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Antiferromagnetism and d-wave superconductivity in cuprates: A cluster dynamical
mean-field theory
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We present an approach to investigate the interplay of antiferromagnetisthvaade superconductivity in
the two-dimensional Hubbard model within a numerically exact cluster dynamical mean-field approximation.
Self-consistent solutions with two nonzero order parameters exist in a wide range of doping level and tem-
peratures. A linearized equation for the energy spectrum near the Fermi level has been solved. The resulting
d-wave gap has the correct magnitude andependence, but some distortion compared to the gyre,.
superconducting order parameter due to the presence of underlying antiferromagnetic ordering.

A microscopic theory of high-temperature superconduct-culation. It is equivalent to a multiorbital DMFT approath
ing cuprates (HTSC's is still far from the final and could be solved within the QMC methdd.
understanding=> One of the most important recent experi-  In this paper we investigate the problem of antiferromag-
mental achievements was the discovery of the pseudogapetism andd-wave superconductivity in the two-dimensional
(PG phenomenon above superconducting transitiorHubbard model using a cluster DMFT scheme.
temperaturesand the existence of a sharp 41 meV resonance The minimal cluster which allow us to study both AFM
below T, related with some collective antiferromagnetic andd-SC order parameters on an equal footing consists of a
excitations: Recent neutron-scattering experim@misovide  2x2 system in the effective DMFT mediulfirig. 1). We
insight for the interesting problem on the origin of a conden-start with the extended-hopping Hubbard model on the
sation energy. Interplay of an antiferromagneti$&FM) square lattice:
andd-wave superconductivityd-SC) in cuprates could be a
natural way of discussing different HTSC phenomena. This
requires a quantitative electronic structure theory including
two different types of the order parameters: AFM ah&C. ] ) . )
Within such an approach one can in principle analyze thavheret;; is an effective hopping and; local Coulomb in-
phase diagram of HTSC compounds and resolve the longeractions. We chose nearest-neighbor hoppin@.25 eV
standing problem of competition between antiferromag-2nd the next-nearest hoppingt=—0.15 for the model of
netism andd-wave superconductivity in cupraté§. La,_,SKCu0,.° The total band width isV=2 eV and all

A standard theoretical tool for cuprates electronic struc-Coulomb parameters set to be=1.2 eV (U/W=0.6). Let
ture consists of the two-dimension@D) Hubbard modet. ~ Us introduce the “supersite” as ax2 square plaquet. The
The importance of including the realistic tight-binding spec-numeration of the atoms in the supersite is shown in Fig. 1.
trum obtained from the local-density approximatitDA) It is useful to introduce the superspinG;” ={c;’,}, where
band structure analysewas realized during the last years.
Unfortunately, a most accurate quantum Monte-CarIo(}3 2(}--0 O--O0— w

H:; tijcitrcj(r_'—Ei Uinmnil,

(QMC) simulation of a hole-doped 2D Hubbard model has @ | o (b)
difficulty in describing an interesting part of the HTSC phase QO Ay Q 200 N
diagram near 15% doping at the low temperature due to ¢ IDMFT. pa
so-called sign problertf. The perturbation theory of-SC d) (}) (;) i

(Ref. 11) ignores the vertex corrections in the strong corre-

lation case of HTSC. Great progress in the theory of the

interacting fermions results from the developing of the dy- (.J Q O M) KO)
namical mean-field theor?*® While the antiferromagnetic o 17
phase is easy to incorporate in the single-site dynamica(D —Q) 02 Jooe
mean-field theoryDMFT) approach? the d-wave supercon-

ductivity requires a cluster generalization of the DMFT. Dif- (§ >—0) Al o

ferent cluster-DMFT schemes have been propbsédand
the recent application to the problem of the pseudogap in FiG. 1. (a) A schematic representation of an antiferromagnetic
HTSC' has shown the efficiency of the cluster-DMFT ap- wave 2x2 periodically repeated clustefb) a generic phase dia-
proach. The investigation of a paramagnetic phase for thgram of HTSC materialstc) the calculated values of two order
two-dimensional Hubbard model can be simplified using aparameters: local magnetic momevitand d-SC equal time Green
translational symmetr} while the problem of a coexistence function F%(7=0)=F(0) for different hole dopingx) at the in-
of AFM and d-SC demands a broken-symmetry cluster cal-verse temperatur8=60 eV ! (T=190 K).

