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Condensation energy in the spin-fermion model for cuprates
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~Received 19 April 2000!

We compute the condensation energy in the spin-fermion model using Scalapino-White relation between the
condensation energy and the change in the dynamical structure factor in the normal and the superconducting
states. We show that for parameters relevant to cuprates, the extra low-frequency spectral weight associated
with the resonance peak in the dynamical structure factor in a superconductor is not compensated up to
energies;J which are much larger than the superconducting gapD. We argue that in this situation, the
condensation energy is large and well accounts for the data for cuprates.
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The understanding of the mechanism of superconducti
is an important step towards the general understanding o
physics of cuprates. It has been known from the studies
BCS superconductors, that the information about the pai
boson can be extracted from the measurements of the u
critical field. Specifically, the thermodynamic critical-fie
Hc is related to the condensation energyEc by Ec

5V0Hc
2/(8p), whereV0 is the volume of the unit cell. This

condensation energy is the difference between the decr
of the potential energy associated with the feedback ef
from superconductivity on the bosonic mode which is
sponsible for pairing, and the increase of the kinetic ene
of electrons in a superconductor.1 The calculations ofEc for
phonon-mediated pairing yielded a good agreement w
measuredHc and confirmed that phonons were responsi
for pairing.

Recently, Scalapino and White2 applied the same reason
ing to cuprates. They argued that if the pairing is media
by spin fluctuations, then the decrease of the potential en
in a superconductor is given by the difference in the dyna
cal structure factorS(q,V) between the normal and the s
perconducting states, integrated over frequency and mom
tum with the weighting factor (cosqx1cosqy). This yields a
relation2,3

Hc
2

8p
5

3

2
aJE d2qdV

~2p!3
3„Sn~q,V!2Ssc~q,V!…

3~cosqx1cosqy!, ~1!

wherea,1 is a numerical factor which accounts for the fa
that the decrease of the potential energy in a supercondu
is partly compensated by the increase of the kinetic ene

Neutron-scattering experiments in bilayer YBCO a
Bi2212 demonstrated4,5 that S(q,V) in a superconducting
state possesses a resonance peak at momenta neQ
5(p,p) and at frequencies below 2D where D!J is the
maximum of thed-wave gap. The integrated intensity of th
resonance peak~which is only observed in the odd chann
of coupled spin fluctuations within a bilayer! yields the r.h.s.
of Eq. ~1! roughly consistent with the data onHc .3

It is, however, not cleara priori to which extent the con-
tribution from the resonance peak measures the decrea
the potential energy in a system. The point is that for la
PRB 620163-1829/2000/62~2!/787~4!/$15.00
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HubbardU ~as in cuprates6!, the double occupancy is ene
getically unfavorable, and the average value of the on-
spin S remains almost unchanged between the normal
the superconducting states. SinceS is related to the dynami-
cal structure factor by*d2qdVS(q,V)5S(S11)/3, the to-
tal spectral weight inS(q,V) is nearly conserved, and th
extra potential energy stored in the resonance peak belowTc
has to be compensated by the depletion of the spec
weight in Ssc(q,V) at higher energies.

At large U the typical velocity of the spin excitations i
comparable toJ ~see below!. Hence, if the compensatio
comes from energies of orderD, which are small compared
to J, than typicaluq2Qu!1. For theseq, the geometrical
cosqx1cosqy factor is nearly constant and only weakly a
fects the momentum integral in the r.h.s. of Eq.~1!. Obvi-
ously, in this situation, the r.h.s. of Eq.~1! is nearly zero, and
the decrease in the potential energy is much smaller than
can extract by focusing solely on the the resonance peak
however, the compensation comes from energies compar
to J, than typicaluq2Qu are of order 1, and the momentum
dependence of the geometrical factor cannot be neglecte
this situation, the gain in the potential energy is not subst
tially reduced by the sum-rule constraint and remains of
same order as the net contribution from the resonance p

In this paper, we compute the dynamical structure fac
within the spin-fermion model for cuprates. We show th
near optimal doping, when the pseudogap effects can be
glected, the compensation of the spectral weight stored in
resonance peak comes from high energies;J or, equiva-
lently, from momentaq far from Q. This result shows tha
the condensation energy isnot in conflict with the sum rule,
and justifies the use of the integrated area under the r
nance peak as an estimate for the condensation energ
cuprates.

