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Magnetization jump in the XXZ chain with next-nearest-neighbor exchange

A. A. Aligia
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~Received 29 June 2000; revised manuscript received 8 September 2000; published 11 December 2000!

We study the dependence of the magnetizationM with magnetic fieldB at zero temperature in the spin-1/2
XXZ chain with nearest-neighbor~NN! J1 and next-NNJ2 exchange interactions, with anisotropiesD1 andD2,
respectively. The region of parameters for which a jump inM (B) exists is studied using numerical diagonal-
ization, and analytical results for two magnons on a ferromagnetic background in the thermodynamic limit. We
find a line in the parameter space (J2 /J1 ,D1 /J1 ,D2 /J1) ~determined by two simple equations! at which the
ground state is highly degenerate.M (B) has a jump near this line, and at or near the isotropic case with
ferromagneticJ1 and antiferromagneticJ2, with uJ2 /J1u;1/4. These results are relevant for some systems
containing CuO chains with edge-sharing CuO4 units.

DOI: 10.1103/PhysRevB.63.014402 PACS number~s!: 75.10.Jm, 75.30.Kz
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I. INTRODUCTION

In recent years quantum spin chains and ladders h
been a subject of great experimental and theoretical inte
Quasi-one-dimensional magnetic systems have been id
fied and studied experimentally,1–4 and new theoretical stud
ies of the spin-1/2XXZ chain with nearest-neighbor~NN!
and next-NN exchange coupling~which is equivalent to a
two-leg zig-zag ladder! were presented.4–14 The Hamiltonian
is

H5(
i

@J1~Si
xSi 11

x 1Si
ySi 11

y 1D1Si
zSi 11

z !

1J2~Si
xSi 12

x 1Si
ySi 12

y 1D2Si
zSi 12

z !#. ~1!

One of the properties of this model is that the magnetiza
as a function of applied magnetic fieldM (B) displays a jump
for certain parameters.9,11This phenomenon called metama
netic transition was observed for example in TmSe15

FexMn12xTiO3,16 Tb12xScxMn2,17 and the quasi-one
dimensional compound Ba3Cu2O4Cl2.18

Previous studies of metamagnetism in the model were
stricted toD15D25D.9,11 The results show that a jump i
M (B) is not possible ifD.Dc . Following the methods ex
plained in Sec. III, we have determinedDc5(251A17)/4
>20.22.19 In principle, the requirement of an opposite sig
for thez component of the exchange rather than for the ot
two seems unrealistic. However, for the Hamiltonian, E
~1!, a negativeD1 with positiveJ1 is equivalent to a positive
D1 with negativeJ1, since a rotation of every second spin
p around thez axis changes the sign of thex andy compo-
nents ofJ1. Thus,D1,Dc does not necessarily mean a lar
anisotropy ofD1. Instead, a negativeD2,Dc is a very large
anisotropy ofJ2 and seems difficult to find in real system

In this paper we extend the previous searches of m
magnetic transitions to arbitrary values ofD1 and D2, con-
centrating our study inuD1u<1 and 0<D2<1, and particu-
larly near the isotropic case of ferromagneticJ1 and
antiferromagnetic J2. Several systems containing Cu
chains with edge-sharing CuO4 units, like La6Ca8Cu24O41,
0163-1829/2000/63~1!/014402~8!/$15.00 63 0144
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Li 2CuO2, and Ca2Y2Cu5O10, are expected to lie near thi
limit.20 In these systems, the Cu-O-Cu angleu of the CuO
chains is near 90° and therefore, the usual antiferromagn
NN exchange is largely frustrated. As a consequence of
tual processes in which the Hund rules exchange integra
the O atoms play a role,J1 becomes small and ferromag
netic. We estimate the critical fieldBc at which a jump or an
abrupt increase inM (B) should exist in these compounds.

