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Electron-phonon interaction on bundled structures: Static and transport properties
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We study the small-polaron problem of a single electron interacting with the lattice for the Holstein model
in the adiabatic limit on a comb lattice, when the electron-phonon interaction acts only on the base sites. The
ground state properties can be easily deduced from the ones of a linear chain with an appropriate rescaling of
the coupling constant. On the other hand, the dynamical properties, that involve the complete spectrum of the
system, present an “exotic” behavior. In the weak coupling limit the Drude wdizgno-frequency conduc-
tivity ) is enhanced with respect to its free-case value, contrary to the linear chain case, where for every finite
value one has a suppression of the Drude peak. More interestingly, the loss of coherent electron motion and the
polaronic localization of the carrier occurs for different coupling values. Thus for intermediate coupling, a
different phase appears with large kinetic energy and no coherent motion.
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I. INTRODUCTION the perturbative expansion in the hopping paranfetEhnis
perturbative approach becomes very complicated, and in a
In the past years, a general interest has been growinigst instance useless, when the electrons experience any kind
around the study of physical properties of inhomogeneou§f interaction, both between them, and with external fields,
discrete structures. The general purpose is to characterize tfike, €.9, phonons. This work is devoted to the first extension
behavior of systems like amorphous solids, glasses, polymet§ the interacting case of the problem of electrons moving on
and biological systems in general, where one can expect tHé_undIed structures. We restrict _ourselves to the case of a
specific geometry to dramatically influence physical propers'”9|e elec'_[ron which interacts with Ipcgl osqllators only on
ties, ranging from transport and diffusive properties, to thdhe base sites of a comb lattice. This is a first step towards
thermal or electrical ones. A very general and powerful for-the detection of some quantum counterpart of the anomalous
malism has been developed, the so-called random walk profsliffusion laws. _ .
lem, where the structure is explored by a classical walker, The subject of electron-phonor-ph) interaction on un-
that randomly jumps to an arbitrary nearest-neighbor site d,}c_)n\_/ennonal structures has been aIr_eady addressed mainly
every time step. This approach can be thought as the discretéthin the framework of the Su-Schrieffer-Heebenodel,
version of the classical Boltzmann equation, and theorlgmally_ mtoroduce_d to describe the properties of pohgcety—
asymptotic behavior of the average distance of the walkelene chains® We will attack the problem oé-ph interaction
from the starting site gives the diffusion law for the consid-On unconventional structures from another point of view.
ered structure. On translationally invariant graphs, the diffufRather than a realistic description of actual compounds, we
sion law predicts that this distance scales with the time stepim to provide a general picture of the mutual effeceqfh
with a power law depending on the Euclidean dimension offoupling and geometric complexity. We will therefore focus
the lattice. On more general graphs, the diffusion law is gov©n the Holstein modef; which despite its simplicity, is ex-
erned by a new parameter characterizing the structure, geRe€cted to capture all the main physical properties of more
erally known as spectral dimensidf® that can be different general interactions. In Sec. Il we sketch the basic formalism
from the Euclidean dimension in which the graph is eventufor bundled structures, and show how the problem can be
ally embedded, giving rise to the so-called anomalougn@pped onto a base-only one. In Sec. Il the small-polaron
diffusion#~® One of the main difficulties of this approach is Problem on the comb lattice is discussed, with particular em-
that the explicit calculation of this important parameter mayPhasis on the dynamical properties. Section IV is devoted to

not be trivial for general structures. conclusions and future perspectives.
Nevertheless, there exists a wide class of graphs, called
bundled structures, where explicit calculations can be per- Il GENERAL FORMALISM

formed. The random walk and the oscillation problems have

already been studied on these structreand an anomalous A bundled structure can be built joining each point of a
diffusion law for a classical walker moving along the basebase grapts with a copy of a fibre grapl¥ in such a way
has been discovered. Furthermore, the nearest-neighbor tigthiat there is only one common site betweBrand F. As
binding model has been explicitly solved for electrons mov-previously explained, we shall limit our study to the simpli-
ing on these graphs, by means of an exact resummation ¢ied case in which the particles experience interaction only
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on the base sites. Within this hypothesis, the generic Hamildefiningf(e) = e—n;t2F oo €). Two effects keep track of the
tonian for a single electron on a bundled structure assumesmesence of the fibers. A time-dependent potentiél)

block form: =net?fdr y* (7)Foo(7— 7" ) (7', of purely geometrical
origin, acts on the base, accounting for the possibility for the
Hg Hgr ;) particle to explore the fibers when moving on the base. On
Heg  He ) (1) the other hand, the normalization of the eigenvectufs)