0163-1829/2000/624)/92834)/$15.00 PRB 62 R9283 ©2000 The American Physical Society



RAPID COMMUNICATIONS

R9284 A. I. LICHTENSTEIN AND M. I. KATSNELSON PRB 62

a=0,1,2,3(the spin indices are not shoyrTaking into ac- V=g v s -lﬁi):(cﬁ ‘Ci+L ,Ci1,Ci))
count the spin degrees of freedom, this is the eight- o . .
component superspinor creation operator. Then the cryst@nd the anomalous averages describing(tudlineay anti-
Green function for the Hubbard model can be rewritten as fezromag)netism(cﬁcm and the superconductivityA;;
=(CjCj1)-
Gk,iw)=[io+u—h(k,iw)] % Thle”generalization of the Hirsch-Fye QMC algorittim
for the superconducting probléfhhas been used. In the

whereh(k,iw) is the effective hopping supermatrix with the ¢, spinor case a discrete Hubbard-Stratonovich transfor-
self-energy corrections and is the chemical potential. For ,5tion has the following form:

simplicity we will write all the formulas in the nearest-

neighbor approximations: A7U,
ex _ATUiniTnii‘F T(nm‘f'nii)
S0 tK; 0 tKy
K tKS 0 1
hikjiw)=| = *20_ SR PR () =3 0:211 exi N (41— Y3 ¥
0 K, 3 trK,
K, 0 tKS 3, — s+ a1,

where Kf(y)z 1+exp(+ikyy)a), ais the lattice constant, and wherex;= sarccoshexpGA7U)].

each element is 2 matrix in the spin space. Within the Since we take into account only the singlet pairing, there
cluster-DMFT approach we introduce intra-atomic self-are the following nonzero elements of tHeSC energy gap
energy>, and interatomic self-energies, %, , and both parametersA=Ay=—A;;=Az=—A3z. One can chose
functions are of the intrasite nature in the sense of our suped;; to be real and therefore symmetrik;; =A;; . Separating

site: normal and anomalous parts of the Green function we have

20 2 0 %, G(k,7,7") F(k,7,7")
. G(k,7,7")=| _. , , ,

EX 20 Ey 0 F (kiTlT) _G(_leyT)

S(iw)= .
()=l ¢ s3I where  G(k,7,7)=—(T.C(nC; (+))),  F(k,77')

¥ 0 03, 3, =—(T,C(7)C_y(7")) are the matrices in spin and “or-

y X

bital” space. It is convenient to expand the anomalous Green
The effective Hamiltonian defined through the translationallyfunction in Pauli matricesF =(F°+ Fo)ioY and use the
invariant(k dependentself-energy corresponds to the renor- symmetry propertie$!
malized energy dependent hoppings=t+2,,ty=t+2,.

The functions Sg(iw),24(iw),%,(iw) are found self- Fo(k,7,7")=F°%(—k,7',7)
consistently within the cluster DMFT schefiand for the ) )
d-wave superconduction stals # 3, . It is straightforward F(k,7,7")=—-F(=k,7",7).

to generalize this scheme for a next-nearest-neighbor hoﬂ'hen a 44 spinor formalism is reduced to ax2 one in

ping as well as the long-range Green function and the Seh:gwe collinear antiferromagnetic case with ttavave super-

energy. In this case we can renormalize also the seconqs,q,ctivity with the following spin-matrix form of the local
nearest hoppingt,,=t’'+2,, for the 2x2 cluster, where Green function for the supersite:

2,y (Or 39) is the nonlocal self-energy in they direction.