The outline of the paper is as follows. In Sec. II we e
plain how we determine the regions of parameters for wh
a metamagnetic transition is expected. Section III conta
analytical results for the onset of bound states of two m
nons in a ferromagnetic background. These results and
merical ones in chains of 20 sites are used in Sec. IV
present phase diagrams in which the boundaries of the m
magnetic regions are shown. This section includes numer
results for the ground-state energy per site as a function
magnetic fieldE(M ), curves ofM (B), and critical fieldBc
as a function ofa5J2 /J1 for D252D151. Section V con-
tains a more detailed numerical study of this isotropic c
for a slightly larger than 1/4. Section VI is a summary an
discussion.

II. CONDITIONS FOR THE EXISTENCE OF A JUMP
IN M „B…

For the sake of clarity, we anticipate some of our nume
cal results for the dependence of the ground-state energy
site E as a function of magnetizationM5Sz/L, where Sz

5( iSi
z is the z component of the total spin andL is the

number of sites. They are shown in Fig. 1. A large portion
the curveE(M ) has negative curvature. These points a
actually not accessible thermodynamically. The dash
straight line is tangent toE(M ) at the two pointsM1
50.108 andM250.5 ~the Maxwell construction!. For all M
in the interval (M1 ,M2), it is energetically more favorable
for the system to phase separate into a fractionx5(M
2M1)/(M22M1) with magnetizationM2 and a fraction 1
2x with magnetizationM1. The energy of the mixture is
represented by the dashed line. If a magnetic fieldB is ap-
plied to the system, the equilibrium magnetization is det
©2000 The American Physical Society02-1
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A. A. ALIGIA PHYSICAL REVIEW B 63 014402
mined minimizing the Helmholz transformG5E2MB,
what leads to the conditionB5]E/]M . From inspection of
Fig. 1, we see thatM (B) increases withB, until it reaches
the critical value Bc5@E(M2)2E(M1)#/(M22M1)
(50.002 77J1 for the case of Fig. 1!. At B5Bc , M (B) sud-
denly jumps fromM1 to M2. If M2 is smaller than the satu
ration magnetization,M increases further forB.Bc , but we
have not found this situation in the present model.

From the above description, one can see that for a m
magnetic transition to occur at very low temperatures,E(M )
should satisfy two conditions:~1! ]2E/]M2,0 in a finite
interval of values ofM. ~2! E(M2).E(M1), where M1
,M2 are determined by the Maxwell construction. From t
general behavior ofE(M ) for the caseD15D25D, Gerhardt
et al.9 have found that when metamagnetism exists,M2
51/2 and the condition 2 ceases to be satisfied whenM1
50. More precisely, from their finite-size results fo
E(M ,a,D), with a5J2 /J1, they obtained a critical value o
D @D f(a)# from the equationE(0,a,D f)5E(1/2,a,D f). For
D,D f the system is a fully spin-polarized ferromagnet ev
at B50. Fortunately, the results forD f do not show a sig-
nificant size dependence and it is accurately determine
chains of 18 sites. Another critical valueDa(a) was obtained
from the condition]2E/]M2uM51/250. For D.Da the cur-
vature]2E/]M2 is positive for allM. The curvature atM2
was calculated numerically using

]2E/]M2uM51/25 lim
L→`

L2@E~1/2!1E~1/222/L !

22E~1/221/L !# ~2!

in a periodic chain. In contrast to the case ofD f , and even
takingL550, the result has some finite-size effects.9 This is
in part due to the fact~explained in the next section! that the
ground state nearM51/2 becomes incommensurate for su
ficiently large a, and these wave vectors cannot be rep
sented in small chains if periodic boundary conditions
used.12 From the numerical solution of the problem of tw
spin excitations on the ferromagnetic state forL→`, more
accurate values ofDa(a) were obtained recently fora

FIG. 1. Energy per site as a function of totalz component of
spin per site for a chain of 20 sites~solid circles!. The full line is a
polynomial fit. Dashed line and diamonds correspond to the M
well construction. Parameters areJ151, a5J2 /J150.25, D1

520.9, andD250.6.
01440
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<1/2.11 In the region of the (a,D) plane, whereD f(a),D
,Da(a) a metamagnetic transition occurs in the model.9,11

Relaxing the conditionD15D25D, and keeping, for ex-
ample, D2 fixed, limiting values of D1 @D1

f (a,D2) and
D1

a(a,D2)# can be defined in the same way and we expec
principle that magnetization jumps will be found
D1

f (a,D2),D1,D1
a(a,D2). The same is true interchangin

D1 andD2. Fortunately, as described in the next section,
D i

a are given by analytical expressions, which are ve
simple neara51/4. The D i

f are determined by numerica
diagonalization of chains withL520 and the results are
given in Sec. IV.

