PHYSICAL REVIEW B, VOLUME 63, 014305

Phase diagram and optical conductivity of the one-dimensional spinless Holstein model
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The effects of quantum lattice fluctuations on the Peierls transition and the optical conductivity in the
one-dimensional Holstein model of spinless fermions have been studied by developing an analytical approach
based on the unitary transformation method. We show that when the electron-phonon coupling constant
decreases to a finite critical value, the Peierls dimerization is destroyed by the quantum lattice fluctuations. The
dimerization gap is much more reduced by the quantum lattice fluctuations than the phonon order parameter.
The calculated optical conductivity does not have the inverse-square-root singularity, but it has a peak above
the gap edge, and there exists a significant tail below the peak. The peak of optical-conductivity spectrum is not
directly corresponding to the dimerized gap. Our results of the phase diagram and the spectral-weight function
agree with those of the density-matrix renormalization group and the exact diagonalization methods.
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A great deal of quasi-one-dimensional materials, for ex-polaron wave functioh? phenomenological approaélexact
ample, the halogen-bridged mixed-valence transition-metaiagonalizatiort! etc. Very recently, works using numerical
complexes, the conducting polymers, and the organic angdpproaches have been performed in relation to the Peierls
inorganic spin-Peierls systems, exhibit an instability againstransition and the optical conductivity in the one-dimensional
a periodic lattice distortion due to the Peierls dynamics.Holstein model of spinless fermions by using the density-
Among the models for one-dimensional systems, the Holmatrix renormalization-grodp and exact-diagonalizatidh
stein Hamiltoniah is a typical electron-phonon coupling methods. However, as was pointed out in Ref. 13, because of
model studied by many previous authors. An interesting anghe effects of limited system sizes in numerical approaches,
still controversial problem is how the dimerized ground statey, precise determination of the critical value in the sragl!

is modified when quantum lattice fluctuations are taken intoregime is somewhat difficult, and the precise extraction of

account. The _quantum Iatt!ce fluc_tuat|0|js could ha_ve an Mo dimerized gap from optical-conductivity data is pre-
portant effect in most quasi-one-dimensional materials with a\‘/ented An analvtical study of the Holstein model will make
dimerized ground state because the lattice zero-point motion : Y Y

is often comparable to the amplitude of the Peierls![thposs'lble TO havetaln |nt5|g_ht| m':o the |ntr|tnS|c Er(t)perggs of
distortion? The challenge of understanding the physics of € molecular crystal materials. in a recent work, two orus

quantum lattice fluctuations has led to an intense study of thatudied this model and investigated the dimerization order
Holstein model. Generally speaking, the nonadiabatic effedp@rameters and density of states in the gapped phase, and the
suppresses the order parameters of the sySistar as the velocity of cha_rge excitations and the Lu_ttmger liquid stiff-
optical absorption is concerned, the results of adiabatic ag?€Ss constant in the gapless phase. In this paper, we concen-
proximations have inverse-square-root singularity at the gagate on the properties of the phase transition and the optical
edge. However, this approach is questionable, and it hagsponses of the system with the view of understanding the
been shown that the quantum lattice fluctuations must beffects of quantum lattice fluctuations on the Peierls instabil-
taken into account to satisfactorily describe some physicalty and the optical conductivity in the Holstein model. We
properties of quasi-one-dimensional systénBy consider-  will show that our results of the phase diagram and the
ing the nonadiabatic effect, the singularity may disappear.spectral-weight function agree surprisingly well with those
The influences of the phonon frequency on the opticalof the density-matrix renormalization-grotdp and the
conductivity spectrum in the range fromy=0 to wy— exact-diagonalizatioi methods, and in our theory, the criti-
should be studied for understanding the physics of electroncal value can be determined precisely even for extremely
phonon interactions in the nonadiabatic case. small phonon frequency. The effects of quantum lattice fluc-
When the quantum lattice fluctuations are taken into actuations on the dimerized gap and on the order parameters
count, the theoretical analysis becomes much more difficultare essentially different. The peak of optical-conductivity
In the past several years, the Holstein Hamiltonian has beespectrum is not directly corresponding to the dimerization
investigated using various numerical approaches, such amp.
Green’s-function Monte Carlo simulatidr, renormaliza- The one-dimensional spinless Holstein model in momen-
tion-group analysi&;?® variational method of the squeezed- tum space is
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wheree,= — 2t cosk is the bare band structurethe hopping
integral, andN the total number of sitex, andb, are the
annihilation operators of electrons with momentirand Ay=auglc—ds(k— k)], (8)
phonons with momentum, respectively. The dispersionless

honon frequency,= VK/M andg is the electron-phonon —— . L :
Eoupling, thhe eﬁostic constant,ganlul the mass gf ions Ei+Aj is the fermionic spectrum in the gapped state,
(throughout this paper, we sbt=kg=1). and

