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Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity
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We numerically demonstrate the existence of optical bistability in a finite-size nonlinear bidimensional
photonic crystal doped by a microcavity. The numerical results are obtained by a rigorous theory of diffraction.
We provide a theoretical model allowing to predict and explain the bistability phenomena from the resonances
of the structure.

Numerous studies have been devoted to photonic crystalstructure, linking the incident field to the diffracted ofi&°
i.e., periodic dielectric devices, made of linear matertals. This matrix may be decomposed into a linear interaction
These structures could allow us to obtain full gaps, to realizéerm T(\) and a nonlinear scattering tefB{\), so that we
laser microcavities with a very high efficiency, multiplexers, have B(\,|E|?)EY+ T(A\)E%=E'. From this equation, an it-
or directive antennas.® However, the analogy between erative scheme is easily derived. Starting with(x,y)
semiconductors and linear photonic crystals cannot be-=s%(x,y), we compute the scattered fiel, and then de-
pushed too far inasmuch as photons, being not submitted tiine a sequence through
Coulomb interaction, are not as easily controlled as electrons
are. In particular, linear photonic crystals are not easily tun-
able. For these reasons, it seems natural to turn to photonic
crystals made of nonlinear media. Some explicit computa-
tions have been made in case of one-dimensi¢ta) non- B(\,|EA?)EY, ;+ T(MEY, ,=F', 1)
linear photonic crystals'® (note that these are just Bragg
mirrors, and that bistability is known to occur in nonlinear ,

Fabry-Perot resonatorsIn particular a very interesting En+1=Eg+l+ E'.

physical phenomenon, that of “gap soliton,” has been
demonstratedt'®* The subject of two- and three-
dimensional solitons has also been dealt with by John angI

. . . . 5 . .
Akozbek with some approximatiotis™ (media with small- (N/d~10) hence the electric energy in the nonlinear rods is

contrast, SIO\.’\{Iy varying envelope approximation, )EtE". assumed to be constant and equal to the mean intensity
nally, bistability near a bandedge has been numerically

investigated®~® However, all these studies, apart from in ‘ . . .
the case of 1D structures, deal with the four-wave approxi- Incidente
mation and use the Bloch-waves decomposition. For our '} l plane wave
part, we are interested in the computation of the energy
transmitted through a finite-size nonlinear photonic crystal, O @ O Q @
SO as to be as close as possible to an experimental situatiol 5f .
The crystal is doped with a microcavifywe have removed a O O o O O O
rod at the center of the crysjaln the linear theory, such a
microcavity generates a deep acceptor mode. We demon | @) @) @) ®) ]
strate that this property may be used, in the case of a non Q %
linear material, to induce optical switching and bistability in
the transmission ratio. P ’ g O O O O O @
We use the doped crystal depicted in Fig. 1, made of 26 r ]
infinitely long parallel rods made of a material witff® o O O O O
nonlinearity. An s-polarized plane-wave impinges on the
structure from the upper face and the transmission coefficien-10f
T is defined as the ratio between the flux of the Poynting i . i i i
vector of the total field collected on a segment situated below ~ -10 -5 0 5 10
the crystal to the flux of the inc_ident Poynting vector.calcu— FIG. 1. 5x5 hexagonal photonic crystal doped by a micro-
lated on the same S(_egme{BEe. Fig. 1 All .the computanons cavity. The spatial period of the lattice ;=4 and the diameter
are done using a rigorous linear multiscattering theory ofy the rods isd=1. The Kerr-type permittivity of the rods is
diffraction and an iterative scheme. More precisely, the Perg, = 0+ y®|E(x,y)|? with £°=8.41 andy®= —0.001. The inci-
mittivity of the rods is given by e.(x,y)=27(X,y)  dent field iss polarized and propagates towards the negafiet-
+x®|E(x,y)|% For a fixed relative permittivity: (X,y), it rection. The segment below the structure is used for computation of
is possible to compute the scattering mat8f\) of the the transmission coefficiefit

enr 1Y) =£n(%Y) + XB|En(x,y)|%,

Let us remark that the wavelength of the incident field is
most ten times bigger than the diametkrof the rods
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FIG. 3. Transmissiofm vs the amplitudeA computed for three
wavelengths. The bistability phenomenon occurs for wavelengths
lower than\/d=8.980 (see dashed and solid line cuyv&or the
wavelengthh/d=8.985 the transmission switches from a nonpass-
ing state to a propagative or(dotted-dashed curyeThe dotted
curve presents the transmission for the crystal with only six nonlin-
ear rods situated on the boundary of the microcavity.
(|En(x,y)|?). From a numerical point of view, it is necessary
to interpolate and to replace the permittivity by €, defined ~ whereas in the present case, using a defect mode, the trans-
as: mission is multiplied by a factor of 4.
Let us now turn to a more detailed description of the
phenomena underlying bistability. In the weak field limit, the

