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Antiferromagnetism and d-wave superconductivity in cuprates: A cluster dynamical
mean-field theory
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We present an approach to investigate the interplay of antiferromagnetism andd-wave superconductivity in
the two-dimensional Hubbard model within a numerically exact cluster dynamical mean-field approximation.
Self-consistent solutions with two nonzero order parameters exist in a wide range of doping level and tem-
peratures. A linearized equation for the energy spectrum near the Fermi level has been solved. The resulting
d-wave gap has the correct magnitude andk dependence, but some distortion compared to the puredx22y2

superconducting order parameter due to the presence of underlying antiferromagnetic ordering.
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A microscopic theory of high-temperature supercondu
ing cuprates ~HTSC’s! is still far from the final
understanding.1–3 One of the most important recent expe
mental achievements was the discovery of the pseudo
~PG! phenomenon above superconducting transit
temperatures4 and the existence of a sharp 41 meV resona
below Tc related with some collective antiferromagne
excitations.5 Recent neutron-scattering experiments6 provide
insight for the interesting problem on the origin of a conde
sation energy. Interplay of an antiferromagnetism~AFM!
andd-wave superconductivity (d-SC) in cuprates could be
natural way of discussing different HTSC phenomena. T
requires a quantitative electronic structure theory includ
two different types of the order parameters: AFM andd-SC.
Within such an approach one can in principle analyze
phase diagram of HTSC compounds and resolve the lo
standing problem of competition between antiferroma
netism andd-wave superconductivity in cuprates.7,8

A standard theoretical tool for cuprates electronic str
ture consists of the two-dimensional~2D! Hubbard model.1

The importance of including the realistic tight-binding spe
trum obtained from the local-density approximation~LDA !
band structure analyses9 was realized during the last year
Unfortunately, a most accurate quantum Monte-Ca
~QMC! simulation of a hole-doped 2D Hubbard model h
difficulty in describing an interesting part of the HTSC pha
diagram near 15% doping at the low temperature due t
so-called sign problem.10 The perturbation theory ofd-SC
~Ref. 11! ignores the vertex corrections in the strong cor
lation case of HTSC. Great progress in the theory of
interacting fermions results from the developing of the d
namical mean-field theory.12,13 While the antiferromagnetic
phase is easy to incorporate in the single-site dynam
mean-field theory~DMFT! approach,13 thed-wave supercon-
ductivity requires a cluster generalization of the DMFT. D
ferent cluster-DMFT schemes have been proposed13,14 and
the recent application to the problem of the pseudogap
HTSC15 has shown the efficiency of the cluster-DMFT a
proach. The investigation of a paramagnetic phase for
two-dimensional Hubbard model can be simplified using
translational symmetry,14 while the problem of a coexistenc
of AFM and d-SC demands a broken-symmetry cluster c
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culation. It is equivalent to a multiorbital DMFT approach16

and could be solved within the QMC method.17

In this paper we investigate the problem of antiferroma
netism andd-wave superconductivity in the two-dimension
Hubbard model using a cluster DMFT scheme.

The minimal cluster which allow us to study both AFM
andd-SC order parameters on an equal footing consists
232 system in the effective DMFT medium~Fig. 1!. We
start with the extended-hopping Hubbard model on
square lattice:

H5(
i j

t i j cis
1 cj s1(

i
Uini↑ni↓ ,

wheret i j is an effective hopping andUi local Coulomb in-
teractions. We chose nearest-neighbor hoppingt50.25 eV
and the next-nearest hoppingt8/t520.15 for the model of
La22xSrxCuO4.9 The total band width isW52 eV and all
Coulomb parameters set to beU51.2 eV (U/W50.6). Let
us introduce the ‘‘supersite’’ as a 232 square plaquet. The
numeration of the atoms in the supersite is shown in Fig
It is useful to introduce the superspinorCi

