
y

PHYSICAL REVIEW B, VOLUME 63, 012501
Proposed measurements of the small entropy carried by the superfluid component
in liquid helium II
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The microscopic theory of liquid helium II due to Fliessbach@T. Fliessbach, Nuovo Cimento D13, 211
~1991!# allows a certain amount of entropy to be carried by the superfluid component. The experimental results
tell us that the entropy carried by the superfluid component is smaller than 2% with respect to the total entropy.
The nonstandard model of liquid helium II deduced from extended thermodynamics is not in contrast with the
theory by Fliessbach. In this work, using this model, we show that accurate measurements of the speeds and the
attenuations of the first, second, and fourth sounds in liquid helium II allow the determination of this small
superfluid entropy, or, at least, they will establish an upper bound for this quantity.
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I. Introduction. The most known model able to describ
the anomalous behavior of liquid helium below thel point is
the two-fluid model.1,2 This model, inspired by consider
ations of quantum statistical mechanics,3 treats liquid helium
II as a two-component mixture: a normal viscous compone
and a superfluid component, able to flow through very t
capillaries and porous media without viscosity. One of
main assumptions of this model is that the entropy of
superfluid fraction vanishes.

As observed by Puttermann,4 the statement that the supe
fluid component does not carry entropy has not been dem
strated theoretically, so that it must be regarded as an a
tional postulate. The experimental results5,6 tell us that the
entropy carried by the superfluid component is smaller t
2% with respect to the entropy carried by the normal co
ponent. In Ref. 7 theoretical~microscopic! motivations in
favor of a small superfluid entropy have been advanced
extension of the two-fluid model, where a small entro
transfer associated with the superfluid component is allow
has been proposed.8

A macroscopic nonstandard model of liquid helium
which is based on the extended thermodynamics~ET!,9,10has
been formulated.11,12 The fundamental fields of this mode
are the densityr, the velocityv i , the absolute temperatureT,
and the heat fluxqi . Also in this model, a small entrop
transfer by helium which flows through very thin capillari
or porous media is allowed. A comparison between t
model and the two-fluid model with superfluid entropy
Schäfer and Fliessbach8 has been made in Ref. 13.

In this work, using this extended model, we show that t
small entropy can be determined through accurate meas
ments of the speeds and the attenuations of the first, sec
and fourth sounds in liquid helium II.

II. The extended model of liquid helium II.A recent ap-
proach to nonequilibrium thermodynamics is extended th
modynamics~ET!: this is a macroscopic theory of nonequ
librium processes based on a dissipative differential sys
of balance laws using dissipative fluxes, beside the tra
tional variables, as independent fields. This theory is part
larly useful for studying the thermodynamics of nonequil
rium steady states and systems with long relaxation time

The fundamental fields of ET are the densityr, the veloc-
ity v5(v i), the temperatureT, the heat fluxq5(qi), and the
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nonequilibrium stress, which we decompose into its tra
3pV , pV being the viscous pressure and its deviatoric p
p^ i j & . The linearized system of field equations of the ET o
fluid is9

]r

]t
1r

]v j

]xj
50, ~2.1a!

r
]v i

]t
1

]

]xj
@~p01pV!d i j 1p^ i j &#50, ~2.1b!

r
]e

]t
1

]qj

]xj
1@~p01pV!d i j 1p^ i j &#

]v i

]xj
50, ~2.1c!
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]T

]xi
2b8T2z

]pV

]xj
2bT2z

]p^ i j &

]xj
52

1

t1
qi , ~2.1d!

t0

]pV

]t
1z

]v j

]xj
1b8Tj

]qj

]xj
52pV , ~2.1e!

t2

]p^ ik&

]t
12h

]

]xj

]v ^ i

]xk&
22bTh

]q^ i

]xk&
52p^ ik& . ~2.1f!

In these equations,p0 is the pressure of thermostatics,e is
the internal specific energy,j and h are the bulk and the
shear viscosity,t0 and t2 are the relaxation times of th
nonequilibrium pressurepV and of the stress deviatorp^ i j & ,
t1 is the relaxation time of the heat fluxqi , z equalsk/t1 , k
being the thermal conductivity,b and b8 are coefficients
which characterize the dissipation of thermal nature.

