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Proposed measurements of the small entropy carried by the superfluid component
in liquid helium 1l
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The microscopic theory of liquid helium Il due to Fliessbddh Fliessbach, Nuovo Cimento D3, 211
(1991)] allows a certain amount of entropy to be carried by the superfluid component. The experimental results
tell us that the entropy carried by the superfluid component is smaller than 2% with respect to the total entropy.
The nonstandard model of liquid helium Il deduced from extended thermodynamics is not in contrast with the
theory by Fliessbach. In this work, using this model, we show that accurate measurements of the speeds and the
attenuations of the first, second, and fourth sounds in liquid helium Il allow the determination of this small
superfluid entropy, or, at least, they will establish an upper bound for this quantity.
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I. Introduction. The most known model able to describe nonequilibrium stress, which we decompose into its trace
the anomalous behavior of liquid helium below theointis  3py, py being the viscous pressure and its deviatoric part
the two-fluid modef:? This model, inspired by consider- P¢jy - The linearized system of field equations of the ET of a
ations of quantum statistical mechanidaseats liquid helium  fluid is®
[l as a two-component mixture: a normal viscous component,
and a superfluid component, able to flow through very thin —+p—=
capillaries and porous media without viscosity. One of the at X
main assumptions of this model is that the entropy of the I
superfluid fraction vanishes. p—

As observed by Puttermaririhe statement that the super- ot
fluid component does not carry entropy has not been demon- de dq; dv;
strated theoretically, so that it must be regarded as an addi- P T ax TL(Po+ PV &Pl - ~=0, (2.19
tional postulate. The experimental restftsell us that the ! !

Jd Jv;
p l—p, (2.13

J
+§[(po+ Pv) 8ij + Pijy]1=0, (2.1b
i

entropy carried by the superfluid component is smaller tham@q; Jar  _, dPv 5. IP) 1
2% with respect to the entropy carried by the normal com—ﬁJr 5_13 T gﬁ_ BT o T_Qi' (2.1d
R . . L . . i j j 1
ponent. In Ref. 7 theoreticamicroscopi¢ motivations in
favor of a small superfluid entropy have been advanced; an Py vy .99
extension of the two-fluid model, where a small entropy 70 gt +§ﬁxj TATE 24 " Pv 219
transfer associated with the superfluid component is allowed, p P aq
. 0 .
has been proposéd. o . 5 LI P U 2,8T77—<' = — Py - (2.10
A macroscopic nonstandard model of liquid helium I, at IXj IXyy IXky
which is based on the extended thermodynar®®,%*°has _ _ o
been formulated™!2 The fundamental fields of this model !N these equationg, is the pressure of thermostatiess

are the density, the velocityv, , the absolute temperatufe e internal specific energy; and » are the bulk and the
and the heat flwg; . Also in this model, a small entropy shear V-I.SC(.)SIty,To and 7, are the relaxation tlmes of the
transfer by helium which flows through very thin capillaries "nequilibrium pressurpy and of the stress deviatqy;;, ,
or porous media is allowed. A comparison between thig"1 IS the relaxation time of the heat fluy, {equalsk/y, x
model and the two-fluid model with superfluid entropy by being the thermal conductivity3 and g’ are coefficients
Schder and Fliessbadmas been made in Ref. 13. which characterize the dissipation of thermal nature.

In this work, using this extended model, we show that this Exténded thermodynamics furnishes the folloyvlng ex-
small entropy can be determined through accurate measurBIessions for the entropy flu¥, the entropy production,
ments of the speeds and the attenuations of the first, secorff}d the Gibbs equatich:

and fourth sounds in liquid helium II. 1

Il. The extended model of liquid helium I recent ap- J=psvi+ fqi+B’qui+IBp(ij)qj : (2.2
proach to nonequilibrium thermodynamics is extended ther-
modynamics(ET): this is a macroscopic theory of nonequi- 11 1

S__

1
librium processes based on a dissipative differential system —7__1 T_zé«Q‘CH g—-l-PvpvﬂL mpmpm, 2.3

of balance laws using dissipative fluxes, beside the tradi-

tional variables, as independent fields. This theory is particu- Po
larly useful for studying the thermodynamics of nonequilib- Tds=de— ?dp_ pﬁq' da. (2.4
rium steady states and systems with long relaxation times.

