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Magnetization jump in the XXZ chain with next-nearest-neighbor exchange
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We study the dependence of the magnetizakibwith magnetic fieldB at zero temperature in the spin-1/2
XXZ chain with nearest-neighb@IN) J, and next-NNJ, exchange interactions, with anisotropiesandA,,
respectively. The region of parameters for which a jump/i(B) exists is studied using numerical diagonal-
ization, and analytical results for two magnons on a ferromagnetic background in the thermodynamic limit. We
find a line in the parameter spac&,(J;,A,/J,,A,/J;) (determined by two simple equatiorat which the
ground state is highly degeneratd.(B) has a jump near this line, and at or near the isotropic case with
ferromagnetic]; and antiferromagnetid,, with |J,/J;|~1/4. These results are relevant for some systems
containing CuO chains with edge-sharing Guaits.
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. INTRODUCTION Li,CuQ,, and CaY,Cu0,,, are expected to lie near this
limit.?° In these systems, the Cu-O-Cu anglef the CuO
In recent years quantum spin chains and ladders havgnhains is near 90° and therefore, the usual antiferromagnetic
been a subject of great experimental and theoretical interestiN exchange is largely frustrated. As a consequence of vir-
Quasi-one-dimensional magnetic systems have been identual processes in which the Hund rules exchange integral at
fied and studied experimentafty? and new theoretical stud- the O atoms play a role]; becomes small and ferromag-
ies of the spin-1/2XXZ chain with nearest-neighbdNN)  netic. We estimate the critical fiel, at which a jump or an
and next-NN exchange couplingvhich is equivalent to a abrupt increase itvi(B) should exist in these compounds.
two-leg zig-zag laddgnwere presentetf."* The Hamiltonian The outline of the paper is as follows. In Sec. Il we ex-
IS plain how we determine the regions of parameters for which
a metamagnetic transition is expected. Section Il contains
analytical results for the onset of bound states of two mag-
H=> [J(SS,+ 9, +A, 5, ) nons in a ferromagnetic background. These results and nu-
i merical ones in chains of 20 sites are used in Sec. IV to
resent phase diagrams in which the boundaries of the meta-
oSS+ S+ 4SS )] (1) ﬁ]agnetig regions gre shown. This section includes numerical

) ) . .. results for the ground-state energy per site as a function of
One of the properties of this model is that the magnet|zatlorhagnetiC fieldE(M), curves ofM(B), and critical fieldB,

asa fun<_:tion of appliedlmqgnetic field(B) displays ajump o< 2 function oft=J,/J, for A,=—A,=1. Section V con-
for certain parameter%:* This phenomenon called metamag- (ains 4 more detailed numerical study of this isotropic case

nefic transition was observed for example in TMSe, for o slightly larger than /4. Section VI is a summary and
FeMn;_,TiO3,> Tby ,SGMn,,~" and the quasi-one- yiscussion.

dimensional compound B&u,O,Cl,.18

Previous studies of metamagnetism in the model were re-
stricted toA;=A,=A % The results show that a jump in
M(B) is not possible ifA>A.. Following the methods ex-
plained in Sec. Ill, we have determinéd.=(—5+ \17)/4
=—0.221°In principle, the requirement of an opposite sign  For the sake of clarity, we anticipate some of our numeri-
for thez component of the exchange rather than for the othegal results for the dependence of the ground-state energy per
two seems unrealistic. However, for the Hamiltonian, Eq.site E as a function of magnetizatiohl =S?/L, where &
(1), a negatived; with positiveJ; is equivalent to a positive =3;S/ is the z component of the total spin and is the
A, with negativel,, since a rotation of every second spin in number of sites. They are shown in Fig. 1. A large portion of
7 around thez axis changes the sign of theandy compo-  the curveE(M) has negative curvature. These points are
nents ofl;. Thus,A;<A. does not necessarily mean a largeactually not accessible thermodynamically. The dashed
anisotropy ofA ;. Instead, a negativA,<A. is a very large straight line is tangent t&e(M) at the two pointsM,
anisotropy ofJ, and seems difficult to find in real systems. =0.108 andM,= 0.5 (the Maxwell construction For all M

