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Two-gap model for underdoped cuprate superconductors

A. Perali,1 C. Castellani,1 C. Di Castro,1 M. Grilli, 1 E. Piegari,2 and A. A. Varlamov1
1Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza’’ and Istituto Nazionale Fisica della Materia, Unita` di Roma 1,

Piazzale Aldo Moro, 2-00185 Roma, Italy
2Dipartimento di Fisica, Universita` di Firenze, L. E. Fermi, 2-50125 Firenze, Italy

~Received 13 July 2000!

Various properties of underdoped superconducting cuprates, including the momentum-dependent pseudogap
opening, indicate a behavior which is neither BCS- nor Bose-Einstein condensation~BEC!– like. To explain
this issue we introduce a two-gap model. This model assumes an anisotropic pairing interaction among two
kinds of fermions with small and large Fermi velocities representing the quasiparticles near theM and the
nodal points of the Fermi surface, respectively. We find that a gap forms near theM points resulting in
incoherent pairing due to strong fluctuations. Instead, the pairing near the nodal points sets in with phase
coherence at lower temperature. By tuning the momentum-dependent interaction, the model allows for a
continuous evolution from a pure BCS pairing~in the overdoped and optimally doped regime! to a mixed
boson-fermion picture~in the strongly underdoped regime!.
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The underdoped cuprates are characterized by
pseudogap opening below a strong doping~d! dependent
crossover temperatureT* (d), above the superconductin
critical temperatureTc(d).1 By decreasing the doping, th
temperatureT* increases, while the superconducting critic
temperatureTc decreases until the insulating state is reach
The different behavior ofT* and Tc as doping is varied,
finds a counterpart in the different behavior of the cohere
energy scale, obtained in Andreev reflection measureme2

and the single-particle gap, observed both in angle-reso
photoemission~ARPES! and in tunneling experiments.1 This
has triggered a very active debate on the relevance of a
BCS superconductivity and of a BCS-BEC crossover
these materials.3–6 In particular, ARPES shows that belo
T* the gap opens around theM points of the Brillouin zone
@i.e., (6p,0),(0,6p)] suggesting thatT* can be interpreted
as a mean-field-like temperature where electrons star
form local pairs without phase coherence. However, it is a
found7 that belowT* , substantial portions of the Fermi su
face remain gapless. This behavior can be described ne
by BCS nor by Bose-Einstein condensation~BEC! schemes.
Instead, it is suggestive of strong pairing between the st
around theM points and of weak coupling near the zo
diagonals. Various other experiments8,9 carried belowTc
show a doping and temperature dependence of the gap
isotropy and therefore are again suggestive of a strong
isotropy in the pairing potential.

In this paper we explore a different direction~neither BCS
nor BEC! focusing on the consequences of a strongly an
tropic interaction. To this aim we introduce a two-gap mod
where strongly paired fermionic states can coexist and in
play with weakly coupled pairs in different regions of th
Fermi surface~FS!. This line of thinking was partly explored
in Refs. 5 and 6, where only the extreme strong-coupl
limit of one component was considered. In particular,
view of Ref. 6 would allow only the description of the ver
underdoped region of the cuprate phase diagram. Our
proach, instead, turns out to be sufficiently flexible to inv
tigate with continuity the evolution of the bifurcation~taking
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place around optimal doping in the real systems! between a
mean-field-like pairing temperatureT* and the coherence
superconducting temperatureTc . We implement our mode
by a two-band system with different intraband and interba
pairing interactions. One band has a large Fermi velocityvF
and a small attraction giving rise to largely overlapped Co
per pairs with weak superconducting fluctuations. On
contrary, the other band has a smallvF and a large attraction
resulting in tightly bound pairs having strong fluctuations.
variance from the models of mixed fermions and bosons,
keep the fermionic nature of both the weakly and stron
bound Cooper pairs.

A possible realization of a strongly momentum-depend
effective interaction in underdoped cuprates has been
posed in connection to the occurrence of a charge instab
for stripe formation.10,11 It was indeed suggested that th
tendency to spatial charge order~which evolves into a spin-
charge stripe phase by lowering the doping! gives rise to an
instability line. This lineTstripe

c (d) starts from a quantum
critical point ~QCP! at T50 near optimal doping and in
creases by lowering the doping. By approaching the insta
ity line the pairing is mediated by the strong attractive qu
sicritical stripe fluctuations, which affect the states on the
in a quite anisotropic way:

Veff~q,v!'Ũ2
V

k21uq2qcu22 igv
, ~1!

where Ũ is the residual repulsive interaction between t
quasiparticles,g is a damping parameter, andqc is the wave
vector of the stripe instability. The crucial parameterk2 is a
mass term proportional to the inverse square of the corr
tion length of charge orderjc

