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Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity
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We numerically demonstrate the existence of optical bistability in a finite-size nonlinear bidimensional
photonic crystal doped by a microcavity. The numerical results are obtained by a rigorous theory of diffraction.
We provide a theoretical model allowing to predict and explain the bistability phenomena from the resonances
of the structure.
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Numerous studies have been devoted to photonic crys
i.e., periodic dielectric devices, made of linear materia1

These structures could allow us to obtain full gaps, to rea
laser microcavities with a very high efficiency, multiplexe
or directive antennas.2–6 However, the analogy betwee
semiconductors and linear photonic crystals cannot
pushed too far inasmuch as photons, being not submitte
Coulomb interaction, are not as easily controlled as electr
are. In particular, linear photonic crystals are not easily t
able. For these reasons, it seems natural to turn to phot
crystals made of nonlinear media. Some explicit compu
tions have been made in case of one-dimensional~1D! non-
linear photonic crystals7–10 ~note that these are just Brag
mirrors, and that bistability is known to occur in nonline
Fabry-Perot resonators!. In particular a very interesting
physical phenomenon, that of ‘‘gap soliton,’’ has be
demonstrated.11–13 The subject of two- and three
dimensional solitons has also been dealt with by John
Aközbek with some approximations14,15 ~media with small-
contrast, slowly varying envelope approximation, etc.!. Fi-
nally, bistability near a bandedge has been numeric
investigated.16–18 However, all these studies, apart from
the case of 1D structures, deal with the four-wave appro
mation and use the Bloch-waves decomposition. For
part, we are interested in the computation of the ene
transmitted through a finite-size nonlinear photonic crys
so as to be as close as possible to an experimental situa
The crystal is doped with a microcavity~we have removed a
rod at the center of the crystal!. In the linear theory, such a
microcavity generates a deep acceptor mode. We dem
strate that this property may be used, in the case of a n
linear material, to induce optical switching and bistability
the transmission ratio.

We use the doped crystal depicted in Fig. 1, made of
infinitely long parallel rods made of a material withx (3)

nonlinearity. An s-polarized plane-wave impinges on th
structure from the upper face and the transmission coeffic
T is defined as the ratio between the flux of the Poynt
vector of the total field collected on a segment situated be
the crystal to the flux of the incident Poynting vector calc
lated on the same segment~see Fig. 1!. All the computations
are done using a rigorous linear multiscattering theory
diffraction and an iterative scheme. More precisely, the p
mittivity of the rods is given by « r(x,y)5« r

0(x,y)
1x (3)uE(x,y)u2. For a fixed relative permittivity« r(x,y), it
is possible to compute the scattering matrixS(l) of the
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structure, linking the incident field to the diffracted one.19,20

This matrix may be decomposed into a linear interact
term T(l) and a nonlinear scattering termB(l), so that we
haveB(l,uEu2)Ed1T(l)Ed5Ei . From this equation, an it-
erative scheme is easily derived. Starting with«0(x,y)
5« r

0(x,y), we compute the scattered fieldE0
d , and then de-

fine a sequence through

«n11~x,y!5«n~x,y!1x (3)uEn~x,y!u2,

B~l,uEnu2!En11
d 1T~l!En11

d 5Ei , ~1!

En115En11
d 1Ei .

Let us remark that the wavelength of the incident field
almost ten times bigger than the diameterd of the rods
(l/d;10) hence the electric energy in the nonlinear rods
assumed to be constant and equal to the mean inten

FIG. 1. 535 hexagonal photonic crystal doped by a micr
cavity. The spatial period of the lattice isp54 and the diameter
of the rods isd51. The Kerr-type permittivity of the rods is
« r5« r

01x (3)uE(x,y)u2 with « r
058.41 andx (3)520.001. The inci-

dent field iss polarized and propagates towards the negative-y di-
rection. The segment below the structure is used for computatio
the transmission coefficientT.
R7683 ©2000 The American Physical Society
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^uEn(x,y)u2&. From a numerical point of view, it is necessa
to interpolate and to replace the permittivity«n by «̃n defined
as:

«̃n115«n1 f ~«n112«n!. ~2!

The parameterf represents a relaxation factor in the iterati
process, which is chosen in the interval (0,1). In all the n
merical computations that we did, the number of reques
iterations required to obtain a relative precision of 1023 on
« r varied from 3 to 100 withf 50.3.

In the first numerical experiment, all the fibers are of Ke
nonlinear type, with a negative~nonfocusing! x (3) coefficient
chosen equal to20.001. In the case of a very weak incide
field, the crystal is in the linear regime, and it exhibits a g
in the interval of wavelengths (7,11). Moreover, as it
doped by a microcavity, there exists a deep acceptor mod
la /d59.056~Fig. 2!.