Extended thermodynamics furnishes the following e
pressions for the entropy fluxJs, the entropy productionss,
and the Gibbs equation:9

Ji
s5rsv i1

1

T
qi1b8pVqi1bp^ i j &qj , ~2.2!

ss5
1

t1

1

T2z
q•q1

1

jT
pVpV1

1

2hT
p^ i j &p^ i j & , ~2.3!

Tds5de2
p0

r2 dr2
1

rzT
q•dq. ~2.4!

In Ref. 9 the link between the coefficientsz, b, andb8 and
the moments of the fluctuations has been investigated.
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found that these coefficients are linked to the moments of
fluctuations of the fluxes by the relations:

z5
k

t1
5

V

kBT2 ^dq1dq1&, ~2.5!

b52kB

^C2dq1dp12&

^dq1dq1&^dp12dp12&
, ~2.6!

b852kB

^C1dq1dpV&

^dq1dq1&^dpVdpV&
. ~2.7!

In these relationsV is the volume,Ci5ci2v i the molecular
velocity relative to the mean motion, andkB the Boltzmann
constant.

As is well known, in liquid helium II the relaxation time
t1 of the heat flux is extremely high, while the bulk and t
shear viscosity and the relaxation timest0 and t2 of the
nonequilibrium part of the stress are extremely small. In
first approximation, we can neglect the time evolution of t
viscous stress, setting zerot0 and t2 in Eqs. ~2.1e! and
~2.1f!; we obtain

pV52jF]v j

]xj
2b8T

]qj

]xj
G , ~2.8!

p^ i j &522hF]v ^ j

]xi &
2bT

]q^ j

]xi &
G . ~2.9!

These relations can be interpreted as constitutive relation
pV andp^ i j & in an extended model of liquid helium II in th
presence of dissipative phenomena, in which onlyr, T, v i ,
andqi are considered as independent fields. Substituting E
~2.8! and~2.9! in Eqs.~2.1a!–~2.1d! we obtain the following
dissipative system of field equations for helium II:
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]
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~2.10!
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rcV
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]xj
1

1

rcV

]qj
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50,

]qi

]t
1z

]T

]xi
1jb8T2z

]
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]xj
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]xj
G
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1
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In Eqs. ~2.10! cV is the constant volume specific heat a
pT5]p0 /]T.

Equations~2.10! describe the propagation in liquid helium
II of two longitudinal waves: the normal sound wave and t
temperature wave. Setting

V1
25pr , V2

25z/rcV , ~2.11!
01250
e

a
e

or

s.

the phase speedsw5v/kr of these waves are solutions of th
following equation:10,11

w41S V1
21V2

21
Tp

T
2

r2cV
D w21V1

2V2
250. ~2.12!

The attenuation coefficients for these sounds have been
culated in Ref. 14. Their expressions contain terms includ
products of the thermal expansion and of the coefficientj,
h, and 1/t1 ; neglecting these terms, the attenuation coe
cients can be written as

ks
~1!.

v2

2rw1
3 S j1

4

3
h D , ~2.13!

ks
~2!.

1

2w2

1

t1
1

v2T3z

2w2
3 S jb821

4

3
hb2D . ~2.14!

This nonstandard model of helium II also explains t
experiment known as the~static! fountain effect.15 Denoting
with m the equilibrium chemical potential, from the Gibb
equation~2.4!, in the linear approximation we have obtaine
dm5(1/r)dp2hdT. As is known in the experiment of the
fountain effect, the equilibrium is reached as long asdm
50, so that the following relation, identical to the one o
tained by the two-fluid model, is found:15

~1/r! dp5sdT. ~2.15!

In Refs. 16–18 this study has been further developed
was shown that the theory allows the existence of two tra
verse modes: one of them has a propagation speed near
while the other one has a finite propagation speed and a
small penetration depth.16 In each mode a particular linea
combination of the fieldsv i andqi vibrates. In such a way
the two new vector fields

ui
~n!5v i2bTqi ~2.16a!

and

ui
~s!5v i1 ~bT/P21! qi ~2.16b!

with

P511rb2T3z, ~2.16c!

having the dimension of a velocity, have been introduc
which can be interpreted as the velocities of the normal
superfluid components of liquid helium II.16 We have shown
that if the theory is reformulated in terms of these fields,
dissipative terms associated with the shear viscosity
present in the field equation forui

(n) , while such terms exist
in the field equation forui

(n) . Consequently, these two field
can be interpreted as the velocities of the superfluid and
mal components.16

In Ref. 17 we also introduced the two scalar fields

r~s!5~P21/P! r, r~n!5~1/P! r, ~2.17!

associated withui
(s) andui

(n) , which can be interpreted as th
‘‘densities’’ of the superfluid and normal components; fu
thermore, from Eqs.~2.16a! and ~2.16b! we obtained the
following expressions forv i and qi in terms of r (s), r (n),
ui

(s) , andui
(n) :
1-2
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v i5
r~s!

r
ui

~s!1
r~n!

r
ui

~n! , ~2.18a!

qi5
1

bT

r~s!

r
~ui

~s!2ui
~n!!. ~2.18b!

