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Electron-phonon interaction on bundled structures: Static and transport properties
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We study the small-polaron problem of a single electron interacting with the lattice for the Holstein model
in the adiabatic limit on a comb lattice, when the electron-phonon interaction acts only on the base sites. The
ground state properties can be easily deduced from the ones of a linear chain with an appropriate rescaling of
the coupling constant. On the other hand, the dynamical properties, that involve the complete spectrum of the
system, present an ‘‘exotic’’ behavior. In the weak coupling limit the Drude weight~zero-frequency conduc-
tivity ! is enhanced with respect to its free-case value, contrary to the linear chain case, where for every finite
value one has a suppression of the Drude peak. More interestingly, the loss of coherent electron motion and the
polaronic localization of the carrier occurs for different coupling values. Thus for intermediate coupling, a
different phase appears with large kinetic energy and no coherent motion.

DOI: 10.1103/PhysRevB.63.014303 PACS number~s!: 71.23.2k, 71.55.Jv, 71.38.2k, 63.20.Kr
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I. INTRODUCTION

In the past years, a general interest has been grow
around the study of physical properties of inhomogene
discrete structures. The general purpose is to characteriz
behavior of systems like amorphous solids, glasses, polym
and biological systems in general, where one can expec
specific geometry to dramatically influence physical prop
ties, ranging from transport and diffusive properties, to
thermal or electrical ones. A very general and powerful f
malism has been developed, the so-called random walk p
lem, where the structure is explored by a classical walk
that randomly jumps to an arbitrary nearest-neighbor site
every time step. This approach can be thought as the disc
version of the classical Boltzmann equation, and
asymptotic behavior of the average distance of the wa
from the starting site gives the diffusion law for the cons
ered structure. On translationally invariant graphs, the di
sion law predicts that this distance scales with the time s
with a power law depending on the Euclidean dimension
the lattice. On more general graphs, the diffusion law is g
erned by a new parameter characterizing the structure,
erally known as spectral dimension,1–3 that can be different
from the Euclidean dimension in which the graph is even
ally embedded, giving rise to the so-called anomalo
diffusion.4–6 One of the main difficulties of this approach
that the explicit calculation of this important parameter m
not be trivial for general structures.

Nevertheless, there exists a wide class of graphs, ca
bundled structures, where explicit calculations can be p
formed. The random walk and the oscillation problems ha
already been studied on these structures,6,7 and an anomalous
diffusion law for a classical walker moving along the ba
has been discovered. Furthermore, the nearest-neighbor
binding model has been explicitly solved for electrons mo
ing on these graphs, by means of an exact resummatio
0163-1829/2000/63~1!/014303~6!/$15.00 63 0143
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the perturbative expansion in the hopping parameter.8 This
perturbative approach becomes very complicated, and
last instance useless, when the electrons experience any
of interaction, both between them, and with external fiel
like, e.g, phonons. This work is devoted to the first extens
to the interacting case of the problem of electrons moving
bundled structures. We restrict ourselves to the case
single electron which interacts with local oscillators only
the base sites of a comb lattice. This is a first step towa
the detection of some quantum counterpart of the anoma
diffusion laws.

The subject of electron-phonon (e-ph! interaction on un-
conventional structures has been already addressed m
within the framework of the Su-Schrieffer-Heeger9 model,
originally introduced to describe the properties of poliace
lene chains.10 We will attack the problem ofe-ph interaction
on unconventional structures from another point of vie
Rather than a realistic description of actual compounds,
aim to provide a general picture of the mutual effect ofe-ph
coupling and geometric complexity. We will therefore foc
on the Holstein model,11 which despite its simplicity, is ex-
pected to capture all the main physical properties of m
general interactions. In Sec. II we sketch the basic formal
for bundled structures, and show how the problem can
mapped onto a base-only one. In Sec. III the small-pola
problem on the comb lattice is discussed, with particular e
phasis on the dynamical properties. Section IV is devoted
conclusions and future perspectives.

