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Phase diagram and optical conductivity of the one-dimensional spinless Holstein model
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The effects of quantum lattice fluctuations on the Peierls transition and the optical conductivity in the
one-dimensional Holstein model of spinless fermions have been studied by developing an analytical approach
based on the unitary transformation method. We show that when the electron-phonon coupling constant
decreases to a finite critical value, the Peierls dimerization is destroyed by the quantum lattice fluctuations. The
dimerization gap is much more reduced by the quantum lattice fluctuations than the phonon order parameter.
The calculated optical conductivity does not have the inverse-square-root singularity, but it has a peak above
the gap edge, and there exists a significant tail below the peak. The peak of optical-conductivity spectrum is not
directly corresponding to the dimerized gap. Our results of the phase diagram and the spectral-weight function
agree with those of the density-matrix renormalization group and the exact diagonalization methods.
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A great deal of quasi-one-dimensional materials, for
ample, the halogen-bridged mixed-valence transition-m
complexes, the conducting polymers, and the organic
inorganic spin-Peierls systems, exhibit an instability aga
a periodic lattice distortion due to the Peierls dynami
Among the models for one-dimensional systems, the H
stein Hamiltonian1 is a typical electron-phonon couplin
model studied by many previous authors. An interesting
still controversial problem is how the dimerized ground st
is modified when quantum lattice fluctuations are taken i
account. The quantum lattice fluctuations could have an
portant effect in most quasi-one-dimensional materials wit
dimerized ground state because the lattice zero-point mo
is often comparable to the amplitude of the Peie
distortion.2 The challenge of understanding the physics
quantum lattice fluctuations has led to an intense study of
Holstein model. Generally speaking, the nonadiabatic ef
suppresses the order parameters of the system.3 As far as the
optical absorption is concerned, the results of adiabatic
proximations have inverse-square-root singularity at the
edge. However, this approach is questionable, and it
been shown that the quantum lattice fluctuations must
taken into account to satisfactorily describe some phys
properties of quasi-one-dimensional systems.4 By consider-
ing the nonadiabatic effect, the singularity may disappe5

The influences of the phonon frequency on the optic
conductivity spectrum in the range fromv050 to v0→`
should be studied for understanding the physics of elect
phonon interactions in the nonadiabatic case.

When the quantum lattice fluctuations are taken into
count, the theoretical analysis becomes much more diffic
In the past several years, the Holstein Hamiltonian has b
investigated using various numerical approaches, such
Green’s-function Monte Carlo simulation,6,7 renormaliza-
tion-group analysis,8,9 variational method of the squeeze
0163-1829/2000/63~1!/014305~5!/$15.00 63 0143
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polaron wave function,10 phenomenological approach,2 exact
diagonalization,11 etc. Very recently, works using numerica
approaches have been performed in relation to the Pe
transition and the optical conductivity in the one-dimensio
Holstein model of spinless fermions by using the dens
matrix renormalization-group12 and exact-diagonalization13

methods. However, as was pointed out in Ref. 13, becaus
the effects of limited system sizes in numerical approach
the precise determination of the critical value in the smallv0

regime is somewhat difficult, and the precise extraction
the dimerized gap from optical-conductivity data is pr
vented. An analytical study of the Holstein model will mak
it possible to have an insight into the intrinsic properties
the molecular crystal materials. In a recent work, two of u14

studied this model and investigated the dimerization or
parameters and density of states in the gapped phase, an
velocity of charge excitations and the Luttinger liquid stif
ness constant in the gapless phase. In this paper, we con
trate on the properties of the phase transition and the op
responses of the system with the view of understanding
effects of quantum lattice fluctuations on the Peierls insta
ity and the optical conductivity in the Holstein model. W
will show that our results of the phase diagram and
spectral-weight function agree surprisingly well with tho
of the density-matrix renormalization-group12 and the
exact-diagonalization13 methods, and in our theory, the crit
cal value can be determined precisely even for extrem
small phonon frequency. The effects of quantum lattice fl
tuations on the dimerized gap and on the order parame
are essentially different. The peak of optical-conductiv
spectrum is not directly corresponding to the dimerizat
gap.

The one-dimensional spinless Holstein model in mom
tum space is
©2000 The American Physical Society05-1



s

la

n

i
ti

n

n
q
a

te,

e of

a-

our
nd

the
or
wn.

the
p

p
se
the

or-
se

Q. WANG, H. ZHENG, AND M. AVIGNON PHYSICAL REVIEW B63 014305
H5(
q

v0bq
†bq1(

k
ekck

†ck2
1

AN
(
q,k

g~bq1b2q
† !ck1q

† ck ,

~1!

whereek522t cosk is the bare band structure,t the hopping
integral, andN the total number of sites.ck and bq are the
annihilation operators of electrons with momentumk and
phonons with momentumq, respectively. The dispersionles
phonon frequencyv05AK/M andg is the electron-phonon
coupling, K the elastic constant, andM the mass of ions
~throughout this paper, we set\5kB51).

