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Condensation energy in the spin-fermion model for cuprates

Ar. Abanov and Andrey V. Chubukov
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706
(Received 19 April 2000

We compute the condensation energy in the spin-fermion model using Scalapino-White relation between the
condensation energy and the change in the dynamical structure factor in the normal and the superconducting
states. We show that for parameters relevant to cuprates, the extra low-frequency spectral weight associated
with the resonance peak in the dynamical structure factor in a superconductor is not compensated up to
energies~J which are much larger than the superconducting dapVe argue that in this situation, the
condensation energy is large and well accounts for the data for cuprates.

The understanding of the mechanism of superconductivitydubbardU (as in cupratey, the double occupancy is ener-
is an important step towards the general understanding of thgetically unfavorable, and the average value of the on-site
physics of cuprates. It has been known from the studies ofpin S remains almost unchanged between the normal and
BCS superconductors, that the information about the pairinghe superconducting states. SirRes related to the dynami-
boson can be extracted from the measurements of the uppeal structure factor by d2qdQS(q,Q)=S(S+1)/3, the to-
critical field. Specifically, the thermodynamic critical-field tal spectral weight inS(qg,(2) is nearly conserved, and the
H. is related to the condensation enerdy, by E.  extra potential energy stored in the resonance peak bElow
=V,H?2/(87), whereV, is the volume of the unit cell. This has to be compensated by the depletion of the spectral
condensation energy is the difference between the decreaseight in Sg(q,(2) at higher energies.
of the potential energy associated with the feedback effect At large U the typical velocity of the spin excitations is
from superconductivity on the bosonic mode which is re-comparable toJ (see below. Hence, if the compensation
sponsible for pairing, and the increase of the kinetic energgomes from energies of ordér, which are small compared
of electrons in a superconductblhe calculations oE, for ~ to J, than typical|g—Q|<1. For theseq, the geometrical
phonon-mediated pairing yielded a good agreement witltosg,+cosg, factor is nearly constant and only weakly af-
measuredcH . and confirmed that phonons were responsiblefects the momentum integral in the r.h.s. of Ef). Obvi-
for pairing. ously, in this situation, the r.h.s. of E(L) is nearly zero, and

Recently, Scalapino and Whitapplied the same reason- the decrease in the potential energy is much smaller than one
ing to cuprates. They argued that if the pairing is mediatedcan extract by focusing solely on the the resonance peak. If,
by spin fluctuations, then the decrease of the potential energyowever, the compensation comes from energies comparable
in a superconductor is given by the difference in the dynamito J, than typical|q— Q| are of order 1, and the momentum
cal structure facto5(qg,(2) between the normal and the su- dependence of the geometrical factor cannot be neglected. In
perconducting states, integrated over frequency and momethis situation, the gain in the potential energy is not substan-
tum with the weighting factor (cag+cosq,). This yields a tially reduced by the sum-rule constraint and remains of the
relatiorf3 same order as the net contribution from the resonance peak.

In this paper, we compute the dynamical structure factor

HE 3 d?qdQ within the spin-fermion model for cuprates. We show that
P EaJJ' o X (Sh(9,92) = Ss(q,€2)) near optimal doping, when the pseudogap effects can be ne-
(2m) glected, the compensation of the spectral weight stored in the
X (c0SGy+cOosa,), (1)  resonance peak comes from high energie3 or, equiva-

lently, from momenteag far from Q. This result shows that

wherea<1 is a numerical factor which accounts for the factthe condensation energy et in conflict with the sum rule,
that the decrease of the potential energy in a superconductand justifies the use of the integrated area under the reso-
is partly compensated by the increase of the kinetic energynance peak as an estimate for the condensation energy in