In the cluster version of the DMFT schertiegr dynami- Gi(r7) F(r7)
cal cluster approximatiofDCA),* one can write the matrix G(7,7)= , , ,
equation for a so-called bath Green-function ma@iwhich F(r,7)  —Gi(',7)
describes an effective interaction with the rest of Crystal: and the QMC formalism for the antiferromagnetic supercon-

1 Ly ] ducting state is equivalent to the previous nonmagnetic
G (iw)=C (iw)+i(iw), one? Using the discretization of thg0,3] interval with

where the local cluster Green-function matrix is equal tol‘r;t'me SI'Czs:AT:ﬁ/Lf('B:.Ur Ilf an mverr]se temperatL)freh
Gupli®)=3,G,s(k,iw), and summation is run over the the G,- andF- Green functions become the matrices of the

Brillouin zone of the square lattice. Note that in Eg) we  2NL dimension, whereN is the number of atoms in the

use translationally invariant self-energy obtained from thecluster. After Fourier transform to the Matsubara frequencies

cluster DMFT similar to the DCA schent&.The present the Green-function matrix has the following form:
“matrix” form of a cluster DMFT with the self-energy G (iw) Fio)
which is not periodic inside the cluster allows us to study a G(iw)=( T_ _ )
multicomponent ordered state. Flio) —Gl(iw)
In this case we have the standard DMFT problem with
four “orbital” states per supersite. It is solved by the mul-
tiorbital QMC techniqué’ We use the generalized Nambu
techniqué® to analyze the coexistence of the magnetic order- ¢ Yiw) -G Yiw) :<
ing and superconductivity. Let us introduce the superspinor

In superconducting states the self-energy is definédl as

3 (o) S(iw))
S(iw) -3’
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and the inverse crystal Green-function matrix is equal to

iw+u—h(k,iw) s(k,iw)
s(k,iw) io—u+h*(kiw)/’

G Ykjiw)=

wheres(k,i w) is the translationally invariant anomalous part
of the self-energy8(i w) similar to Eq.(1). :
The two-component order-parameters state which in-
cludes the Neel antiferromagnetism addvave supercon-
ductivity [Fig. 1(a)] lowered the symmetry of the effective
cluster-DMFT problem. A self-consistent DMFT cluster
problem with AFM andd-SC general order parameters have
been solved within the QMC scheme for thex 8 matrix
Green function withL=64 time slices. The resulting two
order parameters foB=60 eV ! (T=190 K) andt’=0 - ;
are presented in Fig.(d together with the generic HTSC 0,04 L : L ; L : L — s
phase diagrarfFig. 1(b)] as a function of the hole doping. In .
this case the ordered magnetic moment is directly relatec T (eV)
with imaginary time Green functiorG,(7): M=G}%0)
- G?O(O), and for thed-SC order parameter we chose a posi-
tive value of superconducting imaginary time Green function : ' .
F9%0). Itis im[?ortant that Wge findgno syerious sign problem ie;gngiﬁelazﬁ_si-gzgh%or hopping and inverse  temperagire
for all QMC calculations with various doping levels, prob- '
ably due to “stabilized” antiferromagnetic dynamical mean

fields acting on the atoms in ourx2 cluster. Note that the f derat lati ¢ th. There is al h .
AFM cluster-DMFT solution exists for a much higher dop- or a moderate correlation strength. there IS also a change in

ing concentration than the experimental AFM ordered stardh€ spin-fluctuation spectrum related with the broadening of
and describes a dynamical mean-field version of AFM—spinthe AFM peak near ther, ) p0|_nt due .t(.) the _forr_natlon of
fluctuations related to pseudogap phenomi¢na PG region so-called extended van Hove smgglanﬂgs W'th mc_reiase
in Fig. 1(b)]. The maximum of thed-SC order parameter We show one of the AFM-SC solutions in Fig. 2 with the
corresponds to the doping level of about 15% in agreemerj€Xt-nearest-neighbor hopping for the 10% doping level and

_ l . .
with the generic HTSC phase diagram. TH&C order pa- £~ 50 eV'". The resulting local magnetic moment h8
rameter is zero close to the undoped regiar-0), due to  — 0-28«s and thed-SC order parametef(0)=0.036. One

the presence of a large AFM gap. When the AFM gap jcan see that the superconduction order parameter is really of
closed k~5%) thed-SC states develop, but for>20%, thed,2_,2 symmetry sir_lce diagonal elemens®f) as well
the d gap decreases again since the AFM spin fluctuation&S the next-nearest-neighbor elemerii&’f are all equal to
around the ¢, 7) point disappeat.The precise characteris- zero, and only the nearest-neighbor superconducting Green

. Ol .
tic of the phase diagram including the interactions betweedUnctions €) are nonzero and change the sign Fgrand

the AFM and d-SC order parameters demands extensive
cluster-DMFT calculations for the different temperatures and
doping.