In order to take into account the electron-phonon corre
tion, the unitary transformation approach is used to treatH,14

H̃5eSHe2S. After averaging the transformed Hamiltonia
over the phonon vacuum state, we get an effective Ham
tonian for the fermions

Heff5
1

2
KNu0

21(
k

E0~k!ck
†ck2 (

k.0
D0~k!~ck2p

† ck

1ck
†ck2p!2

1

N (
q,k,k8

g2

v0
d~k1q,k!

3@22d~k82q,k8!#ck1q
† ckck82q

† ck8 , ~2!

where

E0~k!5ek2
1

N (
k8

g2

v0
2
d~k8,k!d~k,k8!~ek2ek8!, ~3!

D0~k!5au0@12d~k2p,k!#, ~4!

a5gA2Mv0, and d(k1q,k)51/(11uek1q2eku/v0) is a
function of the energies of the incoming and outgoing ferm
ons in the electron-phonon scattering process. This effec
Hamiltonian works well in thev050 andv0→` limits.

u0 can be determined by the variational principle,

u05
a

KN (
k.0

@12d~k2p,k!#^ f eu~ck2p
† ck1ck

†ck2p!u f e&.

~5!

Here,u f e& is the ground state ofHeff . Thus, the total Hamil-
tonian can be written asH̃5H̃01H̃1, whereH̃1 includes the
terms that are zero after being averaged over the pho
vacuum state and

H̃05(
q

v0bq
†bq1Heff . ~6!

By means of the Green’s-function method to impleme
the perturbation treatment on the four-fermion term in E
~2!, we get the renormalized band function and the g
function14
01430
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Ek5E0~k!2
2tl

N (
k8.0

$d~k8,k!@22d~k8,k!#2d~k82p,k!

3@22d~k82p,k!#%
E0~k8!

AE0
2~k8!1D0

2~k8!
, ~7!

Dk5au0@c2dd~k2p,k!#, ~8!

where the dimensionless couplingl5g2/2tv0 , Wk

5AEk
21Dk

2 is the fermionic spectrum in the gapped sta
and

c511
2tl

N (
k.0

@d~k2p,k!2V#
D0~k!

au0AE0
2~k!1D0

2~k!
,

~9!

d512
2tl

N (
k.0

@12d~k2p,k!#
D0~k!

au0AE0
2~k!1D0

2~k!
,

~10!

V5
1

N3 (
q,k,k8

d~k,k1q!@22d~k8,k82q!# ~11!

is the on-site interaction that should be subtracted becaus
the Pauli principle.

The phonon-staggered ordering parameter is

mp5
1

N (
l

~21! l^ul&5
a

KN (
k.0

D~k!

W~k!
. ~12!

These are basic equations in our theory.
From Eq.~5!, with u050, we get the self-consistent equ

tion of phase-transition points in theg2/v0;v0 plane,

15
4tl

N (
k.0

@12d~k2p,k!#
c2dd~k2p,k!

uEku
. ~13!

If v050, we haved(k8,k)50 and c51, and Eq.~5!
becomes the same as that in the adiabatic theory. In
theory,d(k2p,k) has a sharp peak at the Fermi point a
since 12d(k2p,k)54tu cosku/(v014tu cosku), the logarith-
mic singularity in the integration of Eq.~5! in the adiabatic
case is removed as long as the ratiov0 /t0 is finite. Compar-
ing Eq. ~8! with that in the adiabatic case,D5au0, we have
the gap in the nonadiabatic case,

D5D~p/2!5au0@c2d#. ~14!

This is the true gap in the fermionic spectrum.
Figure 1 shows the ground-state phase diagram in

g/v0;t/v0 plane. The solid line is our analytical result. F
comparison, the results of previous authors are also sho
The line with circles and the line with squares denote
results of the density-matrix renormalization grou
~DMRG!12 and the two-cutoff renormalization grou
~TCRG!,15 respectively. The line with triangles is the pha
boundary of the variational Lanczos approach based on
inhomogeneous modified variational Lang-Firsov transf
mation ~IMVLF !.13 To check the consistency of the pha
5-2
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transition quantitatively with that of DMRG, some critica
valuesgc are listed in Table I. One can see from both t
figure and the table that our results agree surprisingly w
with that of DMRG except for very largev0 (v0 /t>10).
Furthermore, our theory can get the phase boundary, sep
ing Luttinger liquid and insulation@charge density wave
~CDW!# phases, even in the very smallv0 regime, which is
theoretically and experimentally significant since, from t
view point of experiment, for quite a lot of realistic cases, t
frequency of the quantum phononv0 is small. It seems tha
in the DMRG and the finite-lattice Lanczos approach, b
cause of the effects of limited system sizes, the precise
termination of the critical value in the smallv0 regime is
somewhat difficult.13 The infinite system is never really gap
less within the adiabatic approach, because the gap rem
nonzero, although it becomes very small for weak electr
phonon coupling. On the contrary, in our theory, the log
rithmic singularity*0