The fundamental fields of ET are the dengifythe veloc- In Ref. 9 the link between the coefficientss, andg’ and

ity v=(v;), the temperaturg&, the heat flu\gq=(q;), and the the moments of the fluctuations has been investigated. It is
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found that these coefficients are linked to the moments of théhe phase speeds= w/k, of these waves are solutions of the

fluctuations of the fluxes by the relations: following equationt®?
K v 4 2 2 Tp% 2 2\ /2
g“:T—:W(&ql&ql), (25) W+ V1+V2+ 7; w +V1V2=O. (2.12
1 B p Ly
(C,8q,6p12) The attenuation coefficients for these sounds have been cal-
B=- Bl 50,60,)( OP120P12) (2.6 culated in Ref. 14. Their expressions contain terms including
1PHLATR1200L products of the thermal expansion and of the coefficignts
(C189,5py) @7 7, and 1f;; neglecting these terms, the attenuation coeffi-
B'=—kg : 2. cients can be written as
00,0 opyo
(601601)(SpySpy) 2
In these relation¥ is the volumeC;=c;—v; the molecular k= —3( £+3 77), (2.13
velocity relative to the mean motion, akg the Boltzmann 2pwy
constant. 273
_ o @ 11 T 4
As is well known, in liquid helium Il the relaxation time k"= WT_+ o &R+ 3 nB°|. (2.14
7, of the heat flux is extremely high, while the bulk and the 21 2
shear viscosity and the relaxation timeg and 7, of the This nonstandard model of helium Il also explains the

r)onequilibri_um part of the stress are e>§tremely small. In aexperiment known as thestatio fountain effect® Denoting
first approximation, we can neglect the time evolution of theith, , the equilibrium chemical potential, from the Gibbs
viscous stress, setting zerg and 7, in Egs. (2.18 and  gquation(2.4), in the linear approximation we have obtained

(2.1f); we obtain du=(1/p)dp— ndT. As is known in the experiment of the
v ERE fountain effect, the equilibrium is reached as long cgs
UJ ’ q] . . . .
pv=—§ 5_'8 TK ' (2.9 =0, so that the following relation, identical to the one ob-
i j tained by the two-fluid model, is found:
_ i i (1/p) dp=sdT. (2.15
Pijy=—27 %) BT ;) 2.9

In Refs. 16—18 this study has been further developed. It
These relations can be interpreted as constitutive relations favas shown that the theory allows the existence of two trans-
py andp;y in an extended model of liquid helium Il in the verse modes: one of them has a propagation speed near zero,
presence of dissipative phenomena, in which gnlyf, v;, while the other one has a finite propagation speed and a very
andg; are considered as independent fields. Substituting Eqsmall penetration deptl?.In each mode a particular linear
(2.8) and(2.9) in Eqgs.(2.19—(2.1d we obtain the following combination of the fields; andq; vibrates. In such a way,

dissipative system of field equations for helium Il the two new vector fields
o, U =v;=BTq, (2.163
ot p (9XJ o and
do Lapo £ 0 [y o Ui =vi+ (BT/P=1)q (2.16b
ot p IXi p IX ﬁX] &XJ with
o7 9] ] PrIt PTG (2109
p 9Xj| Xy i) ' having the dimension of a velocity, have been introduced,
2.1 which can be interpreted as the velocities of the normal and
(2.10
ﬂJr m %Jr i ﬂ: superfluid components of liquid helium¥f.we have shown
gt pCy dx;  pCy dx; that if the theory is reformulated in terms of these fields, no
dissipative terms associated with the shear viscosity are
ﬂ+§£+§ﬂ,1—2§i %—B’T% present in the field equation fof™ , while such terms exist
at 7 X X | 9X; 2 in the field equation fou(™ . Consequently, these two fields
can be interpreted as the velocities of the superfluid and nor-
+29BT2 — | —2— BT —2|=— —q. mal components:
9Xj | 9%y IXi) 1 In Ref. 17 we also introduced the two scalar fields
In Egs. (2.10 cy is the constant volume specific heat and p®=(P—1/P)p, pM=(1/P)p, (2.17
pr=dpo/dT.