III. THE TWO-MAGNON PROBLEM

In this section, we derive analytical expressions for t
upper boundaries of the expected metamagnetic reg
@D1

a(a,D2) or D2
a(a,D1)#, looking for bound states of two

spin flips on a ferromagnetic background in an infinite cha
This is a two-body problem, which due to translational i
variance can be mapped into a single-body one. Sim
problems were solved for example, to determine exac
metal-insulator boundaries in generalized Hubbard mode21

For D15D25D, this problem has been solved numerica
for L;150 by Cabraet al.8 and for L→` and a<1/2 by
Hirata.11 Simple analytical expressions are given in Ref. 1

We use a Jordan-Wigner transformationSj
1

5cj
†exp(ip(l,jnl), Sj

25(Sj
1)†, Sj

z5nj21, with nj5cj
†cj ,

to express the spin operators in terms of spinless fermio
Calling a5J2 /J1, settingJ151 as the unit of energy, and
substracting the constantLE(1/2) @with E(1/2)5(D1
1aD2)/4#, the Hamiltonian equation~1! takes the form

H5(
i

@~2D12aD2!ni1
1
2 ~ci 11

† ci1aci 12
† ci1H.c.!

1D1nini 111aD2nini 122a~ci 12
† ni 11ci1H.c.!#.

~3!

After Fourier transformcj5A1/L(qeiq jcq , the model can be
written as

H5(
q

eqcq
†cq1

4

L (
K

(
q,q8.0

@~D112a cosK !sinq sinq8

1aD2 sin 2q sin 2q8#cK/22q8
† cK/21q8

† cK/21qcK/22q , ~4!

with eq52D12aD21cosq1a cos 2q.
The two-magnon eigenstates of total momentumK can be

written in the form uc(K)&5(q.0AqcK/22q
† cK/21q

† u0&. Re-
placing this into the Schro¨dinger equationHuc&5luc&, one
obtains

Aq5
24@~D112a cosK !S1~K !sinq1aD2S2~K !sin 2q#

eK/22q1eK/21q2l
,

~5!

where

-

2-2
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Sn~K !5
1

L (
q.0

Aq sinnq. ~6!

Replacing Eq.~5! into Eq. ~6! leads to two homogeneou
equations for the two unknown sumsS1 and S2. For fixed
values of the parameters andK, the condition of vanishing
secular determinant determines the allowed eigenvaluel.
Since we are looking for the condition on the parameters
the onset of a bound state@when the right-hand side of Eq
~2! becomes negative#, we setl slightly below two times the
minimum one-magnon energy:l52 min(eq)2h, whereh is
a positive infinitesimal energy. With this value ofl, the
condition of vanishing secular determinant in the thermo
namic limit L→` takes the form

4~D112a cosK !@ I 0116aD2~ I 0I 22I 1
2!#116aD2I 21150,

~7!

where the integralsI n(a,K) (n50,1,2) are

I n5
1

2pE0

p dq sin2q cosnq

4a cosK cos2q12 cos~K/2!cosq1c~a,K !1h
,

~8!

with h→0 and

c~a,K !52~12a2a cosK !, a<1/4,

c~a,K !52a1
1

4a
22a cosK, a>1/4. ~9!

The change of the expression forc(a,K) at a51/4 is due to
the change in the wave vector, which minimizeseq from q
5p for a<1/4 to q56arccos@21/(4a)# for a>1/4. The
integrals can be solved decomposing the integrand int
sum of expressions with denominators linear in cosq and
using22

1

2pE0

p dq sin2q

a1b cosq
5

a

2b2 S 12A12
b2

a2D . ~10!

