C incorporation in epitaxial $Ge_{1-\nu}C_{\nu}$ layers grown on Ge(001): An ab initio study

D. Gall, J. D'Arcy-Gall, and J. E. Greene

Materials Science Department and the Materials Research Laboratory, University of Illinois, 104 South Goodwin Avenue, Urbana, Illinois 61801

(Received 5 May 2000; revised manuscript received 10 July 2000)

Ab initio density-functional calculations, employing the generalized-gradient approximation, have been used to determine formation energies U and the strain associated with different C lattice site configurations in fully coherent $Ge_{1-y}C_y$ layers grown on Ge(001). Calculations using strained 64-atom supercells show that substitutional C, for which $U=2.40\,\mathrm{eV}$, is the most stable configuration involving only one C atom per configuration. The bond-centered interstitial and the Ge-C split interstitial configurations have formation energies which are 2.9 and 1.78 eV higher, respectively. However, [001]-oriented C pairs and C triplets are even more stable than substitutional C, by 0.17 and 0.80 eV per C atom, indicating a strong tendency for C atoms to cluster during $Ge_{1-y}C_y$ growth. Calculated C-induced strain coefficients provide insight for interpreting $Ge_{1-y}C_y$ x-ray diffraction results and macroscopic strain measurements.

C-containing group-IV alloys, especially $Si_{1-x-y}Ge_xC_y$, are of both technological and scientific interest due to the potential they offer for band-gap and strain-state engineering of layers used in microelectronic and optoelectronic devices compatible with Si integrated circuit technology. There are, however, severe challenges associated with their growth. First, the equilibrium solubility of C in Si and Ge is extremely low, $\approx 10^{17}$ and 10^{8} cm⁻³, respectively. Lowtemperature growth under highly kinetically constrained conditions is required to take advantage of the fact that surface solubilities are orders of magnitude larger than bulk values,² while simultaneously inhibiting bulk phase separation during deposition. Another obstacle to be overcome is the large lattice constant mismatch, 34% and 37%, between diamond $(a_{\rm C}=3.5668\,{\rm \AA})$ and the group-IV semiconductors Si $(a_{\rm Si}$ = 5.4310 Å) and Ge (a_{Ge} = 5.6576 Å), respectively.

 $\mathrm{Si}_{1-y}\mathrm{C}_y$ has been widely studied experimentally³ and theoretically,⁴ but C incorporation into $\mathrm{Ge}_{1-y}\mathrm{C}_y$ alloys has received very little attention. Most reported experimental investigations have focused on the growth of $\mathrm{Ge}_{1-y}\mathrm{C}_y$ layers $(y \leq 0.1)$ on $\mathrm{Si}(001)$.^{5,6} However, $\mathrm{Ge}_{1-y}\mathrm{C}_y/\mathrm{Si}(001)$ layers typically have highly defective microstructures containing large concentrations of misfit dislocations which can act as sinks for incorporated C.

There are few reports of the successful growth of metastable $Ge_{1-\nu}C_{\nu}$ alloys on Ge(001). Duschl *et al.*⁷ employed molecular-beam epitaxy (MBE) to grow 30 periods of 3-nm/10-nm $Ge_{1-y}C_y/Ge$ superlattices with y=0.012 and 0.021 at temperatures $T_s = 200$ and 300 °C. Based upon x-ray diffraction (XRD) measurements of the macroscopic strain state, they concluded that the fraction of incorporated C at substitutional sites was only 0.3 at $T_s = 200 \,^{\circ}\text{C}$ and 0.1 at $T_s = 300$ °C. Yang et al.⁵ reported the growth of epitaxial $Ge_{0.95}C_{0.05}$ on Ge(001) by MBE at $T_s = 200$ °C but noted that the layers contained stacking faults and exhibited rough 113 facetted surfaces. Raman spectroscopy indicated that only a small fraction of the C was on substitutional sites giving rise to a weak local vibrational mode at 530 cm⁻¹ (Ref. 8). This is in good agreement with results of Hoffman and co-workers⁹ who used infrared absorption spectroscopy to characterize Ge wafers implanted with $^{12}C^{1+}$ and $^{13}C^{1+}$ ions at energies and doses chosen to provide a uniformly doped 0.7- μ m-thick region with y = 0.007. They observed a Ge-C stretch mode at a frequency of 531 cm⁻¹, consistent with predicted values obtained from *ab initio* local-density functional cluster calculations yielding a vibrational mode frequency between 516 and 563 cm⁻¹ for substitutional C in Ge.⁹ Analyses of ion channeling rocking curves about the $\langle 100 \rangle$, $\langle 110 \rangle$, and $\langle 111 \rangle$ axes suggested that up to $31 \pm 3\%$ of the incorporated C was in substitutional sites.