22 and provides a measure o
the distance from criticality. AtT50, in the overdoped re-
gime, k2 is linear in the doping deviation from the critica
concentrationk2}(d2dc). On the other hand, in the finite
temperature region abovedc , k2}T. In the underdoped re
gime, k2 vanishes approaching the instability lineTstripe

c (d)
R9295 ©2000 The American Physical Society
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and extends the singular potential to finite temperatures.
k2'0, the fermionic states around theM points are such tha
kF2kF8;qc and interact strongly. These are the so-cal
‘‘hot spots,’’12 they have a low dispersion, and possibly for
tightly bound local pairs giving rise to the pseudogaps be
T* *Tstripe

c (d). On the other hand, ‘‘cold’’ states in the arc
of FS around the zone diagonalsG2Y or G2X ~nodal
points! have larger dispersions and interact more wea
sinceVeff is now cut off byqc . In the underdoped regime
k2'0 at higher and higher temperatures by lowering
doping andVeff has a more dramatic effect. On the contra
in going to the optimum and the overdoped regionVeff is cut
off first by the temperature and then by the doping itself.
the states then interact more isotropically.

The two-gap model. Irrespective of the origin of the an
isotropy, in the presence of a strong momentum depende
both of ~i! the effective pairing interaction and~ii ! the Fermi
velocity, we must allow for enough freedom of the pairin
and of its fluctuations in order to capture the relevant phy
cal effects of the anisotropy. Following the above discuss
we introduce a simple two-band model for the cuprates.
describe the quasiparticle arcs of FS about the nodal po
by a free electron band~labeled below by the index 1! with a
large Fermi velocityvF15kF1 /m1 and the hot states abou
the M points with a second free electron band, displaced
momentum and in energy from the first, with a smallvF2
5kF2 /m2 ~see Fig. 1!.

The assumed electronic spectrum consists therefore
two different free electron dispersions,e1(p)5upu2/2m1 and
e2(p)5up2p0u2/2m21e0 , displaced by a momentump0
and by an energye0;EF1 introduced to allow the chemica
potential to cross both bands:EF15e01EF2 . To connect
our two-band structure with the single-band dispersion of
cuprates, we choosep05(6p,0),(0,6p).

This choice gives rise to two branches for band 2 alo
the x and y directions. Moreover, we only consider Coop
pairs of zero total momentum formed by time-reversed m
mentum eigenstates. Therefore, the 2-2 pairs are alw
formed by (k,2k) states on portions of band 2, symmet
cally located on opposite sides with respect to theG[(0,0)
point. If the pairs have as-wave symmetry, the branche
alongx andy of band 2 are equivalent and just one can
considered. On the other hand, in the case ofd-wave pairing,

FIG. 1. Sketch of the Fermi surface of underdoped cuprates
quasiparticle arcs~thick solid line!, and patches of quasilocalize
states~thick dotted line!, and the Fermi surface of the two-ban
spectrum~thin solid line!.
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the pairs in the branch alongx have a different phase from
the pairs in the branch alongy and both branches have to b
treated. Since in this paper our main interest is the interp
between strongly and weakly coupled pairs irrespective
their symmetry, for simplicity we consider thes-wave prob-
lem. The model Hamiltonian for pairing in the two-band sy
tem is taken to be

H5(
ks i

ekinks i1 (
kk8pi j

Vi j ~k,k8!ck81p↑ j
1 c2k8↓ j

1 c2k↓ ick1p↑ i ,

~2!

wherei and j run over the band indices 1 and 2 ands is the
spin index. The interaction is approximated by a BCS-li
attraction given by

Vi j ~k,k8!52gi j Q~v02uj i~k!u!Q~v02uj j~k8!u!, ~3!

with an energy cutoffv0 . The stronglyq-dependent effec-
tive interaction in the particle-particle channelVeff(q5k
2k8) of the original single-band system is accounted for
the 232 scattering matrixĝ. The matrix elementsgi j couple
the electrons within the same band (g11 and g22) and be-
tween different bands (g125g21). The self-consistency equa
tion for the superconducting fluctuation propagator13 in the

matrix form is given byL̂5ĝ1ĝP̂L̂, where the particle-
particle bubble operator for the two-band spectrum ha
diagonal 232 matrix form with elements)11(q) and
)22(q).14 The resulting fluctuation propagator is given by

L̂~q!5S g̃112)11~q! g̃12

g̃12 g̃222)22~q!
D 21

; ~4!

where we have definedg̃i j [(ĝ21) i j . It turns out to
be useful to define the temperaturesTc1

