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Density-matrix renormalization-group technique with periodic boundary conditions
for two-dimensional classical systems
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The density-matrix renormalization-grotPMRG) method with periodic boundary conditions is introduced
for two-dimensional2D) classical spin models. It is shown that this method is more suitable for derivation of
the properties of infinite 2D systems than the DMRG with open boundary conditions, despite the fact that the
latter describes much better strips of finite width. For calculation at criticality, phenomenological renormal-
ization at finite strips is used together with a criterion for optimum strip width for a given order of approxi-
mation. For this width the critical temperature of the 2D Ising model is estimated with seven-digit accuracy for
a not too large order of approximation. Similar precision is reached for critical exponents. These results exceed
the accuracy of similar calculations for the DMRG with open boundary conditions by several orders of
magnitude. The method is applied to the calculation of critical exponents @f-t84 Potts model, as well.
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[. INTRODUCTION methods with two different boundary conditions for finite

strips of various widths and compare their results with

In 1992 the density matrix renormalization group known exact results for infinite 2D system. It is shown that
(DMRG) technique in real space was invented by Whited ~ While for the exact diagonalization of finite-strip transfer ma-
has been mostly applied to the diagonalization of oneirices scaling properties of the system improve, for DMRG
dimensional(1D) quantum chain spin Hamiltonians. Three @pproach there exists an optimum width for each degree of
years later the DMRG method was redesigned by Nighinoapproxmatlon. The developed approach is tested on 2D

and applied to classical spin 2D models. The DMRG methodSing model. . ,

for the classical models is based on renormalization of the '€ Paper is organized as follows. In Sec. Il we mention
transfer matrix. It is a variational method maximizing the briefly the DMRG for the open boundary conditions. Section

partition function using a limited number of degrees of free-!!l contains the modification of the DMRG method for the

dom and its variational state is written as a product of IocaPe”odIC b_oundary conditions. In Sec. I.V we pre_sent the re-
matrice< sults obtained by the DMRG method with periodic and open

boundary conditions, the exact diagonalization method, and

DMRG has been used for many various guantum mOdeIsshow how to determine the optimum strip width for finite-

It provideslrgsults V‘,’ith remarkable.accuracy for If’;\rger SYS5ize scaling. In Sec. V the results will be summarized.
tems than it is possible to study using standard diagonaliza-

tion methods. The 2D classical systems treated by the

DMRG method exceeds the classical Monte Carlo approach |I. DMRG WITH OPEN BOUNDARY CONDITIONS

in accuracy, speed, and size of the system#s.further

DMRG improvement of the classical systems is based on The transfer matrix approach s a powerf_ul method f_or
Baxter's corner transfer matrfkthe CTMRG? and its gen- exact numerical calculation of thermodynamical properties
eralization to any dimensich ' of lattice spin models defined on finite-width strips. If the

Applications of the DMRG technique for calculation of width of the strip is too large and the capacity of the com-

the th q . ties in the 2D classical ¢ uter is exceeded, the DMRG method is found to be useful
€ thermodynamic properties in the 2L classical SyStemMg,. o atfective reduction of the transfer matrix size. It can be
has been done in Refs. 2,9-11. Treating of nonsymmetri

transfer matrices or non-Hermitian quantum Hamiltoniansﬁs‘ad for calculation of global quantities such as free energy
. i : as well as of a spatial dependence across the strip of local
has also been studied by the DMRG technidfié® b b P

: guantities, e.g., spin correlation functions.