We recently reported the epitaxial growth of $Ge_{1-y}C_y/Ge(001)$ from hyperthermal beams. The films were coherent with the Ge substrate, did not contain misfit dislocations, and were in a state of in-plane compression due primarily to the formation of Ge-C split interstitials during growth. The proposed pathway for the formation of the split interstitials involves the reaction in the near-surface region between incorporated substitutional C atoms and Ge self-interstitials, the latter produced by fast incident neutral Ge atoms during deposition.

Two recent theoretical investigations have focused on substitutional C in $Ge_{1-y}C_y$. Kelires¹¹ investigated the bulk and surface structure of $Ge_{1-y}C_y$ alloys using atomistic Monte Carlo simulations within the empirical potential approach. He found that nearby substitutional C atoms prefer to occupy third-nearest-neighbor sites and that C-C dimers on the surface of $Ge_{0.98}C_{0.02}/Ge(001)$ are more favorable than Ge-C dimers. Guedj *et al.* ¹² employed an anharmonic Keating model to investigate lattice distortions and local vibrational modes in $Ge_{1-y}C_y$ alloys. They found that the alloy lattice constant follows Vegard's rule for $y \le 3\%$ and confirmed that the third-nearest-neighbor arrangement is most stable.

All experimental reports indicate that only a small fraction of incorporated C atoms occupy substitutional sites in $Ge_{1-y}C_y$. There is, however, no conclusive experimental evidence regarding the lattice site(s) occupied by the remaining C and previous theoretical investigations have only considered the substitutional configuration.

TABLE I. Formation energy U, formation energy per C atom \tilde{U} , strain ratio $a_z/a_{\rm Ge}$, and strain coefficient α , obtained using GGA and LDA for relaxed C configurations in pseudomorphic fully strained ${\rm Ge}_{1-\nu}{\rm C}_{\nu}$ layers $(a_x=a_{\nu}=a_{\rm Ge})$ on ${\rm Ge}(001)$.

	U (eV)		eV)	\widetilde{U} (eV)		a_z/a_{Ge}		α	
Configurations		GGA	LDA	GGA	LDA	GGA	LDA	GGA	LDA
Substitutional	C_1^1	2.40	2.44	2.40	2.44	0.989	0.989	-0.71	-0.68
Split interstitial	C_1^0	4.18	4.50	4.18	4.52	1.015	1.014	0.95	0.90
C pair	C_2^1	4.45	4.88	2.23	2.44	1.006	1.005	0.18	0.17
Double interstitial	C_2^{0}	4.74	5.43	2.37	2.72	1.018	1.017	0.63	0.61
C triplet	$C_3^{\overline{1}}$	4.80	5.65	1.60	1.85	1.017	1.017	0.37	0.37

In this paper, we present the results of initial investigations of the formation energies associated with C incorporation into single and multiple lattice site configurations in $Ge_{1-y}C_y$. We employ density-functional-theory-based *ab initio* calculations for fully strained epitaxial $Ge_{1-y}C_y$ layers on Ge(001). A comparison of the formation energies per C atom shows that substitutional C atoms are energetically less favorable than substitutional C pairs, which are in turn less favorable than C triplets. We also calculate the strain coefficients α since they can be used for direct comparison with experimental XRD results.

The calculations were performed using the Vienna *ab initio* simulation package, ¹³ which employs pseudopotentials and a plane-wave basis set to calculate the Kohn-Sham ground state. Both the generalized-gradient approximation (GGA) of Perdew and Wang ¹⁴ and the local density approximation (LDA) (Ref. 15) were used to obtain the exchange-correlation functional. Calculations with gradient corrections generally yield more accurate cohesive energies ^{16–18} and we therefore emphasize the results obtained from the GGA calculations while the LDA results are presented in Table I for comparison and in order to estimate the uncertainty introduced by the exchange-correlation functional.