15$cia
1 %, where

FIG. 1. ~a! A schematic representation of an antiferromagnetid
wave 232 periodically repeated cluster;~b! a generic phase dia
gram of HTSC materials;~c! the calculated values of two orde
parameters: local magnetic momentM andd-SC equal time Green
function F01(t50)[F(0) for different hole doping~x! at the in-
verse temperatureb560 eV21 (T5190 K).
R9283 ©2000 The American Physical Society
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a50,1,2,3~the spin indices are not shown!. Taking into ac-
count the spin degrees of freedom, this is the eig
component superspinor creation operator. Then the cry
Green function for the Hubbard model can be rewritten a

G~k,iv!5@ iv1m2h~k,iv!#21,

whereh(k,iv) is the effective hopping supermatrix with th
self-energy corrections andm is the chemical potential. Fo
simplicity we will write all the formulas in the neares
neighbor approximations:

h~k,iv!5S S0 txKx
1 0 tyKy

1

tx* Kx
2 S0 tyKy

1 0

0 ty* Kx
2 S0 tx* Kx

2

ty* Ky
2 0 txKx

1 S0

D , ~1!

where Kx(y)
6 511exp(6ikx(y)a), a is the lattice constant, an

each element is 232 matrix in the spin space. Within th
cluster-DMFT approach we introduce intra-atomic se
energyS0 and interatomic self-energiesSx ,Sy , and both
functions are of the intrasite nature in the sense of our su
site:

S~ iv!5S S0 Sx 0 Sy

Sx* S0 Sy 0

0 Sy* S0 Sx*

Sy* 0 Sx S0

D .

The effective Hamiltonian defined through the translationa
invariant~k dependent! self-energy corresponds to the reno
malized energy dependent hoppings:tx5t1Sx ,ty5t1Sy .
The functions S0( iv),Sx( iv),Sy( iv) are found self-
consistently within the cluster DMFT scheme13 and for the
d-wave superconduction stateSxÞSy . It is straightforward
to generalize this scheme for a next-nearest-neighbor h
ping as well as the long-range Green function and the s
energy. In this case we can renormalize also the seco
nearest hopping:txy5t81Sxy for the 232 cluster, where
Sxy ~or S02) is the nonlocal self-energy in thexy direction.

In the cluster version of the DMFT scheme,13 or dynami-
cal cluster approximation~DCA!,14 one can write the matrix
equation for a so-called bath Green-function matrixG which
describes an effective interaction with the rest of crystal:

G 21~ iv!5G21~ iv!1S~ iv!,

where the local cluster Green-function matrix is equal
Gab( iv)5(kGab(k,iv), and summation is run over th
Brillouin zone of the square lattice. Note that in Eq.~1! we
use translationally invariant self-energy obtained from
cluster DMFT similar to the DCA scheme.14 The present
‘‘matrix’’ form of a cluster DMFT with the self-energy
which is not periodic inside the cluster allows us to stud
multicomponent ordered state.

In this case we have the standard DMFT problem w
four ‘‘orbital’’ states per supersite. It is solved by the mu
tiorbital QMC technique.17 We use the generalized Namb
technique18 to analyze the coexistence of the magnetic ord
ing and superconductivity. Let us introduce the superspin
t-
tal
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C i
1~t![~c1i

1 ,c2i
1 ,c3i

1 ,c4i
1!5~ci↑

1 ,ci↓
1 ,ci↑ ,ci↓!

and the anomalous averages describing the~collinear! anti-
ferromagnetism ^ci↑

1cj↓& and the superconductivityD i j

5^ci↓cj↑&.
The generalization of the Hirsch-Fye QMC algorithm19

for the superconducting problem20 has been used. In th
four-spinor case a discrete Hubbard-Stratonovich trans
mation has the following form:

expF2DtUini↑ni↓1
DtUi

2
~ni↑1ni↓!G

5
1

2 (
s561

exp@l is~c1i
1c1i2c2i

1c2i

2c3i
1c3i1c4i

1c4i !#,

wherel i5
1
2 arccosh@exp(12DtUi)#.

Since we take into account only the singlet pairing, the
are the following nonzero elements of thed-SC energy gap
parameters:D5D0152D125D2352D30. One can chose
D i j to be real and therefore symmetric:D i j 5D j i . Separating
normal and anomalous parts of the Green function we h

G~k,t,t8!5S G~k,t,t8! F~k,t,t8!