In this paper we extend the previous searches of metan the interval Mq,M5,), it is energetically more favorable
magnetic transitions to arbitrary values ®f andA,, con-  for the system to phase separate into a fractiea(M
centrating our study ifA;|<1 and 0sA,<1, and particu- —M;,)/(M,—M;) with magnetizationM, and a fraction 1
larly near the isotropic case of ferromagnetlz and —x with magnetizationM,. The energy of the mixture is
antiferromagnetic J,. Several systems containing CuO represented by the dashed line. If a magnetic fielis ap-
chains with edge-sharing CyQunits, like LgCaCuy,041, plied to the system, the equilibrium magnetization is deter-

II. CONDITIONS FOR THE EXISTENCE OF A JUMP
IN M(B)
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<1/21! In the region of the &,A) plane, whereAf(a)<A

S 000tz r <A?%@) a metamagnetic transition occurs in the matfel.

o 0.0010 | Relaxing the conditiom\;=A,=A, and keeping, for ex-

g ample, A, fixed, limiting values ofA; [Ag(a,Az) and

Ly’ 00008 1 Af(a,A,)] can be defined in the same way and we expect in
0.0006 |- principle that magnetization jumps will be found if
0.0004 L Afl(a,AZ)<A1<A"i‘(a,A2). The same is true interchanging
’ A, andA,. Fortunately, as described in the next section, the
0.0002 [- A? are given by analytical expressions, which are very

. . . . simple neara=1/4. The Al are determined by numerical
000005 o1 0z 03 __ 04 05 diagonalization of chains with. =20 and the results are
M given in Sec. IV.

FIG. 1. Energy per site as a function of tomktomponent of
spin per site for a chain of 20 sitésolid circles. The full line is a ll. THE TWO-MAGNON PROBLEM
polynomial fit. Dashed line and diamonds correspond to the Max-
well construction. Parameters atB=1, a=J,/J;=0.25, A;
=-0.9, andA,=0.6.

In this section, we derive analytical expressions for the
upper boundaries of the expected metamagnetic region
[Af(@,A,) or AS(a,Aq)], looking for bound states of two
spin flips on a ferromagnetic background in an infinite chain.
This is a two-body problem, which due to translational in-
variance can be mapped into a single-body one. Similar
problems were solved for example, to determine exactly
metal-insulator boundaries in generalized Hubbard mddels.
For A,=A,=A, this problem has been solved numerically
for L~150 by Cabraet al® and forL—o and a<1/2 by
Hiratal! Simple analytical expressions are given in Ref. 19.

mined minimizing the Helmholz transfornc=E—-MB,
what leads to the conditioB=dE/JM. From inspection of
Fig. 1, we see thaM (B) increases witlB, until it reaches
the critical value B.=[E(M,)—E(M)]/(M;—M,)
(=0.002 773, for the case of Fig. 1 At B=B., M(B) sud-
denly jumps fromM, to M,. If M, is smaller than the satu-
ration magnetizationyl increases further fo8>B, but we
have not found this situation in the present model. ) A
From the above description, one can see that for a meta- VTVe use a _Jordzin:rW|aner trans_formahopsj
magnetic transition to occur at very low temperatuigdyl) = CjexPimZin), S =(S§7)", S§j=n;—1, with nj=cjc;,
should satisfy two conditionsl) J2E/gM2<0 in a finite O €xpress the spin operators in terms of spinless fermions.
interval of values ofM. (2) E(M,)>E(M,), where M, Calling a= J,/34, settingJ;=1 as the unit of energy, and
<M, are determined by the Maxwell construction. From theSubstracting the constant E(1/2) [with E(1/2)=(A,
general behavior gE(M) for the case\,=A,=A, Gerhardt al,)/4], the Hamiltonian equatiofil) takes the form
etal® have found that when metamagnetism exidi;
=1/2 and the condition 2 ceases to be satisfied wikign
=0. More precisely, from their finite-size results for
E(M,a,A), with «=J,/J4, they obtained a critical value of
A[Af(a)] from the equatior’E(_O,a,Af)_: E(1/2,«,A"). For FA NN+ aAoning o~ a(cl, N 1+ H.C).
A<A" the system is a fully spin-polarized ferromagnet even
at B=0. Fortunately, the results fak' do not show a sig- )
nificant size dependence and it is accurately determined ipfter Fourier transforne; = Mqu““cq, the model can be
chains of 18 sites. Another critical valdé'(«) was obtained  written as
from the conditiond®E/dM?| - 1,=0. For A>A? the cur-
vature 9°E/dM? is positive for allM. The curvature aM,

H=>, [(—A;—aAy)n+3(cl, ;ci+acl, ,ci+H.c)
i

) . 4
was calculated numerically using H=>, €qCaCq+ T > > [(A,+2acosK)singsing’
q K q,q'>0
’ ’ =i ? . i P 7T T
PEIM 22 JEL [E(1/2+E(1/2-21) +al;sin2qsin29']cy ;g Cxjo1 q CiztaChiz—q: (4)
—2E(1/2—-11L)] @) with €= —A;— @A, +cosq+acos 2.