l.t was shov]\‘/n that ghe DRMG meth(?ci_yllelds very aCCL;]rqte The properties of an infinite strip of finite width are
Zﬁglr??efg)gi:rggrg?r;la:;?égl ir':reipr)gsyo? fir;ri‘tlctaev%%mwuirt?n %pae'gaiven by the solution of “left” eigenvectors and correspond-
boundary conditions. We have developed the DMRG methO(IJﬁIg eigenvalues of the transfer matrix equation
with periodic boundary conditions for strips of classical
spins and shown that, similarly as for quantum chains, it
gives these quantities with much less degree of accuracy. 2 V({ehT{at{o Hh=2¥({c'}), @
Nevertheless, the DMRG method is mostly used for predic- {o}
tion of physical quantities and critical properties of infinite
systems in connection with finite-size scaling or extrapolawhere{s} is a set ofL spins{o,05, .. .,0} defined on a
tion of the results from finite-size systems to infinite onesrow and{cs'} is a set ofL spins on the adjacent row. The
The objective of this paper is to study the DMRG and exactransfer matrix is a product of Boltzmann weights given by
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the lattice Hamiltonian. For nonsymmetric transfer matrices
besides the left eigenvector,, the right eigenvectory’,
should be calculated, as well.

Reducing the size of the transfer matrix the standard
DMRG technique proceeds in two regimes.

() In the process of iterations, the infinite system method
(ISM) pushes both ends of the transfer matrix further so that
each step of the ISM enlarges the lattice size by two sites.oo
The transfer matrixsuperblock is constructed from three
blocks: left T, and rightT, transfer matricegblocks and a
Boltzmann weighWWg, in particular,

FIG. 1. The firs§ steps of the ISM for the strip with the periodic
undary conditions.

In the right sweep5) the left blocksT, are calculated in
the previous step of the sweep and the right blo€ksare
taken from the previous left swedm the first right sweep
from ISM); similarly for the left sweep.
where the index on the left hand side denotes the number of 'N€ values of local thermodynamical quantities given by
sites in one row of the whole superbloBkat thejth step of ~ Particular superblocks in the final sweegfter the steady
iteration. The Boltzmann weight usually is a function of sev-State is reacheare spatially dependent. The values given by

H H L/2—-1 L/2—-1
eral spins interacting among each other, e.g., for the Isind’€ Superblock in the middle of the s.terﬁ WeT({H2"
model with nearest-neighbor interactions the Boltzmanrf'€ the closest to the bulk ones. In this sense, the best transfer

Tioj+2= TP WeTY, v

weight has the form matrix eigenvalues as well as eigenvectors are those of the
abovementioned central superblock. The two largest eigen-
Wi(o105] 0} a}) values are used for further finite-size scaling or extrapolation
treatment.
=exp[ ———=(010,t o010yt o101+ 0505) | .
kgT I1l. DMRG WITH PERIODIC BOUNDARY CONDITIONS
3 The translational invariance of the infinite lattice is pre-

served in finite strips with periodic boundary conditions
when strip boundaries are connected with bulk intersite in-
teractions. In this case the strip forms an infinitely long cyl-
inder. If the radius of the cylinder is small enough, the model
can be easily solved by exact numerical diagonalization
methods.
4 In DMRG language, imposing periodic boundary condi-
and stops when the desired strip widthLosites is reached. t?ons means that we have to introduce properly t'he connec-
The first steps of the iteration scher@® are exact but if fuon_of_ bOFh ends of the superblock transfer mafﬂxThgs,
the superblock matriX becomes too large, a reduction pro- in distinction to open-boundary case the sup_erblock IS con-
cedure, to keep the size of superblock constant, should b%tructed from two Boltzmann.welghts connecting two blocks
introduced. at both endgsee Fig. 1, the rightmost diagram
The first step of Eq(4) introduces open conditions at the
strip boundaries. If the temperature of the system is lower  Tpoj14)(01£0j 140136 00|01 0] 40] 3 o))
than the critical one and the strip width is wide enough, the ;
S : =T (0160 4018 01 4)
ymmetry of the system is spontaneously brokemder pa- | 1619]+419161 Tj+4
rameter becomes nonzerand after reaching the fixed point
of the iteration procedure, the system does not depend on the

In the first step of the ISMfor details, see Refs. 1),2
TW=TW=wy is put. The whole procedure hds2—1
steps

TOWTO L TOWGT@ . (L2 Dy T(L2-1)