FIG. 2. Logarithm of the transmissidnvs the wavelength for
the crystal of Fig. 1(solid curve and for the same crystal with the
central rod (dashed curye The microcavity creates a acceptor
mode for the resonant wavelength/d=9.056.

ent1=entf(eni1—en). (2)  scattering matrix in the vicinity of the defect can be written
as
The parametef represents a relaxation factor in the iterative
process, which is chosen in the interval (0,1). In all the nu- | )
merical computations that we did, the number of requested S(M)= A=A\ +So(M); €
iterations required to obtain a relative precision of 1®n P
g, varied from 3 to 100 withf =0.3. the complex numbeh , is called a pole of the scattering

In the first numerical experiment, all the fibers are of Kerroperator, and the residue operatgh(| accounts for the
nonlinear type, with a negati@onfocusing x coefficient  resonant behavior where&® accounts for the evanescent
chosen equal te- 0.001. In the case of a very weak incident waves. The residue operator is defined through the functional
field, the crystal is in the linear regime, and it exhibits a gapintegral| ){ ¢| =[,S(z)dzwherey is a loop in the complex
in the interval of wavelengths (7,11). Moreover, as it isplane containing the pola,. Its range is the kernel of
doped by a microcavity, there exists a deep acceptor mode &‘1()\,)). Therefore the residue operator is a projector on the
\,/d=9.056(Fig. 2. defect mode, and the coupling between the incident field and

We study the transmissioh as a function of the ampli- the defect mode is proportional {@|E'). Later on, this will
tudeA of the incident field for three wavelengths shorter thanhelp us in studying the influence of the source on the thresh-
that of the defect mode in the linear regirftsee Fig. 3 For  old intensity.

N/d=8.960, we observe clearly a hysteresis loop, character- It is now important to note that as the defect mode is
istic of bistability, allowing an optical switching through the concentrated in the microcavity, it is a natural question to
photonic crystal: for an amplitud@=4, growing up to 6.9 wonder whether it is necessary that all the rods are nonlinear
the transmission describes the cunde- B (Fig. 3). At the  ones in order to get the bistability phenomenon. Figure 4
threshold amplitudé\;= 7 the crystal switches to a transmit- presents the variation of the permittivity of three rods inside
ting state(point B’) (Fig. 3). When lowering the intensity the the crystal with respect to the intensity of the incident field:
transmission describes the curé—D—D’'— A. In con-  because of the strong localization of the light inside only the
trast to previous studies, the switching here is made possibl@ds at the boundary of the microcavity have their permittiv-
by the existence of a defect mode and not by the mobility ofty significantly modified(the relative variation of the per-
the edges of the gap. This is a very important remark, as thaittivity is higher than 8% As a consequence, we expect
existence of bistability is ensured not only at the edge of thédistability and switching to happen when all the rods are
gap but on a full interval of wavelengths. Moreover it is replaced by linear ones, except those on the boundary of the
possible to control with a fair accuracy the frequency of themicrocavity. This is what is done in the next numerical ex-
defect modé! Another fundamental remark is that for finite periment(see Fig. 3, and we indeed obtain bistability and
structures the boundary of the gap is not very stiff, hence theswitching, with an almost unchanged threshdig=7.1.
switch of ratio of transmitted energy cannot be very high,Now it is very important to note that due to the symmetry of
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Rods on the boundary of Let us now study the variation of the field inside the crys-
a5 . ‘ the crystal _ \ tal at a fixed wavelength, when varyinge, . The relevant
quantity for the transition from the gap to the defect mode is
] \@ IN=X\y(g,)| 2, as can be seen from E¢B). Indeed, when
el T ~.¥ ' f Np(&) is far from\ then the predominant term B(\) is
/’\i'*‘\\' whereas when Fgap(sr.)] is in the very near vicinity o
82t Rods inside the crystal | L the predominant term is
i Lo )l
g I A—Np(ep)’
79} ROdSﬂf; ;ﬁzg‘:;xﬂ?y of bl Therefore, as§, represents evanescent waves, the energy of
! I the field inside the crystal is proportional [lo— X (/)| 2.
8r A Let us denote by, the permittivity of the rods for which
771 N the real part of the pole is equal to the wavelenfitl., \
=R \p(g,p) ]} and therefore the energy inside the rods be-
78, 5 3 . s A > comes maximal
A
A > (ylE)?
FIG. 4. Permittivity inside three rods of the crystal vs the am- SN e —— 4
plitude A of the incident plane wave. IM[\p(&0p)]°

the defect mode and that of the crystal, these nonlinear rods In the nonlinear case, at a given incident fiéld' (with
all have the same nonlinear permittivity. That way, we haveamplitudeA and|E'| = 1), we denote by (A) the permittiv-
reduced our problem to simply computing the evolution ofity of the nonlinear rods. Then we have that the normalized
the defect mode with respect to the permittivity of the rodsamplitude of the field inside these rods is given by
on the boundary of the microcavity, and thus to a family of
linear problems.