The two-magnon eigenstates of total momentdican be
in a periodic chain. In contrast to the case/df, and even written in the form|¢//(K))=Eq>och&,2, CL,2+q|0). Re-
taking L =50, the result has some finite-size effet®his is  placing this into the Schdinger equatiom[rtp):)\h,b}, one
in part due to the fadtexplained in the next sectipthat the  obtains

ground state neavl = 1/2 becomes incommensurate for suf-

ficiently large «, and these wave vectors cannot be repre- —4[(A,+2a cosK)S;(K)sing+ aA,S,(K)sin 2q]
sented in small chains if periodic boundary conditions are A= ,
used*? From the numerical solution of the problem of two €ki2—qt €kz+q— N ©

spin excitations on the ferromagnetic state for o, more
accurate values ofA*(«a) were obtained recently fow  where
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1 :
Sy(K)=— E Agsinng. (6)

L q>0
Replacing Eq.(5) into Eg. (6) leads to two homogeneous
equations for the two unknown sun$ andS,. For fixed
values of the parameters aid the condition of vanishing
secular determinant determines the allowed eigenvalues

PHYSICAL REVIEW B 63 014402

r-1
lo=——

1-(1-2a)r
8a ’ =

16a?

Pt
2_16a2 2a 0

Since we are looking for the condition on the parameters for

the onset of a bound staferhen the right-hand side of Eq.
(2) becomes negatitewe set\ slightly below two times the
minimum one-magnon energy:= 2 min(ey) — 7, wherez is
a positive infinitesimal energy. With this value af the

condition of vanishing secular determinant in the thermody

namic limit L—o takes the form
4(A1+ 2a COSK)[I 0+ 166¥A2(|0| 2 | i)]"' 16&A2| 2+ 1:0,

(7)
where the integrals,(«,K) (n=0,1,2) are

1 (= dqsirq codq

2w 0 4 cosK cogq+ 2 cogK/2)cosq+c(a,K)+ 77’
8

n

with »—0 and

c(a,K)=2(l—a—acosK), a<l/4,
1
c(a,K)=2a+E—2acosK, a=1/4. 9

The change of the expression ftffe,K) at = 1/4 is due to
the change in the wave vector, which minimizgsfrom ¢
=q for a<1/4 to q= *arcco$—1/(4a)] for a=1/4. The
integrals can be solved decomposing the integrand into
sum of expressions with denominators linear in g¢and
using?

1 (= dgsirfq a b?
— | —/———=—[1-/1-=|. (10
2mw)o a+bcosq  2p2 a2

For each value of, K, andA4, Eq.(7) is a linear equa-
tion in A,. The searched upper boundax§(«,A,) is deter-
mined choosing the value ¢f that leads to the highest root
of Eq. (7). ForA,<A3(a,A;), the curvature equatiof®) is
negative. The same is true interchangihg and A,. If A,

=A,=A is taken®!!

state forA<A%(a).
For a=<1/4, the total wave vectd£, which first leads to a
bound state, i =0. In the sector of two patrticles, this is

the highest root of the quadratic equa-
tion (7) determinesA?(«a), since there is at least one bound

with r=(1—4a) 2 (a<1/4). (1)

Equations(7) and (11) defineAj(«,A;) andAj(a,A),) for

“w<1/4.