Neutron-scattering experiments in bilayer YBCO andcuprates.
Bi2212 demonstratéd that S(q,()) in a superconducting The point of departure for our consideration is the spin-
state possesses a resonance peak at momenta Qiear fermion model for cuprates. It describes low-energy fermions
=(m,m) and at frequencies belowA2where A<J is the interacting with their own collective spin degrees of
maximum of thed-wave gap. The integrated intensity of the freedom’® The fermionic spectral function has been dis-
resonance peakwhich is only observed in the odd channel cussed in detail in Ref. 8. Here we focus on the fully renor-
of coupled spin fluctuations within a bilayeyrields the r.h.s. malized dynamical spin susceptibilig(qg,2). It is related to
of Eq. (1) roughly consistent with the data ¢, .* the dynamical structure factor b$(q,Q)=2x"(q,Q)/(1

It is, however, not cleaa priori to which extent the con- —e **'T). We argued earliérthat both in the normal and
tribution from the resonance peak measures the decrease thie superconducting statey(q,{)) can be written as
the potential energy in a system. The point is that for Iarge)(*l(q,Q):Xgl(q)—Hq(Q), where xo(q) is made pre-
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dominantly out of fermions with energies comparable to  °! ; ;
bandwidth, andI () is the extra universdi.e., cutoff in- L r\
dependentcontribution from low-energy fermiongsee be-
low).

The form of y¢(q) is the input for low-energy calcula-
tions. As beforé we assume thag,(q) is peaked at or near 0.1
Q and can be regularly expanded around the peak, i.e.,
xo(Q) = xo€/ (1+(q—Q)?¢?). Here xo and ¢ are doping
dependent overall factor and the magnetic correlation length,
respectively. In principle, botly, and¢ also depend on tem-
perature andin the superconducting staten the pairing
gap, A. However, simple estimates show that @s{q) is
dominated by fermions with energies comparable to the
bandwidthW, the last two dependences are very weak and
we neglect them. F_IG. 1. The results forAS(Q)=Sn(Q)—_SSC(Q) from Eq'. (3),

The universal contribution to the dynamical susceptibility °Ptained by the soluton of the full set of Eliashberg equatiére.
involves low-energy fermions and, as we will see, change&l)' The frequency integral 0fS(()) yields the condensation en-
substantially between the normal and the superconductinG9Y: The data sets are &) 24/ws~0.1, and(b) 2A/ws~2,
states. Physically, the existence of this universal contributio hich Corr.eSpor.'ds to optimally d(_)ped YBCO. The freque.ncy 1S
to0 ¥(q,) is related to the fact that for a Fermi surface with measured in units oA. In the top figure, the resonance spin fre-

hot i . i | . tati quency(),¢s is indistinguishable from &. The arrows indicate the
ot spots(as in cuprates a low-energy spin excitation can behavior which we obtained analytically for frequency indepen-

decay into a particle-hole pair, and the energy Conser\/"’ltioaent anomalous vertek (see text Observe that in both cases

requires that both fermions in the pair remain near th_e FermfdQ AS(Q) is confined to frequencies which are substantially
surface. Near=Q, one can neglect the dependence il |5rger than A.

[it yields only a small correction to already existing disper-

sion in xo(q)] and restrict withllo(2) =11, . The full sus- We make two approximations in computidd, . First,
ceptibility then has the form we assume that vertex corrections can be neglected, i.e.,
Eliashberg theory is valid. We have checked in the one-loop

Xo&? renormalization-group methodRG) formalisnt® that vertex
x(9,Q)= PEUPETSCICEE (2)  corrections slightly change the powers of frequency but do
(a-Q)%¢ Q not modify any of the conclusions below. Second, for our

analytic consideration, we approximate the anomalous pair-
ing vertex F(w) by a frequency independent constdnt

hich we consider as an input parameter. The full analysis
deed requires one to solve a set of three coupled
liashberg-type equations for the fermionic self-energy

We absorbed,£? into the redefinition oflI, .