We study the transmissionT as a function of the ampli-
tudeA of the incident field for three wavelengths shorter th
that of the defect mode in the linear regime~see Fig. 3!. For
l/d58.960, we observe clearly a hysteresis loop, charac
istic of bistability, allowing an optical switching through th
photonic crystal: for an amplitudeA54, growing up to 6.9
the transmission describes the curveA→B ~Fig. 3!. At the
threshold amplitudeAt57 the crystal switches to a transmi
ting state~pointB8) ~Fig. 3!. When lowering the intensity the
transmission describes the curveB8→D→D8→A. In con-
trast to previous studies, the switching here is made poss
by the existence of a defect mode and not by the mobility
the edges of the gap. This is a very important remark, as
existence of bistability is ensured not only at the edge of
gap but on a full interval of wavelengths. Moreover it
possible to control with a fair accuracy the frequency of
defect mode.21 Another fundamental remark is that for finit
structures the boundary of the gap is not very stiff, hence
switch of ratio of transmitted energy cannot be very hig

FIG. 2. Logarithm of the transmissionT vs the wavelengthl for
the crystal of Fig. 1~solid curve! and for the same crystal with th
central rod ~dashed curve!. The microcavity creates a accept
mode for the resonant wavelengthla /d59.056.
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whereas in the present case, using a defect mode, the t
mission is multiplied by a factor of 4.

Let us now turn to a more detailed description of t
phenomena underlying bistability. In the weak field limit, th
scattering matrix in the vicinity of the defect can be writte
as

S~l!5
uc&^cu
l2lp

1S0~l!; ~3!

the complex numberlp is called a pole of the scatterin
operator, and the residue operatoruc&^cu accounts for the
resonant behavior whereasS0 accounts for the evanesce
waves. The residue operator is defined through the functio
integraluc&^cu5*gS(z)dz whereg is a loop in the complex
plane containing the polelp . Its range is the kernel o
S21(lp). Therefore the residue operator is a projector on
defect mode, and the coupling between the incident field
the defect mode is proportional to^cuEi&. Later on, this will
help us in studying the influence of the source on the thre
old intensity.

It is now important to note that as the defect mode
concentrated in the microcavity, it is a natural question
wonder whether it is necessary that all the rods are nonlin
ones in order to get the bistability phenomenon. Figure
presents the variation of the permittivity of three rods ins
the crystal with respect to the intensity of the incident fie
because of the strong localization of the light inside only
rods at the boundary of the microcavity have their permitt
ity significantly modified~the relative variation of the per
mittivity is higher than 8%!. As a consequence, we expe
bistability and switching to happen when all the rods a
replaced by linear ones, except those on the boundary o
microcavity. This is what is done in the next numerical e
periment~see Fig. 3!, and we indeed obtain bistability an
switching, with an almost unchanged thresholdAt57.1.
Now it is very important to note that due to the symmetry

FIG. 3. TransmissionT vs the amplitudeA computed for three
wavelengths. The bistability phenomenon occurs for waveleng
lower thanl/d58.980 ~see dashed and solid line curve!. For the
wavelengthl/d58.985 the transmission switches from a nonpa
ing state to a propagative one~dotted-dashed curve!. The dotted
curve presents the transmission for the crystal with only six non
ear rods situated on the boundary of the microcavity.
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the defect mode and that of the crystal, these nonlinear
all have the same nonlinear permittivity. That way, we ha
reduced our problem to simply computing the evolution
the defect mode with respect to the permittivity of the ro
on the boundary of the microcavity, and thus to a family
linear problems.

We now turn back to a linear problem, where the mic
cavity edge rods have a varying permittivity« r . For each
value of « r , we compute the value of the polelp @this is
done by minimizing the eigenvalue of smallest modulus
S21(l)#, see Fig. 5, where it is seen that the variation of
real part oflp is linear: Re(lp /d)5a« r1b with a50.145
andb57.84. The shift of the resonance is directly given
the sign of the susceptibility tensorx (3). When it is positive,
the permittivity of the nonlinear rods grows and hence
value of the polelp as well: this induces a red shift, i.e
towards lower energies levels, in the edges of the gaps an
the resonances. Conversely, in case of a negativex (3) there
is a blue shift, i.e., towards higher energies levels. Th
predictions are in full agreement with previous studies on
evolution of the bandedges.18,22

FIG. 4. Permittivity inside three rods of the crystal vs the a
plitude A of the incident plane wave.

FIG. 5. Real part of the pole of the scattering operator vs
permittivity of rods situated on the boundary of the microcavity
ds
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Let us now study the variation of the field inside the cry
tal at a fixed wavelengthl, when varying« r . The relevant
quantity for the transition from the gap to the defect mode
ul2lp(« r)u22, as can be seen from Eq.~3!. Indeed, when
lp(« r) is far froml then the predominant term inS(l) is S0
whereas when Re@lp(« r)# is in the very near vicinity ofl
the predominant term is

uc&^cu
l2lp~« r !