II. GENERAL FORMALISM

A bundled structure can be built joining each point of
base graphB with a copy of a fibre graphF in such a way
that there is only one common site betweenB and F. As
previously explained, we shall limit our study to the simp
fied case in which the particles experience interaction o
©2000 The American Physical Society03-1
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on the base sites. Within this hypothesis, the generic Ha
tonian for a single electron on a bundled structure assum
block form:

S HB HBF

HFB HF
D . ~1!

HB andHF act on the base and the fibers sites, respectiv
while HBF5HFB

T are rectangular matrices containing t
hopping terms joining the fibers to the base. Consequent
generic state can be written as

uf&5S uc&

uh&
D , ~2!

with uc& belonging to the base anduh& to the fibers. Since
this separation of degrees of freedom is completely form
we must ensure that it does not introduce unphysical state
the Hilbert space. So we impose a normalization constra
^cuc&1^huh&5^fuf&51. Let us write the eigenvalue
equation for this structure:

HBuce&1HBFuhe&5euce&,

HFuhe&1HFBuce&5euce&. ~3!

BecauseHF does not contain any interaction term, one c
get rid of uhe& from Eq.~3!, reducing to a ‘‘base-only’’ prob-
lem:

„e2HB2HBF~e2HF!21HFB…uce&50,

^ceu@12HBF~e2HF!22HFB#uce&51. ~4!

Explicitly using the simple form of the rectangular matr
HBF ~reflecting the peculiar geometry of the bundled stru
ture!, it can be shown that the composite operators in Eq.~4!
have only diagonal terms simply expressed in term of
fiber-only Green’s functions:

@HBF~e2HF!21HFB# i j 5d i j nf t
2F00~e!, ~5!

@HBF~e2HF!22HFB# i j 5d i j nf t
2(

m
F0m~e!Fm0~e!. ~6!

Herenf is the number of independent fibers joined to a sin
site of the base;t is the hopping constant relative to the lin
joining the fiber and the base;Flm(e)5@e2HF# lm

21 is the
fiber Green’s function , andi 50 indicates the first site of the
fiber when coming from the base. So we have reduced
selves to an effective problem for the only base sites:

„e2HB2nft
2F00~e!…uce&50, ~7!

^ceuce&5
1

11nft
2(

m
F0m~e!Fm0~e!

[n~e!. ~8!

We can rewrite Eq.~7! as

„f ~e!2HB…uce&50, ~9!
01430
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defining f (e)5e2nft
2F00(e). Two effects keep track of the

presence of the fibers. A time-dependent potentialV(t)
5nft

2*dt8c* (t)F00(t2t8)c(t8), of purely geometrical
origin, acts on the base, accounting for the possibility for
particle to explore the fibers when moving on the base.
the other hand, the normalization of the eigenvectorsn(e)
depends self-consistently on the corresponding eigenva
This fact will have a dramatic consequence in presence
interaction, and the Schro¨dinger equation contains a nonlin
ear term. Both these aspects will be analyzed in the su
quent section.

Let us note that the decomposition~1! and~2! holds under
the very general hypothesis that the fibers and the base
connected only by an hopping term. IfHF contains instead
an interaction term, we generally do not know the expli
form of the Green’s functionsFi j (e) and consequently the
expressions~5! and ~6! cannot be computed exactly.

III. ELECTRON-PHONON INTERACTION: THE COMB
LATTICE CASE

In this section we turn to the problem of electron-phon
interaction on bundled structures. We will consider the si
plest model fore-ph interaction, namely the Holstein mo
lecular crystal model:11

H52t (
^ i , j &,s

~cis
† cj s1H.c.!1g̃(

i
ni~ai1ai

†!

1v0(
i

ai
†ai . ~10!

