
with the mean-field given byM1 itself. M1 is the magneti-
zation, and the zero-field susceptibilityx for the paramag-
netic phase is found by differentiating with respect toh, and
settingh andM1 to zero.

The critical temperature for the spin-s Ising model is a
function of the spin and the lattice dimensionality,Tc
5Tc(d,s). Its 1/d expansion is easily found from the 1/d
expansion of the zero-field susceptibility by inserting the a
satz

Tc~d,s!5Tc~`,s!S 11
t1~s!

d
1

t2~s!

d2
1

t3~s!

d3
1O~d24!D ,

~31!

which gives
Tc~`,s!5
J~s11!

3kBs
, ~32!

t1~s!52
3

10

2s212s11

2s~s11!
, ~33!

t2~s!52
3

1400

496s41992s31672s21176s261

22s2~s11!2
, ~34!

t3~s!52
3

3500

4084s6112252s5113518s416616s31719s22547s1108

23s3~s11!3
. ~35!
with

e

The leading termTc(`,s) is the well known MFA result,
and it is not very sensitive tos. Also the coefficientst i(s)

have a rather weak dependence onsP@ 1
2 ,`#. The limiting

cases are

t1~1/2!52 1
2 , t2~1/2!52 1

3 , t3~1/2!52 13
24 , ~36!
and

t1~`!52 3
10 , t2~`!52 93

350, t3~`!52 3063
7000. ~37!

Of course, wherever applicable, the above results agree
those of previous works mentioned in the Introduction.

In order to illustrate the above results, in Table I, w
3-7
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present explicitTc values ford52 andd53 obtained in the
first three orders in 1/d, together with the exact result ford
52 and the best numerical estimates ford53 coming from
high-order high-temperature series expansion~HTSE!.28,29 It
is seen that the subsequent corrections in 1/d expansion de-
crease rapidly and that the third-order results come v
close to theTc values obtained from the exact solution a
from the HTSE.

VI. A TWO-COMPONENT LATTICE GAS

Exactly the same approach as above is applicable to
Hamiltonian

H5
W

4d (̂
ij &

~ni↑1ni↓!~nj↑1nj↓!1U(
i

ni↑ni↓

2m(
i

~ni↑1ni↓!2(
i

H i~ni↑1ni↓!

2
1

2 (
i

H i
s~ni↑2ni↓!. ~38!

It describes a two-component classical lattice gas of, s
spin-up and spin-down electrons with the occupation ope
tors ni↑ andni↓ , respectively, with the on-site interactionU,
the nearest-neighbor interactionW/2d, the chemical potentia
m, and site dependent fieldsH i and H i

s . The fields are in-
cluded here mainly for technical reasons. The model co
sponds to an extended Hubbard model with zero elec
hopping between sites. Here we limit our considerations
the half-filled lattice, i.e., with one particle per site, on ave
age. In this case, due to the electron-hole symmetry of
system,m5W1U/2, and the extended Hubbard model~38!
can be mapped to the Blume–Capel model with anisotr
constantD5U/21 ln(2)/b ~Ref. 24!.

The form ~1! is obtained by defining the interacting var
abless( i)5ni↑1ni↓21, which are coupled to the extern
field hi5bH i and mutually by~8! with v5bW, and the
additional local variables: x1( i)5s( i)2, x2( i)5 1

2 (ni↑
2ni↓), x3( i)5x2( i)2, and x4( i)51, which couple to the
fields: p1( i)52bU/4, p2( i)5bH i

s , p3( i)5bU, andp4( i)
5b(H i1m2W/22U/4), respectively. We do not need th
field coupling to the spin degrees of freedom here, so we
p250 for the sake of simplicity.

The first order bare semi-invariant is then given by

M1
0~h!5

sinh~h!

l1cosh~h!
, l5ebU/2. ~39!

The system may order into a charge density wave wit
simple A–B sublattice ordering on hypercubic lattices
high dimensions. We will therefore let the fieldh( i) be a
staggered field with valueh on sublatticeA, and 2h on
sublattice B. The renormalized semi-invariants will the
have spatial dependence only according to the sublattice,
we need not distinguish between sites on the same subla
We will therefore denote the renormalized semi-invaria
Mn( i)5Mn

s wheres5A or s5B, depending on whetheri is
01440
ry

he

y,
a-

e-
n
o
-
e

y

et

a

nd
ce.
t

in theA or B sublattice. The order parameterq is taken to be
half the difference between the site occupation numbers
the two sublattices,

q5 1
2 ~M1

A2M1
B!. ~40!

