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Density-matrix renormalization-group technique with periodic boundary conditions
for two-dimensional classical systems
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The density-matrix renormalization-group~DMRG! method with periodic boundary conditions is introduced
for two-dimensional~2D! classical spin models. It is shown that this method is more suitable for derivation of
the properties of infinite 2D systems than the DMRG with open boundary conditions, despite the fact that the
latter describes much better strips of finite width. For calculation at criticality, phenomenological renormal-
ization at finite strips is used together with a criterion for optimum strip width for a given order of approxi-
mation. For this width the critical temperature of the 2D Ising model is estimated with seven-digit accuracy for
a not too large order of approximation. Similar precision is reached for critical exponents. These results exceed
the accuracy of similar calculations for the DMRG with open boundary conditions by several orders of
magnitude. The method is applied to the calculation of critical exponents of theq53,4 Potts model, as well.
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I. INTRODUCTION

In 1992 the density matrix renormalization grou
~DMRG! technique in real space was invented by White1 and
has been mostly applied to the diagonalization of o
dimensional~1D! quantum chain spin Hamiltonians. Thre
years later the DMRG method was redesigned by Nishi2

and applied to classical spin 2D models. The DMRG meth
for the classical models is based on renormalization of
transfer matrix. It is a variational method maximizing th
partition function using a limited number of degrees of fre
dom and its variational state is written as a product of lo
matrices.3,4

DMRG has been used for many various quantum mod
It provides results with remarkable accuracy for larger s
tems than it is possible to study using standard diagona
tion methods. The 2D classical systems treated by
DMRG method exceeds the classical Monte Carlo appro
in accuracy, speed, and size of the systems.5 A further
DMRG improvement of the classical systems is based
Baxter’s corner transfer matrix,6 the CTMRG,7 and its gen-
eralization to any dimension.8

Applications of the DMRG technique for calculation o
the thermodynamic properties in the 2D classical syste
has been done in Refs. 2,9–11. Treating of nonsymme
transfer matrices or non-Hermitian quantum Hamiltonia
has also been studied by the DMRG technique.12–15

It was shown that the DRMG method yields very accur
estimations of ground state energy of finite quantum cha
and free energy of classical strips of finite width with op
boundary conditions. We have developed the DMRG met
with periodic boundary conditions for strips of classic
spins and shown that, similarly as for quantum chains
gives these quantities with much less degree of accur
Nevertheless, the DMRG method is mostly used for pred
tion of physical quantities and critical properties of infini
systems in connection with finite-size scaling or extrapo
tion of the results from finite-size systems to infinite on
The objective of this paper is to study the DMRG and ex
0163-1829/2000/63~1!/014401~6!/$15.00 63 0144
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methods with two different boundary conditions for fini
strips of various widths and compare their results w
known exact results for infinite 2D system. It is shown th
while for the exact diagonalization of finite-strip transfer m
trices scaling properties of the system improve, for DMR
approach there exists an optimum width for each degree
approximation. The developed approach is tested on
Ising model.

The paper is organized as follows. In Sec. II we ment
briefly the DMRG for the open boundary conditions. Secti
III contains the modification of the DMRG method for th
periodic boundary conditions. In Sec. IV we present the
sults obtained by the DMRG method with periodic and op
boundary conditions, the exact diagonalization method,
show how to determine the optimum strip width for finit
size scaling. In Sec. V the results will be summarized.

II. DMRG WITH OPEN BOUNDARY CONDITIONS

The transfer matrix approach is a powerful method
exact numerical calculation of thermodynamical propert
of lattice spin models defined on finite-width strips. If th
width of the strip is too large and the capacity of the co
puter is exceeded, the DMRG method is found to be use
for an effective reduction of the transfer matrix size. It can
used for calculation of global quantities such as free ene
as well as of a spatial dependence across the strip of l
quantities, e.g., spin correlation functions.