The point of departure for our consideration is the sp
fermion model for cuprates. It describes low-energy fermio
interacting with their own collective spin degrees
freedom.7,8 The fermionic spectral function has been d
cussed in detail in Ref. 8. Here we focus on the fully ren
malized dynamical spin susceptibilityx(q,V). It is related to
the dynamical structure factor byS(q,V)52x9(q,V)/(1
2e2\V/T). We argued earlier8 that both in the normal and
the superconducting state,x(q,V) can be written as
x21(q,V)5x0

21(q)2Pq(V), where x0(q) is made pre-
R787 ©2000 The American Physical Society
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dominantly out of fermions with energies comparable
bandwidth, andPq(V) is the extra universal~i.e., cutoff in-
dependent! contribution from low-energy fermions~see be-
low!.

The form of x0(q) is the input for low-energy calcula
tions. As before,8 we assume thatx0(q) is peaked at or nea
Q and can be regularly expanded around the peak,
x0(q)5x0j2/(11(q2Q)2j2). Here x0 and j are doping
dependent overall factor and the magnetic correlation len
respectively. In principle, bothx0 andj also depend on tem
perature and~in the superconducting state! on the pairing
gap, D. However, simple estimates show that asx0(q) is
dominated by fermions with energies comparable to
bandwidthW, the last two dependences are very weak a
we neglect them.

The universal contribution to the dynamical susceptibil
involves low-energy fermions and, as we will see, chan
substantially between the normal and the superconduc
states. Physically, the existence of this universal contribu
to x(q,V) is related to the fact that for a Fermi surface w
hot spots~as in cuprates!, a low-energy spin excitation ca
decay into a particle-hole pair, and the energy conserva
requires that both fermions in the pair remain near the Fe
surface. Nearq5Q, one can neglect theq dependence inP
@it yields only a small correction to already existing dispe
sion in x0(q)] and restrict withPQ(V)5PV . The full sus-
ceptibility then has the form

x~q,V!5
x0j2

11~q2Q!2j22PV

. ~2!

We absorbedx0j2 into the redefinition ofPV .
We discuss the computations ofPV below but first con-

sider what we actually need to compute. Our goal is to ch
how the extra spectral weight in localSsc(V) is redistributed
compared to the normal state. For this purpose, it is suffic
to compute the integral in Eq.~1! without the geometrica
cosqx1cosqy factor and check at which scales the sum r
is recovered.

Without cosqx1cosqy , the momentum integration in th
r.h.s. in Eq.~1! can be performed exactly, and atT→0, we
obtain

I 5E d2qdV

~2p!3
„Ssc~q,V!2Sn~q,V!…

5
x0

4p2E0

`

dV DS~V!, ~3!

where DS(V)5Sn(V)2Ssc(V), S(V)5arctan„(1
2RePV)/Im PV…, andSn andSsc are the values ofS(V) in
the normal and the superconducting states.

We now obtainPV . Diagrammatically, it is given by a
sum of fully renormalized particle-hole bubbles made of n
mal and anomalous Green’s functions. Expected universa
of PV implies that this contribution is obtained by lineari
ing fermionic dispersion near hot spots. It also implies t
the computation ofPV has to be done self-consistently wi
the computation of the low-energy fermionic self-energy.
.,
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We make two approximations in computingPV . First,
we assume that vertex corrections can be neglected,
Eliashberg theory is valid. We have checked in the one-lo
renormalization-group method~RG! formalism10 that vertex
corrections slightly change the powers of frequency but
not modify any of the conclusions below. Second, for o
analytic consideration, we approximate the anomalous p
ing vertex F(v) by a frequency independent constantF
which we consider as an input parameter. The full analy
indeed requires one to solve a set of three coup
Eliashberg-type equations for the fermionic self-ener
S(v), anomalous pairing vertexF(v), and PV ~Ref. 11!.
We, however, also present in Fig. 1 the results of the
numerical solution of the Eliashberg set. We will see th
analytical and numerical results fully agree with each oth