XWg(07j+407j+3|0] 440 4 3)

boundary conditions any more. The calculations with peri- XTD (0.3 05 0], 3¢ o))
odic boundary conditions described in the next section give o
in this regime the same result as with the free ones. XWg (o201 0507), (7)

(2) The finite system metho~SM) improves numerical
accuracy of ISM result by left and right movésweeps  where the block spin variablé={1,2,...m}, and the

according to the following prescription: primed variables are denoted by filled circles and ovals in
Fig. 1.
T2 Dw T2 D, T2y T(L272) In the first few steps the lattice is enlarged to the desired
L3 " size, no degrees-of-freedom reduction is performed, and the
—- =T PWeT, (5  superblock transfer matrix remains equivalent to the exact
one. As depicted in Fig. 1, the ISM starts wiffi(®)
TE AW TO S T DWW T =TOWTMWjg defined on twelve sites whergH=T")
=WgWg, and one Boltzmann weight, i.e., four new sites are
L/2—-1 L/2-1 .
— ST DWTHZD, (6)  added in each further step.
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FIG. 2. Graphical representation of E®). The variables rep-

resented by filled circles and rectangles are summed over. The spins

PHYSICAL REVIEW B 63 014401

m-state multi spin variablg and two-state variable. For

the last steps of ISM and all FSM steps half of the eigenvec-
tors (corresponding to their lowest eigenvaluésdiscarded
from the matrice®D and Q, and the information of the sys-
tem carried by the density matrix is reduced. However, re-
maining eigenvectoréf mis large enoughusually describe
the system accurately because the truncation ermefined

as

e= 1) (12
{discardedl

o, and o at both ends of the superblock must be identified due to

the periodic boundary conditions.

is very small (Cse<1). Z,0=1, as the eigenvectors are
assumed to be normalized. The matri€2sind Q enter the

If 20>m, the number of degrees of freedom should belinear transformation as projectors mapping two blocks
reduced at eachth step to keep the order of the superblock TiWsg onto one blocKT; through the following procedure:

matrix constant and equal to*2m?. Summation in the
equation for eigenvectord) of the transfer matrix7) can be
performed in two steps

D (016104404307, 36{ 0507)
Zgz Ti(0j+3602| 0] 3 05)Wa(0201]0307)
XW(01§10)+40+3602),
V(o€ O'j,+40'j,+3§r,0-é): Z

1€
Oj+49j+3

T(0160j14l01E 0], 4)

XWg(0j 1407 13|0] 14071 3)

XO(01§0)140)130] 436 0,07)

8)

which is depicted graphically in Fig. 2. This procedure uses

j+1
TI(] )(015F9W0j+5|01§( newa'j,+5)

= 2 O(§M&0 DT (0160704l 01E 0] 1 4)
gI"Tj’+4
§10j44

XWa(0j+407j+50] 4 407 5) Q& o 4l & ™).
(13

Application to the right blocKT, is straightforward. As is
seen, we calculate the blocks and T, separately not using
the standard mirror reflection @f, to T,. This procedure is
necessary when dealing with anisotropic and/or inhomoge-
neous systems. _ _

The calculated new blocks! " and TU*1) are used in
the next step of the ISM for construction of the new super-
block

T2 =T0 T PWTI Dy, (14)

the left and right transfer matrix blocks to calculate properly  ithin the FSM, e.g., for a sweep to the right only the left

the left and right eigenvectord, and ¥, , respectively, of

blocks are calculated angf->"* is taken from the previous

the whole superblock for the periodic boundary conditionsyeft sweep

Once we have thél, and V¥, , the left and right density

matrices can be constructed:

pléiojalélof)= 2

010j+35r02

XV (018 0]140)+3602), €)

V(01§10 440)+3602)

Pr(o'j+3§r|0'j,+3§r’): 2

01810)+402

V(01610440 +3602)