In d5` the charge-order equation of state can be written

h52vq1
1

2
lnS 11q

12q

A11~l221!q21lq

A11~l221!q22lq
D , ~41!

which is valid for large enough temperatures and can
converted into a physical equation of state at all temperatu
by a Maxwell construction. The above expression is analy
for small q and can be expanded as

h5~l112v !q2 1
6 ~l11!2~l22!q3

1 1
40 ~l11!3~3l227l18!q5. ~42!

From this, we can read off directly that there is a continuo
zero-field phase transition atv511l whenl,2, and a first
order zero-field transition forl.2. This well known way of
analyzing a continuous or weakly first order transition is a
easily applicable to the 1/d expansion, which gives us a
equation forM1

s , and thusq, to a given order in 1/d. This
equation can then easily be solved forh as a power expan
sion inq and 1/d. The linear inq term of the equation of state
for larged reads

x215
1

r
2v1

1

2 S 2
1

2
v21

3

2
rv2Dd211

1

4 S 2
1

6
v31rv3

2
1

8
rv42

3

2
r 2v31

3

8
r 2v41

3

4
r 3v4Dd22

1
1

8 S 2
1

24
v41

3

4
rv42

13

8
r 2v42

3

4
r 3v4

2
1

12
r 2v61r 3v51

1

48
r 3v623r 4v5

1
5

16
r 4v61

15

4
r 5v6Dd231O~d24!, ~43!

where

r 5
1

l11
. ~44!

The higher-order inq terms are too long to be presented he
The tricritical point is given by the common zero of the fir
and the third order inq terms of the equation of state. Th
result is

U tri /W5K`1
1

2
~12K`!d211

1

2
~12K`!d22

1
11

16
~12K`!d231O~d24!, ~45!
3-8
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kBTtri /W5
1

3
2

1

6
d212

1

6
d222

11

48
d231O~d24!, ~46!

where K`52 ln(2)/3. The critical lineTc5Tc(d,K) vs K
5U/W in the T2U plane at zero staggered field in infini
dimensions is given by

kBTc~`,K !/W5r 0~K !5
1

expS K

2r 0~K ! D11

. ~47!

For general high dimensions, andU,U tri , we write

Tc~d,K !

5Tc~`,K !S 11
t1~K !

d
1

t2~K !

d2
1

t3~K !

d3
1O~d24!D ,

~48!

where the coefficients are

t15
3r 021

2~K22r 02Kr 0!
, ~49!

t25~4Kr 02K22r 0
223r 0

3136r 0
4210Kr 0

212K2r 0230Kr 0
3

136Kr 0
4111K2r 0

2221K2r 0
319K2r 0

4!

3
1

12r 0~K22r 02Kr 0!3
, ~50!

t35~K4148r 0
42280r 0

51168r 0
611728r 0

72108Kr 0
3212K3r 0

1812Kr 0
4220K4r 021436Kr 0

522724Kr 0
613456Kr 0

7

156K2r 0
22560K2r 0

31172K3r 0
211464K2r 0

42596K3r 0
3

181K4r 0
211272K2r 0

52156K3r 0
414K4r 0

324824K2r 0
6

12344K3r 0
52413K4r 0

412592K2r 0
722616K3r 0

6

1692K4r 0
51864K3r 0

72453K4r 0
61108K4r 0

7!

3
1

96r 0
2~K22r 02Kr 0!5

. ~51!

This expansion is of little use near the tricritical point, sin
its location depends on the dimension of the lattice, bu
is useful elsewhere. The critical line near the tricritic
point can be found by usingU tri 2U as a free paramete
instead ofU.