For each value ofa, K, andD1, Eq. ~7! is a linear equa-
tion in D2. The searched upper boundaryD2

a(a,D1) is deter-
mined choosing the value ofK that leads to the highest roo
of Eq. ~7!. For D2,D2

a(a,D1), the curvature equation~2! is
negative. The same is true interchangingD1 and D2. If D1
5D25D is taken,9,11 the highest root of the quadratic equ
tion ~7! determinesDa(a), since there is at least one boun
state forD,Da(a).

For a<1/4, the total wave vectorK, which first leads to a
bound state, isK50. In the sector of two particles, this i
also the wave vector of the ground state of the noninterac
part of the Hamiltonian in the fermionic representation@Eq.
~3! or ~4!#. Using Eqs.~8!, ~9!, and ~10!, we obtain after
some algebra
01440
r
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I 05
r 21

8a
, I 15

12~122a!r

16a2
,

I 25
a21

16a2
1S 1

2a
21D 2

I 0 ,

with r 5~124a!21/2 ~a,1/4!. ~11!

Equations~7! and ~11! defineD2
a(a,D1) and D1

a(a,D2) for
a,1/4.

For a.1/4, the ground state of the noninteracting ferm
onic Hamiltonian for two particles is degenerate wi
total wave vector K50 or K56Ki with Ki
52 arccos@21/(4a)#. For D15D2, we have found that the
wave vector of the ground state of the two-magnon probl
for parameters near the onset of a bound state isK50 for
a<1/2. At a51/2 it jumps to6Ki . From numerical inves-
tigations in finite systems~with L;20), using twisted
boundary conditions to allow all possible wave vectors,12 we
find that for values ofa.aw;1, the ground-state wave vec
tor deviates continuously from6Ki . Comparison of the nu-
merical results forDa(a) ~with L;50) of Ref. 9 with our
analytical ones assumingK56Ki , gives aw>0.77. In the
regiona.aw , it seems not possible to find analytical resu
for Da(a). However, takingK5Ki leads to a reasonabl
lower bound, sinceK is not too different fromKi ~in any
case, as we shall see in Sec. V, Eq.~2! ceases to be valid fo
a>aw). In the general caseD1ÞD2, the maximum between
the results forDn assumingK50 or K5Ki , also gives a
lower bound forD2

a(a,D1) and D1
a(a,D2). We restrict the

calculation to these values ofK. For K50 anda>1/4, the
integrals Eq.~8! diverge forh→0, and Eq.~10! has complex
coefficients for finiteh. The equation for theDn is obtained
after a careful limiting procedure of Eq.~7! with adequate
choice of the branch of the root in Eq.~10!. Physically this
means simply to consider values ofDn slightly smaller than
the critical ones, in such a way that they lead to a fin
binding energyh, and then take the limith→0. The final
results turn out to be very simple:

D1D21D1

2a
1D2S 11

1

8a2D 1150 ~a>1/4, K50!.

~12!

As an example, this equation is satisfied fora51/4, D1
520.9, andD252/3. LoweringD2 a little bit, E(M ) dis-
plays the behavior required for a jump inM (B) ~see Fig. 1!.

Finally, for a>1/4 and K5Ki , the integrals take the
form

I 05
1

8aB S 12
1

4aAA
D , I 15

1

32~aB!2 S 1

2a
2

1

AA
D ,
2-3
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I 25
1

16a S 1

A
2

1

B
1

2a2AA

2aAB3 D ,

with

A512
1

16a2
, B512

1

8a2
~a>1/4, K5Ki !. ~13!

It remains to establish whenD i
a are determined by Eq.~12!,

or Eq. ~13! and Eq.~7! with cosK51/(8a2)21. Taking for
instanceD1 fixed, and equating the values ofD2 obtained
from both expressions, we obtain

a52
1

4D1
, D252112D1

2 ~21<D1<0!. ~14!

For smaller values ofa, D2
a(a,D1) is determined by Eq.

~12!. Similarly, for a given value ofD2, Eq. ~12! gives
D1

a(a,D2) if a<@(11D2)/2#21/2/4, while for larger values
of a, Eqs.~7! and ~13! should be used.