XV (01607140136 02), (10

and by its complete diagonalization
Ol(&ME a1 )P0+ al & 0{ ) Q& ] 4l ™)
11

sets of left and right eigenvectors storeddnpandQ, matri-
ces, respectively, is obtaindenalogously, foilO, and Q,).
The indicesi,j (i,j=1,2,...,2n) run over all states of

= ; jj

The variablek (indexing the steps within a sweepins over

the values ¢kg,—ko+1,...ko—1ko), where o
<2Y272_m. In the process of sweeping one of the Boltz-
mann weight is fixedthe upper one in Fig.)land the second
one changes its position within the interval okylattice
sites. The local physical quantities are calculated at the lat-
tice sites of the fixed Boltzmann weight and due to the rota-
tional invariance of the problem are valid for all the rows of
the periodic lattice.

IV. RESULTS

It is well known that the DMRG describes better a strip
with open boundary conditions than that with the periodic
boundary conditiorlsbecause the precision of the largest ei-
genvalue of the superblock matrix is increasing proportion-
ally to m for open boundary conditions while for periodic
boundary conditions only agm.

014401-3



A. GENDIAR AND A. SURDA PHYSICAL REVIEW B 63 014401

TABLE I. Free energy per sitégy, for the Ising model calculated with the standard DMRG method only
with the ISM is compared with the free energy per site calculated by the modified DMRG algorithm as well
as by the exact diagonalization meth@DM). N is the order of either the superblock of DMRG or the exact
transfer matrix in EDM.

Free energy per site T=21 T=24 N m L
fopanC 1.999502815 2.111279868776 10000 25 16
fopn 1.999502828 2.111279868799 65536 16
foeringic 2.069434546 2.157728055 10000 25 16
foeriodic 2.069434550 2.157728059 65536 16
fRG 2.0688412 2.15660 10000 25 %
1S 2.0688415 2.15661

However, if we are not interested in the largest eigenvalue The critical temperature and the properties of the infinite
of a finite-strip transfer matrix but in the estimation of the 2D system near the critical temperature should be derived
free energy of the whole 2D latticgper spin), it is more  from finite-size scaling idea&s the finite-width strip is at
effective to use a strip with periodic boundary conditionscriticality for T=0 only). For the calculation of the critical
than that with open boundaries, as demonstrated in Table temperature, the phenomenological renormalization ap-
The results withm= 25 practically exactly reproduce the ex- proach of Nightingal¥’ have been used. Here, the scaling
act values folL=16. The estimation of the free energy for properties of the correlation length, found as logarithm of the
2D models performed by DMRG can be improved by in-ratio of two largest eigenvalues of the exact or superblock
creasing the width of the strip. For a giventhe best results matrix, are exploited. The product of the inverse correlation
are obtained by ISM fot. — oo, but in this case, folf=2.1  lengthKy and the strip width. should not depend on tHe
(i.e., below the critical temperaturethe symmetry of the at critical temperaturdg (L)
system is spontaneously broken. The free energy for both

PBC and OBC is the same in the— limit, but the value LKL 1 (16)

in Table | was actually calculated for PBC, as it converged to (L+2)K ;2

e already forL=50 while OBC needed.>10*. The _ = _
exact free energy per Siféfﬁfggerwas taken from Ref. 16. The accuracy of the approximate critical temperature im-

proves with size of the strip in the case of exact diagonaliza-
tion. For DMRG calculations this statement is no longer

W: ' ' valid, as for very largd. the symmetry of the system spon-
22 r Open boundary conditions | taneously breaks, and the phenomenological renormalization

o | PBC (m=20, 26,32, 44,80) | T =2:26862 (m=30) is not applicable any more. Thus, for given order of approxi-
g i L™ =108 mation m, there exists an optimum value of the strip width
5 2272 ] ont . . X ;

® 4 T,* = 2.26863 (m=64) L% This can be estimated from the following consider-
3 '.9 L™ =110 ations: For exact diagonalization or DMRG calculations with
§ 2070t i m close to 2/°72, the difference of the approximate critical
2 b

E Fo_ S T temperature from the exact critical temperatufg§™@

3§ =2In"%1+2) (Ref. 19 scales with the width of the strip
5 228 ¢ (m=32) ] as follows®®

z (exact)

> * _ 7(exac

« 2266 | C(L)—TCNL—UV (17)

(@] %, T(exact) !

