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Various properties of underdoped superconducting cuprates, including the momentum-dependent pseudogap

opening, indicate a behavior which is neither BCS- nor Bose-Einstein conden@E@)— like. To explain

this issue we introduce a two-gap model. This model assumes an anisotropic pairing interaction among two
kinds of fermions with small and large Fermi velocities representing the quasiparticles nédrahe the

nodal points of the Fermi surface, respectively. We find that a gap forms neav theints resulting in
incoherent pairing due to strong fluctuations. Instead, the pairing near the nodal points sets in with phase
coherence at lower temperature. By tuning the momentum-dependent interaction, the model allows for a
continuous evolution from a pure BCS pairifig the overdoped and optimally doped reginte a mixed
boson-fermion picturéin the strongly underdoped regime

The underdoped cuprates are characterized by place around optimal doping in the real systg¢imstween a
pseudogap opening below a strong dopi® dependent mean-field-like pairing temperatur€* and the coherence
crossover temperatur@* (5), above the superconducting superconducting temperatufe. We implement our model
critical temperaturel(8). By decreasing the doping, the by a two-band system with different intraband and interband
temperaturél* increases, while the superconducting critical pairing interactions. One band has a large Fermi velagity
temperaturd . decreases until the insulating state is reachedand a small attraction giving rise to largely overlapped Coo-
The different behavior off* and T, as doping is varied, per pairs with weak superconducting fluctuations. On the
finds a counterpart in the different behavior of the coherenceontrary, the other band has a smaglland a large attraction
energy scale, obtained in Andreev reflection measurementsiesulting in tightly bound pairs having strong fluctuations. At
and the single-particle gap, observed both in angle-resolvedariance from the models of mixed fermions and bosons, we
photoemissiofARPES and in tunneling experimentsThis ~ keep the fermionic nature of both the weakly and strongly
has triggered a very active debate on the relevance of a nokound Cooper pairs.

BCS superconductivity and of a BCS-BEC crossover in A possible realization of a strongly momentum-dependent
these material®:® In particular, ARPES shows that below effective interaction in underdoped cuprates has been pro-
T* the gap opens around thé points of the Brillouin zone posed in connection to the occurrence of a charge instability
[i.e., (+ m,0),(0~ )] suggesting thaT* can be interpreted for stripe formationi®!* It was indeed suggested that the
as a mean-field-like temperature where electrons start teendency to spatial charge ordevhich evolves into a spin-
form local pairs without phase coherence. However, it is als¢harge stripe phase by lowering the dopigg/es rise to an
found’ that belowT*, substantial portions of the Fermi sur- instability line. This line Tgy,{8) starts from a quantum
face remain gapless. This behavior can be described neitheritical point (QCP at T=0 near optimal doping and in-

by BCS nor by Bose-Einstein condensati®EC) schemes. creases by lowering the doping. By approaching the instabil-
Instead, it is suggestive of strong pairing between the stataty line the pairing is mediated by the strong attractive qua-
around theM points and of weak coupling near the zone sicritical stripe fluctuations, which affect the states on the FS
diagonals. Various other experimehtscarried belowT, in a quite anisotropic way:

show a doping and temperature dependence of the gap an-

isotropy and therefore are again suggestive of a strong an- ~
isotropy in the pairing potential. Vei(Q,0)~U— 5 >

In this paper we explore a different directigmeither BCS k*+[q—q¢[*—iyw
nor BEQ focusing on the consequences of a strongly aniso- ~ . . )
tropic interaction. To this aim we introduce a two-gap model Where U is the residual repulsive interaction between the
where strongly paired fermionic states can coexist and interduasiparticlesy is a damping parameter, ang is the wave
play with weakly coupled pairs in different regions of the Vector of the strlpel instability. The crucial parameiéris a
Fermi surfacéFS). This line of thinking was partly explored Mass term proportional to the inverse square of the correla-
in Refs. 5 and 6, where only the extreme strong-couplindion length of charge ordef; > and provides a measure of
limit of one component was considered. In particular, thethe distance from criticality. AT=0, in the overdoped re-
view of Ref. 6 would allow only the description of the very gime, «? is linear in the doping deviation from the critical
underdoped region of the cuprate phase diagram. Our agoncentration<®ec(5— ;). On the other hand, in the finite-
proach, instead, turns out to be sufficiently flexible to investemperature region abowg, k?«T. In the underdoped re-
tigate with continuity the evolution of the bifurcatigtaking  gime, 2 vanishes approaching the instability Iiffétripe(é)
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M Y the pairs in the branch alonghave a different phase from
2 the pairs in the branch alongand both branches have to be