p/2dk/cosk in the integration of Eq.~5!
is removed by the factor 12d(k2p,k), and the critical
value lc can be determined precisely even for extrem
small phonon frequency.

Inspired by the success of obtaining the phase diagr
we further investigate the dimerization gap and the opt
responses.

Figure 2 shows the dimerization gapD/t5D(p/2)/t and
the phonon order parameteramp /t as functions of the pho
non frequencyv0 /t for l50.81. It is most notable that ther
is a discontinuous drop in the dimerization gap once
phonon frequency changes, no matter how small it is, fr
zero to finite, though at the adiabatic limit the dimerizati

FIG. 1. The ground-state phase diagram in theg/v0;t/v0

plane. The solid line is our analytical result. The line with op
circles and the line with open squares denote the results of
density-matrix renormalization-group~DMRG! and the two-cutoff
renormalization-group~TCRG! methods, respectively. The lin
with open triangles is the phase boundary of the variational Lanc
approach~IMVLF !.
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gap is D(p/2)/t5amp /t. After the drop, the dimerization
gap and the phonon order parameter decrease as the ph
frequency increases. At the critical valuevc , the dimeriza-
tion gap and the phonon order parameter go to zero simu
neously, and the system becomes gapless, which indic
that the quantum lattice fluctuations can destroy the dim
ized Peierls state. The dimerization gap is much more
duced by the quantum lattice fluctuations than the pho
order parameter. The reason for the different behavior of
dimerization gap and the order parameter is that the forme
the value of Eq.~14! at the Fermi pointk5p/2, where the
quantum lattice fluctuations have the strongest effect, w
the latter is the integral@see Eq.~12!# over the all Brillouin
zone, and the effect of the quantum lattice fluctuations
calmed. The effects of quantum lattice fluctuations on
dimerization gap and on the phonon order parameter are
sentially different, especially whenv0 is small. In the mean
field ~MF! approximation, the Peierls distortion opens a g
of 2DMF and DMF5amp . That relation is sometimes as
sumed remains valid when quantum lattice fluctuations
taken into account. Our results indicate that this relat
holds only in the adiabatic limit.

The optical conductivitys(v) can be expressed by th
retarded Green’s function as follows:

s~v!52
2«0nc

pv
Im KR~v!, ~15!

whereKR is defined as

KR~v!52 i E
2`

0

e2 ivtdt^gu@ j ~0! j ~ t !2 j ~ t ! j ~0!#ug&.

~16!

Here, j is the current operator,16

he

os

FIG. 2. The dimerization gapD/t5D(p/2)/t and the order pa-
rameteramp /t as functions of the phonon frequencyv0 /t in the
case ofl50.81.
38
TABLE I. Critical point gc . g* is the value ofg determined by letting the stiffness constantKr5
1
2 .

t/v0 0.05 0.1 0.5 1 5 10 20 100

gc /v0 ~Ref. 12! 2.297~2! 2.093~2! 1.63~1! 1.61~1! 2.21~3! 2.79~5!

g* /v0 ~Ref. 12! 2.299 2.102 1.64 1.62 2.27 2.89
gc /v0 2.8215 2.1613 1.5939 1.6403 2.3068 2.8783 3.6868 6.97
5-3
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j 52 ieta(
l

~cl
†cl 112cl 11

† cl !, ~17!

and j (t)5exp(iHt)j exp(2iHt) is the form ofj in the Heisen-
berg representation. The unitary transformation of the c
rent operator iseSje2S5 j 1@S, j #1 1

2 †S,@S, j #‡1O(g3). All
terms of order higher thang2 will be omitted in the follow-
ing treatment. Because the averaging ofH̃1 over the phonon
vacuum state is zero, in the ground state at zero tempera
H̃1 can be neglected. By using the approximately decoup
ug8&'ug08&, the ground state ofH̃0, andH̃'H̃0 in the calcu-
lation

^gu j ~0! j ~ t !ug&5^g8u@e(S1R) je2(S1R)#eiH̃ t

3@e(S1R) je2(S1R)#e2 iH̃ tug8&

'^g08u@eSje2S#eiH̃ 0t@eSje2S#e2 iH̃ 0tug08&,

~18!

we can get

KR~v!5
J2

N (
k.0

S 1

v22Wk1 i01
2

1

v12Wk2 i01D sin2 k

3F12
2

N (
k8

g2

v0
2
d2~k8,k!G Dk

2

Wk
2

1
J2

N2 (
k.0,k8.0

g2

v0
2 S 1

v2v02Wk2Wk81 i01

2
1

v1v01Wk1Wk82 i01D @d2~k8,k!