/A OBC (m=64) % (m=20) c
2964 K . s ‘ . : : i.e., the ratio
0 20 40 60 80 100 120 140 160
Lattice size
*
L. * . .  TH c(L)
FIG. 3. Critical temperatureg¢ for Ising model as functions of _dL _

lattice sizel for various sizes of multispin variablesfrom DMRG R=—3 T+l L~L. (18)
and finite-size scaling. The results for open boundary conditions _TE(L)
(OBCQ) are plotted as triangles while the results for the periodic dL?
boundary condition$PBC) are plotted as circles. The exact critical ) ) _
temperature is at the dot-dashed line. The OBC plotnier30 is The optimum widthL°"* should be less thahc for which
indistinguishable from the curve fan=64 in this figure. the ratio of the derivativeR(L ) (18) is substantially devi-
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TABLE Il. Changes ofT&(L) per one step of strip-width en- 2.2700 S .
largement as well as the deviations of our results from the exact .
critical temperaturd & for increasing parameten. ., 226% C., S
s Sttt e s s A )
m 20 26 32 44 60 80 5 2.2690 | 3 o “e 3 m=dd
© o “og
AL TE(L)X 107 560 434 166 46 33 15 3 22685 | R Teea,
(TA(LP)-TEeYx10) 707 121 117 13 7 2  § Too e, m-=32
S 22680 - ° ey, 1
S To"=22692561 (M=20) © o
ated from the originally linear behavior. In our calculations E 2.2675 Ifzzzzggg :2:22 - o, ]
we have considered the DMRG results to be incorrect for% TZ*=2:2691866 (m=ad) . m=2; °o
R=0 or«. In the case oR=0, the precise value df°*is 3 2270 L 1- 22691846 (m=60) . ¢
not too important as the first derivative or changerTgfL) g To* = 2.2691851 (m=80) 20’
is very small. NeaR=, a sharp drop of the second deriva- 22665 | T, =2.2691853 (exact) . 1
tive of TE(L) to zero is required; indeed, the change of the  , ,s, e
distance from the line'L/(v+ 1) by more than one order of 15 20 25 30 35 40 45 50 55 60 65 70
magnitude takes place within one step of strip-width enlarge- Lattice size

ment. FIG. 4. Critical temperaturesg in Ising model vs lattice size

In Fig. 3 plots of strip-width-dependent critical tempera- and m for the periodic boundary conditiond®BC) only. Filled
turesTg(L) for two different boundary conditions and vari- circles represents data which are accepted whereas the open circles
ous block sizesn are given. The estimations of the exact are taken as incorrect due to violation of the conditi@B). The
critical temperature for periodic and open boundary condi-critical temperature estimations in the inset are given by the right-
tions were found as the values (L —2) if the first or ~ most filled circles for respectiven.
second derivative of £(L) changed their signs with respect