0 and Tc2
0

as g̃112)11(0,T)5g̃112r1ln(v0 /T)[r1ln(T/Tc1
0 ), g̃22

2)22(0,T)5g̃222r2ln(v0 /T)[r2ln(T/Tc2
0 ), where r i

5mi /(2p) is the density of states of theith band. In the
underdoped regime, to emulate the hot and cold points
lated, for instance, to the system near a stripe instability,
assume the following relations between thegi j elements:
g22.V/k2@g11.V/uqcu2.g12. Then, one hasg̃11.1/g11,
g̃22.1/g22, g̃12.2g12/(g11g22). In this limit, Tc1

0 and Tc2
0

~with Tc2
0 @Tc1

0 ) assume the value of the two BCS critic
temperatures for the two decoupled bands. The mean-
BCS superconducting critical temperature for the coup
systemTc

0 is defined by the equation detL̂21(q50,Tc
0)50.

We obtainTc
0.Tc2

0 , given by

Tc
05ATc1

0 Tc2
0 expF1

2Aln2S Tc2
0

Tc1
0 D 1

4g̃12
2

r1r2
G . ~5!

The Ginzburg-Landau approach. The role of fluctuations
can be investigated within a standard Ginzburg-Landau~GL!
scheme, when bothr2g22v0,EF2 and v0,EF2 . Under
these conditions the chemical potential is not affected s
nificantly by pairing. Moreover, in order to remain within th
GL approach, we will assume that fluctuations from the B
result are not too strong. The relevance of the space fluc
tions of the order parameter is assessed by the gradient
coefficienth, which provides the momentum dependence

th
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the fluctuation propagator in Eq.~4!. In particular, the expan
sion of the particle-particle bubbles, in terms ofq, reads
)11(q).)11(0)2r1h1q2 and )22(q).)22(0)2r2h2q2.
Here h i ( i 51,2) is the gradient term coefficient of theith
band width, in 2D and for a free electron band, is given
h i5„7z(3)/32p2

…vFi
2 /T2, with h1@h2 .15 In the absence o

the interband couplingg12, h1 provides the~large! gradient
term coefficient corresponding to~the weak! superconduct-
ing fluctuations for the band with a largevF1 , while ~the
small! h2 corresponds to~strong! superconducting fluctua
tions for band 2. For the coupled system nearTc

0, the coef-
ficient h in terms of h1 and h2 is obtained by evaluating
(L̂21) i j }(e1hq2) in terms of the relative temperature d
viation e[(T2Tc

0)/Tc
0. We get the expression

h5
r1~ g̃222)22!h11r2~ g̃112)11!h2

2T~ g̃222)22!d)11/dT2T~ g̃112)11!d)22/dT
,

~6!

where all the bubbles are evaluated atq50. Using the defi-
nitions for Tc1,2

0 and the condition detL̂21(q50,Tc
0)50, the

coefficienth can be explicitly written as

h5a1h11a2h2 , with
a1

a2

5
g̃12

2

r1r2ln2~Tc
0/Tc1

0 !
, ~7!

anda11a251. The presence of a fraction of electrons w
a large h1 increases the stiffness of the whole electro
system~i.e., increasesh with respect toh2). However, when
the mean-field critical temperatureTc

0 is much larger than
Tc1

0 the correction toh2 due to the interband coupling i
small. At the same time, the Ginzburg number is lar
enough to imply a sizable mass correctionde(T) to the
‘‘mass’’ e(T) of the bare propagatorL̂(q). The renormal-
ized critical temperatureTc

r , given by the equatione(Tc
r )

1de(Tc
r )50, is lower thanTc

0.16 By evaluating the renor-
malized gradient term coefficienth r in the presence of the
mass correction, we find that this is still given by Eq.~7!
with Tc

0 replaced byTc
r . Therefore,h r5h(Tc

r ) is greater
thanh(Tc

0). This result indicates that the mass renormali
tions of the fluctuation propagator tends to lowerTc and, at
the same time, increases the gradient term coefficienth by
increasing the coupling toh1 . As a consequence, the effe
tive Ginzburg number is reduced and the system is stabil
with respect to fluctuations, allowing for a coherent sup
conducting phase even in the limith2→0. Within the GL
approach, we associate the temperatureTc

0;Tc2
0 to the cross-

over temperatureT* and Tc
r to the superconducting critica

temperatureTc of the whole system. In the regionTc,T
,T* , the pseudogap is formed in band 2. Superconduc
fluctuations only affect band 2 while they are immaterial
band 1, where the Fermi surface is maintained until ph
coherence sets in. Within the stripe-QCP scenario, the c
pling g22 is related to the singular part of the effective inte
action mediated by the stripe fluctuations.g22 is the most
doping dependent coupling and attains its largest value in
underdoped regime, wherek2 vanishes at higher tempera
tures. The regular parts of the interactiong11 andg12, being
cut off by qc , are instead only weakly doping dependent.
y
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d
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g
r
e
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e

the region of validity of the GL approach, the explicit calc
lations show thatr (d)[(Tc