In order to take into account the electron-phonon correla-

where the dimensionless coupling=g%/2tw,, W,

tion, the unitary transformation approach is used to trg&t c=1+ 2'[_)‘ [S(k—,K)— V] Ao(k) ,
H=eSHe S. After averaging the transformed Hamiltonian N &0 augVEG(K) +Ag(k)
over the phonon vacuum state, we get an effective Hamil- 9
tonian for the fermions
2t\ Ag(k
d=1- == > [1-8(k—mk)] 20( ) —,
1, . ) N &0 augVEG(K) +Ag(K)
Herr=5 KNG+ 2 Eq(K)eioi— 2, Ao(K)(C— 10k (10)
. 1 9° 1
G )Ty 2 oK+ a,K) V=— X skk+tq[2-aK kK -q] (11
N 1 Wo 3 ’
q,k,k q.k,k
x[2— (k" —q,k")]ct, CkCl_ Cur s (2)  isthe on-site interaction that should be subtracted because of
g a the Pauli principle.
where The phonon-staggered ordering parameter is
1 a A(k)
== (DN uY= e > e (12)
1o ¢ My= 2 ( = KN & Wik
Eo(k)=ek—N2 — (k" k) o(k,K") (ex—€r), () ! o W(k)
[SEE) These are basic equations in our theory.
From Eq.(5), with ug=0, we get the self-consistent equa-
Ao(K)=aug[1— 8(k—7,K)], (4)  tion of phase-transition points in the/ wy~ wq plane,
. 4t c—d&(k—,k
a=g\2Mw,, and 8(k+q,k)=1/(1+ e q— el/wp) is a 1=— > [1-8(k— w,k)]¥ (13
function of the energies of the incoming and outgoing fermi- N o |

ons in the electron-phonon scattering process. This effective
Hamiltonian works well in thavg=0 andwy— ¢ limits.
Ug can be determined by the variational principle,

If wy=0, we haved(k’,k)=0 andc=1, and Eq.(5)
becomes the same as that in the adiabatic theory. In our
theory, (k— 7,k) has a sharp peak at the Fermi point and
since 1— 8(k— m,k) = 4t| cosk|/(wy+4t| cosk|), the logarith-

_ o Y + + mic singularity in the integration of Ed5) in the adiabatic

U= KN kz [1= olk=m k) Kfel (G nCict CCic—r) | T€)- case is removed as long as the ratiglt, is finite. Compar-
(5) ing Eq.(8) with that in the adiabatic casa,= auy, we have
the gap in the nonadiabatic case,
Here,|fe) is the ground state dfi;. Thus, the total Hamil-
tonian can be written ad =Hy+ H,, whereH, includes the A=A(ml2)=auglc—d]. (14
terms that are zero after being averaged over the phononhis is the true gap in the fermionic spectrum.
vacuum state and Figure 1 shows the ground-state phase diagram in the
0/ wg~t/wq plane. The solid line is our analytical result. For
_ comparison, the results of previous authors are also shown.
HO=E wobgbq+ Hef (6)  The line with circles and the line with squares denote the
q results of the density-matrix renormalization group
(DMRG)* and the two-cutoff renormalization group

By means of the Green’s-function method to implement(TCRG),'® respectively. The line with triangles is the phase
the perturbation treatment on the four-fermion term in Eg.boundary of the variational Lanczos approach based on the
(2), we get the renormalized band function and the gapnhomogeneous modified variational Lang-Firsov transfor-
function** mation (IMVLF ).2® To check the consistency of the phase
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FIG. 2. The dimerization gap/t=A(#/2)/t and the order pa-
rameteram, /t as functions of the phonon frequenay /t in the
gase ofA=0.81.