For a>1/4, the ground state of the noninteracting fermi-
onic Hamiltonian for two particles is degenerate with
total wave vector K=0 or K==xK; with K,
=2 arccof—1/(4a)]. For A{=A,, we have found that the
wave vector of the ground state of the two-magnon problem
for parameters near the onset of a bound stat€=<0 for
a<1/2. At «=1/2 it jumps to+K;. From numerical inves-
tigations in finite systemgwith L~20), using twisted
boundary conditions to allow all possible wave vectGraie
find that for values otv> «,,~ 1, the ground-state wave vec-
tor deviates continuously front K;. Comparison of the nu-
merical results forA?(«) (with L~50) of Ref. 9 with our
analytical ones assuming=*K;, gives «,,=0.77. In the
regiona> a,,, it seems not possible to find analytical results
for A?(a). However, takingKk=K; leads to a reasonable
lower bound, sinceK is not too different fromK; (in any
case, as we shall see in Sec. V, E2).ceases to be valid for
a=a,). In the general cas&é;# A,, the maximum between
the results forA,, assumingK=0 or K=K;, also gives a
lower bound forA3(«,A;) and Aj(a,A,). We restrict the
calculation to these values &f. For K=0 anda=1/4, the
integrals Eq(8) diverge foryp—0, and Eq(10) has complex
coefficients for finiten. The equation for thé,, is obtained
8fter a careful limiting procedure of Eq7) with adequate
choice of the branch of the root in EQLO). Physically this
means simply to consider values &f, slightly smaller than
the critical ones, in such a way that they lead to a finite
binding energy», and then take the limity)—0. The final
results turn out to be very simple:

AjA,+ A,

5w +A,

+1=0 (a=1/4, K=0).

(12

1+ !
8a?

As an example, this equation is satisfied fer=1/4, A,
=-0.9, andA,=2/3. LoweringA, a little bit, E(M) dis-
plays the behavior required for a jumpm(B) (see Fig. 1

Finally, for a=1/4 andK=K;,, the integrals take the
orm

also the wave vector of the ground state of the noninteracting

part of the Hamiltonian in the fermionic representati@u.
(3) or (4)]. Using Egs.(8), (9), and (10), we obtain after
some algebra

1 11
Y 32aB)?\ 2a

VA

lo= ! 1 !
°"8aB AdarA
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- 1 (1 1+2a—JK
2 16a|A B 24AB?)’
with
A=1-——, B=1-— (a=1/4, K=K,). (13)
6ar? 8a? ( l

It remains to establish wheh? are determined by Eq12),
or Eq.(13) and Eq.(7) with cosK=1/(8a?)— 1. Taking for
instanceA , fixed, and equating the values df, obtained
from both expressions, we obtain

Ap,=—1+2A3 (—1<A;<0). (19

For smaller values ofr, Aj(@,A,) is determined by Eq.
(12). Similarly, for a given value ofA,, Eq. (12) gives
Ad(a,Ay) if a<[(1+A,)/2]" Y24, while for larger values

of @, Egs.(7) and(13) should be used.
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FIG. 2. Boundaries of the region of expected metamagnetic
transitions in the &,A,) plane, for different values of\,. This
region is shown dashed fdr; = —0.7. The symbolgjoined by thin
lines) indicate the lower boundarxag calculated numerically in
chains of 20 sites. The upper boundak§ (thick lines is taken
from the analytical results of Sec. IIl.

It is remarkable that at the second kifdetermined by Egs.

Equation (14) defines a particular line in the parameter (14)], where the wave vector of the two-magnon ground state

space @,A;,A5), which as will be seen in the next section,

jumps from K=0 to K==K; and JE/IM|y-1sp

plays an important role in our paper. From the analytical=9°E/dM?|y-1,=0 for L—o according to the results of
results of this section, we see that at this line, not only ishe previous section, ald6(1/2)=E(0) (at least within the
there a degeneracy in the lowest-lying eigenstates in the twaccuracy of the Lanczos diagonalization and independently

magnon sectoffor M =1/2—2/L with L—x) between the
wave vectorK =0 andK=*K;, but also lim _L[E(1/2

~ 1)~ E(1/2)]= €arecosp =0 and lim _L[E(1/2-21L)

—E(1/2)]=0. In other word€£(M) is independent oM for
M~1/2 in the thermodynamic limit.

IV. PHASE DIAGRAM FOR METAMAGNETIC
TRANSITIONS

of system sizg Actually E(M) is quite flat at this point.
Specifically, we find by numerical diagonalization, that
and only ifthe energy for each value &f is minimized with
respect to the optimum twisted boundary conditi&h&(M)
becomes independent bf at this point, within our precision
of 10" °. All wave vectors at the minimum become incom-
mensurate except fo8’=0 and S*=L/2. For S*=L/2—-2,
we find that the minimum is at wave vect&r=K;, while
the energy ak =0 is of the order of 10° above the mini-
mum energy folL =20, due to finite-size effects.