02Tc
r )/Tc

0.(T* 2Tc)/T* is in-
creasing by increasingg22, i.e., by decreasing doping. Fo
small values ofr, we find that bothT* andTc increase. This
regime corresponds to the overdoped and optimally do
region. Specifically, above optimum doping,g22 andg11 be-
come comparable and the two lines merge together. For
;0.2540.5, Tc is instead decreasing whileT* is always
increasing by decreasing doping. The large values or,
which are attained in the underdoped region, show that
are reaching the limit of validity of our GL approach. W
think, however, that the behavior of the bifurcation betwe
T* andTc represents correctly the physics of the pseudo
phase, while a quantitative description would require a m
sophisticated approach such as a RG analysis.

The strong-coupling limit. In the very low doping regime
whereT* has increased strongly, the value ofg22 can be so
large to drive the system in a strong coupling regime for
fermions in band 2 (r2g22v0.EF2). In this case, taking
v0.EF2 , the chemical potential is pulled below the botto
of band 2. In this limit of tightly bound 2-2 pairs, the prop
gator of the superconducting fluctuations in band 2, i
L22(q), assumes the form of a single pole for a boso
particle. SinceEF1 is still the largest energy scale in th
problem, the fermionic character of the particles in band 1
preserved. The critical temperature of the system is ag
obtained by the vanishing of detL̂21(q50) where, however,
the chemical potential is now self-consistently evaluated
cluding the self-energy corrections to the Green function
band 2 and the fermions left in band 1. One gets)22
5r2v0 /um2u and

Tc
05Tc1

0 expF g̃12
2

r1r2v0

um2uumBu

~ um2u2umBu!
G , ~8!

wherem2 is the chemical potential measured with respect
the bottom of band 2 andumBu5r2g22v0 represents the
bound-state energy. The calculation of)22 at smallq leads to
a finite value ofh251/(8m2um2u), while the small-q expan-
sion of detL̂21 provides the newh coefficient17

h5h11r1r2v0

g22
2

um2u
ln2~Tc

0/Tc1
0 !h2 . ~9!

In this strong-coupling case, most of the non-mean-field
fect has been taken into account by the formation of
bound state occurring at a very high temperature of the o
r2g22v0 , which provides the newT* in this regime.h
;h1 stays sizable and the fluctuations will not strongly fu
ther reduceTc

r with respect toTc
0: Tc.Tc

r .Tc
0. In this low-

doping regime (T* 2Tc) /T* approaches its largest value
beforeTc vanishes.

The strong coupling limit of our model shares some sim
larities as well as some important differences with pheno
enological models of interacting bosons and fermions.5,6 In
particular, in the model of Ref. 6, pairs of noninteractin
electrons are scattered from the Brillouin zone near the no
points into dispersionless boson states, localized about thM
points at an energyeB . The correspondence with our mod
can be seen by noticing that the tightly bound bosonic sta
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correspond tor2g22v0@EF2 andg1150. The tightly bound
dispersionless bosonic states are fully incoherent (h250),
while the fermionic states are unpaired as long as bosons
fermions are independent. The fermion-boson couplingg12
effectively introduces ane-e coupling of the order of
r1r2v0g12

2 /eB and drives the system to superconductivity.
this particular limiting case of our model, we recover t
results of Ref. 6 with an explicit expression for the boso
level eB5umu2umBu, while in Ref. 6 it is a free phenomeno
logical parameter.

Conclusions. In our paper we have analyzed the pairi
properties of the underdoped cuprates in terms of an ef
tive two-gap model, motivated by the strong anisotropy
the band dispersion and of the effecting pairing interacti
The crucial schematization was based on the introductio
two bands weakly coupled in order to preserve a substa
distinction between the superconducting order paramete
different regions of the momentum space. This has to
contrasted with more standard approaches producing
ro
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single gap~even with complicated momentum dependen!
and a common fluctuating order parameter all over the
Our approach allows for different fluctuation regimes f
pairs in differentk regions. According to our analysis, th
strongly bound pairs forming at high temperatureT* can
experience large fluctuations until the system is stabilized
the coupling with less bound BCS-like states, leading to
coherent superconducting state atTc,T* . Tc andT* merge
around or above optimum doping, whereg22, according to
our stripe scenario, becomes of the order ofg11. Our model
shares similarities with the fermion-boson models
cuprates5,6 to which it reduces in the strong-coupling lim
for g22@g11.0. The two-gap model considered here appl
to a much wider doping region and is more suitable to
scribe the crossover to the optimal and over-doped regi
where no preformed bound states are present and the s
conducting transition is quite similar to a standard BCS tr
sition.
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