We discuss the computations Hf, below but first con- W
sider what we actually need to compute. Our goal is to checlﬁ”I
how the extra spectral weight in loc&l(Q) is redistributed
compared to the normal state. For this purpose, it is sufficie o
to compute the integral in Eq1) without the geometrical W(ew)r’w06\1;2\2?'O;zopglrrég%n\;eirr:egig?)i ?ﬁg gﬁuﬁzegf %ﬁe full
COSGy+COSq, factor and check at which scales the sum rUIenurﬁerical sol'ution of the Eliashberg set. We will see that
IS regovered. . L analytical and numerical results fully agree with each other.

Without cosq,+cosgy, the momentum integration in the For F(w)~F, the coupled equations fdil,, and 3 ()
r.h.s. in Eq.(1) can be performed exactly, and Bt-0, we related to the %ermionic propagator k(y*l((k),w)zz(w)

obtain —ve(k—kg) have been derived in Ref. 8 and Bt 0 have
the form:
| szqu 0)—-S,(9,Q
(277)3 (Ssc(qv ) n(qv )) 2 N A 2w+Q deqX (4)
0w WT
Xo [ 2 ) qi+32 0~ F% Joi+1-1Il,
-2 | a0 s, 3
4m<Jo
i rdo Yoot F2
where  ,S(Q)=S,(Q)-S(Q),  S(Q)=arctar(1 HQZEJw— N NSy =+1 ®)
—Rell)/ImIl), andS, andS,. are the values oB({2) in st \VEg_,—FVX,-F

the normal and the superconducting states. _

We now obtainll,, . Diagrammatically, it is given by a Herex=3g/(4mvgé ) is a dimensionless parameter which
sum of fully renormalized particle-hole bubbles made of nor-governs the strength of the spin-fermion couplifvge use
mal and anomalous Green’s functions. Expected universalitthe same notations as in Ref. §:is the effective spin-
of IT, implies that this contribution is obtained by lineariz- fermion coupling, andr is the Fermi velocity at a hot spot
ing fermionic dispersion near hot spots. It also implies thatin these notationsy;=(3/16)v £~ 1/\. By all experimental
the computation ofl, has to be done self-consistently with accounts, at and below optimal doping=1, i.e., the model
the computation of the low-energy fermionic self-energy. falls into the strong coupling reginfe.
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In the normal state, the solution of Eq&l) and (5) is We see that the contribution from low frequencies is
straightforward® For any coupling strengthl, is linear in negative; the vanishing of il below 2A overshadows the
Q: Il =i|Q|/wss. Hence S,(Q) =arctanfg/|€2]). The fer-  extra contribution from the resonance peak. The tbtal,
mionic self-energy has a Fermi-liquid for(w)=A(w  +1, is still positive due to contribution from frequencies
+io|w|/(4wss)) at energies smaller thang;, and at larger  apove 21. However, although typical frequencies lig are
frequencies crosses over into a non-Fermi liquid, quantummuych larger tham, still 1, converges aw>ws;. At
critical regime 3 (w)xexp(n/4)w\g/|w|. The quantum- ~wg, [Io=0(1), andhence typicalg— Q| are of the or-
critical behavior holds up to a frequenay which is inde- ~ der of inverse correlation lengfisee Eq.(2)]. For theseg,

pendent or¢ and is of order mird, (veke)?/g). Observe that  the geometrical factor cag+cosg, is nearly a constant, i.e.,
at strong coupling, the crossover frequengy is parametri- ~ there is almost no distinction between the condensation en-