In order to illustrate the above results and compare th
with those of the HTSE, in Fig. 5, we plot the critical line
and the tricritical points obtained from Eqs.~45!–~51! for the
fixed finite value ofd53, i.e., for the case of the simpl
cubic lattice. It is seen that the subsequent corrections
crease rapidly up to the number of terms considered h
Moreover, the third order in 1/d result for the critical tem-
peratureTc is in very good agreement with that from th
sixth order of the HTSE.30
01440
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VII. SELF-CONSISTENT 1 Õd EXPANSIONS

The possibility of performing self-consistent 1/d approxi-
mations, which then necessarily include infinite-order term
deserves some comments. We will consider the ferrom
netic spin-1/2 Ising model as an example in the remainde
this section. The idea is to constructF-derivable approxima-
tions, choosing the diagrams for the approximateF accord-
ing to the 1/d criterion. A crucial step in using this approac
is to resum Eq.~5! to all orders in the nonvanishing sel
fields. WithF taken to beF0 in Fig. 3, onlyG1 is nonzero,
and the series~5! is simply a Taylor series, which is trivial to
resum. The result is the MFA. In this case, the resumma
can even be avoided by expanding in the fluctuations aro
the mean field, such that all graphs with Cayley tree ins
tions vanish in all orders of the expansion.

Including the diagramF1 in Fig. 3, i.e., taking the ap-
proximateF to be of the first order in 1/d, makes alsoG2
nonvanishing. Actually, this self-consistent 1/d correction
was considered in Ref. 31, although the author appare
was not aware of this way of looking at the approximatio
The results are quite beautiful and reasonable for all val
of the Hamiltonian parameters and in the whole range of
temperature, and give considerably better estimation for
critical temperature than the MFA. However, one can ea
convince oneself that the series~5! is not convergent for
arbitrary nonzero value ofG2. This is particularly clear from
the resulting integral formulas for the renormalize
semi-invariants,4,5,31,32 which are manifestly nonanalytic
functions ofG2 at G250. The integral equation is howeve
well defined for anyG2>0, which is the physically relevan
region.

FIG. 5. Critical line and tricricritcal point~TCP! for the simple
cubic lattice (d53) up to (1/d)3. The sixth-order HTSE result for
Tc ~Ref. 30! is shown for comparison.
3-9
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Following Ref. 5 the renormalized semi-invariants for t
translationally invariant case can be written as

Mn~h!5E
2`

` dk

2p
expS ikh1(

l 51

`

~ ik ! lGl D M̂n
0~k!, ~52!

M̂n
0~k!5E

2`

`

dh Mn
0~h!e2 ikh. ~53!

The Fourier transforms of the bare semi-invariants forn
.1 are well defined, but the casesn50 andn51 must be
treated with care to make mathematical sense. For the fi
order bare semi-invariant, for example, we have

M̂1
0~k!5Pv

2 ip

sinh~pk/2!
, ~54!

where Pv denotes the principal value, i.e., it must be in
preted in the sense of a distribution.

Bloch and Langer4 have specially constructed an artifici
model in which semi-invariants of order higher than a giv
order vanish, and consequently, there is only a finite num
of nonvanishing self-fields. They have shown that in t
case the form of the Dyson equation~5! implies a restricted
domain of validity of the renormalized expansion in terms
the values of the renormalized semi-invariants. In our ca
there are an infinite number of nonzero semi-invariants, b
finite number of nonzero self-fields that contribute in E
~52!. We find that in some regions of the ordered phase,
values of higher-order renormalized semi-invariants beco
such that the integral in~52! is ill defined.

To see this, we first consider the highest nonvanish
self-field to be of even order 2n. The integral in~52! will
converge when (21)nG2n,0, but not for (21)nG2n.0. If
n51, as for the self-consistent 1/d approximation to the lin-
ear order, this problem does not arise, but if we consi
higher-order self-consistent approximations, it might. An
timate, valid in high dimensions, can be given for the thi
order in 1/d self-consistent approximation, for which th
self-field graphs are shown in Fig. 4. In this case,n52 and
G45v4d23M4/192 is proportional toM4. It is sufficient to
consider the bare semi-invariant,

M4
0522„12~M1

0!2
…„123~M1

0!2
…, ~55!

and we see thatM4
0 becomes positive when the magnetiz

tion M1
0 goes above 1/A3. The same happens with the sem

invariant M4 ~and consequently, alsoG4) renormalized by
Cayley trees, because it is equal to the unrenormalized
with the argument shifted by the mean field. We have ve
fied numerically that this is also the case forM4 self-
consistently renormalized within the third-order se
consistent 1/d approximation, as well as within a sel
consistent approximation including all 1-irreducible grap
up to fourth order inv, inclusive in finite dimensions. The
problem appears when the temperature is low enough
equivalently, when the magnetization is large enough, jus
one would expect from the above considerations. Thus,
appealing scheme of a self-consistent 1/d expansion actually
01440
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breaks down at low temperature when carried beyond
first few orders. Even if one could analytically continue E
~52! to arbitrary values ofG4, one would still not avoid an
unphysical singularity whenM4 crosses zero. The leading
order term ofG2n in high dimensions is proportional to, an
depends only onM2n @Eq. ~29!#, so that sign changes in th
ordered phase occur also for self-fields of higher orders.
problems are therefore not specific to the order conside
above as an example. If the highest nonvanishing self-fiel
of odd order, the integrand is controlled by the term aris
from the self-field of one order lower.