For F(v)'F, the coupled equations forPV and S(v)
related to the fermionic propagator byG21(k,v)5S(v)
2vF(k2kF) have been derived in Ref. 8 and atT50 have
the form:

Sv5v1
l

2p
E Sv1V

qx
21Sv1V

2 2F2

dVdqx

Aqx
2112PV

~4!

PV5
i

2
E dv

vs f
S SV2vSv1F2

ASV2v
2 2F2ASv

2 2F2
11D . ~5!

Herel53ḡ/(4pvFj21) is a dimensionless parameter whic
governs the strength of the spin-fermion coupling~we use
the same notations as in Ref. 8:ḡ is the effective spin-
fermion coupling, andvF is the Fermi velocity at a hot spot!.
In these notations,vs f5(3/16)vFj21/l. By all experimental
accounts, at and below optimal dopingl>1, i.e., the model
falls into the strong coupling regime.8

FIG. 1. The results forDS(V)5Sn(V)2Ssc(V) from Eq. ~3!,
obtained by the soluton of the full set of Eliashberg equations~Ref.
11!. The frequency integral ofDS(V) yields the condensation en
ergy. The data sets are for~a! 2D/vs f;0.1, and~b! 2D/vs f;2,
which corresponds to optimally doped YBCO. The frequency
measured in units ofD. In the top figure, the resonance spin fr
quencyV res is indistinguishable from 2D. The arrows indicate the
behavior which we obtained analytically for frequency indepe
dent anomalous vertexF ~see text!. Observe that in both case
*dV DS(V) is confined to frequencies which are substantia
larger than 2D.
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In the normal state, the solution of Eqs.~4! and ~5! is
straightforward.8 For any coupling strengthPV is linear in
V: PV5 i uVu/vs f . Hence,Sn(V)5arctan(vsf /uVu). The fer-
mionic self-energy has a Fermi-liquid formS(v)5l„v
1 ivuvu/(4vs f)… at energies smaller thanvs f , and at larger
frequencies crosses over into a non-Fermi liquid, quantu

critical regime S(v)}exp(ip/4)vAḡ/uvu. The quantum-
critical behavior holds up to a frequencyv̄ which is inde-
pendent onj and is of order min(ḡ, (vFkF)2/ḡ). Observe that
at strong coupling, the crossover frequencyvs f is parametri-
cally smaller thanv̄, and hence the quantum-critical regio
is rather wide.

Consider now the superconducting state. A simple exp
mentation shows that the solution of Eqs.~4! and~5! depends
on the ratio betweenvs f and twice the actual superconduc
ing gapD, which is the solution ofS(D)5F. If 2D!vs f ,
then at typical energies relevant to superconductivity,
system behaves as a renormalized Fermi liquid„S(v)
'lv…. In the opposite limit,vs f!2D, fermions with v
;D display in the normal state the quantum-criticalAv be-
havior.

Below we consider separately both limiting casesvs f
!2D and vs f@2D where analytical treatment is possibl
and we can identify all relevant scales. We show that in b
limits the compensation of the spectral weight comes fr
frequencies which are parametrically larger thanD. On the
other hand, only atvs f!2D, the typical momenta are no
small, and the condensation energy is of order of the
contribution from the resonance peak, which by itself
sharp only ifvs f is small compared to 2D.