The properties of an infinite strip of finite widthL are
given by the solution of ‘‘left’’ eigenvectors and correspon
ing eigenvalues of the transfer matrix equation

(
$s%

C l~$s%!T~$s%u$s8%!5lC l~$s8%!, ~1!

where$s% is a set ofL spins$s1 ,s2 , . . . ,sL% defined on a
row and$s8% is a set ofL spins on the adjacent row. Th
transfer matrix is a product of Boltzmann weights given
©2000 The American Physical Society01-1
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A. GENDIAR AND A. ŠURDA PHYSICAL REVIEW B 63 014401
the lattice Hamiltonian. For nonsymmetric transfer matric
besides the left eigenvectorsC l

i , the right eigenvectorsC r
i

should be calculated, as well.
Reducing the size of the transfer matrix the stand

DMRG technique proceeds in two regimes.
~1! In the process of iterations, the infinite system meth

~ISM! pushes both ends of the transfer matrix further so t
each step of the ISM enlarges the lattice size by two si
The transfer matrix~superblock! is constructed from three
blocks: leftTl and rightTr transfer matrices~blocks! and a
Boltzmann weightWB , in particular,

T[2 j 12]5Tl
( j )WBTr

( j ) , ~2!

where the index on the left hand side denotes the numbe
sites in one row of the whole superblockT at the j th step of
iteration. The Boltzmann weight usually is a function of se
eral spins interacting among each other, e.g., for the Is
model with nearest-neighbor interactions the Boltzma
weight has the form

WB~s1s2us18s28!

5expH 2
J

kBT
~s1s21s18s281s1s181s2s28!J .

~3!

In the first step of the ISM~for details, see Refs. 1,2!
Tl

(1)5Tr
(1)5WB is put. The whole procedure hasL/221

steps

Tl
(1)WBTr

(1)→Tl
(2)WBTr

(2)→•••→Tl
(L/221)WBTr

(L/221)

~4!

and stops when the desired strip width ofL sites is reached
The first steps of the iteration scheme~4! are exact but if

the superblock matrixT becomes too large, a reduction pr
cedure, to keep the size of superblock constant, should
introduced.

The first step of Eq.~4! introduces open conditions at th
strip boundaries. If the temperature of the system is low
than the critical one and the strip width is wide enough,
symmetry of the system is spontaneously broken~order pa-
rameter becomes nonzero!, and after reaching the fixed poin
of the iteration procedure, the system does not depend on
boundary conditions any more. The calculations with pe
odic boundary conditions described in the next section g
in this regime the same result as with the free ones.

~2! The finite system method~FSM! improves numerical
accuracy of ISM result by left and right moves~sweeps!
according to the following prescription:

Tl
(L/221)WBTr

(L/221)→Tl
(L/2)WBTr

(L/222)

→•••→Tl
(L23)WBTr

(1) , ~5!

Tl
(L23)WBTr

(1)→Tl
(L22)WBTr

(2)

→•••→Tl
(L/221)WBTr

(L/221) . ~6!
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In the right sweep~5! the left blocksTl are calculated in
the previous step of the sweep and the right blocksTr are
taken from the previous left sweep~in the first right sweep
from ISM!; similarly for the left sweep.

The values of local thermodynamical quantities given
particular superblocks in the final sweep~after the steady
state is reached! are spatially dependent. The values given
the superblock in the middle of the stripTl

(L/221)WBTr
(L/221)

are the closest to the bulk ones. In this sense, the best tra
matrix eigenvalues as well as eigenvectors are those of
abovementioned central superblock. The two largest eig
values are used for further finite-size scaling or extrapolat
treatment.

III. DMRG WITH PERIODIC BOUNDARY CONDITIONS

The translational invariance of the infinite lattice is pr
served in finite strips with periodic boundary conditio
when strip boundaries are connected with bulk intersite
teractions. In this case the strip forms an infinitely long c
inder. If the radius of the cylinder is small enough, the mo
can be easily solved by exact numerical diagonalizat
methods.