FIG. 1. The ground-state phase diagram in the,~t/wg
plane. The solid line is our analytical result. The line with open
circles and the line with open squares denote the results of th
density-matrix renormalization-groy{MRG) and the two-cutoff ) . o
renormalization-group(TCRG) methods, respectively. The line 9ap iSA(m/2)/t=amy/t. After the drop, the dimerization
with open triangles is the phase boundary of the variational Lanczo§aP and the phonon order parameter decrease as the phonon
approach(IMVLF). frequency increases. At the critical valug , the dimeriza-

tion gap and the phonon order parameter go to zero simulta-

transition quantitatively with that of DMRG, some critical N€0USly, and the system becomes gapless, which indicates
valuesg, are listed in Table I. One can see from both thethat the quantum lattice fluctuations can destroy the dimer-

figure and the table that our results agree surprisingly wellzéd Peierls state. The dimerization gap is much more re-
with that of DMRG except for very larger, (wo/t=10). duced by the quantum lattice fluctuations than the phonon

Furthermore, our theory can get the phase boundary, separé’ﬂ:der parameter. The reason for the different behavior of the

ing Luttinger liquid and insulatior{charge density wave dimerization gap and the order parameter is that the former is

(CDW)] phases, even in the very smalj regime, which is the value of .Eq.(14) at the Fermi poink= 7/2, where the _
theoretically and experimentally significant since, from theduantum lattice fluctuations have the strongest effect, while

view point of experiment, for quite a lot of realistic cases, thetn® latter is the integréisee Eq(12)] over the all Brillouin

frequency of the quantum phona, is small. It seems that zone, and the effect of the quantum lattice fluctuations is

in the DMRG and the finite-lattice Lanczos approach pealmed. The effects of quantum lattice fluctuations on the

cause of the effects of limited system sizes, the precise déimerization gap and on the phonon order parameter are es-
termination of the critical value in the smally regime is sentially different, especially wheay is small. In the mean

somewhat difficult:® The infinite system is never really gap- field (MF) approximation, the Peierls distortion opens a gap

less within the adiabatic approach, because the gap remaifs 2Amr and Aye=am,. That relation is sometimes as-

nonzero, although it becomes very small for weak electronsUmed remains valid when quantum lattice fluctuations are

phonon coupling. On the contrary, in our theory, the |oga_taken into account. Our results indicate that this relation
rithmic singularityfg’zd k/cosk in the integration of Eq(5)
is removed by the factor 2 6(k— 7,k), and the critical
value N\, can be determined precisely even for extremely

small phonon frequency.

holds only in the adiabatic limit.
The optical conductivityo(w) can be expressed by the
retarded Green'’s function as follows:

2ggncC
Inspired by the success of obtaining the phase diagram, o(w)=— ‘o ImKR(w), (15)
we further investigate the dimerization gap and the optical W
responses. whereKR is defined as

Figure 2 shows the dimerization gayt=A(=x/2)/t and
the phonon order parametem,/t as functions of the pho- (o o o
non frequencyw, /t for A=0.81. It is most notable that there ~ K<(w)= —lf e '“'dt(gl[j(0)j () —j(Dj(0)]|g).
is a discontinuous drop in the dimerization gap once the o (16)
phonon frequency changes, no matter how small it is, from
zero to finite, though at the adiabatic limit the dimerizationHere,j is the current operatdf,

TABLE |. Critical pointg.. g* is the value ofg determined by letting the stiffness const#)i= %

t/wg 0.05 0.1 0.5 1 5 10 20 100

gclwy (Ref. 12 2.2972) 2.0932) 1.631) 1.641) 2.243) 2.795)
g*/w, (Ref. 12 2.299 2.102 1.64 1.62 2.27 2.89
e/ wo 2.8215  2.1613  1.5939 1.6403 2.3068 2.8783 3.6868 6.9738
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j=-letaX, (cloia—cl.i0),

andj(t) =exp(Ht)j exp(—iHt) is the form ofj in the Heisen-

berg representation. The unitary transformation of the cur-

rent operator i®%je 5=j+[S,j]+3[S,[S,j]1+0O(g®). All

0.4
terms of order higher thag? will be omitted in the follow-

ing treatment. Because the averagingiafover the phonon 021
vacuum state is zero, in the ground state at zero temperature 0.0

H, can be neglected. By using the approximately decoupling

|g’)~|g4), the ground state dfiy, andH~Hy in the calcu-
lation

(gli(0)j(t)|gy=(g’|[e!5*Rje~ (S+ReiHt
X[e(S+R)je—(S+R)]e—iﬁt|gr>

~(gol[e%je~°leMo'[eSe~ e~ Mol gp),

(18)
we can get
J? 1 1
KR(w)=— - — |sirfk
N o | 0—2W,+i0"  w+2W,—i0"
2 2 A2
x|1-5 3 Lk k|
N3 g K
J? 2 1
s g |
N2 =0k’ >0 W2\ @— wg—W— W, +i07"