3~sink82sink!2~akbk81bkak8!
21d2~k82p,k!

3~sink81sink!2~akak81bkbk8!
2#, ~19!

where ak5A(11Ek /Wk)/2, and bk5A(12Ek /Wk)/2.
Thus, we have the optical conductivity

s~v!5
2«0ncJ2

v (
k.0

d~v22Wk!sin2 k

3F12
2

N (
k8

g2

v0
2
d2~k8,k!G Dk

2

Wk
2

1
2«0ncJ2

vN (
k.0,k8.0

g2

v0
2
d~v2v02Wk2Wk8!

3@d2~k8,k!~sink82sink!2~akbk81bkak8!
2

1d2~k82p,k!~sink81sink!2~akak81bkbk8!
2#,

~20!

and thev-integrated spectral-weight function
01430
r-

re
g

S~v!5E
0

v

s~v8!dv8. ~21!

The optical conductivity for different phonon frequenci
are shown in Fig. 3. The parameter values used arel51.0,
with v0 /t50.01, 0.05, and 0.10. One can see that asv0
increases, the optical-absorption spectrum broadens bu
peak height decreases and moves to lower photon ene
and the spectral weight increases asv0 increases. The
inverse-square-root singularity at the gap edge in the a
batic case17 disappears and there is a significant tail belo
the peak because of the nonadiabatic effect. We note th
our theory, in mathematical viewpoint, the difference b
tween thev050 andv0.0 cases mainly comes from th
functional form of the gap@see Eq.~8!#. Comparing it with
that in the adiabatic limit, one can see that the subgap st
come from the quantum lattice fluctuations, i.e., the sec
term in the square bracket of Eq.~8!.

The rescaled v-integrated spectral-weight functio
S(v)/Sm versus the photon energyv/t relations of our result
~solid line! and that of IMVLF ~dashed line! are shown in
Fig. 4, whereSm5S(v→`). The optical conductivitys(v)
~rescaled bySm) of our result ~solid line! is also shown.

FIG. 3. The optical conductivity in the case ofl51.0 for dif-
ferent phonon frequenciesv0 /t50.01, 0.05, and 0.10.

FIG. 4. The rescaled optical conductivitys(v) and
v-integrated spectral-weight functionS(v)/Sm versus the photon
energyv/t relations of our results and that of IMVLF, whereSm

5S(v→`). The parameter values used are the same as in Ref
Fig. 6~b!: g/v054.47 andv0 /t50.1. The dashed line is the resu
of IMVLF, and the solid lines are our results. The arrow marks
true gap 2D(p/2)/t51.04.
5-4
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Because of the finite-size effects, the optical conductivity
IMVLF is oscillatory and can not be compared with o
result directly. We use the same parameter values as in
13, Fig. 6~b!: g/v054.47 and v0 /t50.1. The true gap
2D(p/2)/t51.04 obtained from Eq.~14! is marked by the
arrow. One can see that the peak of optical-conductiv
spectrum is not directly corresponding to the dimerized g
The energy gap is smaller than the activation energy of
optical conductivity. Our result shows clearly both the po
tion and the peak of optical conductivity and the spec
weight agrees with that of IMVLF, while in the exac
diagonalization method, the finite-size effects prevent a p
cise extraction of the CDW gap from the optical exa
diagonalization data.13

In conclusion, the effects of quantum lattice fluctuatio
on the optical-conductivity spectrum and the ground-st
phase diagram of the one-dimensional Holstein mode
01430
f
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spinless fermions have been studied by developing an
lytical approach. We show that when the electron-phon
coupling constant decreases, the dimerization gap decre
and at a finite critical value, the Peierls dimerization is d
stroyed by the quantum lattice fluctuations. The critical va
of electron-phonon coupling can be determined precis
even for very small phonon frequency. The dimerization g
is much more reduced by the quantum lattice fluctuatio
than the order parameter. The calculated optical conducti
does not have the inverse-square-root singularity but it ha
peak above the gap edge, and there exists a significan
below the peak. In the nonadiabatic case, the dimeriza
gap is smaller than what the peak position of the opti
conductivity is corresponding to. Our results of the pha
diagram and the spectral-weight function agree with those
the density-matrix renormalization group and the exa
diagonalization methods.
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