In this section, we delimit the region of parameters inside Particular cases of degeneracy at the line determined by

which a jump in the functiotM (B) is expected. Specifically

for eacha andA,, we determine by numerical diagonaliza-

tion of chains of 20 sites the lower boundayy of the meta-
magnetic region[from E(1/2)=E(0)], while the upper
boundaryA$ (or a lower bound of it for largey) is taken
from the expressions of the previous section. The same
done interchanging; andA,. This study is complemented
by numerical calculations of the ground-state energy as
function of magnetizatiofe(M) [from which M(B) can be
derived, and the critical fieldB, for several parameters in-
side the region of interest.

In Fig. 2 we showAf2 (discrete points and A§ (thick
curve above jtas a function ofw for several values oA;.
The region of interestA£<A2<A§ is shown by vertical
dashed lines forA;=—0.7. Clearly the upper boundatyj

Egs. (14) are already known. The degeneracy at the point
a=1/4,A1=-1, A,=1 was studied by Hamad# al., who

also have shown that the ground state in the sector of total
spin S=0 is a resonance-valence-bond state involving sin-
glet pairs at all distances The degeneracy at the Majumdar-
I8hosh pointe=1/2, A;=A,=—1/2, was discussed by Ger-
hardt et al® For A;—0, this point moves towards two
decoupled ferromagnetic Heisenberg chdisee Eqs(14)],

for which E(M) is constant.

This special point wherd§, andA3 coincide separates the
region of expected metamagnetism in two zones. The one at
the left of the point shrinks and moves towarkls=1 asA;
decreases approaching the isotropic liit= —1, where it
disappears. The right zone also displaces towArgds 1, but
increases ag\; moves to—1, suggesting that a jump in

displays two kinks as a result of the change in the groundM (B) is also possible in the isotropic limi,=—A;=1, if

state wave vector for one magnonaat 1/4, or two magnons
ata=—1/(4A,), as described in the previous sectidj. is
given by Eqgs(11) and(7) with K= 0 for «<1/4, by Eq.(12)
between both kinks, an@s a lower boundby Egs.(13) and
(7) with cosK=1/(8a?) — 1 for > —1/(4A,), respectively.

a>1/4. Figure 3 shows the same two metamagnetic zones in
the («,A;) plane for several values df,. The same tenden-
cies as before are observed as the isotropic It — A,
=1 is approached.

In the zone of lower, the existence of a jump iM(B)
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m
-0.90 0.0006
0.0004

-0.95

0.0002
-1.00 0.0000

0.0 0.1 0.2 0.3 o 0.4 0.5 0.04

FIG. 3. Boundaries of the region of expected metamagnetic
transitions in the &,A,;) plane, for different values olA,. This
region is shown dashed fdr,=0.5. The symbolgjoined by thin
lineg indicate the lower boundary;lel calculated numerically in
chains of 20 sites. The upper boundak§ (thick lineg is taken
from the analytical results of Sec. lIl.

0.03

E(M)-E(0)

0.02

0.01
is confirmed by numerical calculation &(M). An example

was shown in Fig. 1. Instead, inside the right zone of ex-
pected metamagnetis(for « larger than the point of degen- 0.00
eracy at whichA, andA$ mee), the situation is not so clear.
As it is clear in Fig. 4 fora=1/2, the energy per site as a
function of the z component of the total spils*==%;S’
=ML, shows a significant even-odd effect for small chains.
This effect has been reduced minimiziegM) with respect

to the optimum twisted boundary conditions to allow for
incommensurate wave vectdfsMost of the resulting wave
vectors are incommensurate, particularly for &fcand low 0.04
a>1/4. In spite of this procedure, fer>0.4, allE(M) for

odd S* seem to be shifted to higher energies in comparison .02
with the corresponding values for ev&A. If this tendency
persists in the thermodynamic limikeepingL even states
with odd S* would not be accessible thermodynamically, and
the calculation of the previous sectighased on Eq(2)] 10
would be irrelevant. In any cade(M) is very flat for 0.3
<M<0.5 (see Fig. 4 and if the curvature aM=1/2 is

0.12

0.10

0.08

E(M)-E(0)