i ) . depends self-consistently on the corresponding eigenvalue.
Hg andHe act on the base and the fibers sites, respectivelyrhjs fact will have a dramatic consequence in presence of
while Hge=Hgp are rectangular matrices containing the jnteraction, and the Schiinger equation contains a nonlin-
hopping terms joining the fibers to the base. Consequently, @ar term. Both these aspects will be analyzed in the subse-

generic state can be written as quent section.
Let us note that the decompositi@h) and(2) holds under
)= |<ﬂ>) ?) the very general hypothesis that the fibers and the base are
[7))’ connected only by an hopping term.Hfr contains instead

. . , . an interaction term, we generally do not know the explicit
with |¢) belonging to the base arjd) to the fibers. Since form of the Green’s function§;;(e) and consequently the

this separation of degrees of freedom is completely formal :
we must ensure that it does not introduce unphysical states I%xpressmn:{S) and (6) cannot be computed exacly.

the Hilbert space. So we impose a normalization constraint:

(W) +(nln)=(d|d)=1. Let us write the eigenvalues !ll. ELECTRON-PHONON INTERACTION: THE COMB
equation for this structure: LATTICE CASE
_ In this section we turn to the problem of electron-phonon
H +H =€ , . A . . '
sl e) oFl 7e) = €l ) interaction on bundled structures. We will consider the sim-
Hel 70+ Heg| ) = el ) 3) plest model fore-ph interaction, namely the Holstein mo-
€ € €/

lecular crystal modet!
BecauseH does not contain any interaction term, one can

get rid of| ) from Eq.(3), reducing to a “base-only” prob- -
lem: H=—t > (cl,cjotHe)+g2 ni(a+a))

(ij)o
(e—Hg—Hgr(e—Hg) *Hep)| ) =0,

(¢d[1—Hpe(e—Hp) “?Hegl| ) =1. (4)
Explicitly using the simple form of the rectangular matrix In this model tight-binding electrons interact with local dis-
Hge (reflecting the peculiar geometry of the bundled struc-persionless oscillators of frequeney,, g is ane-ph cou-

ture), it can be shown that the composite operators in(Er. pling between the displacemeat+a; of the oscillator and
have only diagonal terms simply expressed in term of thgne |ocal electronic density, =3¢ c;,. On really general
fiber-only Green’s functions: grounds, the model is expected to display a polaronic behav-
B 1 o 2 ior for large e-ph coupling. A polaron is a bound state of
[Her(e=Hr) "Heglij = dinit"Fode), ®) electrons and phonons in which the electron moves carrying
with itself a phonon cloud that strongly diminishes its mo-
[Her(e—Hp) " 2Heglij= 8;nit2> Fom(€)Fmo(e). (6)  Dility, eventually giving rise to localizatioh? Since, at
m least forg=0, the electron motion is completely free, some
Heren is the number of independent fibers joined to a singlekind of transition or crossover from a weak-coupling free-
site of the baset is the hopping constant relative to the link Carrier state, and a strong-coupling polaronic state must oc-
joining the fiber and the baS<E|m(6)=[6—HF]|}q1 is the Cur at some coupllng. Despltg the' S|mpI|c_|ty of the model,
fiber Green's function , ani=0 indicates the first site of the €VEN the case of a single particle interacting with the set of
fiber when coming from the base. So we have reduced ou@Scillators is a nontrivial many-body problem that can be

selves to an effective problem for the only base sites: solved only in particular limits. We mention the solution
' obtained in Ref. 13 within the dynamical mean field, which

(e—Hg—nit?Foo €)| ) =0, (7) s exact in the limit of infinite spatial dimensions, and the
theorem by Gerlach and en that claims that no phase
1 transition occurs for finitavy.1* In general cases one has to
(W)= =n(e). (8)  resort to approximate techniques or numerical stutfie¥.
1+net2>Y Fom(€)Fmo(€) The nature of the transition between a free cartier g
m =0) and a polaron depends on the valuevgft and spatial
dimensionality!® In fact, even for a single particle we have
two independent parameters in the Hamilton{a), which

(f(e)—Hg)| =0, (99 determine different physical regimes. In particular, wiglis

+ (Doz aiTai . (10)

We can rewrite Eq(7) as

014303-2



ELECTRON-PHONON INTERACTION ON BUNDLED. .. PHYSICAL REVIEW B3 014303

a measure of the strength of thgh interaction,y=wq/t is  the interaction term is less effective with respect to the base-
a measure of the adiabaticity of the system, i.e., it control®nly problem. Furthermore, every energy level can be
the relative value of the typical phononic and electronic enmapped onto one of the base-only problem, with a coupling
ergy scales. It has been shown that in the adiabatic regimehanging self-consistently with the energy value.