Ultrasoft Vanderbilt-type pseudopotentials, 19 with core radii of 2.58 and 1.81 a.u. for Ge and C, respectively, provided good total energy convergence with an energy cutoff of $E_{\rm cut}$ = 287 eV for the plane-wave basis set expansion. $Ge_{1-y}C_y$ configurations were calculated in the neutral charge state using 64-atom supercells. In order to compare with experimental data for the pseudomorphic growth of $Ge_{1-\nu}C_{\nu}$ on Ge(001), the unit-cell shape was chosen to be tetragonal, with $a_x = a_y = a_{Ge}$. The Ge equilibrium lattice constant a_{Ge} was obtained by fitting the calculated total energy versus volume with the Murnaghan equation of state.²⁰ We obtain values of 5.759 Å (5.625 Å) using GGA (LDA). This is slightly above (below) the experimental value a_{Ge} = 5.6576 Å as commonly observed when employing GGA (LDA).²¹ The equilibrium total energies E and lattice constants perpendicular to the film surface a_z were obtained for each $Ge_{1-\nu}C_{\nu}$ configuration by relaxing the ionic positions using a conjugate-gradient algorithm for a minimum set of three different unit-cell sizes obtained by changing the value of a_7 by 1% increments. The total energy as a function of a_7 was then fit by a parabola.

k-space sampling was performed according to the method of Monkhorst and Pack²² using a $4 \times 4 \times 4$ grid which corresponds to, depending on the symmetry of the configuration, 6 to 20 k points in the irreducible wedge of the Brillouin zone.

Free energies of formation U presented here are obtained from the calculated total energy E of a given configuration with $N_{\rm Ge}$ Ge and $N_{\rm C}$ C atoms, according to the expression

$$U = E - N_{\text{Ge}} \mu_{\text{Ge}} - N_{\text{C}} \mu_{\text{C}}. \tag{1}$$

The Ge and C chemical potentials $\mu_{\rm Ge}$ and $\mu_{\rm C}$ are -4.54 and -9.12 eV (-5.20 and -10.16 eV with LDA), respectively, as determined by calculating the total energy of pure Ge and diamond, and using the same pseudopotentials, unit-cell size, $E_{\rm cut}$, and k-space sampling as for the ${\rm Ge}_{1-y}{\rm C}_y(001)$ calculations. Correcting the resulting chemical potentials with the corresponding atomic spin energy of Ge and C yields cohesive energies for Ge and diamond of 3.83 and 7.80 eV (4.63 and 8.91 eV with LDA), respectively, in very good agreement with values obtained by Fuchs et al. ¹⁶

U was found to converge to within 0.05 eV with respect to $E_{\rm cut}$ and k-space sampling for all C configurations investigated. The validity of the C pseudopotential cutoff radius was confirmed by performing calculations with an even larger cutoff radius $r_c = 2.12$ a.u. This resulted in U changing by only 0.1 eV. The total computational uncertainty in U is therefore estimated to be < 0.1 eV.

Equilibrium configurations were determined by relaxing several initial configurations with the same number of Ge and C atoms and then choosing the one with the lowest total relaxed energy. This approach is feasible when $N_{\rm C}$ is small and there are only a limited number of different geometries. We considered \approx 30 different initial configurations and found the equilibrium configurations for $N_{\rm C}=1$, 2, and 3, with $N_{\rm Ge}=63$ and 64, as presented in Fig. 1. We use the labels $C_{N_{\rm C}}^{\Lambda}$ for C in Ge configurations in which $\Lambda=(64-N_{\rm Ge})$ is the number of Ge atoms missing from the original bulk Ge supercell. The bond lengths are obtained from the GGA calculations, corrected by 1.8% for the overestimated relaxed Ge lattice constant. The corrected LDA bond lengths agree reasonably well with the GGA values; deviations are $\approx 2\%$.