Any additional correction to the highest nonvanishi
self-field will be smaller than the leading term by at leas
factor 1/d, and, by considering sufficiently high dimension
can be made small enoughnot to cure the problem. There
fore, if Eq. ~52! is a correct resummation of the genera
divergent series~5!, the only possibility is to include all
higher order self-fields in an approximate way. Since o
goal was to make a self-consistent approximation that is c
rect to a given order in 1/d, and the only reason for including
self-fields of higher order is to regularize the integral~52! for
all parameter values, it appears natural to use the lea
order in 1/d for each of the remaining self-fields as a starti
point. It remains to be seen if this is workable.

The breakdown of the renormalized expansion can a
take place within other approximation schemes involving
finite number of self-field graphs when the dimensionality
the lattice is sufficiently high, because the self-fields may
dominated by the terms considered here.

It is quite plausible that this problem may arise also
other models, whenever the LCE using the atomic limit
the unperturbed Hamiltonian is applied. In particular, d
grammatic expansions for some quantum spin models
models of correlated fermions, in which the atomic states
used as the basis states~i.e., using the Hubbard operato
formalism!, have the graphical and algebraic structures of
classical spin systems considered here, and will therefor
subject to the same problems of higher-order renormal
tions, at least in some limiting cases. Because the breakd
of the renormalized expansion is associated with the part
lar form of the Dyson equation, no conclusion can be dra
from this finding for perturbation expansions of correlat
fermion models with the band part as the unperturbed Ham
tonian.

VIII. SUMMARY AND CONCLUSIONS

Within the framework of the LCE for classical spin sy
tems with nearest neighbor interaction, we have conside
power series expansions in 1/d, as well as self-consistent 1/d
expansions. Generating functions turned out to be part
larly useful for analyzing the free multiplicities of the graph
for hypercubic lattices in arbitrary dimensiond. They are
uniquely given by the free multiplicities or generating fun
tions ford51, which can be relatively easily calculated. F
the simple examples considered in this paper, the metho
probably an overkill, but it is quite general, and its applic
tion is not limited to 1/d expansions for classical spin sy
tems considered here.

We have presented a systematic classification
3-10
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1-irreducible graphs that contribute to theF potential for
classical spin systems with respect to powers of 1/d, showing
explicitly the series up toO(d23). These results have bee
applied to obtain the expansions in 1/d for the critical tem-
perature of the spin-s Ising model, and a two-componen
lattice gas corresponding to the zero-bandwidth exten
Hubbard model at half-filling. For the latter, we have al
calculated the 1/d expansion for the tricritical point. To the
best of our knowledge, these are new results, except for
zero-order~MFA! results, and the spin-1/2 Ising limits. Th
general expressions have been applied to the finite dimen
d53, i.e., for the simple cubic lattice. The results forTc of
the two-component lattice gas have been compared
those of the sixth-order high-temperature series expans
showing an excellent agreement. The corrections to the c
cal temperatures of the two models considered here ar
both cases negative, so it is clear that the inclusion of spa
correlations through 1/d corrections lower the critical tem
perature, as expected. The tricritical point of the tw
component lattice gas tends towards lower temperature
stronger on-site repulsion, as the dimension is lowered. S
there are quantum models that have the classical sys
n-

. B

ns
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considered here as limiting cases, the presented re
should serve as a useful reference.

We have discussed the possibility of constructing se
consistent 1/d approximations within the renormalized LC
for classical spin systems, using spin-1/2 Ising model as
example. Except for the first few lowest orders, this appro
was found to break down at low temperatures. The sa
applies to a self-consistent approximation including
1-irreducible graphs up to fourth order in the interaction. T
conclusion is that a truncation with a finite number of se
fields is insufficient, so that one must also include all high
order self-fields in some approximate way.
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