y<1, the condition that rules the polaronic crossovek is As a consequence, the physical quantities involving ex-

=% (2wotd)>1, whered is the dimensionality. This con- Pectation values on a single eigenfunction will have similar
dition is simply understood as an energy convenience condRehaviors for the bundled structure and the base-only cases.

tion as soon as we notice that the polaronic energi,is On the other hand, we expect different properties for quan-
= — % wp, and the free carrier energy B,e.= — 2td. No- tities which involve matrix elements between different eigen-

ce i, contans the totel knetcenergp:e  Welone, e g, spectel ponertes
We will restrict ourselves to the extreme adiabatic limit ’ P

wo/t=0, in which the lattice degrees of freedom becomeIattice, comparing our results with the ones of the one-
o/t=0, - . . . PO .
classical. In this limit, the Hamiltonian can be recast in thed|menS|onaI case. The fiber is a semi-infinite linear chain and

the expression&s) and (6) take the explicit form

form
H=—t > (cl,cj;+H.c)+g2 mxi+ %kE X;. Fod €)= — (e~ sgn &—4D) (13)
(i.j).o i i a1 2t
Here g=\2k/wog, k is the elastic constant, and are the Je2—at?

n(e)= T (14)

classical variables associated to the local displacements of
the oscillators. It can be shown that the relevant adimen-
sional coupling the adiabatic limit is=g?/4kt. Looking at Eq.(12), we expect that, due to the effective
Kabanov and Mashtakd?¥ have solved the model for a reduction of the coupling constant, the crossover from a
single particle for 1-2-3 dimensional systems showing that iflarge to a small polaron, typical of the one dimensional case,
the one-dimensional case the system has a localized boundll occur for a larger value ok. Moreover, the ground state
state for arbitrarily smalke-ph coupling, evidencing only a properties of the one-dimensional case can be recovered
crossover between a weak-coupling large polaron extendefdom the ones of the comb lattice through a redefinition of
on many lattice sites, and a strong-coupling small polaronthe coupling and a rescaling of the wave function:
localized on a single site. In two and three spatial dimensions

a first-order transitiorjlevel crossing occurs between a de- A—An(e,),
localized state and a small polaron one. We will generalize
the approach of Ref. 18 to the case of a comb lattice, a
o it 1NN (ey), (15

specific bundled structure, in which the base is a linear chain,

and two semi-infinite chains are linked to each site of the

chain (fibers. We will also consider only the case in which Xi—XiI\Nn(ey).

the e-ph interaction is limited to the base. This lattice can be

viewed as a good model for describing the geometry of manylere we emphasize the dependence )orof the eigen

branched polymerig, and, on the other side, it is simple valuese, .

enough to obtain explicit results. We have also investigated if the rescaling of the eigen-
In order to reduce ourselves to a base-only problem, w&alue equation could induce a level crossing in the ground

can follow the procedure outlined in the previous sectionstate at some value of the coupling, thus modifying the na-

Attention must be paid to the fact thatindicates only the ture of the crossover with respect to thd tase. The first

contribution of the electronic degrees of freedom to the fullderivative ofe(\) turns out to be proportional to the same

eigenvalue and the energy is given ley- sk=;x?. The  quantity of the base-only case, through a continuous function

Schralinger equation for the base degrees of freedom can bef €, built up by Fqoo(€) and its derivative. In this way we

obtained from the one in Ref. 18 in two steps. First of all, theconclude that the properties of the ground state for a comb

electron eigenvalue must be substituted with(e), defined  lattice, or generally for a bundled structure whose fibers are

in Eqg. (9), a quantity that keeps track of the effects of thesemi-infinite linear chains, are the same of the ones of the

fibers on the electron dynamics. The second step amounts fse-only case.

renormalize the wave function according to E8), i.e., ¢ We performed a numerical solution of the problem for
—y!1\yn(e).*° We then obtain, following Kabanov and finite, but quite large lattices, up to 220 sites. Henceforth,
Mashtakov:® energies will be expressed in units of the hopping amplitude

t, and lengths in units of the lattice constanOur numerical
data perfectly confirm the previous considerations. In Fig. 1
(f(e)+2xtn(e)| ¢ [y ZtZ iy (12 we plot the ground state energy as a function of the coupling
constant\. It presents a continuous crossover between a
It is now clear that the conditiofB) introduces an effective large polaron state whose energy is only slightly modified
rescaling of the coupling constant=g?/4kt. Forn(e)<1,  with respect to the free value,= —2+/2t to a strong cou-
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FIG. 1. Ground state energy for a:2@0 comb lattice(in units FIG. 3. The local density displacement correlation function for
of t), as a function of the coupling constant the linear chain is derived from the data by the comb lattice case

with the scaling explained in the tejgee Eq.(15)].