The results are summarized in Table I in which calculated formation energies U and formation energies per C atom, $\widetilde{U} = U/N_{\rm C}$, are given for both GGA and LDA. Table I also shows calculated ratios $a_z/a_{\rm Ge}$ and strain coefficients α associated with each C configuration in order to determine the strain state of a corresponding ${\rm Ge}_{1-y}{\rm C}_y$ layer on ${\rm Ge}(001)$. We define α through the expression

$$a_z = a_{\text{Ge}}(1 + \alpha y). \tag{2}$$

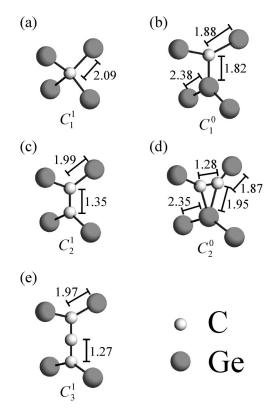


FIG. 1. Relaxed C configurations in pseudomorphic $Ge_{1-y}C_y$ with in-plane lattice constants $a_x = a_y = a_{Ge}$. N_C and Λ in configuration $C_{N_C}^{\Lambda}$ correspond to the number of incorporated C atoms and the number of Ge atoms missing from the original bulk Ge supercell, respectively.

It is important to note that we consider fully coherent $Ge_{1-y}C_y/Ge(001)$ layers in which $a_x=a_y=a_{Ge}$ and only a_z varies with C configuration and concentration. In the case of fully relaxed $Ge_{1-y}C_y$ with randomly oriented C configurations, $a_x=a_y=a_z=a_o$, the relaxed lattice constant a_o is given by

$$a_o = a_{Ge}(1 + \beta \gamma), \tag{3}$$

where

$$\beta = \frac{\alpha C_{11}}{C_{11} + 2C_{12}}.\tag{4}$$

The strain coefficient β is proportional to α and, using the elastic constants for pure Ge, $C_{11}=129$ GPa and $C_{12}=48$ GPa, ²³ we obtain $\beta=0.57\alpha$.

Figure 1(a) shows the most stable configuration involving one C atom, direct substitution on a Ge lattice site, with $U=\tilde{U}=2.40\,\mathrm{eV}$. The C-Ge bond length is 2.08 Å, 15% smaller than the Ge-Ge bond length, 2.45 Å, in bulk Ge and in good agreement with previously reported Ge-C bond lengths of 2.05 and 2.13 Å from Refs. 11 and 12, respectively. This configuration results in a 1.1% in-plane tensile strain in the 64-atom supercell. The calculated strain coefficient α is -0.71, slightly less than the Vegard's rule value of -0.64 and indicative of negative bowing in the alloy lattice parameter. ¹¹

The Ge-C split interstitial, shown in Fig. 1(b), consists of a Ge-C pair aligned along [001] and occupying a single Ge

lattice site. This configuration, labeled C_1^0 , is 0.3 and 2.9 eV more stable than a Ge-C split interstitial aligned along [011] and a bond-centered interstitial C, respectively. It is also 0.1 eV more stable, due to the additional strain energy, than the Ge-C pair aligned along the strained [100] or [010] directions in heteroepitaxial $Ge_{1-y}C_y$ on Ge(001). The Ge-C split interstitial configuration has a formation energy $U = 4.18 \, \text{eV}$ and is therefore almost 2 eV less stable than the C_1^1 substitutional C-atom configuration.

Figures 1(c) and 1(d) show the equilibrium configurations involving two C atoms with $\Lambda = 1$ (C_2^1) and $\Lambda = 0$ (C_2^0), respectively. The C_2^1 configuration consists of a C pair along [001], similar to the Ge-C split interstitial [Fig. 1(b)]. The alignment along [001] is 0.3 eV more stable than a C pair along [111], a geometry that has been proposed for C defects in Si.²⁴ The bond length between the C pair atoms is 1.35 Å. This configuration induces only a small in-plane compressive strain, expanding the 65-atom cell by 0.6% and corresponding to $\alpha = 0.18$. The C_2^1 formation energy is 4.45 eV with $\tilde{U} = 2.23 \,\mathrm{eV}$ per C atom. The substitutional C-pair configuration is, therefore, slightly, by 0.17 eV, more stable than substitutional C atoms. LDA formation energies for these two configurations are, however, identical. We consider the GGA values more reliable since GGA corrects the LDA tendency for overbinding.¹⁶

The C_2^0 configuration [Fig. 1(d)] consists of two neighboring bond-centered C interstitials, which themselves form a C-C bond along the [110] direction with a bond length of 1.28 Å. This double interstitial configuration expands the lattice constant of the supercell by 1.8%, corresponding to α =0.63. The formation energy per C atom is \tilde{U} =2.40 eV, slightly higher than that of the C_2^1 pair configuration.