We start withvs f@2D. Here the solution ofS(D)5F
falls into the Fermi-liquid regime, and hence the measu
gap D5F/l. Using earlier results,9 we find that ImPV50
for V,2D and undergoes a finite jump topD/vs f at V
52D. Due to the jump, RePV logarithmically diverges at
2D, and this causes the resonance atV res52D„1
2O(e2vs f/2D)… where 12RePV changes sign. One can ea
ily make sure that asV res is exponentially close to 2D, the
total spectral weight of the resonance peak is also expo
tially small in 2D/vs f .

Above 2D, the analytical form forPV can be obtained in
the limit of V@2D. We found RePQ(V)'pD2/(Vvs f)
and ImPQ(V)5(V/vs f)1„2D2/(Vvs f)…log(V/D). Substi-
tuting these results into Eq.~3! we find after a simple algebr
that below 2D, DS(V) is negative except for a tiny rang
betweenV res and 2D, while above 2D, DS(V) is positive
and scales asDS(V)}(1/V)logV/D for V,vs f and as
DS(V)}(1/V)3 for V.vs f .

Splitting the integral in Eq.~3! in two parts,I 5I 11I 2,
where the first is the integral over frequencies up to twice
measured gap and the second is the integral over larger
quencies, and performing integration we obtain with t
logarithmical accuracy

I 1'
x0

4p2S p~2D2V res!2
2D2

vs f
D'2

x0

2p2

D2

vs f

I 2'
x0

2p2

D2

vs f
E

;D

;vs f dV

V
log

V

D
'

x0

4p2

D2

vs f
log2

vs f

D
.

~6!
-
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We see that the contribution from low frequencies
negative; the vanishing of ImPV below 2D overshadows the
extra contribution from the resonance peak. The totalI 5I 1
1I 2 is still positive due to contribution from frequencie
above 2D. However, although typical frequencies inI 2 are
much larger thanD, still I 2 converges atv.vs f . At v
;vs f , PV5O(1), andhence typicaluq2Qu are of the or-
der of inverse correlation length@see Eq.~2!#. For theseq,
the geometrical factor cosqx1cosqy is nearly a constant, i.e.
there is almost no distinction between the condensation
ergy and the difference between*d2qdVS(q,V) in the nor-
mal and the superconducting state. Alternatively speaking
2D!vs f , the decrease of the potential energy in a superc
ductor is unrelated to the emergence of the~weak! resonance
peak in the spin channel. A nonzero value of the conden
tion energy just reflects the fact that in the absence of
double occupancy constraint, the average on-site spin in
d wave superconducting state is smaller than in the nor
state.

The analytical results are fully consistent with the fu
numerical solution of the Eliashberg set,11 which we present
in Fig. 1~a!. IntegratingDS(V) from Fig. 1~a!, we obtained
I 1520.03 (x0D/4p) and I 250.11 (x0D/4p).

Consider now the opposite limit ofvs f!2D. Here fermi-
ons with v;D display in the normal state the quantum
critical Av behavior. Accordingly, the measured gap is no
D;F2/ḡ. Analyzing the set Eqs.~4! and~5! using the spec-
tral representations, we find that still ImPV50 below 2D,
but now the resonance condition RePV51 is satisfied at a
small frequencyV res;(Dvs f)

1/2!D. This solution is unre-
lated to the jump in ImPV at 2D, and is due to the fact tha
at small frequencies, RePV;V2/(Dvs f), i.e., spin collec-
tive excitations in a superconductor behave as propaga
magnons at frequencies well below 2D. As a result,S(Q,V)
should have a sharp, almostd functional peak atV res .

At V@D we found from Eqs.~4! and ~5! that ImPV

approaches the normal-state formuVu/vs f , but RePV satu-
rates at RePV5pbD/(2vs f) where b5(11p21 log 4),
and preserves this value as long as the fermionic propag
has a non-Fermi liquid,Av form, i.e., up tov;v̄.