to the value in the previous step. The curves for PBC crosghermal critical exponeny+=1.00000088 and magnetic ex-
the exact value o £**®. The curve maxima for OBC are ponenty,,= 1.8750019 are in good agreement with the exact
quite far from it, and by increasing, T¢ approaches the values ofy;=1.0 andy,=1.875 respectively. Both criti-
exact value very slowly. cal exponents were calculated for=80. The accuracy of
The accuracy of the results for periodic boundary condi-both critical exponents is highly sensitive to precise determi-
tions (Fig. 4) is very high already at small values ofand  nation of T, and the accuracy of critical temperature
exceeds by an order the critical temperature estimation fofeached form= 80 was necessary to get the presented values
maximum computer-accessibiewhen using open boundary of critical exponents.
conditions. The critical temperature for not extremely large In order to check the efficiency of our method we have
m=80 is given to seven digits. As the width of the strip canmade additional calculations fafstate Potts model foq
be increased only in discrete steps, the accuracy of the crit=2, 3, and 4. We have calculated thermal as well as mag-
cal temperature determination should be taken as large asntic critical exponents, see Table III.
single step change af¢(L). These accuracy estimations to-  Because of the larger number of spin components in the
gether with deviations of our results from the exact criticalq>2 Potts model and logarithmic corrections to scaling at
temperature are given in Table II. g=4, the values of critical exponents are less accurate than
It should be noted that only ISM was performed in calcu-those for the Ising modelg=2).
lations of TE(L) in Figs. 3 and 4. The calculations with the ~ The best reliable results obtained from the DMRG and
FSM has also been done near th®" but only slight im-  FSS procedure are listed gi$ andyy, in Table Ill. Another
provements of critical temperature were obtained. In calcupossibility to estimate the critical exponents is to calcujate
lation of the thermal and magnetic critical exportéatsimi-  andyy, for a set of strip width. <L(°PY and extrapolate it to
lar accuracy has been reached as for Te The obtained L—oo. These results, denoted in Table Il p§°" andyE®T,
TABLE lll. The thermalyr and magnetig/ critical exponents for the state Potts model obtained via

DMRG method with the PBC fog=2, 3, and 4. The dagger denotes conjectured critical expor;éﬁ?g?

andy(HBST) were obtained by BST extrapolation algorithm fer(L) andyy(L), L<L° & is a truncation

error. (Values of multi spin variablesn for q=3 and 4 Potts models were taken as the maximum values

permitted by our computational technique. It is, however, possible tortek@00 forq=4 Potts model in

order to obtain more accurate resylts.

q m P = y_(l_exact) yEI_BST) Y y&exact) yhBST)

2 60 1012 1.000002 1.0 1.8757 1.875 1.875003
3 121 1010 1.1948 1.2 1.2004 1.8684 1.86666 1.86667

4 63 107 1.4337 1.5 1.5008 1.8797 1.875 1.8746
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were obtained by BST extrapolation aIgoriFﬁPn. . thesel °P(m) the value of the critical temperature, was for a
In case of they=4 Potts model, the scaling laws involve given m closest to the exact one. As our approach does not
logarithmic correctiors involve any information about the exact critical temperature
T®2aN or the universality class of the model, we believe that

yT:§ — =~ +0[(logL) 2] it is applicable to many different classes of spin lattice mod-
2 4logL els. This belief is supported by analogous calculation for
anisotropic triangular nearest-neighbor Ising mg@dalNNI)
y :1_5_ i +0[(logL) 2] (19) (Ref. 23 with two different antiferromagnetic interactiods
H™8 16logL ' and J, (model discussed in Ref. L5For this model the

transfer matrix is nonsymmetric and the phase diagram is
quite different from that of the standard Ising model. For the
eperiodic boundary conditions, the plot of critical tempera-
tures is not monotonously decreasing as in the case of the
Ising model(Fig. 4) but for largeL it turns up. Nevertheless,
the accuracy of the critical temperature for the exactly solv-
able casdfor external magnetic fielth =0) is similar to the

The DMRG method for classical spin lattice strips with Presented ones in this paper.
periodic boundaries was developed and applied to 2D Ising
and Potts models. It was shown that this approach leads to
more accurate results for 2D infinite lattice than DMRG with
open boundary conditions. It was demonstrated that applying This work has been supported by the Slovak Grant
finite size scaling to strips treated by DMRG, an optimalAgency, Grant No. 2/7174/20. We would like to thank the
width of the strip depending on the order of approximationorganizers of the DMRG Seminar and Workshop in Dresden

To take them into account, we extrapolatggh 3 (1/loglL)
andyy+ 5 (1/logl) instead of usuay andyy in this case.
In Table Ill the calculated results are compared with th
exact or conjectured onés.

V. CONCLUSION
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