Equation ~14! defines a particular line in the paramet
space (a,D1 ,D2), which as will be seen in the next sectio
plays an important role in our paper. From the analyti
results of this section, we see that at this line, not only
there a degeneracy in the lowest-lying eigenstates in the
magnon sector~for M51/222/L with L→`) between the
wave vectorsK50 andK56Ki , but also lim

L→`
L@E(1/2

21/L)2E(1/2)#5earccos(D1)50 and lim
L→`

L@E(1/222/L)

2E(1/2)#50. In other wordsE(M ) is independent ofM for
M;1/2 in the thermodynamic limit.

IV. PHASE DIAGRAM FOR METAMAGNETIC
TRANSITIONS

In this section, we delimit the region of parameters ins
which a jump in the functionM (B) is expected. Specifically
for eacha andD1, we determine by numerical diagonaliz
tion of chains of 20 sites the lower boundaryD2

f of the meta-
magnetic region@from E(1/2)5E(0)#, while the upper
boundaryD2

a ~or a lower bound of it for largea) is taken
from the expressions of the previous section. The sam
done interchangingD1 andD2. This study is complemente
by numerical calculations of the ground-state energy a
function of magnetizationE(M ) @from which M (B) can be
derived#, and the critical fieldBc for several parameters in
side the region of interest.

In Fig. 2 we showD2
f ~discrete points! and D2

a ~thick
curve above it! as a function ofa for several values ofD1.
The region of interestD2

f ,D2,D2
a is shown by vertical

dashed lines forD1520.7. Clearly the upper boundaryD2
a

displays two kinks as a result of the change in the grou
state wave vector for one magnon ata51/4, or two magnons
at a521/(4D1), as described in the previous section.D2

a is
given by Eqs.~11! and~7! with K50 for a,1/4, by Eq.~12!
between both kinks, and~as a lower bound! by Eqs.~13! and
~7! with cosK51/(8a2)21 for a.21/(4D1), respectively.
01440
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It is remarkable that at the second kink@determined by Eqs.
~14!#, where the wave vector of the two-magnon ground st
jumps from K50 to K56Ki and ]E/]M uM51/2
5]2E/]M2uM51/250 for L→` according to the results o
the previous section, alsoE(1/2)5E(0) ~at least within the
accuracy of the Lanczos diagonalization and independe
of system size!. Actually E(M ) is quite flat at this point.
Specifically, we find by numerical diagonalization, thatif
and only ifthe energy for each value ofSz is minimized with
respect to the optimum twisted boundary conditions,12 E(M )
becomes independent ofM at this point, within our precision
of 1029. All wave vectors at the minimum become incom
mensurate except forSz50 and Sz5L/2. For Sz5L/222,
we find that the minimum is at wave vectorK5Ki , while
the energy atK50 is of the order of 1025 above the mini-
mum energy forL520, due to finite-size effects.

Particular cases of degeneracy at the line determined
Eqs. ~14! are already known. The degeneracy at the po
a51/4, D1521, D251 was studied by Hamadaet al., who
also have shown that the ground state in the sector of t
spin S50 is a resonance-valence-bond state involving s
glet pairs at all distances.23 The degeneracy at the Majumda
Ghosh pointa51/2, D15D2521/2, was discussed by Ger
hardt et al.9 For D1→0, this point moves towards two
decoupled ferromagnetic Heisenberg chains@see Eqs.~14!#,
for which E(M ) is constant.

This special point whereD2
f andD2

a coincide separates th
region of expected metamagnetism in two zones. The on
the left of the point shrinks and moves towardsD251 asD1
decreases approaching the isotropic limitD1521, where it
disappears. The right zone also displaces towardsD251, but
increases asD1 moves to21, suggesting that a jump in
M (B) is also possible in the isotropic limitD252D151, if
a.1/4. Figure 3 shows the same two metamagnetic zone
the (a,D1) plane for several values ofD2. The same tenden
cies as before are observed as the isotropic limitD252D1
51 is approached.