Equations(2.10 describe the propagation in liquid helium associated witii® andu(™, which can be interpreted as the

Il of two longitudinal waves: the normal sound wave and the densities” of the superfluid and normal components; fur-
temperature wave. Setting thermore, from Eqgs(2.163 and (2.160 we obtained the

2 ) following expressions fov; andq; in terms of p(, p(™,
Vi=p,, Vi={lpcy, (21D 4O, andu™:
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pt® p™ through accurate measurements of the speeds and the attenu-
vi=7ufs)+ Tufn), (2.183  ations of the first, second, and fourth sounds in liquid helium
I.
1 p® © () First we observe that as there is experimental evidence
%= 5T 7( iU (2.18D  that helium Il can flow through very small capillaries or po-
rous media for weeks, in order to compare the model just
In Ref. 17 we have also shown that, in termsé¥, p(®, developed with experimental data we can set
u®  andu{™, the expression for the “convective” part of 17, =0. 3.1)

the entropy flux can be written as , )
Now, we write Eq.(2.203, using Eq.(2.23), as

1 —
IFlu=p"| s+ ut®+pM| s— )u-(”). 2.1 s
[Flu=p| st g |ui+p™| s Ui, (219 Z-1-8B. (32
In particular, the following quantities have been i i ) _
introduced’ From this relation we deduce that the superfluid entropy in-
s—s+ 1/pBT2, (2.203 fluences only the quantities depending explicitly on the pa-

rameterB. In what follows, we will use an asterisk to denote
s,=s— (P—1)/pBT?, (2.20n  the quantities referring to the case when the superfluid com-
_ ) _ ponent does not carry entropy.
which can be interpreted as the entropy of the superfluid and First, we study the dependence \¢f andV, on the su-
normal component. _ . . perfluid entropys,. Obviously,V; does not depend osy,
~InRef. 17 we have also investigated under what conditioryng, pecause in helium II the thermal dilation is small, from
in the extended model the superfluid component velocity isq, (2.12 we deduce that in a first approximation the veloc-
curl-free: \éve have shown that in fthe linear approximation,iy of the first sound can be taken equaMg; consequently,
the fieldu® is curl-free if and only if the superfluid entropy neither the velocity nor the attenuation of the first sound

s depends on the temperature only. depend perceptibly os;,
Finally, in Refs. 14 and 18 the propagation of waves . 1 (1)
through a very thin capillarysuperleak has been studied: wy=wi, ks =[ks']". 33

the theory allows the existence of a waéke fourth sountl  op, the contrary, the presence of entropy associated with the
in which all the thermodynamic fields vibrate. The speed a“d_r,uperfluid component influences both the velocity and the

the attenuation coefficient of this wave dre attenuation of the second sound. Indeed, ughg60 we
, [@\® P-1 . 1 , . can write
W4_(k_r)4_TVl+ BV2(1+IBT pT) , (22]) gzé’v*(l_ SS/S)Z (34)
2 n2p_ so that
@w_sef,pypt 111 2.22 _yx
s 2p Wi B P 2W4 ™ P’ . V2—V2(1_ SS/S). (35)
. . . Remembering the expressiod.24) of V5 we finally obtain
In Ref. 17 we have shown that in the linear approxima- "9 XP 6229 2 We Tinafly !
tion, the systems of field equations of the extended and the 2_p<s) )
two-fluid model can be identified, if we set 27, C_V(S_Ss) . (3.6
B=p* == 1lpsT?. (2.23 This expression, identical to the one obtained in Ref. 8, al-

In fact, under this hypothesis, the expressi@righ of the ~ 10ws the deteging’gion of the differense-ss, if the quan-
heat fluxg; is identical with that of the two-fluid model of tities V; andp™/p™ are known.