J‘ treated. Since in this paper our main interest is the interplay
between strongly and weakly coupled pairs irrespective of
their symmetry, for simplicity we consider ttsewave prob-

-\ 1 7' lem. The model Hamiltonian for pairing in the two-band sys-
2 2™, tem is taken to be
% -

o
S

+ +
H:; EiMkoi+ Vi (KK)Cyr 4 1€ ks 1jC—kiCkepii »
v KK’ pij
3]

X wherei andj run over the band indices 1 and 2 amds the

i

FIG. 1. Sketch of the Fermi surface of underdoped cuprates withSpln index. The interaction is approximated by a BCS-like

quasiparticle arcsthick solid ling, and patches of quasilocalized attraction given by
states(thick dotted ling, and the Fermi surface of the two-band Vij(k,k’)= _gij(wo_|§i(k)|)®(w0_|§j(k,)|)v 3

spectrum(thin solid line.
with an energy cutoffwy. The stronglyg-dependent effec-

and extends the singular potential to finite temperatures. Fdive interaction in the particle-particle chann®lg(q=k
k?~0, the fermionic states around thepoints are such that —k’) of the original single-band system is accounted for by
ke—ki~q. and interact strongly. These are the so-calledthe 2x2 scattering matrixy. The matrix elementg;; couple
“hot spots,”*? they have a low dispersion, and possibly form the electrons within the same bangd,{ and g,,) and be-
tightly bound local pairs giving rise to the pseudogaps belowween different bandsy,=g,,). The self-consistency equa-
T*=TSi,d 8). On the other hand, “cold” states in the arcs tion for the superconducting fluctuation propagzton the
of FS around the zone diagonald-Y or I'=X (nodal  matrix form is given byL=g+gIIL, where the particle-
pointg have larger dispersions and interact more weaklyparticle bubble operator for the two-band spectrum has a
since Vg is now cut off byq.. In the underdoped regime, diagonal 2<2 matrix form with elementsil;;(q) and
«?~0 at higher and higher temperatures by lowering thell,,(q).** The resulting fluctuation propagator is given by
doping andV; has a more dramatic effect. On the contrary, 3 _
in going to the optimum and the overdoped regdits is cut ~ 911~ 114(q) 912
off first by the temperature and then by the doping itself. All L(a)= T Too—TTs(q) ; (4)
the states then interact more isotropically. R

The two-gap modelrrespective of the origin of the an- where we have defined;=(g~%);;. It turns out to
isotropy, in the presence of a strong momentum dependendt® useful to define the tempera’ture‘l%ﬁ’l and ng
both of (i) the effective pairing interaction arn(d) the Fermi  as  Gy;—I111(0,T) =11~ p1In(wo/T)=p4In(T/ITS), o
velocity, we must allow for enough freedom of the pairing —I1,,(0,T) =G~ poIN(wo /T)=p,In(T/TS,), where p;
and of its fluctuations in order to capture the relevant physi—m,/(2x) is the density of states of thigh band. In the
cal effects of the anisotropy. Following the above discussioninderdoped regime, to emulate the hot and cold points re-
we introduce a simple two-band model for the cuprates. Weated, for instance, to the system near a stripe instability, we
describe the quasiparticle arcs of FS about the nodal poinigssume the following relations between th elements:
by a free electron bandabeled below by the index) With a  g,,~V/«?>g;;~V/|g.|?*~g1,. Then, one hag;;~1/g;;,
large Fermi velocityvgy=kg;/m; and the hot states about G, ~1/g,,, G0~ —g15/(g1192,). In this limit, T andTY,

the M points with a second free electron band, displaced inyjth T9,>7%) assume the value of the two BCS critical

. . . C
momentum and in energy from the first, with a sma&b  (emperatures for the two decoupled bands. The mean-field
=kg,/m, (see Fig. L

RS 4 electroni ‘ ists theref BCS superconducting critical temperature for the coupled
e assumed electronic spectrum consists therefore 0 . ; P lq— 0 T0) —
two different free electron dispersions,(p) =|p|%/2m,; and %fystemTc is defined by the equation det(q=0,Tc)=0.

e2(p)=|p—pol?/2m,+ €, displaced by a momenturp, We obtainT;>Tc,, given by
and by an energy,~ Eg, introduced to allow the chemical 1 0 15
potential to cross both band&g;=¢ey+Eg,. To connect 0_ /400 _\/ 2| _c2| Y12
our two-band structure with the single-band dispersion of the Te=VTerTez ex;{ 2 In ( 21) * p1P2
cuprates, we choosg = (= 7,0),(0x ).