0.08

0.00
12 T T T T

E(M)-E(0)

positive, there would be a steep increaseMiiB) for M =2
>0.3, which is probably hard to distinguish experimentally 06f
from a jump. The determination of the critical valuecwfor
which 9?E/dM?|,_ 1/, changes sign, is a difficult task which 04r
is postponed to the next section. ozl
The continuous curves in Fig. 4 correspond to fits in the '
numerical data using a polynomial of even powers/odvith 0.0 . s . .
about half as many parameters as points to be fiti@cv- 0.0 01 02 03 \ 04 05
erage the even-odd effecThese continuous curves allowed
us to perform the Maxwell construction analyticaltyashed FIG. 4. Energy per site as a function of total spin per site for a

chain of 20 sites with);=1, A;=-1, A,=1, and several values
of a=J,/J;. Full lines are polynomial fit§see the text Dashed
line and diamonds correspond to the Maxwell construction.

lines and diamonds in Fig.)dand to calculatd8(M) from
B=0JE/JdM (see Sec. )l The magnetization curvB(M) is
shown in Fig. 5 for two values of, which are near those
estimated for LgC&Cws04 and CaY,CusO4q,
respectively’® While the details of the curve and the value of the system. To estimate the variation Bf with « for the
the critical field at the jumB, (if it exists) depend on the isotropic modelA,=—A,;=1, we have calculated the aver-
fitting procedure, the fact that there is an abrupt increasege slope oE(M) (minimized with respect to the optimum
from ~60% to 100% of maximum magnetization with a twisted boundary conditiondetweenM =0.3 andM =0.5.
very small variation of magnetic field is a genuine feature ofThe result is shown in Fig. 6. Assumimg=2 for the gyro-
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0.5 T T T T T T T T T 0.0012 T T T T p,
M +<> t?,/'/

0.4} 3 1 0.0010 + @ 7

—~ 0=0.26 + © e
) LS
03¢ 0=0.35 I =2 1 L 0.0008 o l
\E/ + + ¢,.////
0al | | 5 0.0006 | . o _
. e
o1l | ] 0.0004 | + o - _
0.0002 | o il
%800 o002 o004 _oos 008 5 10 15 20 25 o -—"*/
X . 04 0. - 00 05 1.0 15 20 Bz.s 30 35 0.0000 k= . . . .
0.006 . . . .
FIG. 5. Total spin per site as a function of magnetic field for =) Q/-‘
J;=1,A;=-1, A,=1, and two values oé. u 0.005 - + 9/” 1
b 0=0.28 o
< 0.004 ¢ o §
o~
magnetic factor of the Cu ions, and taking the valuedof 0.003 | /<2.+f"' .
and « estimated for LgCa&Cu, O, Li,CuO,, and P
CaY,Cus0,0,%° we obtainB,=14, 40, and 65 Tesla, re- 0.002 . /to’ 1
spectively. 0.001 L + ]
T e
V. MAGNETIZATION JUMP IN THE ISOTROPIC CASE 9.000 . . . .

The results of the previous section fdr,=—-A;=1, L% 0.012 +0
show that there is an abrupt increase M(B) for B s 0.010 + >
~B¢(@) nearM=1/2, particularly for 1/4 a<1/2. How- gt o003 o ]
ever, they are not enough to establish the existence of a trur ~ 0.008 |- WoF .
jump. The calculation oB?E/dM?|\_1,, becomes compli- 0.006 | 3/0/' ]
cated by the fact that, independently of system ¢atdeast e ’
for L=<40 and neaM =1/2), only states with total spi® 0.004 1 . ¥ 1
=L/2—Iny,, with I, n,,, integers, butn.;,;>1, can be of 0.002 - - .
thermodynamic relevance. In other words, the cuB() +

) : . 0.000 : . . -
near M=1/2 looks like a straight line of slopB. plus a 0.0 0.1 0.2 03 | 04 0.5
periodic function with period,;,/L (see for example Fig. 4
for «=0.5, wheren,;;,=2; and Fig. 7 fora=0.3, where FIG. 7. Energy per site as a function of magnetization Jor