In DMRG language, imposing periodic boundary cond
tions means that we have to introduce properly the conn
tion of both ends of the superblock transfer matrixT. Thus,
in distinction to open-boundary case the superblock is c
structed from two Boltzmann weights connecting two bloc
at both ends~see Fig. 1, the rightmost diagram!:

T[2 j 14]~s1j ls j 14s j 13j rs2us18j l8s j 148 s j 138 j r8s28!

5Tl
( j )~s1j ls j 14us18j l8s j 148 !

3WB~s j 14s j 13us j 148 s j 138 !

3Tr
( j )~s j 13j rs2us j 138 j r8s28!

3WB~s2s1us28s18!, ~7!

where the block spin variablej5$1,2, . . . ,m%, and the
primed variables are denoted by filled circles and ovals
Fig. 1.

In the first few steps the lattice is enlarged to the desi
size, no degrees-of-freedom reduction is performed, and
superblock transfer matrix remains equivalent to the ex
one. As depicted in Fig. 1, the ISM starts withT(6)

5Tl
(1)WBTr

(1)WB defined on twelve sites whereTl
(1)5Tr

(1)

5WBWB , and one Boltzmann weight, i.e., four new sites a
added in each further step.

FIG. 1. The firstj steps of the ISM for the strip with the periodi
boundary conditions.
1-2



b
ck

e
rly

ns

ec-

-
re-

e

ks

ge-

er-

ft

z-

lat-
ta-
of

ip
ic

ei-
n-

ic

sp
t

DENSITY-MATRIX RENORMALIZATION-GROUP . . . PHYSICAL REVIEW B 63 014401
If 2 j.m, the number of degrees of freedom should
reduced at eachj th step to keep the order of the superblo
matrix constant and equal to 243m2. Summation in the
equation for eigenvectors~1! of the transfer matrix~7! can be
performed in two steps

F~s1j ls j 14s j 13s j 138 j r8s28s18!

5 (
jrs2

Tr~s j 13j rs2us j 138 j r8s28!WB~s2s1us28s18!

3C~s1j ls j 14s j 13j rs2!,

C~s18j l8s j 148 s j 138 j r8s28!5 (
s1j l

s j 14s j 13

Tl~s1j ls j 14us18j l8s j 148 !

3WB~s j 14s j 13us j 148 s j 138 !

3F~s1j ls j 14s j 13s j 138 j r8s28s18!

~8!

which is depicted graphically in Fig. 2. This procedure us
the left and right transfer matrix blocks to calculate prope
the left and right eigenvectorsC l and C r , respectively, of
the whole superblock for the periodic boundary conditio
Once we have theC l and C r , the left and right density
matrices can be constructed:

r l~j ls j 14uj l8s j 148 !5 (
s1s j 13jrs2

C l~s1j ls j 14s j 13j rs2!

3C r~s1j l8s j 148 s j 13j rs2!, ~9!

r r~s j 13j r us j 138 j r8!5 (
s1j ls j 14s2

C l~s1j ls j 14s j 13j rs2!

3C r~s1j ls j 14s j 138 j r8s2!, ~10!

and by its complete diagonalization

Ol~j l
newuj ls j 14!r l~j ls j 14uj l8s j 148 !Ql~j l8s j 148 uj l8

new!

5v id i j ~11!

sets of left and right eigenvectors stored inOl andQl matri-
ces, respectively, is obtained~analogously, forOr and Qr).
The indices i , j ( i , j 51,2, . . . ,2m) run over all states of

FIG. 2. Graphical representation of Eq.~8!. The variables rep-
resented by filled circles and rectangles are summed over. The
s1 ands18 at both ends of the superblock must be identified due
the periodic boundary conditions.
01440
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m-state multi spin variablej and two-state variables. For
the last steps of ISM and all FSM steps half of the eigenv
tors ~corresponding to their lowest eigenvalues! is discarded
from the matricesO andQ, and the information of the sys
tem carried by the density matrix is reduced. However,
maining eigenvectors~if m is large enough! usually describe
the system accurately because the truncation error« defined
as

«5 (
$discarded%

v ~12!

is very small (0<«!1). ($all%v51, as the eigenvectors ar
assumed to be normalized. The matricesO andQ enter the
linear transformation as projectors mapping two bloc
TlWB onto one blockTl through the following procedure:

Tl
( j 11)~s1j l

news j 15us18j l8
news j 158 !