pling small polaron state, in whick,=—2t\2\. This be- . ]

system'® above a given value ok. Roughly at the same coupling
In order to estimate the crossover valug, we plot the Value, the local correlation function abruptly changes the
density-displacement correlation functioyo|2x;) for i Slope, signaling a crossover from a weak-coupling to a

=0, 1, 2(Fig. 2, wherei=0 indicates the site where the Strong-coupling regime. This value can be associated to the
electron localized® This quantity is a direct probe of the Crossover from a large polaron extended on several lattice

tween the electron and the lattice deformations. the crossover coupling. with the value where the first de-
rivative of the local correlation function is maximum, or

equivalently with the value for which the nearest-neighbors

_0‘00(5) [ ' ' ' ' ' : N correlation function starts to decrease. Using the first crite-

b b rion we obtain an estimate,=0.925, which has to be com-
L i R pared with the one-dimensional valig=0.75.

0015 7 <z Notice that our comb lattice can be viewed as a first step

-002- ] beyond one-dimensionality. The crossover coupling dor

0025~ = =2 isA=1. One should anyway keep in mind that we are

-003 . L L ! - ! not consideringe-ph interaction on the fibers.
' : ' ! ' ! In Fig. 3 we show how the 1D quantities can be recovered
with the scaling relationg15): Once the local density-

0% 5 - displacement correlation functidiwo|?x,) and\ are scaled,
01} - <yfx>  respectively, byn®?(€,) andn(e,), the curve lies on top of
i ] the one for the linear chain.
015 ] As expected no qualitative difference with respect to the
‘0'3- ) L ) I ) L ] one-dimensional case has been found for the ground state
- properties.
05| -

. A. Transport properties

- <y, o .
] W The study of the transport properties in the polaronic

- problem has been widely studiéd!? since it directly char-
. acterizes the onset of localization.

One of the most striking features of bundled structures is
an anomalous diffusion for a classical walker moving along
the bas€.We expect quantum counterpart for this property,

FIG. 2. Density-displacement correlation functions for a 20namely some peculiar behavior for the conductivity. Note
% 20 comb lattice for different distances of the sites from the denthat this expectation is not in contradiction with the general
sity peak. The change of the slope of the local correlation functiorproperties of the eigenstates described in the previous sec-
(bottom panelis the signal of the polaronic crossover, and permitstion, since the optical response is expressed in terms of ma-
us to extract the critical value,=0.925. trix elements betweedifferenteigenstates. In fact, the map-
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FT T T I ‘_'l T |=| T '|_ d2¢(x)
25 3|, d (a+2t+ 2)\t| ¢(X)|2): —a’t IR (18
L ]l which has an exact solution of the form
0o 05 1 15 = A n(G)\)
8 X)=\0— —————. 19
f‘) \\ 4 Y(x) 2a cosh\n(e,)x/a) (19
("] N,
B S i In the one-dimensional cas€e,)=1 and« just represents
=~ — the electronic contribution to the ground state energy, while
| for the comb lattice they are given by Eq4.3) and (14).
_— ]s);fndime Thus the averaged kinetic energy iEyn=—2t(1
--- Finite frequency| — —\%t/6a%) for the 1D case, while Eyn=—+2t(1
| +\2%t/8a%2—\*/128a%*) on the comb lattice. This result can
, L , be easily understood by inspection of the particular geometry
L5 of the lattice. In the free case, the ground state wave function
A has a constant value on the backbone sites with exponentially

decreasing tails on the teeth. Switching on the interaction,
FIG. 4. Contributions to the conductivity along the backbone,the backbone sites become energetically favorable and the
compared with the 1D case. In both cases we show the Drudgarticle is therefore recalled on the backbone, increasing the
weight D, the total sum rule for the optical conductivit§7), and  charge density on the substructure. and consequently of the
the finite frequency optical weight. kinetic energy. Further increasing the localization ten-
dency which leads to small polaron formation becomes ef-
ping (15) involves different normalizations, and therefore fective. In this regime the usual behavior is recovered, the
different effective coupling constants, for every energy levelkinetic energy decreases its absolute value, whileetipé

The optical conductivity is given by interaction energy is substantially decreased.
For small values of\ the finite frequency contribution
[l Iul o) |2 remains zero up to a given value &af and continuously
o(w)= D5(w)+go T e—e (16)  acquires a finite value at some value)ofor both the struc-
n

tures. This can be attributed to finite size effects: a finite
number of sites cuts off the available states with proper sym-
metry in Eq.(16).