In the zone of lowera, the existence of a jump inM (B)

FIG. 2. Boundaries of the region of expected metamagn
transitions in the (a,D2) plane, for different values ofD1. This
region is shown dashed forD1520.7. The symbols~joined by thin
lines! indicate the lower boundaryD2

f calculated numerically in
chains of 20 sites. The upper boundaryD2

a ~thick lines! is taken
from the analytical results of Sec. III.
2-4
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is confirmed by numerical calculation ofE(M ). An example
was shown in Fig. 1. Instead, inside the right zone of
pected metamagnetism~for a larger than the point of degen
eracy at whichD2

f andD2
a meet!, the situation is not so clear

As it is clear in Fig. 4 fora51/2, the energy per site as
function of the z component of the total spinSz5( iSi

z

5ML, shows a significant even-odd effect for small chai
This effect has been reduced minimizingE(M ) with respect
to the optimum twisted boundary conditions to allow f
incommensurate wave vectors.12 Most of the resulting wave
vectors are incommensurate, particularly for oddSz and low
a.1/4. In spite of this procedure, fora.0.4, all E(M ) for
odd Sz seem to be shifted to higher energies in compari
with the corresponding values for evenSz. If this tendency
persists in the thermodynamic limit~keepingL even! states
with oddSz would not be accessible thermodynamically, a
the calculation of the previous section@based on Eq.~2!#
would be irrelevant. In any caseE(M ) is very flat for 0.3
,M,0.5 ~see Fig. 4! and if the curvature atM51/2 is
positive, there would be a steep increase inM (B) for M
.0.3, which is probably hard to distinguish experimenta
from a jump. The determination of the critical value ofa for
which ]2E/]M2uM51/2 changes sign, is a difficult task whic
is postponed to the next section.

The continuous curves in Fig. 4 correspond to fits in
numerical data using a polynomial of even powers ofM with
about half as many parameters as points to be fitted~to av-
erage the even-odd effect!. These continuous curves allowe
us to perform the Maxwell construction analytically~dashed
lines and diamonds in Fig. 4!, and to calculateB(M ) from
B5]E/]M ~see Sec. II!. The magnetization curveB(M ) is
shown in Fig. 5 for two values ofa, which are near those
estimated for La6Ca8Cu24O41 and Ca2Y2Cu5O10,
respectively.20 While the details of the curve and the value
the critical field at the jumpBc ~if it exists! depend on the
fitting procedure, the fact that there is an abrupt incre
from ;60% to 100% of maximum magnetization with
very small variation of magnetic field is a genuine feature

FIG. 3. Boundaries of the region of expected metamagn
transitions in the (a,D1) plane, for different values ofD2. This
region is shown dashed forD250.5. The symbols~joined by thin
lines! indicate the lower boundaryD1

f calculated numerically in
chains of 20 sites. The upper boundaryD1

a ~thick lines! is taken
from the analytical results of Sec. III.
01440
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the system. To estimate the variation ofBc with a for the
isotropic modelD252D151, we have calculated the ave
age slope ofE(M ) ~minimized with respect to the optimum
twisted boundary conditions! betweenM50.3 andM50.5.
The result is shown in Fig. 6. Assumingg52 for the gyro-

ic

FIG. 4. Energy per site as a function of total spin per site fo
chain of 20 sites withJ151, D1521, D251, and several values
of a5J2 /J1. Full lines are polynomial fits~see the text!. Dashed
line and diamonds correspond to the Maxwell construction.
2-5
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A. A. ALIGIA PHYSICAL REVIEW B 63 014402
magnetic factor of the Cu ions, and taking the values ofJ1
and a estimated for La6Ca8Cu24O41, Li2CuO2, and
Ca2Y2Cu5O10,20 we obtainBc514, 40, and 65 Tesla, re
spectively.

V. MAGNETIZATION JUMP IN THE ISOTROPIC CASE

The results of the previous section forD252D151,
show that there is an abrupt increase inM (B) for B
;Bc(a) near M51/2, particularly for 1/4,a<1/2. How-
ever, they are not enough to establish the existence of a
jump. The calculation of]2E/]M2uM51/2 becomes compli-
cated by the fact that, independently of system size~at least
for L&40 and nearM51/2), only states with total spinS
5L/22Inmin with I, nmin integers, butnmin.1, can be of
thermodynamic relevance. In other words, the curveE(M )
near M51/2 looks like a straight line of slopeBc plus a
periodic function with periodnmin /L ~see for example Fig. 4
for a50.5, wherenmin52; and Fig. 7 fora50.3, where
nmin53). If ]2E/]M2uM51/2.0, this means~as stated in Ref.
8! that reducing the magnetic field from values high enou
to ensure saturation of the magnetization, the spins flip
groups ofnmin . The physical reason of this behavior is n
completely clear. It seems that spin flips tend to bind
groups ofnmin .