.

Therefore, asS0 represents evanescent waves, the energ
the field inside the crystal is proportional toul2lp(« r)u22.
Let us denote by«op the permittivity of the rods for which
the real part of the pole is equal to the wavelength$i.e., l
5Re@lp(«op)#% and therefore the energy inside the rods b
comes maximal

^uEumax
2 &}

^cuEi&2

Im@lp~«op!#
2

. ~4!

In the nonlinear case, at a given incident fieldA Ei ~with
amplitudeA anduEi u51), we denote by«(A) the permittiv-
ity of the nonlinear rods. Then we have that the normaliz
amplitude of the field inside these rods is given by

^uEu2&

^uEumax
2 &

5
Im@lp~«op!#

2

ul2lp@«~A!#u2
A2; ~5!

a second relation is obtained by the very definition of a K
medium:« r5« r

01x (3)^uEu2&. It follows from these relations
that the normalized intensity of the field inside the nonline
rods is given by the intersection of the curve:

« r°
Im@lp~«op!#

2

ul2lp~« r !u2
, ~6!

and the straight line

« r°
Im@lp~«op!#

2

^cuEi&2

« r2« r
0

x (3)A2
. ~7!

From this geometrical construction it is possible to und
stand and predict bistability, see Fig. 6. The qualitative
havior of the nonlinear diffraction problem is given by th
intersections of the graphs of the functions defined
Eqs.~6! and~7!. We start with a wavelengthl/d58.960 and
with a small amplitude of the incident fieldA54. Graphi-
cally we get a unique solutionA. As the amplitudeA grows
to the value 7.1 the partA→B of the curve is described. Fo
an increasing value of the amplitudeA the solution jumps to
the pointB 8, this effect explains the switching between th
evanescent state of the electromagnetic field and the de
mode state~see Fig. 3!. For an amplitude belonging to th
interval (7.1;10) the solutions describe the curveB 8→C.
When the intensity is lowered, the partsC→B 8 and
B 8→D are reached. For an amplitude lower than 6.3,
solution jumps to the pointD 8 and the part of the curve
D 8→A is described. This simple graphical analysis expla
the bistability phenomenon obtained for the transmission
Fig. 3. Moreover, we can predict the amplitude of the in
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dent field necessary to obtain the switch between differ
states of energy: the graphical threshold is equal to 7.1
agreement with the numerical computation of Fig.
(At57.1). We can also compute the minimal detuning
order to have the bistability effect. Indeed, the bistabil
phenomenon occurs when for a given amplitudeA there exist
two intersection points. This criterion is verified for a diffe
ence« r

02«op higher than 0.5. Using the linear relation b

FIG. 6. The solid curve represents the function of Eq.~6! vs the
permittivity. The straight line represents Eq.~7! for different ampli-
tudesA. The intersection points give the number of solutions of
nonlinear diffraction problem as well as the corresponding par
eters.
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tween Re(lp) and « r we determine the minimal detunin
Dl/d520.07. Hence bistability appears for wavelengt
lower thanl/d58.980. This result is confirmed by the nu
merical computation of the transmissionT versus the ampli-
tude of the incident field: forl/d58.985 bistability does not
appear whereas forl/d58.970 there exists a small hyste
esis loop~see Fig. 3!.

The term ^cuEi&, i.e., the coupling coefficient of the
modes, is a very important quantity. Indeed, it rules the
tensity threshold for obtaining bistability: the bigger it is, th
smaller the amplitude should be, because the relevant q
tity is the slope of the straight line~7!, as explained above
For instance, atl/d58.960, the threshold intensity i
At57.1 for an incident plane wave, whereas for a wire a
tenna situated at the middle of the microcavity~and hence
generating a incident wave with symmetry close to that
the mode!, the threshold intensity is reduced by a factor of

Using a rigorous multiscattering theory we have demo
strated the bistability behavior through a defect mode ins
a finite-size two-dimensional photonic crystal. Thanks to
linear analysis using the determination of the poles of
scattering operator, we have derived a graphical method
lowing the computation of the minimal detuning and t
threshold amplitude of the incident field. We have point
out the influence of the choice of the sources of excitati
using a wire antenna in order to optimize the coupling w
the defect mode, the threshold intensity becomes minima
our opinion the localization properties of photons insi
doped nonlinear photonic crystals may lead to new classe
active optical components. Indeed, thanks to the strong
calization the electromagnetic energy is locally enhanc
which then allows strong nonlinear phenomena.
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