1
- — |[8°(K' k)
w+ w0+Wk+Wkr_|O+

X (sink’ —sink)2( ey By + Brergr ) >+ 82(k" — m,K)

X (sink’ +sink)2( axay + BB )21, (19

where ak=\/(1+Ek/Wk)/2, and Bk: \/(1_Ek/Wk)/2-

Thus, we have the optical conductivity

g\w

2goncF
=P S S(w—2W)sirRk

w k>0
2 9° A2
x| 1= > = 82K k) | —
N% w3 ( )wﬁ

gZ
Y S8 w—we—W—W)
k>0k'>0 Wq

><[52(k’ ,k)(Sin k' — Sink)z(akﬂk/ + Bkakr)z
+ 82(K' — . K) (sink’ + sink)2( e + BB )2,
(20)

2goncF
+ [
oN

and thew-integrated spectral-weight function
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FIG. 3. The optical conductivity in the case »f& 1.0 for dif-
ferent phonon frequencias,/t=0.01, 0.05, and 0.10.

S(w)zfowa(w')dw'. 21)

The optical conductivity for different phonon frequencies
are shown in Fig. 3. The parameter values used\ard..0,
with wy/t=0.01, 0.05, and 0.10. One can see thatwgs
increases, the optical-absorption spectrum broadens but the
peak height decreases and moves to lower photon energy,
and the spectral weight increases ag increases. The
inverse-square-root singularity at the gap edge in the adia-
batic cas&’ disappears and there is a significant tail below
the peak because of the nonadiabatic effect. We note that in
our theory, in mathematical viewpoint, the difference be-
tween thewy=0 andwy>0 cases mainly comes from the
functional form of the gajsee Eq.(8)]. Comparing it with
that in the adiabatic limit, one can see that the subgap states
come from the quantum lattice fluctuations, i.e., the second
term in the square bracket of E@).

The rescaled w-integrated spectral-weight function
S(w)/S,, versus the photon energy/t relations of our result
(solid line) and that of IMVLF (dashed ling are shown in
Fig. 4, whereS,,= S(w— ). The optical conductivityr( )
(rescaled byS,,) of our result(solid line) is also shown.

1.0

2A(n/2)/t=1.04
£ 0.8 g/ =4.47
[ o/t=0.1

0.6

S(w)/S

3 04}
S 1.04

0.2r

0.0
0

FIG. 4. The rescaled optical conductivity(w) and
w-integrated spectral-weight functio®(w)/S;,, versus the photon
energyw/t relations of our results and that of IMVLF, wheg&,
=S(w—»). The parameter values used are the same as in Ref. 14,
Fig. 6b): g/ wy=4.47 andw,/t=0.1. The dashed line is the result
of IMVLF, and the solid lines are our results. The arrow marks the
true gap A(w/2)/t=1.04.
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Because of the finite-size effects, the optical conductivity ofspinless fermions have been studied by developing an ana-
IMVLF is oscillatory and can not be compared with our lytical approach. We show that when the electron-phonon
result directly. We use the same parameter values as in Refoupling constant decreases, the dimerization gap decreases,
13, Fig. 6b): g/wg=4.47 and wy/t=0.1. The true gap and at a finite critical value, the Peierls dimerization is de-
2A(m/2)/t=1.04 obtained from Eq(14) is marked by the stroyed by the quantum lattice fluctuations. The critical value
arrow. One can see that the peak of optical-conductivityof electron-phonon coupling can be determined precisely
spectrum is not directly corresponding to the dimerized gapeven for very small phonon frequency. The dimerization gap
The energy gap is smaller than the activation energy of thés much more reduced by the quantum lattice fluctuations
optical conductivity. Our result shows clearly both the posi-than the order parameter. The calculated optical conductivity
tion and the peak of optical conductivity and the spectraldoes not have the inverse-square-root singularity but it has a
weight agrees with that of IMVLF, while in the exact- peak above the gap edge, and there exists a significant tail
diagonalization method, the finite-size effects prevent a prebelow the peak. In the nonadiabatic case, the dimerization
cise extraction of the CDW gap from the optical exact-gap is smaller than what the peak position of the optical
diagonalization dati conductivity is corresponding to. Our results of the phase

In conclusion, the effects of quantum lattice fluctuationsdiagram and the spectral-weight function agree with those of
on the optical-conductivity spectrum and the ground-statéhe density-matrix renormalization group and the exact-
phase diagram of the one-dimensional Holstein model ofliagonalization methods.
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