As a consequence, Eq.~2!, which could be calculated ana
lytically, becomes invalid and should be replaced by

FIG. 5. Total spin per site as a function of magnetic field
J151, D1521, D251, and two values ofa.

FIG. 6. Critical magnetic field as a function ofa for J151,
D1521, andD251.
01440
ue

h
in

]2E/]M2uM51/25 lim
L→`

L2

nmin
2 @E~1/2!1E~1/222nmin /L !

22E~1/22nmin /L !#. ~15!

While nmin52 for a.0.4, nmin increases with decreasinga,
making larger system sizes necessary for an accurate e
ation of Eq.~15!. In addition, this equation cannot be use
for values ofa for which nmin is not well defined. For ex-
amplea;0.35 ~see Fig. 4! seems to correspond to a trans
tion from nmin52 to nmin53 with lowering a. Taking into
account these difficulties, we have chosen three values oa
in the range 1/4,a<0.3, with apparently well-defined val
ues ofnmin ~3, 4, and 5 fora50.3, 0.28, and 0.26, respec
tively, see Fig. 7!, and have calculated Eq.~15! as a function
of system size. Fora50.3, for which the energy with six
(2nmin) spin flips should be calculated, the largest syst
size considered wasL540. This was reduced toL528 and

FIG. 7. Energy per site as a function of magnetization forJ1

5D252D151, and several values ofa5J2 /J1 and system sizes
solid circlesL520, empty diamondsL524, and empty circlesL
528. Crosses correspond toL520 using periodic~instead of
twisted! boundary conditions. The dot-dashed line joins the poi
with M51/2 andM51/222nmin /L for L520.
2-6
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L524 for a50.28 and 0.26, respectively, due to the increa
in 2nmin . We have takenL multiple of four to avoid frustra-
tion of the next-nearest-neighbor antiferromagnetic inter
tion J2.

The results ofE(M ) for two different system sizes an
the three values ofa are shown in Fig. 7. The oscillation
with period nmin /L are clearly seen. We also show a com
parison with the result of periodic boundary conditions.
before, the minimization with respect to twisted bounda
conditions reduces the magnitude of these oscillations
the finite-size effects, particularly fora near 1/4, smallM,
and smallerL. With increasingL, the points tend to lie neare
to the dot-dashed line. As mentioned before,12 for any sys-
tem size, minimization with respect to twisted boundary co
ditions reproduces the exact energy and wave vector in
one magnon sector: fora>1/4 and M51/221/L, q
56arccos@21/(4a)# and

E~1/221/L !5~D11aD2!J1/42@D11a~11D2!

11/~8a!#/L.

However, fora50.3, evaluation of Eq.~15! is not affected
by the use of periodic boundary conditions, since they m
mize the energy for three and six spin flips. Then, our res
for a50.3 are consistent with those of Cabraet al., who
using periodic boundary conditions obtain thatM (B) is very
steep nearM51/2, but without a jump fora51/3 ~Fig. 4 of
Ref. 8!.

In Fig. 8, we represent the dimensionless relative cur
ture:

C5
]2E/]M2uM51/2

E~1/2!2E~0!
,

where the numerator is evaluated using Eq.~15! with differ-
ent values ofL, and in the denominator the result forL
520 is taken. Except for the case ofa50.28, in which there
seems to be an oscillating behavior ofC with L, the variation
of C with L is rather smooth. ForL524 (1/L.0.042) the