Other possible two-C-atom configurations C_2^2 (not shown) include two substitutional C atoms on first-, second-, or third-nearest-neighbor sites corresponding to formation energies per C atom of 2.77, 2.47, and 2.30 eV, respectively. These configurations are thus energetically less favorable than the C pair C_2^1 . First- and second-nearest-neighbor configurations are also less favorable than a single substitutional C atom ($\tilde{U} = 2.40 \,\mathrm{eV}$). However, the third-nearest-neighbor arrangement has a lower formation energy than the C_1^1 configuration. This is in agreement with reported C-C pair correlation functions¹¹ which indicate a repulsive interaction between C atoms occupying first- and second-nearest-neighbor sites and a preference for third-neighbor substitutional sites in Ge₁ C_y. We also find that C atoms on neighboring sites do not form a strong bond (along the [111] direction), resulting in a C-C distance of 3.64 Å, which is considerably larger than the 2.45 Å Ge-Ge distance in bulk Ge.

A three-C-atom C_3^1 configuration on a single lattice site is shown in Fig. 1(e). The C atoms are aligned along the [001] direction, partially filling the Ge vacancy volume. This results in a relatively small in-plane compressive strain with an out-of-plane lattice constant increase of 1.7% and α =0.37. The formation energy of this C triplet is 4.80 eV with \tilde{U} = 1.60 eV, considerably (\approx 0.7 eV) less than the values obtained for the most stable one- and two-C configurations.

Another possible 3-C configuration (C_3^2 , not shown) consists of two neighboring substitutional C atoms with a bond-

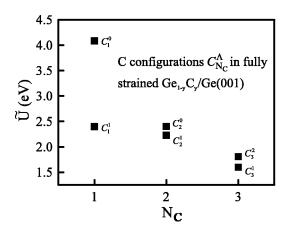


FIG. 2. Formation energy \tilde{U} per C atom vs the number of C atoms $N_{\rm C}$ in relaxed C configurations in pseudomorphic fully strained ${\rm Ge}_{1-v}{\rm C}_v$ layers $(a_x=a_v=a_{\rm Ge})$ on ${\rm Ge}(001)$.

centered interstitial C between them. That is, the three C atoms are aligned along [111]. This configuration is 0.62 eV less stable than the C_3^1 triplet. However, its formation energy per C atom, $\tilde{U}=1.81\,\mathrm{eV}$, is still lower than configurations with $N_\mathrm{C}=1$ and 2.

Comparing the formation energies per C atom for all configurations considered with $N_{\rm C}{=}1$, 2, and 3 clearly indicates that it is energetically favorable for C atoms to form small clusters. This trend is shown in Fig. 2, a plot of \tilde{U} as a function of $N_{\rm C}$. The lowest energy two-C configuration C_2^1 is 0.17 eV more stable than the lowest energy one-C configuration C_1^1 . Adding a third-C atom further reduces the

formation energy per C atom by an even larger amount, 0.63 eV. We expect that configurations with $N_{\rm C}$ =4,5,6,..., will continue to exhibit smaller formation energies with increasing $N_{\rm C}$ and we therefore conclude that C in ${\rm Ge_yC_{1-y}}$ has a strong tendency to form clusters with a stable minimum nuclei size of only two C atoms.

In summary, our results show that during the growth of Ge_vC_{1-v} layers, C complexes with $N_C > 1$ are energetically favored to form whenever diffusing C atoms encounter another C atom or C multimer. Therefore, the technologically interesting case for Ge_yC_{1-y} growth with C incorporated primarily on substitutional sites is only possible under highly kinetically limited growth conditions, where both surface and bulk²⁵ C atom encounters are negligible. Thus, only growth under conditions of low temperature, low C concentration, and low C surface segregation will yield films with fully substitutional C. This is consistent with experimental results^{7,8,10} which indicate that only a small fraction of the incorporated C in Ge_vC_{1-v} occupies substitutional sites and that the substitutional fraction increases with decreasing growth temperatures, from 0.1 at $T_s = 300$ °C to 0.3 at 200 °C for $Ge_{0.988}C_{0.012}$ and $Ge_{0.979}C_{0.021}$. Finally, we note that the computational results presented here provide insights into expected atomic configurations for C in nonsubstitutional sites and the calculated strain coefficients can be used for direct comparisons with high-resolution XRD results.