A striking feature emerges from Fig. 4. The coupling

where the coefficient of the zero-frequency delta function
contribution is the so called Drude weight, which explicitly

characterizes the transport properties: a vanisiiing the . . L L
signature of an insulating statéwhereas a metal has a finite value for which the Drude weight vanishes<0.72) is size-

value of such a quantity. The Drude peak can be evaluateﬁbly smaller than the crossover coupling extracted from the
by means of the so-callefdsum rule?® correlation functions X.=0.925), which in turn coincides

with the kink in the kinetic energy curve. This is never the
) case in usual one-dimensional and two-dimensional lattices,
” dow= — me where the loss of coherence and the small polaron formation
o(w)do=——{(Hyn) (17 . s X . "
0 2 essentially coincide, as can be seen in the inset, and as it is
valid also for finite phonon frequencies.

and involves the calculation of the kinetic energy and of the However, our results are not in contradiction with general
integral over all finite frequencies of the optical conductivity. criteria for small polaron formatidi but they confirm a cru-
Quite naturally we only consider the conductivity along thecial physical point. In fact the condition>1 implies that
backbone, in which anomalous behavior can be expectedhe electronic energy to be overcome by &h interaction
We compute the Drude weight given by Hd6), the total ~ €nergy for small polaron formation is not the coherent one
weight of the optical excitations, related to the kinetic energyPut the total kinetic energy. These quantities coincide for a
by Eq. (17), and the integral over finiténonzero frequen- single particle on a conventional lattice, but they may differ
cies. Both the kinetic energy and the finite frequency opticafor interacting systems or unordered structures.
conductivity show an anomalous behavior with respect to the For A <A<\ the system is in a state in which the coher-
one dimensional case as it is transparent from a comparisant transport is strongly suppressed while the kinetic energy
between the data in Fig. 4 and the ones for the oneis still large, substantially equal to its noninteracting value.
dimensional case reported in the inset. We attribute this contribution to local incoherent electron
For small values of the coupling constant the absolutéhopping between the teeth sites.
value of the kinetic energy presents a small but visible en- This system represents, to our knowledge, the first one in
hancement with respect to its free value. This is confirmedvhich coherent motion is strongly inhibited, but there is a
by a perturbative calculation for<1. In this limit, we can sizeable range of parameters in which no polaronic effects

introduce a continuous approximation of Eg?2):182* are found. This phenomenon represents the quantum heir of
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anomalous diffusion. It should be noted that, as &igh  value. By increasing the coupling a rather surprising feature
coupling is extended to the whole lattice this effect is ex-has been found, namely the coherent motion is strongly sup-

pected to be emphasized. pressed while a sizeable incoherent kinetic energy is still
present. The loss of coherence is therefore not due to the
V. CONCLUSIONS AND PERSPECTIVES self-trapping associated with the polaron crossdtteat oc-

. ] ) ] curs for largere-ph coupling, when also the incoherent ki-

The static and dynamical properties of an electron internetic energy is suppressedut to the drastic effects of a
acting with local classical oscillators on a comb lattice haveynconventional geometry on the electronic properties. The
been extensively analyzed. Even though our work representsecyrrence of such an effect in classical systems has been
only the first attempt to tackle the problem of interacting gemonstrated and widely discus&edthin the framework of
fermions on unconventional structures, interesting and pecuyne random walk. We note that our approach is not com-
liar features have been discovered. On really genergjetely the analogous of the random walk problem: the ab-
grounds, we have shown that the static properi@®rages sence of-ph interaction on the teeth sites implies that, in the
on a single stateof a general bundled structure can be easilyg|assical analogous, the motion of the walker on these sites
obtained from the ones of the base-only problem by meangqgyd pe deterministic. The quantum counterpart of anoma-
of a rescaling of the parameters. As an example, we havgs diffusion driven by the geometry would be achieved

studied the small polaron crossover on a comb lattice, comgn|y if the e-ph interaction was extended to the whole lattice.
paring it with the one-dimensional case, explicitly confirm-

ing this property. Nevertheless, dynamical properties cannot

be so simply recovered. A numeri_cal .study of the optical ACKNOWLEDGMENTS
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