F1~k,t,t8! 2G~2k,t8,t!
D ,

where G(k,t,t8)52^TtCk(t)Ck
1(t8)&, F(k,t,t8)

52^TtCk(t)C2k(t8)& are the matrices in spin and ‘‘or
bital’’ space. It is convenient to expand the anomalous Gr
function in Pauli matricesF5(F01Fs) isy and use the
symmetry properties:21

F0~k,t,t8!5F0~2k,t8,t!

F~k,t,t8!52F~2k,t8,t!.

Then a 434 spinor formalism is reduced to a 232 one in
the collinear antiferromagnetic case with thed-wave super-
conductivity with the following spin-matrix form of the loca
Green function for the supersite:

G~t,t8!5S G↑~t,t8! F~t,t8!

F~t,t8! 2G↓~t8,t!
D ,

and the QMC formalism for the antiferromagnetic superco
ducting state is equivalent to the previous nonmagn
one.20 Using the discretization of the@0,b# interval with
L-time slices:Dt5b/L (b51/T is an inverse temperature!
the Gs- andF- Green functions become the matrices of t
2NL dimension, whereN is the number of atoms in the
cluster. After Fourier transform to the Matsubara frequenc
the Green-function matrix has the following form:

G~ iv!5S G↑~ iv! F~ iv!

F~ iv! 2G↓* ~ iv!
D .

In superconducting states the self-energy is defined as13

G 21~ iv!2G21~ iv!5S S↑~ iv! S~ iv!

S~ iv! 2S↓* ~ iv!
D ,
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and the inverse crystal Green-function matrix is equal to

G21~k,iv!5S iv1m2h~k,iv! s~k,iv!

s~k,iv! iv2m1h* ~k,iv!
D ,

wheres(k,iv) is the translationally invariant anomalous pa
of the self-energyS( iv) similar to Eq.~1!.

The two-component order-parameters state which
cludes the Neel antiferromagnetism andd-wave supercon-
ductivity @Fig. 1~a!# lowered the symmetry of the effectiv
cluster-DMFT problem. A self-consistent DMFT clust
problem with AFM andd-SC general order parameters ha
been solved within the QMC scheme for the 838 matrix
Green function withL564 time slices. The resulting two
order parameters forb560 eV21 (T5190 K) andt850
are presented in Fig. 1~c! together with the generic HTSC
phase diagram@Fig. 1~b!# as a function of the hole doping. I
this case the ordered magnetic moment is directly rela
with imaginary time Green functionGs(t): M5G↑

00(0)
2G↓

00(0), and for thed-SC order parameter we chose a po
tive value of superconducting imaginary time Green funct
F01(0). It is important that we find no serious sign proble
for all QMC calculations with various doping levels, pro
ably due to ‘‘stabilized’’ antiferromagnetic dynamical mea
fields acting on the atoms in our 232 cluster. Note that the
AFM cluster-DMFT solution exists for a much higher do
ing concentration than the experimental AFM ordered s
and describes a dynamical mean-field version of AFM-s
fluctuations related to pseudogap phenomena@the PG region
in Fig. 1~b!#. The maximum of thed-SC order paramete
corresponds to the doping level of about 15% in agreem
with the generic HTSC phase diagram. Thed-SC order pa-
rameter is zero close to the undoped region (x50), due to
the presence of a large AFM gap. When the AFM gap
closed (x;5%) thed-SC states develop, but forx.20%,
the d gap decreases again since the AFM spin fluctuati
around the (p,p) point disappear.2 The precise characteris
tic of the phase diagram including the interactions betw
the AFM and d-SC order parameters demands extens
cluster-DMFT calculations for the different temperatures a
doping.