cally smaller thanw, and hence the quantum-critical region €9y and the difference betwegnl’qd25(q,Q) in the nor-
is rather wide. mal and the superconducting state. Alternatively speaking, at
Consider now the superconducting state. A simple experi¢A <wsi, the decrease of the potential energy in a supercon-
mentation shows that the solution of E¢&). and(5) depends  ductor is unrelated to the emergence of tiveak resonance
on the ratio betweem, and twice the actual superconduct- peak in the spin channel. A nonzero value of the condensa-
ing gapA, which is the solution oB (A)=F. If 2A<wg, tion energy just reflects the fact that in the absence of no
then at typical energies relevant to superconductivity, thélouble occupancy constraint, the average on-site spin in the
system behaves as a renormalized Fermi liq@{w) d wave superconducting state is smaller than in the normal
~\w). In the opposite limit,ws;<2A, fermions with  State. . _ .
~A display in the normal state the quantum-criti@ be- The_ analyt|c_al results are fully conS|st_ent with the full
havior. numerical solution of the Eliashberg $éwhich we present
Below we consider separately both limiting cases, N Fi9- 1@). Integrating,S(Q2) from Fig. (@), we obtained
<2A and we>2A where analytical treatment is possible, 1= ~0.03 (xoA/4m) and1;=0.11 (xoA/4). ,
and we can identify all relevant scales. We show that in both  Consider now the opposite limit @s;<2A. Here fermi-
limits the compensation of the spectral weight comes fronPnS With o~A display in the normal state the quantum-
frequencies which are parametrically larger thenOn the  cfitical Y behavior. Accordingly, the measured gap is now
other hand, only atog<2A, the typical momenta are not A~F?/g. Analyzing the set Eqg4) and(5) using the spec-
small, and the condensation energy is of order of the netral representations, we find that still I, =0 below 27,
contribution from the resonance peak, which by itself isbut now the resonance condition Rg=1 is satisfied at a
sharp only ifwgs is small compared to &. small frequency,es~ (Awsf)Y><A. This solution is unre-
We start withw¢>2A. Here the solution ok (A)=F lated to the jump in Inil, at 2A, and is due to the fact that
falls into the Fermi-liquid regime, and hence the measuredt small frequencies, Ré,~0?%/(Awgy), i.e., spin collec-
gap A=F/\. Using earlier resultdwe find that ImlI,=0 tive excitations in a superconductor behave as propagating
for O<2A and undergoes a finite jump tBA/wg; at Q magnons at frequencies well below 2As a resultS(Q,)
=2A. Due to the jump, REl, logarithmically diverges at should have a sharp, almo&tfunctional peak af),q.
2A, and this causes the resonance 8t..=2A(1 At O>A we found from Egs.(4) and (5) that ImIIy,
—O(e “s?A)) where 1Rell,, changes sign. One can eas- approaches the normal-state foffd|/w;, but Rell,, satu-
ily make sure that a$),es is exponentially close to®, the rates at Ré&l,=7BA/(2ws) wWhere B=(1+ 7 llog4),
total spectral weight of the resonance peak is also exponem@nd preserves this value as long as the fermionic propagator
tially small in 2A/ ws;. has a non-Fermi liquidy/w form, i.e., up tow~ .
Above 2A, the analytical form folll, can be obtained in Substituting the results fdil, into Eq. (3) we find that
the limit of 0>2A. We found Rdlo(Q)~mA%(Qws)  ,S(Q) is positive starting already fronfd=0,,.<2A.
and Imlo(Q)=(Q/ wgy) + (2A%/ (Qws))log(Q/A). Substi-  Moreover, the saturation of R, above 2\ gives rise to a
tuting these results into E¢3) we find after a simple algebra 1/ behavior of , S(2) which in turn gives rise to a loga-
that below 2, ,S(Q2) is negative except for a tiny range rithmical divergence of,. Evaluating the integral in Eq3)
between(},es and 2A, while above A, ,S({2) is positive  with the logarithmical accuracy we obtain
and scales as,S(Q)x(1/Q)logQ/A for O<wg; and as
AS(Q) = (1/Q)3 for Q> wg;. Xo
Splitting the integral in Eq(3) in two parts,|=1,+1,, l1=7 (A= Qe
where the first is the integral over frequencies up to twice the
measured gap and the second is the integral over larger fre- —