5 (
j l8s j 148
j ls j 14

Ol~j l
newuj ls j 14!Tl

( j )~s1j ls j 14us18j l8s j 148 !

3WB~s j 14s j 15us j 148 s j 158 !Ql~j l8s j 148 uj l8
new!.

~13!

Application to the right blockTr is straightforward. As is
seen, we calculate the blocksTl andTr separately not using
the standard mirror reflection ofTl to Tr . This procedure is
necessary when dealing with anisotropic and/or inhomo
neous systems.

The calculated new blocksTl
( j 11) andTr

( j 11) are used in
the next step of the ISM for construction of the new sup
block

T[2 j 16]5Tl
( j 11)WBTr

( j 11)WB . ~14!

Within the FSM, e.g., for a sweep to the right only the le
blocks are calculated andTr

(L/22k) is taken from the previous
left sweep

T[L]5Tl
(L/2231k)WBTr

(L/2212k)WB . ~15!

The variablek ~indexing the steps within a sweep! runs over
the values (2k0 ,2k011, . . . ,k021,k0), where 2k0

<2L/2222m. In the process of sweeping one of the Bolt
mann weight is fixed~the upper one in Fig. 1! and the second
one changes its position within the interval of 2k0 lattice
sites. The local physical quantities are calculated at the
tice sites of the fixed Boltzmann weight and due to the ro
tional invariance of the problem are valid for all the rows
the periodic lattice.

IV. RESULTS

It is well known that the DMRG describes better a str
with open boundary conditions than that with the period
boundary conditions1 because the precision of the largest
genvalue of the superblock matrix is increasing proportio
ally to m for open boundary conditions while for period
boundary conditions only asAm.

ins
o
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TABLE I. Free energy per sitef ISM for the Ising model calculated with the standard DMRG method o
with the ISM is compared with the free energy per site calculated by the modified DMRG algorithm a
as by the exact diagonalization method~EDM!. N is the order of either the superblock of DMRG or the exa
transfer matrix in EDM.

Free energy per site T52.1 T52.4 N m L

f open
DMRG 1.999502815 2.111279868776 10000 25 16

f open
EDM 1.999502828 2.111279868799 65536 16

f periodic
DMRG 2.069434546 2.157728055 10000 25 16

f periodic
EDM 2.069434550 2.157728059 65536 16

f ISM
DMRG 2.0688412 2.15660 10000 25 `

f Onsager
(exact) 2.0688415 2.15661
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However, if we are not interested in the largest eigenva
of a finite-strip transfer matrix but in the estimation of th
free energy of the whole 2D lattice~per spin!, it is more
effective to use a strip with periodic boundary conditio
than that with open boundaries, as demonstrated in Tab
The results withm525 practically exactly reproduce the e
act values forL516. The estimation of the free energy fo
2D models performed by DMRG can be improved by
creasing the width of the strip. For a givenm the best results
are obtained by ISM forL→`, but in this case, forT52.1
~i.e., below the critical temperature!, the symmetry of the
system is spontaneously broken. The free energy for b
PBC and OBC is the same in theL→` limit, but the value
in Table I was actually calculated for PBC, as it converged
f ISM

DMRG already forL550 while OBC neededL.104. The
exact free energy per sitef Onsager

(exact) was taken from Ref. 16.