We now turn back to a linear problem, where the micro- <|E|2 ) - IN=N [e(A)]|2
cavity edge rods have a varying permittivity . For each ma P
value ofe,, we compute the value of the polg, [this is  a second relation is obtained by the very definition of a Kerr
done by minimizing the eigenvalue of smallest modulus ofmedium:s,= &2+ x®)(|E|?). It follows from these relations
S~%(\)], see Fig. 5, where it is seen that the variation of thethat the normalized intensity of the field inside the nonlinear

real part of\, is linear: Ref,/d)=as,+b with a=0.145  rods is given by the intersection of the curve:
andb=7.84. The shift of the resonance is directly given by

the sign of the susceptibility tensgf*). When it is positive,

2 2
(IE[%) _ ImDp(eopl® 5

Im[)\p(sop)]2

the permittivity of the nonlinear rods grows and hence the &> o) : (6)
value of the polex, as well: this induces a red shift, i.e., preT

towards lower energies levels, in the edges of the gaps and #ind the straight line

the resonances. Conversely, in case of a negafitethere

is a blue shift, i.e., towards higher energies levels. These |m[)\p(80p)]2 g —gl

predictions are in full agreement with previous studies on the > (7)
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From this geometrical construction it is possible to under-
stand and predict bistability, see Fig. 6. The qualitative be-
havior of the nonlinear diffraction problem is given by the
intersections of the graphs of the functions defined by
Egs.(6) and(7). We start with a wavelengtk/d=8.960 and
with a small amplitude of the incident field=4. Graphi-
cally we get a unique solutiod. As the amplitudeA grows

to the value 7.1 the pari— 15 of the curve is described. For
an increasing value of the amplitudethe solution jumps to
the pointB’, this effect explains the switching between the
evanescent state of the electromagnetic field and the defect
mode statgsee Fig. 3. For an amplitude belonging to the
interval (7.1;10) the solutions describe the cuige—C.
When the intensity is lowered, the parG—B’' and
B'—D are reached. For an amplitude lower than 6.3, the
solution jumps to the poinD’ and the part of the curve
D' — Ais described. This simple graphical analysis explains

FIG. 5. Real part of the pole of the scattering operator vs thethe bistability phenomenon obtained for the transmission in
permittivity of rods situated on the boundary of the microcavity. Fig. 3. Moreover, we can predict the amplitude of the inci-
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1 " A—71l\ \ " " i tween Rel,) and e, we determine the minimal detuning
ool /i IZI 1 AX/d=—0.07. Hence bistability appears for wavelengths
™ . lower than\/d=8.980. This result is confirmed by the nu-
e NP ] merical computation of the transmissidnversus the ampli-
07t ] tude of the incident field: fox/d=8.985 bistability does not
o N\ 3 A=63 appear whereas for/d=8.970 there exists a small hyster-

[ AN} ! esis loop(see Fig. 3.

o5l / N\ A ] The term (|E'), i.e., the coupling coefficient of the
_ZI \ modes, is a very important quantity. Indeed, it rules the in-

04y ".| tensity threshold for obtaining bistability: the bigger it is, the

0al N IZ:I smaller the amplitude should be, because the relevant quan-

SN ‘Z tity is the slope of the straight lin€7), as explained above.
02 ™ N For instance, at\/d=8.960, the threshold intensity is
\

" A N\ i
01f / N4 A,=7.1 for an incident plane wave, whereas for a wire an-
S

NS tenna situated at the middle of the microcaviind hence
O 74 785 78 & 82 84  ss generating a incident wave with symmetry close to that of
€op e & the mode, the threshold intensity is reduced by a factor of 4.
) . Using a rigorous multiscattering theory we have demon-
FIG. 6. The solid curve represents the function of &).vs the

200 s ) ) strated the bistability behavior through a defect mode inside
permittivity. The straight line represents Ed) for different ampli- a finite-size two-dimensional photonic crystal. Thanks to a
tudesA. The intersection points give the number of solutions of theIinear analysis using the determination of the poles of the
Z?Gnrlénear diffraction problem as well as the corresponding paramécattering operator, we have derived a graphical method al-
’ lowing the computation of the minimal detuning and the

threshold amplitude of the incident field. We have pointed
dent field necessary to obtain the switch between differenut the influence of the choice of the sources of excitation:

states of energy: the graphical threshold is equal to 7.1 imsing a wire antenna in order to optimize the coupling with
agreement with the numerical computation of Fig. 3the defect mode, the threshold intensity becomes minimal. In
(A=7.1). We can also compute the minimal detuning inour opinion the localization properties of photons inside
order to have the bistability effect. Indeed, the bistability doped nonlinear photonic crystals may lead to new classes of
phenomenon occurs when for a given amplitddiere exist  active optical components. Indeed, thanks to the strong lo-
two intersection points. This criterion is verified for a differ- calization the electromagnetic energy is locally enhanced,
ences?—sop higher than 0.5. Using the linear relation be- which then allows strong nonlinear phenomena.
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