We would like to note that the existence of tdeSC
cluster-DMFT solution for such high temperature does not
necessarily mean that the superconducting transition tem-
perature is larger than 190 K in our model. A crude estima-

tion shows that thal-SC solution disappears dt=300 K ' : ‘J‘W

ons

Green funct

FIG. 2. The imaginary time normal3,) and superconducting
(F). Green functions for the 22 cluster-DMFT solution with

level for the hole-doped case and favors th8C solution

15

fi
for x=0.15 and the AFM solutions fok=0 become un- BRI S ——— | \\\:\w\ il
stable at the temperature just above 1000 K. This could be | “3\\\‘ “"‘\\‘ it
the sign of a “local” AFM solution and a locat-wave so- h
lution, like local moments in magnetic systefi<Due to a
multiscale nature of the problem under consideration—
essentially different energies connected with local moment
formation, long-range magnetic order, locdwave pairs
within  the 2xX2 plaquet, and finally coherent
superconductivity—it is difficult to distinguish a real long- 0,m
range ordering from slow dynamical fluctuations in our
QMC simulations. We plan to separate these energy scales
analytically and estimate superconductiong transition tem- T
perature in a future publication.

The role of next-nearest hopping is to lower the van Hove FIG. 3. The absolute value of thetwave gap function at the
singularity’ which increases the density of state at the FermiFermi surface fox=0.15, t'=0, andg=50 eV 1.

\H‘ [A |

i r '“\ ““H”“

iy I

Il.-‘IIIIIIIIIII\IIII\I\I]HI\I\IHI\I\IINN\H!\IHHHIWI



RAPID COMMUNICATIONS

R9286 A. I. LICHTENSTEIN AND M. I. KATSNELSON PRB 62

F, components. The normal local Green functios°f) energy spectrum with all th& Green functions set to be
(plotted for the spin-up atom in Fig) 2s well as G%) are  zero. It is clear that the symmetry of tidewave state is not
spin split, while the nearest-neighbor Green functi@f’ pure d,2_,2 due to the underlying AFM states. This also
has no spin splitting due to AFM spin symmefsee Fig. L means that the-SC order could lower the symmetry of the
The absence of magnetic polarization in the nondiag@al AFM Neel state, and more general noncollinear magnetic
function along thex(y) directions suppresses the magneticstates need to be investigated. Nevertheless the gap function
p_air breaking and makes the AFBISC coexistence pos- nhas a maximum near ther(0) and (0O7) points and is al-
sible. _ . most zero near the/2,7/2) point. A magnitude of the

In order to find the superconducting energy gap we solveth,yimum superconducting gap is of the order of 15 meV, in

a Iinearizgd.equation for energy spectrum,.assuming that th&ood agreement with experimental estimdtemd much
characteristic energy scale &f (iw) and S(i w) are larger smaller then the AFM gap for undoped case.

than the SC gap(io). In this case we can perform analyti- In conclusion, we present a nonperturbative analysis of

cal energy continuations aqd the gengrallzed equation for thﬁﬁe interplay between antiferromagnetism akdave super-
energy spectrum has the simple form: S . X
conductivity in the cluster dynamical mean-field theory for
de(H—-EO0)=0, the Hubbard model. The maximum of the local magnetic
B B , moment corresponds to the half-filled case where the super-
where H=t(k)+X%(0)—u, O=1-3'(0), and X(0)  ;onqucting order parameter is vanished in contrast to the
=[B3(n)d7,2'(0)=[Er=(7)d7. Note that 3(0) and

; . ; ) / _spin-fluctuation approach. We give a transparent physical ex-
2,'(0) in this expression should also be translationally in-

. ) : X planation for a coexistence of the develop#&C pairing
variant. We solve the linearized equation for energy spec;

with local AFM fluctuations at moderate doping.
trum (for t’=0 andB=50) and obtain the superconducting pIng
energy gap at the Fermi surfa€g. 3). The topology of the We thank Gabi Kotliar, Antoine Georges, and Yurii
Fermi surface was defined as the zero-energy contour for theyumov for helpful discussion.
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