FIG. 3. Critical temperaturesTC* for Ising model as functions o
lattice sizeL for various sizes of multispin variablesm from DMRG
and finite-size scaling. The results for open boundary conditi
~OBC! are plotted as triangles while the results for the perio
boundary conditions~PBC! are plotted as circles. The exact critic
temperature is at the dot-dashed line. The OBC plot form530 is
indistinguishable from the curve form564 in this figure.
01440
e
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The critical temperature and the properties of the infin
2D system near the critical temperature should be deri
from finite-size scaling ideas~as the finite-width strip is at
criticality for T50 only!. For the calculation of the critica
temperature, the phenomenological renormalization
proach of Nightingale17 have been used. Here, the scali
properties of the correlation length, found as logarithm of
ratio of two largest eigenvalues of the exact or superblo
matrix, are exploited. The product of the inverse correlat
lengthKN and the strip widthL should not depend on theL
at critical temperatureTC* (L)

LKL

~L12!KL12
51. ~16!

The accuracy of the approximate critical temperature
proves with size of the strip in the case of exact diagonali
tion. For DMRG calculations this statement is no long
valid, as for very largeL the symmetry of the system spon
taneously breaks, and the phenomenological renormaliza
is not applicable any more. Thus, for given order of appro
mation m, there exists an optimum value of the strip wid
Lopt. This can be estimated from the following conside
ations: For exact diagonalization or DMRG calculations w
m close to 2L/222, the difference of the approximate critica
temperature from the exact critical temperatureTC

(exact)

52 ln21(11A2) ~Ref. 19! scales with the width of the strip
as follows:18

TC* ~L !2TC
(exact)

TC
(exact)

;L21/n, ~17!

i.e., the ratio

R[

d

dL
TC* ~L !

d2

dL2
TC* ~L !

5
n

n11
L;L. ~18!

The optimum widthLopt should be less thanLC for which
the ratio of the derivativesR(LC) ~18! is substantially devi-

s
c
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DENSITY-MATRIX RENORMALIZATION-GROUP . . . PHYSICAL REVIEW B 63 014401
ated from the originally linear behavior. In our calculatio
we have considered the DMRG results to be incorrect
R50 or `. In the case ofR50, the precise value ofLopt is
not too important as the first derivative or change ofTC* (L)
is very small. NearR5`, a sharp drop of the second deriv
tive of TC* (L) to zero is required; indeed, the change of t
distance from the linenL/(n11) by more than one order o
magnitude takes place within one step of strip-width enlar
ment.

In Fig. 3 plots of strip-width-dependent critical temper
turesTC* (L) for two different boundary conditions and var
ous block sizesm are given. The estimations of the exa
critical temperature for periodic and open boundary con
tions were found as the values ofTC* (L22) if the first or
second derivative ofTC* (L) changed their signs with respe
to the value in the previous step. The curves for PBC cr
the exact value ofTC

(exact). The curve maxima for OBC are
quite far from it, and by increasingL, TC* approaches the
exact value very slowly.

The accuracy of the results for periodic boundary con
tions ~Fig. 4! is very high already at small values ofm and
exceeds by an order the critical temperature estimation
maximum computer-accessiblem when using open boundar
conditions. The critical temperature for not extremely lar
m580 is given to seven digits. As the width of the strip c
be increased only in discrete steps, the accuracy of the c
cal temperature determination should be taken as large
single step change ofTC* (L). These accuracy estimations t
gether with deviations of our results from the exact critic
temperature are given in Table II.

It should be noted that only ISM was performed in calc
lations ofTC* (L) in Figs. 3 and 4. The calculations with th
FSM has also been done near theLopt but only slight im-
provements of critical temperature were obtained. In cal
lation of the thermal and magnetic critical exponent17 a simi-
lar accuracy has been reached as for theTC* . The obtained

TABLE II. Changes ofTC* (L) per one step of strip-width en
largement as well as the deviations of our results from the e
critical temperatureTC

(exact) for increasing parameterm.

m 20 26 32 44 60 80

DLTC* (L)3107 560 434 166 46 33 15
(TC* (Lopt)2TC

(exact))3107 707 121 117 13 7 2
01440
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thermal critical exponentyT51.00000088 and magnetic ex
ponentyH51.8750019 are in good agreement with the ex
values ofyT51.0 andyH51.875,19 respectively. Both criti-
cal exponents were calculated form580. The accuracy of
both critical exponents is highly sensitive to precise deter
nation of TC* , and the accuracy of critical temperatu
reached form580 was necessary to get the presented val
of critical exponents.