Substituting the results forPV into Eq. ~3! we find that
DS(V) is positive starting already fromV5V res,2D.
Moreover, the saturation of RePV above 2D gives rise to a
1/V behavior of DS(V) which in turn gives rise to a loga
rithmical divergence ofI 2. Evaluating the integral in Eq.~3!
with the logarithmical accuracy we obtain

I 15
x0

4p
~D2V res!

I 25
x0

8p
DbE

;D̃

v̄ dV

V
5

x0

8p
Db log

v̄

D
. ~7!

We see that forD.V res , I 1 is positive, i.e., at strong cou
pling, the appearance of the resonance peak belowTc gives
rise to an extra integrated spectral weight below 2D and
hence yields a positive contribution to the condensation
ergy. As we discussed before, this extra spectral we
should be compensated by a depletion of the spectral we
at higher frequencies. We see, however, that due to n
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Fermi-liquid behavior of the fermionic propagator above 2D,
this depletion does not occur up to frequenciesV;v̄. More-
over, the positive contribution to the condensation ene
from frequencies above 2D is larger thanI 1.

Consider next which momenta chiefly contribute to t
r.h.s. of Eq.~3!. It follows from Eq. ~2! that typicaluq2Qu
are of order (v̄/(vs fj

2))1/2. For ḡ@vFkF , which in the
Hubbard-model language impliesU@t, v̄ is of order
(vFkF)2/ḡ;J and hence typicaluq2Qu areO(kF), i.e., they
are comparable to inverse lattice spacing. In other words,
depletion of the spectral weight is confined to mome
which are far away fromQ. For these momenta, the ge
metrical cosqx1cosqy factor in Eq.~1! cannot be approxi-
mated by a constant and thereforethe condensation energy i
not substantially affected by the sum rule and remains of
same order as the net contribution from the resonance pe.
This is the central result of the paper.

The results of the numerical solution of the Eliashberg
for 2D.vs f are shown in Fig. 1~b!. They clearly indicate
that DS(v) jumps atv5V res,2D, and slowly decreases a
larger frequencies. For comparison with optimally dop
YBCO and Bi2212, we present the results forD;vs f @ex-
perimentally,D;25 meV in optimally doped YBCO~Ref.
12!, and;35 meV in Bi2212~Ref. 13!, while vs f;10–30
meV ~Ref. 7!#. We checked that for largerD/vs f , which
correspond to underdoped cuprates, the behavior ofDS is
similar to that in Fig. 1~b!.

EvaluatingI 1 and I 2 numerically, we obtainedI 150.05
(x0D/4p) andI 250.21 (x0D/4p). The relative smallness o
y

e
a

e
k

t

d

I 1 is indeed related to the fact that for chosen 2D/vs f , V res
is comparable toD. For largerD/vs f , I 1 increases whileI 2
does not change much.

Experimentally, in YBCO the frequency integral of th
resonance peak*dvS(Q,v)50.52 ~Refs. 3 and 4!. Using
our form ofS(Q,v), we obtainx0'0.52a2/(pj2v res) ~Ref.
4!, wherea is Cu-Cu distance. Usingv res;40 meV~Ref. 5!,
j;1.522a ~Ref. 7!, we obtainEc;6JI'0.005J;8 –14 K
which agrees withEc;3 –12 K extracted from specific-hea
measurements.14

To summarize, in this paper we considered the conden
tion energy within the spin-fermion model for cuprates.
strong coupling, this model predicts that in a supercondu
ing state,S(Q,V) possesses a sharp resonance peak be
twice the maximum of the measuredd-wave gap. We dem-
onstrated that the appearance of this peak does not caus
depletion of the spectral weight in localS(v) up to frequen-
cies of orderJ. We computed the condensation energyEc
using Scalapino-White relation betweenEc andS(q,V), and
found that due to the absence of depletion inS(V) at low
energies, the spin sum rule does not reduce the condens
energy. This disagrees with the assertion in Ref. 3 that la
condensation energy cannot be obtained in the spin-ferm
model. Moreover, we found that the contribution toEc
comes not only from the resonance peak but also from
wide range of frequencies up toJ.
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