In this model tight-binding electrons interact with local di
persionless oscillators of frequencyv0 , g̃ is an e-ph cou-
pling between the displacementai1ai

† of the oscillator and
the local electronic densityni5(scis

† cis . On really general
grounds, the model is expected to display a polaronic beh
ior for large e-ph coupling. A polaron is a bound state o
electrons and phonons in which the electron moves carry
with itself a phonon cloud that strongly diminishes its m
bility, eventually giving rise to localization.11,12 Since, at
least forg̃50, the electron motion is completely free, som
kind of transition or crossover from a weak-coupling fre
carrier state, and a strong-coupling polaronic state must
cur at some coupling. Despite the simplicity of the mod
even the case of a single particle interacting with the se
oscillators is a nontrivial many-body problem that can
solved only in particular limits. We mention the solutio
obtained in Ref. 13 within the dynamical mean field, whi
is exact in the limit of infinite spatial dimensions, and th
theorem by Gerlach and Lo¨wen that claims that no phas
transition occurs for finitev0.14 In general cases one has
resort to approximate techniques or numerical studies.15–17

The nature of the transition between a free carrier~for g̃
50) and a polaron depends on the value ofv0 /t and spatial
dimensionality.16 In fact, even for a single particle we hav
two independent parameters in the Hamiltonian~10!, which
determine different physical regimes. In particular, whileg̃ is
3-2
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ELECTRON-PHONON INTERACTION ON BUNDLED . . . PHYSICAL REVIEW B63 014303
a measure of the strength of thee-ph interaction,g5v0 /t is
a measure of the adiabaticity of the system, i.e., it cont
the relative value of the typical phononic and electronic
ergy scales. It has been shown that in the adiabatic reg
g!1, the condition that rules the polaronic crossover isl

5g̃2/(2v0td).1, whered is the dimensionality. This con
dition is simply understood as an energy convenience co
tion as soon as we notice that the polaronic energy isEpol

52g̃2/v0, and the free carrier energy isEfree522td. No-
tice thatEfree contains the total kinetic energy.15,16

We will restrict ourselves to the extreme adiabatic lim
v0 /t50, in which the lattice degrees of freedom becom
classical. In this limit, the Hamiltonian can be recast in t
form

H52t (
^ i , j &,s

~cis
† cj s1H.c.!1g(

i
nixi1

1

2
k(

i
xi

2 .

~11!

Here g5A2k/v0g̃, k is the elastic constant, andxi are the
classical variables associated to the local displacement
the oscillators. It can be shown that the relevant adim
sional coupling the adiabatic limit isl5g2/4kt.

Kabanov and Mashtakov18 have solved the model for
single particle for 1-2-3 dimensional systems showing tha
the one-dimensional case the system has a localized b
state for arbitrarily smalle-ph coupling, evidencing only a
crossover between a weak-coupling large polaron exten
on many lattice sites, and a strong-coupling small pola
localized on a single site. In two and three spatial dimensi
a first-order transition~level crossing! occurs between a de
localized state and a small polaron one. We will genera
the approach of Ref. 18 to the case of a comb lattice
specific bundled structure, in which the base is a linear ch
and two semi-infinite chains are linked to each site of
chain ~fibers!. We will also consider only the case in whic
thee-ph interaction is limited to the base. This lattice can
viewed as a good model for describing the geometry of m
branched polymers,19 and, on the other side, it is simpl
enough to obtain explicit results.

In order to reduce ourselves to a base-only problem,
can follow the procedure outlined in the previous secti
Attention must be paid to the fact thate indicates only the
contribution of the electronic degrees of freedom to the
eigenvalue and the energy is given bye1 1

2 k( ixi
2 . The

Schrödinger equation for the base degrees of freedom ca
obtained from the one in Ref. 18 in two steps. First of all, t
electron eigenvaluee must be substituted withf (e), defined
in Eq. ~9!, a quantity that keeps track of the effects of t
fibers on the electron dynamics. The second step amoun
renormalize the wave function according to Eq.~8!, i.e., c i

→c i8/An(e).20 We then obtain, following Kabanov an
Mashtakov,18

„f ~e!12ltn~e!uc i8u
2
…c i85t(

l
c i 1 l8 . ~12!