In order to check the efficiency of our method we ha
made additional calculations forq-state Potts model forq
52, 3, and 4. We have calculated thermal as well as m
netic critical exponents, see Table III.

Because of the larger number of spin components in
q.2 Potts model and logarithmic corrections to scaling
q54, the values of critical exponents are less accurate t
those for the Ising model (q52).

The best reliable results obtained from the DMRG a
FSS procedure are listed asyT andyH in Table III. Another
possibility to estimate the critical exponents is to calculateyT
andyH for a set of strip widthL,L (opt) and extrapolate it to
L→`. These results, denoted in Table III byyT

BST andyH
BST,

FIG. 4. Critical temperaturesTC* in Ising model vs lattice sizeL
and m for the periodic boundary conditions~PBC! only. Filled
circles represents data which are accepted whereas the open c
are taken as incorrect due to violation of the condition~18!. The
critical temperature estimations in the inset are given by the rig
most filled circles for respectivem.

ct
a

lues
TABLE III. The thermalyT and magneticyH critical exponents for theq state Potts model obtained vi
DMRG method with the PBC forq52, 3, and 4. The dagger denotes conjectured critical exponents.yT

(BST)

and yH
(BST) were obtained by BST extrapolation algorithm foryT(L) and yH(L), L,Lopt. « is a truncation

error. ~Values of multi spin variablesm for q53 and 4 Potts models were taken as the maximum va
permitted by our computational technique. It is, however, possible to takem.200 for q54 Potts model in
order to obtain more accurate results.!

q m « yT yT
(exact) yT

(BST) yH yH
(exact) yH

(BST)

2 60 10212 1.000002 1.0 1.8757 1.875 1.875003
3 121 10210 1.1948 1.2† 1.2004 1.8684 1.86666† 1.86667
4 63 1027 1.4337 1.5† 1.5008 1.8797 1.875† 1.8746
1-5
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A. GENDIAR AND A. ŠURDA PHYSICAL REVIEW B 63 014401
were obtained by BST extrapolation algorithm.20

In case of theq54 Potts model, the scaling laws involv
logarithmic corrections21

yT5
3

2
2

3

4

1

logL
1O@~ logL !22#

yH5
15

8
2

1

16

1

logL
1O@~ logL !22#. ~19!

To take them into account, we extrapolatedyT1 3
4 (1/logL)

andyH1 1
16 (1/logL) instead of usualyT andyH in this case.

In Table III the calculated results are compared with
exact or conjectured ones.22

V. CONCLUSION

The DMRG method for classical spin lattice strips wi
periodic boundaries was developed and applied to 2D Is
and Potts models. It was shown that this approach lead
more accurate results for 2D infinite lattice than DMRG w
open boundary conditions. It was demonstrated that apply
finite size scaling to strips treated by DMRG, an optim
width of the strip depending on the order of approximati
existed, and a prescription how to findTC* (Lopt) was given.
For the Ising model it was shown by computations that
.
-
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theseLopt(m) the value of the critical temperature, was for
given m closest to the exact one. As our approach does
involve any information about the exact critical temperatu
TC

(exact) or the universality class of the model, we believe th
it is applicable to many different classes of spin lattice mo
els. This belief is supported by analogous calculation
anisotropic triangular nearest-neighbor Ising model~ATNNI !
~Ref. 23! with two different antiferromagnetic interactionsJ1
and J2 ~model discussed in Ref. 15!. For this model the
transfer matrix is nonsymmetric and the phase diagram
quite different from that of the standard Ising model. For t
periodic boundary conditions, the plot of critical temper
tures is not monotonously decreasing as in the case of
Ising model~Fig. 4! but for largeL it turns up. Nevertheless
the accuracy of the critical temperature for the exactly so
able case~for external magnetic fieldH50) is similar to the
presented ones in this paper.
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