In Ref. 17 we have also shown that, in terms ofr (s), r (s),
ui

(s) , andui
(n) , the expression for the ‘‘convective’’ part o

the entropy flux can be written as

@Ji
s#u5r~s!S s1

1

rbT2Dui
~s!1r~n!S s2

P21

rbT2Dui
~n! . ~2.19!

In particular, the following quantities have bee
introduced:17

ss5s1 1/rbT2 , ~2.20a!

sn5s2 ~P21!/rbT2 , ~2.20b!

which can be interpreted as the entropy of the superfluid
normal component.

In Ref. 17 we have also investigated under what condit
in the extended model the superfluid component velocity
curl-free: we have shown that in the linear approximatio
the fieldui

(s) is curl-free if and only if the superfluid entrop
ss depends on the temperature only.

Finally, in Refs. 14 and 18 the propagation of wav
through a very thin capillary~superleak! has been studied
the theory allows the existence of a wave~the fourth sound!
in which all the thermodynamic fields vibrate. The speed a
the attenuation coefficient of this wave are13

w4
25S v

kr
D

4

2

5
P21

P
V1

21
1

P
V2

2~11bT2pT!2, ~2.21!

ks
~4!5

j

2r

v2

w4
3 S 12

b8

b D 2 P21

P
1

1

2w4

1

t1

1

P
. ~2.22!

In Ref. 17 we have shown that in the linear approxim
tion, the systems of field equations of the extended and
two-fluid model can be identified, if we set

b5b*ª2 1/rsT2 . ~2.23!

In fact, under this hypothesis, the expression~2.18b! of the
heat fluxqi is identical with that of the two-fluid model o
Tisza1 and Landau;2 furthermore, observing thatP21
5r (s)/r (n), the expression of the quantityV2 , characterizing
the second sound velocity becomes

V2*
2
ª

z*

rcV
where z*ªr

r~s!

r~n! Ts2, ~2.24!

which is identical to that of the two-fluid model. Finally, w
observe that ifb equalsb* , the convective part of the en
tropy flux also reduces just to the expression of the entr
flux postulated by Landau.2 @Ji

s#u5rsui
(n) . On the contrary,

if b is different fromb* , the superfluid component carries
certain amount of entropy.

III. Influence of the superfluid entropy on the sou
propagation.In this section we show that the small entro
carried by the superfluid component can be determi
01250
d

n
is
,

d

-
e

y

d

through accurate measurements of the speeds and the a
ations of the first, second, and fourth sounds in liquid heli
II.

First we observe that as there is experimental evide
that helium II can flow through very small capillaries or p
rous media for weeks, in order to compare the model j
developed with experimental data we can set

1/t150. ~3.1!

Now, we write Eq.~2.20a!, using Eq.~2.23!, as

ss

s
512 b* /b . ~3.2!

From this relation we deduce that the superfluid entropy
fluences only the quantities depending explicitly on the
rameterb. In what follows, we will use an asterisk to deno
the quantities referring to the case when the superfluid c
ponent does not carry entropy.

First, we study the dependence ofV1 and V2 on the su-
perfluid entropyss . Obviously,V1 does not depend onss ,
and, because in helium II the thermal dilation is small, fro
Eq. ~2.12! we deduce that in a first approximation the velo
ity of the first sound can be taken equal toV1 ; consequently,
neither the velocity nor the attenuation of the first sou
depend perceptibly onss ,

w1.w1* , ks
~1!.@ks

~1!#* . ~3.3!

On the contrary, the presence of entropy associated with
superfluid component influences both the velocity and
attenuation of the second sound. Indeed, using~2.16c! we
can write

z5z* ~12 ss/s!2 ~3.4!

so that

V25V2* ~12 ss/s!. ~3.5!