It is now clear that the condition~8! introduces an effective
rescaling of the coupling constantl5g2/4kt. For n(e)<1,
01430
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the interaction term is less effective with respect to the ba
only problem. Furthermore, every energy level can
mapped onto one of the base-only problem, with a coupl
changing self-consistently with the energy value.

As a consequence, the physical quantities involving
pectation values on a single eigenfunction will have simi
behaviors for the bundled structure and the base-only ca
On the other hand, we expect different properties for qu
tities which involve matrix elements between different eige
functions, like, e.g., spectral properties.

In what follows, we choose the explicit case of the com
lattice, comparing our results with the ones of the on
dimensional case. The fiber is a semi-infinite linear chain a
the expressions~5! and ~6! take the explicit form

F00~e!5
1

2t2
„e2sgn~e!Ae224t2

…, ~13!

n~e!5
Ae224t2

ueu
. ~14!

Looking at Eq. ~12!, we expect that, due to the effectiv
reduction of the coupling constant, the crossover from
large to a small polaron, typical of the one dimensional ca
will occur for a larger value ofl. Moreover, the ground stat
properties of the one-dimensional case can be recov
from the ones of the comb lattice through a redefinition
the coupling and a rescaling of the wave function:

l→ln~el!,

c i→c i /An~el!, ~15!

xi→xi /An~el!.

Here we emphasize the dependence onl of the eigen
valuesel .

We have also investigated if the rescaling of the eig
value equation could induce a level crossing in the grou
state at some value of the coupling, thus modifying the
ture of the crossover with respect to the 1d case. The first
derivative ofe(l) turns out to be proportional to the sam
quantity of the base-only case, through a continuous func
of e, built up by F00(e) and its derivative. In this way we
conclude that the properties of the ground state for a co
lattice, or generally for a bundled structure whose fibers
semi-infinite linear chains, are the same of the ones of
base-only case.

We performed a numerical solution of the problem f
finite, but quite large lattices, up to 20320 sites. Henceforth
energies will be expressed in units of the hopping amplitu
t, and lengths in units of the lattice constanta. Our numerical
data perfectly confirm the previous considerations. In Fig
we plot the ground state energy as a function of the coup
constantl. It presents a continuous crossover between
large polaron state whose energy is only slightly modifi
with respect to the free valuee0522A2t to a strong cou-
3-3
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ILARIA MECCOLI AND MASSIMO CAPONE PHYSICAL REVIEW B 63 014303
pling small polaron state, in whiche0522tA2l. This be-
havior is completely analogous to the one-dimensio
system.18

In order to estimate the crossover valuelc , we plot the
density-displacement correlation functions^uc0u2xi& for i
50, 1, 2 ~Fig. 2!, where i 50 indicates the site where th
electron localizes.15 This quantity is a direct probe of th
polaronic behavior, measuring the degree of correlation
tween the electron and the lattice deformations.

FIG. 1. Ground state energy for a 20320 comb lattice~in units
of t), as a function of the coupling constantl.

FIG. 2. Density-displacement correlation functions for a
320 comb lattice for different distances of the sites from the d
sity peak. The change of the slope of the local correlation func
~bottom panel! is the signal of the polaronic crossover, and perm
us to extract the critical valuelc50.925.
01430
l

e-

All the nonlocal correlation functions decay rather sharp
above a given value ofl. Roughly at the same couplin
value, the local correlation function abruptly changes
slope, signaling a crossover from a weak-coupling to
strong-coupling regime. This value can be associated to
crossover from a large polaron extended on several lat
sites to a single-site small polaron. We can therefore estim
the crossover couplinglc with the value where the first de
rivative of the local correlation function is maximum, o
equivalently with the value for which the nearest-neighb
correlation function starts to decrease. Using the first cr
rion we obtain an estimatelc50.925, which has to be com
pared with the one-dimensional valuelc50.75.