This choice gives rise to two branches for band 2 along The Ginzburg-Landau approacfihe role of fluctuations
the x andy directions. Moreover, we only consider Cooper can be investigated within a standard Ginzburg-Lan@zlu)
pairs of zero total momentum formed by time-reversed moscheme, when both,g,,09<Er, and wg<Eg,. Under
mentum eigenstates. Therefore, the 2-2 pairs are alwaybese conditions the chemical potential is not affected sig-
formed by k,—k) states on portions of band 2, symmetri- nificantly by pairing. Moreover, in order to remain within the
cally located on opposite sides with respect to ke (0,0)  GL approach, we will assume that fluctuations from the BCS
point. If the pairs have &wave symmetry, the branches result are not too strong. The relevance of the space fluctua-
alongx andy of band 2 are equivalent and just one can betions of the order parameter is assessed by the gradient term
considered. On the other hand, in the casd-afave pairing, coefficient, which provides the momentum dependence of

-1

. (5)
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the fluctuation propagator in E@). In particular, the expan-
sion of the particle-particle bubbles, in terms @f reads

11(q)=14(0)— p17:G* and I,(q)=I,x(0)~ p,7,G°.
Here n; (i=1,2) is the gradient term coefficient of thih
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the region of validity of the GL approach, the explicit calcu-
lations show thar (8)=(T2—T5)/To=(T* —T,)/T* is in-
creasing by increasing,,, i.e., by decreasing doping. For
small values of, we find that botiT* and T, increase. This

band width, in 2D and for a free electron band, is given byregime corresponds to the overdoped and optimally doped

7i=(7£(3)13272)v ;I T?, with 7,5 7,.° In the absence of
the interband coupling,,, 7, provides the(large gradient
term coefficient corresponding tithe wealk superconduct-
ing fluctuations for the band with a large-;, while (the
smal) 7, corresponds tdstrong superconducting fluctua-
tions for band 2. For the coupled system n@@r the coef-
ficient » in terms of », and 7, is obtained by evaluating
(Lfl)ijoc(e+ 79°) in terms of the relative temperature de-
viation e=(T—TY)/TY. We get the expression

_ p1(920— 20 71+ p2(911— 110 72
~T(Gap— o)Al /dT—T(Gyy— 1119)dl /AT’ .
6
where all the bubbles are evaluatedyat 0. Using the defi-

nitions for T, , and the condition dét~%(q=0,T%) =0, the
coefficient» can be explicitly written as

n

o 92
with —=——2—— (7)
a;  p1paIn(Te/Tey)

n=aintarn;,

region. Specifically, above optimum dopirgy,, andg,4 be-
come comparable and the two lines merge together.rFor
~0.25+0.5, T, is instead decreasing whil€* is always
increasing by decreasing doping. The large valuesr,of
which are attained in the underdoped region, show that we
are reaching the limit of validity of our GL approach. We
think, however, that the behavior of the bifurcation between
T* andT, represents correctly the physics of the pseudogap
phase, while a quantitative description would require a more
sophisticated approach such as a RG analysis.

The strong-coupling limitin the very low doping regime,
whereT* has increased strongly, the valuegyf can be so
large to drive the system in a strong coupling regime for the
fermions in band 2 §,9,,00>Eg,). In this case, taking
wo>Ep,, the chemical potential is pulled below the bottom
of band 2. In this limit of tightly bound 2-2 pairs, the propa-
gator of the superconducting fluctuations in band 2, i.e.,
L,»(q), assumes the form of a single pole for a bosonic
particle. SinceEg, is still the largest energy scale in the
problem, the fermionic character of the particles in band 1 is
preserved. The critical temperature of the system is again

obtained by the vanishing of dfefl(q=0) where, however,

anda; + a,=1. The presence of a fraction of electrons with the chemical potential is now self-consistently evaluated in-
a large 7, increases the stiffness of the whole electroniccluding the self-energy corrections to the Green function in

system(i.e., increases with respect top,). However, when
the mean-field critical temperatufég is much larger than
T(c’1 the correction ton, due to the interband coupling is

small. At the same time, the Ginzburg number is large

enough to imply a sizable mass correctioe(T) to the
“mass” €(T) of the bare propagatdr(q). The renormal-
ized critical temperaturd;, given by the equatiore(Ty)
+6e(Th)=0, is lower thanT?.® By evaluating the renor-
malized gradient term coefficienj’ in the presence of the
mass correction, we find that this is still given by E@)
with TO replaced byT.. Therefore,7" = 7(T.) is greater

band 2 and the fermions left in band 1. One géts,
=powo!| u,| and

?ﬁz |M2||MB|
P1P2wWo (|M2| - |MB|)