We would like to note that the existence of thed-SC
cluster-DMFT solution for such high temperature does
necessarily mean that the superconducting transition t
perature is larger than 190 K in our model. A crude estim
tion shows that thed-SC solution disappears atT5300 K
for x50.15 and the AFM solutions forx50 become un-
stable at the temperature just above 1000 K. This could
the sign of a ‘‘local’’ AFM solution and a locald-wave so-
lution, like local moments in magnetic systems.22 Due to a
multiscale nature of the problem under consideration
essentially different energies connected with local mom
formation, long-range magnetic order, locald-wave pairs
within the 232 plaquet, and finally coheren
superconductivity—it is difficult to distinguish a real long
range ordering from slow dynamical fluctuations in o
QMC simulations. We plan to separate these energy sc
analytically and estimate superconductiong transition te
perature in a future publication.

The role of next-nearest hopping is to lower the van Ho
singularity9 which increases the density of state at the Fe
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level for the hole-doped case and favors thed-SC solution
for a moderate correlation strength. There is also a chang
the spin-fluctuation spectrum related with the broadening
the AFM peak near the (p,p) point due to the formation of
so-called extended van Hove singularities with increaset8.
We show one of the AFMd-SC solutions in Fig. 2 with the
next-nearest-neighbor hopping for the 10% doping level a
b550 eV21. The resulting local magnetic moment isM
50.28mB and thed-SC order parameterF(0)50.036. One
can see that the superconduction order parameter is real
the dx22y2 symmetry since diagonal elements (F00) as well
as the next-nearest-neighbor elements (F02) are all equal to
zero, and only the nearest-neighbor superconducting G
functions (F01) are nonzero and change the sign forFx and

FIG. 3. The absolute value of thed-wave gap function at the
Fermi surface forx50.15, t850, andb550 eV21.

FIG. 2. The imaginary time normal (Gs) and superconducting
(F). Green functions for the 232 cluster-DMFT solution with
second-nearest-neighbor hopping and inverse temperatureb
550 eV21 (T5230 K).
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Fy components. The normal local Green function (G00)
~plotted for the spin-up atom in Fig. 2! as well as (G02) are
spin split, while the nearest-neighbor Green function (G01)
has no spin splitting due to AFM spin symmetry~see Fig. 1!.
The absence of magnetic polarization in the nondiagonaG
function along thex(y) directions suppresses the magne
pair breaking and makes the AFMd-SC coexistence pos
sible.

In order to find the superconducting energy gap we sol
a linearized equation for energy spectrum, assuming tha
characteristic energy scale ofSs( iv) and S( iv) are larger
than the SC gapD( iv). In this case we can perform analyt
cal energy continuations and the generalized equation for
energy spectrum has the simple form:

det~H2EO!50,

where H5t(k)1S(0)2m, O512S8(0), and S(0)
5*0

bS(t)dt,S8(0)5*0
btS(t)dt. Note that S(0) and

S8(0) in this expression should also be translationally
variant. We solve the linearized equation for energy sp
trum ~for t850 andb550) and obtain the superconductin
energy gap at the Fermi surface~Fig. 3!. The topology of the
Fermi surface was defined as the zero-energy contour fo
et
d
he

he

-
c-

he

energy spectrum with all theF Green functions set to be
zero. It is clear that the symmetry of thed-wave state is not
pure dx22y2 due to the underlying AFM states. This als
means that thed-SC order could lower the symmetry of th
AFM Neel state, and more general noncollinear magne
states need to be investigated. Nevertheless the gap fun
has a maximum near the (p,0) and (0,p) points and is al-
most zero near the (p/2,p/2) point. A magnitude of the
maximum superconducting gap is of the order of 15 meV
good agreement with experimental estimates,4 and much
smaller then the AFM gap for undoped case.

In conclusion, we present a nonperturbative analysis
the interplay between antiferromagnetism andd-wave super-
conductivity in the cluster dynamical mean-field theory f
the Hubbard model. The maximum of the local magne
moment corresponds to the half-filled case where the su
conducting order parameter is vanished in contrast to
spin-fluctuation approach. We give a transparent physical
planation for a coexistence of the developedd-SC pairing
with local AFM fluctuations at moderate doping.

We thank Gabi Kotliar, Antoine Georges, and Yu
Izyumov for helpful discussion.
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