Notice that our comb lattice can be viewed as a first s
beyond one-dimensionality. The crossover coupling ford
52 is l.1. One should anyway keep in mind that we a
not consideringe-ph interaction on the fibers.

In Fig. 3 we show how the 1D quantities can be recove
with the scaling relations~15!: Once the local density-
displacement correlation function^uc0u2x0& andl are scaled,
respectively, byn3/2(el) andn(el), the curve lies on top of
the one for the linear chain.

As expected no qualitative difference with respect to
one-dimensional case has been found for the ground s
properties.

A. Transport properties

The study of the transport properties in the polaro
problem has been widely studied,15,12 since it directly char-
acterizes the onset of localization.

One of the most striking features of bundled structures
an anomalous diffusion for a classical walker moving alo
the base.6 We expect quantum counterpart for this proper
namely some peculiar behavior for the conductivity. No
that this expectation is not in contradiction with the gene
properties of the eigenstates described in the previous
tion, since the optical response is expressed in terms of
trix elements betweendifferenteigenstates. In fact, the map

-
n

FIG. 3. The local density displacement correlation function
the linear chain is derived from the data by the comb lattice c
with the scaling explained in the text@see Eq.~15!#.
3-4
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ELECTRON-PHONON INTERACTION ON BUNDLED . . . PHYSICAL REVIEW B63 014303
ping ~15! involves different normalizations, and therefo
different effective coupling constants, for every energy lev

The optical conductivity is given by

s~v!5Dd~v!1 (
nÞ0

u^cnuJxuc0&u2

en2e0
, ~16!

where the coefficient of the zero-frequency delta funct
contribution is the so called Drude weight, which explicit
characterizes the transport properties: a vanishingD is the
signature of an insulating state,22 whereas a metal has a finit
value of such a quantity. The Drude peak can be evalua
by means of the so-calledf sum rule,23

E
0

`

s~v!dv52
pe2

2
^Hkin& ~17!

and involves the calculation of the kinetic energy and of
integral over all finite frequencies of the optical conductivi
Quite naturally we only consider the conductivity along t
backbone, in which anomalous behavior can be expec
We compute the Drude weight given by Eq.~16!, the total
weight of the optical excitations, related to the kinetic ene
by Eq. ~17!, and the integral over finite~nonzero! frequen-
cies. Both the kinetic energy and the finite frequency opti
conductivity show an anomalous behavior with respect to
one dimensional case as it is transparent from a compar
between the data in Fig. 4 and the ones for the o
dimensional case reported in the inset.

For small values of the coupling constant the absol
value of the kinetic energy presents a small but visible
hancement with respect to its free value. This is confirm
by a perturbative calculation forl!1. In this limit, we can
introduce a continuous approximation of Eq.~12!:18,21

FIG. 4. Contributions to the conductivity along the backbon
compared with the 1D case. In both cases we show the Dr
weight D, the total sum rule for the optical conductivity~17!, and
the finite frequency optical weight.
01430
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„a12t12ltuc~x!u2
…52a2t

d2c~x!

d x2
, ~18!

which has an exact solution of the form

c~x!5A l

2a

n~el!

cosh„ln~el!x/a…
. ~19!

In the one-dimensional casen(el)51 anda just represents
the electronic contribution to the ground state energy, wh
for the comb lattice they are given by Eqs.~13! and ~14!.
Thus the averaged kinetic energy isEKIN522t(1
2l2t/6a2) for the 1D case, while EKIN.2A2t(1
1l2t/8a22l4/128a4) on the comb lattice. This result ca
be easily understood by inspection of the particular geom
of the lattice. In the free case, the ground state wave func
has a constant value on the backbone sites with exponent
decreasing tails on the teeth. Switching on the interact
the backbone sites become energetically favorable and
particle is therefore recalled on the backbone, increasing
charge density on the substructure. and consequently o
kinetic energy. Further increasingl the localization ten-
dency which leads to small polaron formation becomes
fective. In this regime the usual behavior is recovered,
kinetic energy decreases its absolute value, while thee-ph
interaction energy is substantially decreased.