; ®

To= Tglexr{

whereu, is the chemical potential measured with respect to
the bottom of band 2 andiug|=p,9..0, represents the
bound-state energy. The calculationlbf, at smallq leads to

a finite value ofy,=1/(8m,|u,|), while the smallg expan-
sion of detL ~* provides the newy coefficient’

than n(TS). This result indicates that the mass renormaliza-

tions of the fluctuation propagator tends to lowierand, at
the same time, increases the gradient term coefficiehy
increasing the coupling tg,. As a consequence, the effec-

2

922 0,0
7=+ prpavor - IN*(TQ/Tey) 72

9
ol

tive Ginzburg number is reduced and the system is stabilizeth this strong-coupling case, most of the non-mean-field ef-
with respect to fluctuations, allowing for a coherent superfect has been taken into account by the formation of the

conducting phase even in the limi,b—0. Within the GL
approach, we associate the temperafiffe T, to the cross-
over temperatur@* and T}, to the superconducting critical
temperatureT, of the whole system. In the region.<T

bound state occurring at a very high temperature of the order
p202wg, Which provides the newl* in this regime. n

~ n, stays sizable and the fluctuations will not strongly fur-
ther reduceT’, with respect toTY: T,=TL=TY. In this low-

<T*, the pseudogap is formed in band 2. Superconductingloping regime T* —T.) /T* approaches its largest values

fluctuations only affect band 2 while they are immaterial forbefore T, vanishes.

band 1, where the Fermi surface is maintained until phase The strong coupling limit of our model shares some simi-
coherence sets in. Within the stripe-QCP scenario, the couarities as well as some important differences with phenom-

pling g», is related to the singular part of the effective inter-

action mediated by the stripe fluctuations., is the most

enological models of interacting bosons and fermidhn
particular, in the model of Ref. 6, pairs of noninteracting

doping dependent coupling and attains its largest value in thelectrons are scattered from the Brillouin zone near the nodal

underdoped regime, where? vanishes at higher tempera-
tures. The regular parts of the interaction andgq,, being

points into dispersionless boson states, localized aboWlthe
points at an energyg. The correspondence with our model

cut off by g, are instead only weakly doping dependent. Incan be seen by noticing that the tightly bound bosonic states
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correspond t@,g,,w0>Eg, andg,;=0. The tightly bound single gap(even with complicated momentum dependence
dispersionless bosonic states are fully incoherept=0),  and a common fluctuating order parameter all over the FS.
while the fermionic states are unpaired as long as bosons arfdur approach allows for different fluctuation regimes for
fermions are independent. The fermion-boson couptipg  Pairs in differentk regions. According to our analysis, the
effectively introduces ane-e coupling of the order of Strongly bound pairs forming at high temperatdré can
p1p2w0d54 €5 and drives the system to superconductivity. In €XPerience large fluctuations until the system is stabilized by
this particular limiting case of our model, we recover thethe coupling with less bound BCS'I',lfe states, I*eadlng o a
results of Ref. 6 with an explicit expression for the bosoniccONerent superconducting statéfgeT*. T andT* merge

] o g _around or above optimum doping, whegg,, according to
:g‘ég;Ber’;ant’e‘rBL while in Ref. 6 itis a free phenomeno our stripe scenario, becomes of the ordeggf. Our model

Conclusions In our paber we have analvzed the oairin shares similarities with the fermion-boson models for
; pap haly PaINNG ¢ hrate&® to which it reduces in the strong-coupling limit
properties of the underdoped cuprates in terms of an effec:

tive two-gap model, motivated by the strong anisotropy of or 922>gﬁ1:% Tr(;e t\_lvo-gap_modeldc_onsmered herbel appl&es
the band dispersion and of the effecting pairing interactionto a much wider doping region and is more suitable to de-
scribe the crossover to the optimal and over-doped regime,

The crucial schematization was based on the introduction o?

two bands weakly coupled in order to preserve a substantiz\i’vhere no preformed bound states are present and the super-

S . .conducting transition is quite similar to a standard BCS tran-

distinction between the superconducting order parameter if...
) . . sition.

different regions of the momentum space. This has to bé

contrasted with more standard approaches producing one We acknowledge S. Caprara for helpful discussions.
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