Tiszd and Landaf furthermore, observing thaP—1 We now study the dependence of the attenuation of the
=pO/pM, the expression of the quanti,, characterizing Second sound osy. Using Egs.(3.1), (3.2), (3.4), and(3.5),
the second sound velocity becomes the expressior2.14 can be written as
* (s) w2§*-|—3 50,3’2 4 7],8*2
V;Z::pé,C where * =ZP%TSZ, (2.249 kfsz)Z — 3.7
\%

2v3 1—S—S+ i (1—5_5)3 |
which is identical to that of the two-fluid model. Finally, we S
observe that ifg equalsg*, the convective part of the en- If, in a simplified analysis, we suppose that the superfluid,
tropy flux also reduces just to the expression of the entropylthough it carries a small amount of entropy, does not pro-
flux postulated by Landaﬁ[J?]ﬁps ui(“) . On the contrary, duce it(this amounts to setting=B'=B*[1—(ss/s)]), we
if Bis different fromg*, the superfluid component carries a obtain
certain amount of entropy. (2) _ 1 (2)* 14 _ -3

. Influence of thep)s/uperfluid entropy on the sound ke =ke™ (17 8ds) % 8
propagation.In this section we show that the small entropy We conclude that the presence of superfluid entropy has the
carried by the superfluid component can be determine@ffect of reducing the velocity of the second sound and of
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increasing its attenuation. If we suppose that the mis is

equal to 2%, an equal variation in percent is obtained in the
velocity of the second sound and a percent variation in the
attenuation equal to 8%. With the present experimental ac-

curacy these corrections might be observable.

Finally, the expression of the velocity of the fourth sound,

in term ofsg, is

W§=—P Vi

1 S
5 v§2< 1-
(3.9

BecauseVZ>Vs3, the first term in EqQ.(3.9) is dominant;
therefore, the presence of the superfluid entrepyhas a
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ZpTV§
(s—Sg)?+ ——5——(S—5)
s p(Wz—V3) s
Ve viowd e ]
T wi—V3 pi(wi—V3)

0, 4.2
which allows the determination a§—sg as a function of
pressure and temperature: knowing thats; must be posi-
tive, we will choose the positive root.

V. Final remarks.The relations obtained in this work,
together with direct measurements of the sound speeds and
of s, py, andcy, can allow the determination of the small
percent of entropy carried by the superfluid component, or, at

negligible influence on the velocity on the fourth sound. Theleast, they will establish an upper bound for this quantity.

attenuation of the fourth sound is zero,df = 8, indepen-
dently ofs;. The expressioli2.22) of the attenuation coef-
ficient of the fourth sound, iB’ # B+ B*, becomes

¢ o[ B ss|[?P—1
G- 11— [1-=| —=
R T A Rty | = (3.10

Obviously, in this computation we cannot use, for example,
the data reported by Maynatdwhich are obtained from the
velocities of the first, second, and fourth sounds using rela-
tions obtained from the two-fluid model: we remark on the
fact that Maynard uses E@2.24) in order to determine the
entropys, which is valid only if the superfluid component
does not carry entropy.

We conclude that the presence of superfluid entropy pro- Finally we consider Fig. 6 of Ref. 19: in this figure both

duces an increase of the attenuation of the fourth sound.

V. Determination of the superfluid entropy from sound

velocity data.Equation(2.209 is a simple expression that

values of entropy, as derived from the two-fluid model and
as obtained from the fountain effect, are reported from vari-
ous values fronp andT: we note that at lower temperatures

allows us to evaluate the small amount of entropy carried b)(l 2, 1.3 K, when the superfluid component is more impor-

the superfluid component of helium if accurate measurég,n;  he values obtained through the fountain effect are
ments of the velocities of the sounds and of the total e”tr°p¥|igher than those calculated by Maynard starting from data

s are available.

Starting from the knowledge gf;, cy, and of the ve-
locities of the first and second sound, we can deterrvife
and V2, observing that, on the basis of E§.12), they are
the solutions of

Tp?
VA+ w§+w§—pz—CT V2+w2w2=0. (4.1)
V

Then, remembering that 1/pT28=s—s;, from Eq.(2.21),
we obtain

on the velocities of sounds in helium II, using the two-fluid
model. These results agree with the deductions of this work:
in fact, as temperature rise, the normal component dominates
and the values of entropy obtained through the fountain ef-
fect are less different from the values obtained by Maynard,
as a consequence of the fact that the amount of the superfluid
component is low.
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