Nmin=23). If 7*E/IM?|y,_1,,>0, this meangas stated in Ref. =A,=—-A,=1, and several values af=J,/J; and system sizes:
8) that reducing the magnetic field from values high enougtsolid circlesL =20, empty diamond& =24, and empty circles
to ensure saturation of the magnetization, the spins flip in=28. Crosses correspond tio=20 using periodic(instead of
groups ofn.,,. The physical reason of this behavior is not twisted boundary conditions. The dot-dashed line joins the points
completely clear. It seems that spin flips tend to bind inwith M=1/2 andM = 1/2—2ny,/L for L=20.
groups ofN iy -

As a consequence, E), which could be calculated ana-

lytically, becomes invalid and should be replaced by L2
FPEIIM?| = 1o= lim ——[E(1/2)+ E(1/2— 2Ny /L)
35 T T T T x T . L—o Hmin
Bc F 0.35 y p _ _ .
3.0 | 0.30 yd /_ 2E(1/2—nyn/L)]. (15
| 0.25 Py ]
o5 L 020 ‘/ /’ i While ny,;,=2 for a>0.4, n,;, increases with decreasing
Lone S /’ ] making larger system sizes necessary for an accurate evalu-
2.0} 0.05 ‘/’ - . ation of Eqg.(15). In addition, this equation cannot be used
5 F OO A a5 040 045 050 ./ T for values ofa for which n,;, is not well defined. For ex-
=T ] amplea~0.35 (see Fig. 4 seems to correspond to a transi-
1ol /./’ A=-A=1 ] tion from n.,;,=2 to nyi,=3 with lowering «. Taking into
I ,/’ ] account these difficulties, we have chosen three values of
05+ /0/ - in the range 1/4 «<0.3, with apparently well-defined val-
I el . . T ues ofny, (3, 4, and 5 fora=0.3, 0.28, and 0.26, respec-
%25 05 10 4 15 =20 tively, seeFig. 7 and have calculated EGLS) as a function

of system size. For=0.3, for which the energy with six
FIG. 6. Critical magnetic field as a function ef for J,=1, (2ny,n) spin flips should be calculated, the largest system
A;=-1, andA,=1. size considered was=40. This was reduced tb=28 and
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1.0 i e e values ofC are shifted upwards with respect to a smooth
c ] curve that fits the rest of the points. Far=0.26, different

05F /_/' T extrapolations of the data to the thermodynamic limit give

[ e ] |C|<0.1. Since this value is of the order of the uncertainty in
0.0 d | the extrapolations, a definite conclusion regarding the sign of
o5k ] Ccannot be drawn. Similary, fox=0.28, due to the oscil-

| —=— 0=0.3 ] lating behavior of the data, no reliable extrapolation can be

0k e 0=0.28 | made. Instead, folw=0.26, although we have only two

. o 0=0.26 ] points available, it is remakkable that the curvature is prac-
A5} i tically constant C= —1.617) suggesting a negative value in

L Som— M the thermodynamic limit. Taking into account that faer
2.0 L oy T =0.28 and 0.26, the curvature far=24 seems shifted to

0.025 0030 0035 0040 0045  0.050 higher values in comparison with the rest of the curve, the

. sign of C for all finite L, and the behavior d&(M) displayed
FIG. 8. Relative curvature C=d°E/dM?|y_1/[E(1/2)  in Fig. 7 for each value oft, we believe tha€ changes sign

—E(0)] calculated using Eq15) as a function of the inverse of the fgor a, slightly below 0.28. For 0.28 a<a,, We expect a
system size fod;=A,=—A;=1, and several values af. true jump inM(B).

L =24 for«=0.28 and 0.26, respectively, due to the increase VI SUMMARY AND DISCUSSION

in 2nmi,. We have takeh multiple of four to avoid frustra- We have investigated by analytical and numerical meth-
tion of the next-nearest-neighbor antiferromagnetic interacods, the regions of parametefs, A, and a=J,/J; for
tion J,. which a jump in the magnetization as a function of magnetic