Remembering the expression~2.24! of V2* we finally obtain

V2
25

r~s!

r~n!

T

cV
~s2ss!

2. ~3.6!

This expression, identical to the one obtained in Ref. 8,
lows the determination of the differences2ss , if the quan-
tities V2 andr (s)/r (n) are known.

We now study the dependence of the attenuation of
second sound onss . Using Eqs.~3.1!, ~3.2!, ~3.4!, and~3.5!,
the expression~2.14! can be written as

ks
~2!5

v2z* T3

2V2*
3 F j0b82

12
ss

s

1
4

3

hb* 2

S 12
ss

s D 3G . ~3.7!

If, in a simplified analysis, we suppose that the superflu
although it carries a small amount of entropy, does not p
duce it„this amounts to settingb5b85b* @12(ss /s)#…, we
obtain

ks
~2!5ks

~2!* ~12 ss/s!23. ~3.8!

We conclude that the presence of superfluid entropy has
effect of reducing the velocity of the second sound and
1-3
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increasing its attenuation. If we suppose that the ratioss /s is
equal to 2%, an equal variation in percent is obtained in
velocity of the second sound and a percent variation in
attenuation equal to 8%. With the present experimental
curacy these corrections might be observable.

Finally, the expression of the velocity of the fourth soun
in term of ss , is

w4
25

P21

P
V1*

21
1

P
V2*

2S 12
ss

s D 2F12
pT

rs S 12
ss

s D G2

.

~3.9!

BecauseV1
2@V2

2, the first term in Eq.~3.9! is dominant;
therefore, the presence of the superfluid entropyss has a
negligible influence on the velocity on the fourth sound. T
attenuation of the fourth sound is zero, ifb85b, indepen-
dently of ss . The expression~2.22! of the attenuation coef
ficient of the fourth sound, ifb8ÞbÞb* , becomes

ks
~4!5

j

2r

v2

w4
3 F12

b8

b* S 12
ss

s D G2 P21

P
. ~3.10!

We conclude that the presence of superfluid entropy p
duces an increase of the attenuation of the fourth sound

IV. Determination of the superfluid entropy from sou
velocity data.Equation~2.20a! is a simple expression tha
allows us to evaluate the small amount of entropy carried
the superfluid component of helium if accurate measu
ments of the velocities of the sounds and of the total entr
s are available.

Starting from the knowledge ofpT , cV , and of the ve-
locities of the first and second sound, we can determineV1

2

and V2
2, observing that, on the basis of Eq.~2.12!, they are

the solutions of

V41S w1
21w2

22
TpT

2

r2cV
DV21w1

2w2
250. ~4.1!

Then, remembering that21/rT2b5s2ss , from Eq.~2.21!,
we obtain
s

01250
e
e
c-

,

e

-

y
-
y

~s2ss!
21

2pTV2
2

r~w4
22V2

2!
~s2ss!

2FV2
2cV

T

V1
22w4

2

w4
22V2

2 1
pT

2V2
2

r2~w4
22V2

2!G50, ~4.2!

which allows the determination ofs2ss as a function of
pressure and temperature: knowing thats2ss must be posi-
tive, we will choose the positive root.

V. Final remarks.The relations obtained in this work
together with direct measurements of the sound speeds
of s, pT , andcV , can allow the determination of the sma
percent of entropy carried by the superfluid component, or
least, they will establish an upper bound for this quant
Obviously, in this computation we cannot use, for examp
the data reported by Maynard,19 which are obtained from the
velocities of the first, second, and fourth sounds using re
tions obtained from the two-fluid model: we remark on t
fact that Maynard uses Eq.~2.24! in order to determine the
entropys, which is valid only if the superfluid componen
does not carry entropy.

Finally we consider Fig. 6 of Ref. 19: in this figure bo
values of entropy, as derived from the two-fluid model a
as obtained from the fountain effect, are reported from va
ous values fromp andT: we note that at lower temperature
~1.2, 1.3 K!, when the superfluid component is more impo
tant, the values obtained through the fountain effect
higher than those calculated by Maynard starting from d
on the velocities of sounds in helium II, using the two-flu
model. These results agree with the deductions of this wo
in fact, as temperature rise, the normal component domin
and the values of entropy obtained through the fountain
fect are less different from the values obtained by Mayna
as a consequence of the fact that the amount of the super
component is low.
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