FIG. 8. Relative curvature C5]2E/]M2uM51/2/@E(1/2)
2E(0)# calculated using Eq.~15! as a function of the inverse of th
system size forJ15D252D151, and several values ofa.
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values ofC are shifted upwards with respect to a smoo
curve that fits the rest of the points. Fora50.26, different
extrapolations of the data to the thermodynamic limit gi
uCu,0.1. Since this value is of the order of the uncertainty
the extrapolations, a definite conclusion regarding the sig
C cannot be drawn. Similary, fora50.28, due to the oscil-
lating behavior of the data, no reliable extrapolation can
made. Instead, fora50.26, although we have only two
points available, it is remakkable that the curvature is pr
tically constant (C521.617) suggesting a negative value
the thermodynamic limit. Taking into account that fora
50.28 and 0.26, the curvature forL524 seems shifted to
higher values in comparison with the rest of the curve,
sign ofC for all finite L, and the behavior ofE(M ) displayed
in Fig. 7 for each value ofa, we believe thatC changes sign
for ac slightly below 0.28. For 0.25,a,ac , we expect a
true jump inM (B).

VI. SUMMARY AND DISCUSSION

We have investigated by analytical and numerical me
ods, the regions of parametersD1 , D2 and a5J2 /J1 for
which a jump in the magnetization as a function of magne
field M (B), of the spin-1/2XXZ chain with next-nearest
neighbor exchange@Eq. ~1!# is expected. The numerical re
sults are restricted to the regionuD1u<1 and 0<D2<1.We
were particularly interested in parameters near the isotro
limit of ferromagnetic J1 and antiferromagneticJ2 (a
.0, D252D151), which are relevant to some system
containing CuO chains with edge-sharing CuO4units.20

One of the necessary conditions for a jump inM (B) is
that the ground-state energy per site as a function of mag
tization E(M ) should have zero or negative curvature in
finite interval. In absence of even-odd effects or spin flips
groups as discussed in Secs. IV and V, respectively, the
vature at maximumM (]2E/]M2uM51/2) can be calculated
analytically in the thermodynamic limit from the energy
the states with one and two magnons. The resulting point
zero curvature define a surfaceS1 in the parameter spac
a,D1 ,D2, which turns out to be a frontier for the occurren
of metamagnetic transitions. The rest of the boundary of
region of expected metamagnetism was constructed from
condition E(0)5E(1/2), whereE(M ) was calculated nu-
merically in chains of 20 sites. We call this surfaceS2.

For 21>D1>0, the line ofS1 given by

4aD11150, 11D222D1
250

on which the wave vector of the two-magnon ground state
the thermodynamic limit changes fromK50 to K
562 arccos@21/(4a)# coincideswith a line ofS2 in which
E(M ) is independent ofM. Thisnoticeable property allows
to split the regions of expected metamagnetism in two,
pending if a is moved to lower or higher values from th
line ~see Figs. 2 and 3!. Inside the first region, the existenc
of a jump in M (B) is confirmed calculatingE(M ) numeri-
cally, for all possibleM in a finite chain. At least foruD i u
<1, this region disappears ifD1521 or D251. However,
particularly fora51/4, there are values ofD1 andD2 near
2-7
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the isotropic caseD252D151 for which a metamagnetic
transition exists. The intersection ofS1 with the planea
51/4 gives the simple equation:

2D1D212D113D21150.

Displacing one of theD i slightly to lower values from this
line ~without reachingS2) is enough to have a jump inM (B)
~see Fig. 1!.

In the second region of expected metamagnetism~larger
values ofa), the analytical calculation ofS1 becomes invalid
due to the tendency of the system to decrease the mag
zation from saturation in more than one spin flip. Numeri
calculations of the curvature]2E/]M2 in the isotropic case
D252D151 near M51/2, using states with adequate
chosen total spin and twisted boundary conditions~which
allow for incommensurate wave vectors12 and are crucial
,
a,

r-

.
,

g

ett

01440
ti-
l

here!, suggest that it remains negative fora,ac with ac
;0.28 or slightly less. A jump inM (B) exists for 1/4,a
,ac . In any case, even fora.ac , our results seem enoug
to show thatM (B) should have an abrupt increase~if not a
true jump! from nearly 60% to 100% of the magnetization
saturation at a critical fieldBc . As an example, taking the
parameters of Ref. 20, we estimateBc514 and 40 Tesla for
La6Ca8Cu24O41 and Li2CuO2, respectively.
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