The authors gratefully acknowledge the financial support of the Semiconductor Research Corporation and the U.S. Department of Energy Division of Materials Sciences under Contract No. DEFG02-96ER45439. J.D.-G. was partially supported by the Natural Sciences and Engineering Research Council of Canada.

¹R. I. Scace and G. A. Slack, J. Chem. Phys. **30**, 1551 (1959).

²J. Tersoff, Phys. Rev. Lett. **74**, 5080 (1995).

³ See, for example, H. J. Osten, J. Griesche, and S. Scalese, Appl. Phys. Lett. **74**, 836 (1999); A. C. Mocuta and D. W. Greve, J. Appl. Phys. **85**, 1240 (1999).

⁴See, for example, J. Tersoff, Phys. Rev. Lett. **64**, 1757 (1990); C.-L. Liu, L. J. Borucki, T. Merchant, M. Stoker, and A. Korkin, Appl. Phys. Lett. **76**, 885 (2000).

⁵B. K. Yang, M. Krishnamurthy, and W. H. Weber, J. Appl. Phys. 82, 3287 (1997).

⁶ See, for example, J. Kolodzey, P. A. O'Neil, S. Zhang, B. A. Orner, K. Roe, K. M. Unruh, C. P. Swann, M. M. Waite, and S. Ismat Shah, Appl. Phys. Lett. **67**, 1865 (1995); M. Todd, J. Kouvetakis, and D. J. Smith, *ibid*. **68**, 2407 (1996).

⁷R. Duschl, O. G. Schmidt, W. Winter, K. Eberl, M. W. Dashiell, J. Kolodzey, N. Y. Jin-Phillipp, and F. Phillipp, Appl. Phys. Lett. **74**, 1150 (1999).

⁸W. H. Weber, B.-K. Yang, and M. Krishnamurthy, Appl. Phys. Lett. **73**, 626 (1998).

⁹L. Hoffman, J. C. Bach, B. Bech Nielsen, P. Leary, R. Jones, and S. Öberg, Phys. Rev. B 55, 11 167 (1997).

¹⁰ J. D'Arcy-Gall, P. Desjardins, I. Petrov, J. E. Greene, J.-E. Paultre, R. A. Masut, S. C. Gujrathi, and S. Roorda, J. Appl. Phys. (to be published).

¹¹P. C. Kelires, Phys. Rev. B **60**, 10 837 (1999).

¹²C. Guedj, J. Kolodzey, and A. Hairie, Phys. Rev. B **60**, 15 150 (1999).

 ¹³G. Kresse and J. Hafner, Phys. Rev. B **47**, 558 (1993); **49**, 14 251 (1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci. **6**, 15 (1996); Phys. Rev. B **54**, 11 169 (1996).

¹⁴J. P. Perdew and Y. Wang, Phys. Rev. B **45**, 13 244 (1992).

¹⁵D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. **45**, 566 (1980).

¹⁶M. Fuchs, M. Bockstedte, E. Pehlke, and M. Scheffler, Phys. Rev. B 57, 2134 (1998).

¹⁷A. D. Corso, A. Pasquarello, A. Baldereschi, and R. Car, Phys. Rev. B **53**, 1180 (1996).

¹⁸Y.-M. Juan, E. Kaxiras, and R. G. Gordon, Phys. Rev. B **51**, 9521 (1995).

¹⁹D. Vanderbilt, Phys. Rev. B **41**, 7892 (1990).

²⁰F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. **30**, 244 (1944).

²¹C. Filippi, D. J. Singh, and C. J. Umrigar, Phys. Rev. B **50**, 14 947 (1994).

²²H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

²³H. B. Huntington, Solid State Phys. **7**, 214 (1958).

²⁴ K. L. Brower, Phys. Rev. B **9**, 2607 (1974).

²⁵Based upon the annealing experiments presented in Ref. 7, we expect the bulk diffusivity of C in Ge to be negligible for $Ge_{1-\nu}C_{\nu}$ growth temperatures <450 °C.