For small values ofl the finite frequency contribution
remains zero up to a given value ofl, and continuously
acquires a finite value at some value ofl for both the struc-
tures. This can be attributed to finite size effects: a fin
number of sites cuts off the available states with proper sy
metry in Eq.~16!.

A striking feature emerges from Fig. 4. The couplin
value for which the Drude weight vanishes (l̄.0.72) is size-
ably smaller than the crossover coupling extracted from
correlation functions (lc.0.925), which in turn coincides
with the kink in the kinetic energy curve. This is never th
case in usual one-dimensional and two-dimensional lattic
where the loss of coherence and the small polaron forma
essentially coincide, as can be seen in the inset, and as
valid also for finite phonon frequencies.

However, our results are not in contradiction with gene
criteria for small polaron formation15 but they confirm a cru-
cial physical point. In fact the conditionl.1 implies that
the electronic energy to be overcome by thee-ph interaction
energy for small polaron formation is not the coherent o
but the total kinetic energy. These quantities coincide fo
single particle on a conventional lattice, but they may dif
for interacting systems or unordered structures.

For l̄,l,lc the system is in a state in which the cohe
ent transport is strongly suppressed while the kinetic ene
is still large, substantially equal to its noninteracting valu
We attribute this contribution to local incoherent electr
hopping between the teeth sites.

This system represents, to our knowledge, the first on
which coherent motion is strongly inhibited, but there is
sizeable range of parameters in which no polaronic effe
are found. This phenomenon represents the quantum he

,
e

3-5
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ILARIA MECCOLI AND MASSIMO CAPONE PHYSICAL REVIEW B 63 014303
anomalous diffusion. It should be noted that, as thee-ph
coupling is extended to the whole lattice this effect is e
pected to be emphasized.

IV. CONCLUSIONS AND PERSPECTIVES

The static and dynamical properties of an electron in
acting with local classical oscillators on a comb lattice ha
been extensively analyzed. Even though our work repres
only the first attempt to tackle the problem of interacti
fermions on unconventional structures, interesting and pe
liar features have been discovered. On really gen
grounds, we have shown that the static properties~averages
on a single state! of a general bundled structure can be eas
obtained from the ones of the base-only problem by me
of a rescaling of the parameters. As an example, we h
studied the small polaron crossover on a comb lattice, c
paring it with the one-dimensional case, explicitly confirm
ing this property. Nevertheless, dynamical properties can
be so simply recovered. A numerical study of the opti
response on the comb lattice has highlighted two anoma
properties. Contrarily to the one-dimensional case, for sm
e-ph couplings, the DC conductivity~measured by the Drud
weight! is increased with respect to the bare noninteract
ys

Re
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value. By increasing the coupling a rather surprising feat
has been found, namely the coherent motion is strongly s
pressed while a sizeable incoherent kinetic energy is
present. The loss of coherence is therefore not due to
self-trapping associated with the polaron crossover~that oc-
curs for largere-ph coupling, when also the incoherent k
netic energy is suppressed!, but to the drastic effects of a
unconventional geometry on the electronic properties. T
occurrence of such an effect in classical systems has b
demonstrated and widely discussed6 within the framework of
the random walk. We note that our approach is not co
pletely the analogous of the random walk problem: the
sence ofe-ph interaction on the teeth sites implies that, in t
classical analogous, the motion of the walker on these s
could be deterministic. The quantum counterpart of anom
lous diffusion driven by the geometry would be achiev
only if the e-ph interaction was extended to the whole lattic
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