The results ofE(M) for two different system sizes and field M(B), of the spin-1/2XXZ chain with next-nearest-
the three values ofr are shown in Fig. 7. The oscillations neighbor exchanggEg. (1)] is expected. The numerical re-
with period nn,,/L are clearly seen. We also show a com-sults are restricted to the regipA,|<1 and O<A,<1.We
parison with the result of periodic boundary conditions. Aswere particularly interested in parameters near the isotropic
before, the minimization with respect to twisted boundarylimit of ferromagnetic J; and antiferromagnetic, (a
conditions reduces the magnitude of these oscillations ang0, A,=—A;=1), which are relevant to some systems
the finite-size effects, particularly fax near 1/4, smalM, containing CuO chains with edge-sharing Gu@its?°
and smallet. With increasingd-, the points tend to lie nearer One of the necessary conditions for a jumpNi(B) is
to the dot-dashed line. As mentioned beftdor any sys-  that the ground-state energy per site as a function of magne-
tem size, minimization with respect to twisted boundary con+ization E(M) should have zero or negative curvature in a
ditions reproduces the exact energy and wave vector in thgnite interval. In absence of even-odd effects or spin flips in
one magnon sector: forw=1/4 and M=1/2-1/L, q groups as discussed in Secs. IV and V, respectively, the cur-

=*arcco$—1/(4a)] and vature at maximunM (J2E/dM?|y,—1,») can be calculated
analytically in the thermodynamic limit from the energy of
E(1/2— 1) =(Ay+ @A) Jy/d—[Ay+ a(1+A,) the states with one.and two magnons. The resulting points of
zero curvature define a surfa& in the parameter space
+1/(8a)]/L. a,Aq1,A,, which turns out to be a frontier for the occurrence

of metamagnetic transitions. The rest of the boundary of the

However, fora=0.3, evaluation of Eq(15) is not affected  oqion of expected metamagnetism was constructed from the
by the use of periodic boundary conditions, since they mini-,qition E(0)=E(1/2), whereE(M) was calculated nu-

mize the energy for three and six spin flips. Then, our res”“?nerically in chains of 20 sites. We call this surfa8e
for «=0.3 are consistent with those of Cabeaal, who For —1=A,=0, the line ofél given by

using periodic boundary conditions obtain tiv{B) is very
steep neaM = 1/2, but without a jump forw=1/3 (Fig. 4 of

Ref. 8. 4aM;+1=0, 1+A,—2A2=0
turtlar? Fig. 8, we represent the dimensionless relative CUNVa5n which the wave vector of the two-magnon ground state in

the thermodynamic limit changes fronK=0 to K
= +2 arccof— 1/(4a)] coincideswith a line of S, in which

G?ElIM2| =1/ E(M) is independent oM. Thisnoticeable property allows
= E(1/2-E(0) to split the regions of expected metamagnetism in two, de-
pending if & is moved to lower or higher values from this
where the numerator is evaluated using Bd) with differ- line (see Figs. 2 and)3Inside the first region, the existence

ent values ofL, and in the denominator the result far  of a jump inM(B) is confirmed calculatinge(M) numeri-
=20 is taken. Except for the case @f0.28, in which there cally, for all possibleM in a finite chain. At least fofA;|
seems to be an oscillating behavior®@fvith L, the variation <1, this region disappears £;,=—1 or A,=1. However,
of C with L is rather smooth. Fot =24 (1L=0.042) the particularly for @=1/4, there are values df; andA, near
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the isotropic casé\,=—A;=1 for which a metamagnetic herg, suggest that it remains negative faK o, with «a,

transition exists. The intersection & with the plane« ~0.28 or slightly less. A jump irM(B) exists for 1/4& «
=1/4 gives the simple equation: <a.. In any case, even fat> a., our results seem enough
to show thatM (B) should have an abrupt increaGenot a
2A1A,+2A,+3A,+1=0. true jump from nearly 60% to 100% of the magnetization of

saturation at a critical field.. As an example, taking the
I(ine (Vl\éi.thoft reachings) is enough to have ajump M(B) | 3,C3,Cu,40,; and LiL,CuO,, respectively.
see Fig.

In the second region of expected metamagnefilsmger
values ofa), the analytical calculation &, becomes invalid
due to the tendency of the system to decrease the magneti- | am grateful to F. H. L. EGler, C. D. Batista, D. Cabra, A.
zation from saturation in more than one spin flip. NumericalHonecker, and Ana lLjmez for important discussions. | ac-
calculations of the curvaturé’E/dM? in the isotropic case knowledge computer time at the Max-Planck Institute fu
A,=—A;=1 nearM=1/2, using states with adequately Physik Komplexer Systeme. | was partially supported by
chosen total spin and twisted boundary conditigméich ~ CONICET. This work was sponsored by PICT 03-00121-
allow for incommensurate wave vecttfsand are crucial 02153 of ANPCyT and PIP 4952/96 of CONICET.
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