quencies, and performing integration we obtain with the |2:ﬁA j;@:ﬁAmogﬂ (7)
logarithmical accuracy 8w 30 8w A
Xo A xo A2 We see that fo >, |4 iS positive, i.e., at strong cou-
I~ ) W(ZA—Qres)_w—f ~— 57 wu pling, the appearance of the resonance peak b&lpgives
aa S a S

rise to an extra integrated spectral weight below and
hence vyields a positive contribution to the condensation en-
ergy. As we discussed before, this extra spectral weight
should be compensated by a depletion of the spectral weight
(6) at higher frequencies. We see, however, that due to non-

| X0 AZ ~ogf dQ) | QO X0 A2| zwsf
~—_— — —— 10 ~—7 —I0g"——.
2 272 Wst J-a Q QK 47° Ogf g A
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Fermi-liquid behavior of the fermionic propagator abok, 2
this depletion does not occur up to frequendies w. More-
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I, is indeed related to the fact that for chosel/@g;, Q,es
is comparable td\. For largerA/wg;, 1, increases whilé,

over, the positive contribution to the condensation energyl0€s not change much. ,
from frequencies above/2is larger than ;. Experimentally, in YBCO the frequency integral of the

Consider next which momenta chiefly contribute to the¢Sonance peakdwS(Q,w)=0.52 (Refs; 3 and # Using
rh.s. of Eq.(3). It follows from Eq. (2) that typicallq—Q| U form of (Q,w), we obtainy,~0.52% (m¢"w es) (Ref.
are of order 5/(605@2))1,2. Eor a>kaF which in the 4), wherea is Cu-Cu distance. Usin@,.s~40 meV(Ref. 5,

el _ £~1.5-2a (Ref. 7), we obtainE,~6J1~0.005)~8-14 K
Hubbard-model language implie§>t, « is of order  which agrees witE,~3-12 K extracted from specific-heat
(vekg)?/g~J and hence typicdlg— Q| areO(kg), i.e., they

measurement¥’

are comparable to inverse lattice spacing. In other words, the T0 summarize, in this paper we considered the condensa-
depletion of the spectral weight is confined to momentdion energy within the spin-fermion model for cuprates. At
which are far away fronQ. For these momenta, the geo- strong coupling, this model predicts that in a superconduct-
metrical cosj,+cosq, factor in Eq.(1) cannot be approxi- ing state,S(Q,()) possesses a sharp resonance peak below

mated by a constant and therefdne condensation energy is \Wice the maximum of the measuredvave gap. We dem-
not substantially affected by the sum rule and remains of thgnstrated that the appearance of this peak does not cause the

same order as the net contribution from the resonance .pealg.epletlon of the spectral weight in loc&(w) up.to frequen-
This is the central result of the paper. cies of orderJ. We computed the condensation enekgy

The results of the numerical solution of the Eliashberg se sing Scalapino-White relation betweeg apdS_(q,Q), and
for 2A>w¢; are shown in Fig. (b). They clearly indicate ound.that due tp the absence of depletionS(s}) at low .
that ,S() jumps atw=,..<2A, and slowly decreases at energies, the spin sum rule does not reduce the condensation
larger frequencies. For (r:eosmparison with optimally dopedenergy. This disagrees with the assertion in Ref. 3 that large
YBCO and Bi2212, we present the results for- w.; [ex- condensation energy cannot be obtained in the spin-fermion
Il S

perimentally,A~25 meV in optimally doped YBCQRef. model. Moreover, we found that the contribution E

12), and~35 meV in Bi2212(Ref. 13, while w ~10-30 COMeS not only from the resonance peak but also from a
L] . 1 S

meV (Ref. 7]. We checked that for largek/wgs, which
correspond to underdoped cuprates, the behaviog $fis
similar to that in Fig. 1b).

Evaluatingl; and |, numerically, we obtained;=0.05
(xoA/47) andl,=0.21 (yoA/4m). The relative smallness of

wide range of frequencies up b
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