
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 1 JULY 2000-IIVOLUME 62, NUMBER 2
Optimized phonon approach for the diagonalization of electron-phonon problems
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We propose an optimized phonon approach for the numerical diagonalization of interacting electron-phonon
systems combining density-matrix and Lanczos algorithms. We demonstrate the reliablity of this approach by
calculating the phase diagram for bipolaron formation in the one-dimensional Holstein-Hubbard model, and the
Luttinger parameters for the metallic phase of the half-filled one-dimensional Holstein model of spinless
fermions.
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Problems of electrons or spins interacting with lattice d
grees of freedom play an important role in condensed-ma
physics. To name only a few, consider for instance pola
and bipolaron formation in various transition metal oxid
such as tungsten oxide or high-Tc cuprates,1 Jahn-Teller ef-
fects in colossal magnetoresistance manganites,2 or Peierls
and spin-Peierls instabilities in quasi-one-dimensio
materials.3

As a generic model for such systems the one-dimensio
~1D! Holstein-Hubbard model,

H52t(
i ,s

~ci ,s
† ci 11,s1H.c.!1U(

i
ni ,↓ni ,↑

1gv(
i ,s

~bi
†1bi !ci ,s

† ci ,s1v(
i

bi
†bi , ~1!

is frequently considered, whereci ,s
(†) andbi

(†) describe fermi-
ons and bosons on a sitei, respectively. In many physically
relevant situations the energy scales of electrons (t,U),
phonons (v) and their interaction (gv) are of the same or
der of magnitude, causing analytic methods, and espec
adiabatic techniques, to fail in most of these cases. Even
numerical methods strong interactions are a demanding t
since they require some cut-off in the phonon Hilbert spa
Starting with the work of White4 in 1993, during the last
years a class of algorithms became very popular, base
the use of a so-called density matrix for the reduction
large Hilbert spaces to manageable dimensions. Conside
focus has been placed on renormalization methods for o
dimensional systems in the thermodynamic limit. Howev
exact diagonalization of finite clusters also benefit subs
tially from these ideas, as we will demonstrate in t
present paper.

Optimized phonon approach. First we resume the connec
tion between density matrices and optimized basis sta
Starting with an arbitrary normalized quantum state
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uc&5 (
r 50

Dr21

(
n50

Dn21

gnr un&ur & ~2!

expressed in terms of the basis$un&ur &% of the direct product
spaceH5Hn ^ Hr , we wish to reduce the dimensionDn of
the spaceHn by introducing a new basis,

uñ&5 (
n50

Dn21

añnun&, ~3!

with ñ50 . . . (D ñ21) andD ñ,Dn . We call$uñ&% an opti-
mized basis, if the projection ofuc& on the corresponding
subspaceH̃5H ñ ^ Hr,H is as close as possible to the orig
nal state. Therefore we minimizeiuc&2uc̃&i2 with respect to
the añn under the condition̂ñ8uñ&5dñ8ñ , where

uc̃&5 (
r 50

Dr21

(
ñ50

D ñ21

(
n,n850

Dn21

añnañn8
* gn8r un&ur & ~4!

is the projected state. Since we find

iuc&2uc̃&i2512 (
r 50

Dr21

(
ñ50

D ñ21

(
n,n850

Dn21

añngnr* gn8rañn8
*

512Tr~ara†!, ~5!

wherer5( r 50
Dr21gnr* gn8r is called the density matrix of the

stateuc&, we observe immediately that the states$uñ&% are
optimal if they are elements of the eigenspace ofr corre-
sponding to itsD ñ largest eigenvalueswñ .

Following Zhanget al.,5 we apply these features to con
struct an optimized phonon basis for the eigenstates o
interacting electron/spin-phonon system. Consider a sys
composed ofN sites, each contributing a phonon degree
freedom un i&, n i50 . . .`, and some other~spin or elec-
tronic! statesur i&. Hence, the Hilbert space of the mod
under consideration is spanned by the basis$ ^ i 50

N21un i&ur i&%.
Of course, to numerically diagonalize a Hamiltonian oper
R747 ©2000 The American Physical Society
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ing on this space, we need to restrict ourselves to a fin
dimensional subspace. To calculate, for instance, the low
eigenstates of the Holstein-Hubbard model~1!, we could
limit the phonon space spanned byun i&5(n i !)

21/2(bi
†)n iu0&

by allowing only the statesn i,Di . Most simply we can
chooseDi5M ; i yielding Dph5MN for the dimension of
the total phonon space. However, if we think of the sta
$ ^ i 50

N21un i&% as eigenstates of the HamiltonianHph

5v( i 50
N21bi

†bi , it is more suitable for most problems t
choose an energy cut-off instead. Thus we used the cond
( i 50

N21n i,M , leading toDph5( N
N1M21), for most of our pre-

vious numerical work~see, e.g., Ref. 6!. For weakly interact-
ing systems already a small numberM of phonon states is
sufficient to reach very good convergence for ground sta
and low-lying excitations. However, with increasing co
pling strength most systems require a large number of
above ‘‘bare’’ phonons, thus exceeding capacities of e
large supercomputers. In some cases one can avoid t
problems by choosing an appropriate unitary transforma
of the Hamiltonian, but in general it is desirable to find
optimized basis automatically.

Within the present density-matrix algorithm5 for the con-
struction of an optimal phonon basis the phonon subsys
is considered as a product of one ‘‘large’’ and a number
‘‘small’’ sites. Each site except the large one uses the sa

optimized basis$um i&%5$uñ&% with ñ50 . . . (m21), while
the basis of the large site consists of the states$uñ&% plus
some bare states$un&%, $um0&%5ON($uñ&%ø$un&%), where
ON( . . . ) denotes orthonormalization. After a first initializa
tion the optimized states are improved iteratively through
following steps

~1! calculating the requested eigenstateuc& of the Hamil-
tonianH in terms of the actual basis,

~2! replacing$uñ&% with the most important~i.e., largest
eigenvalueswñ) eigenstates of the density matrixr, calcu-
lated with respect touc& and$um0&%,

~3! changing the additional states$un&% in the set$um0&%,
~4! orthonormalizing the set$um0&%, and returning to

step~1!.
A simple way to proceed in step~3! is to sweep the bare

states$un&% through a sufficiently large part of the infinite
dimensional phonon Hilbert space. One can think of the
gorithm as ‘‘feeding’’ the optimized states with ba
phonons, thus allowing the optimized states to become
creasingly perfect linear combinations of bare phonon sta
Of course the whole procedure converges only for eig
states ofH at the lower edge of the spectrum, since usua
the spectrum of a Hamiltonian involving phonons has
upper bound. The applicability of the algorithm was demo
strated in Ref. 5 with the Holstein model@i.e., U50 in Eq.
~1!# as an example.

When we implemented the above algorithm together w
a Lanczos exact diagonalization method for our system
interest, we found two objections against the above choic
an optimized basis:~i! the basis is not symmetric under th
symmetry operations of the Hamiltonian~e.g., translations!,
and ~ii ! the phonon Hilbert space is still large (Dph
5MmN21, whereM is the dimension at the large site!, since
we usually need more than one optimized state per site.
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The first problem is solved by including all those stat
into the phonon basis that can be created by symmetry
erations, and by calculating the density matrix in a symm
ric way, i.e., by adding the density matrices generated w
respect to every site, not just sitei 50. Concerning the sec
ond problem we note that the eigenvalueswñ of the density-
matrix r decrease approximately exponentially, see Fig. 1
we interpretwñ;exp(2añ) as the probability of the system
to occupy the corresponding optimized stateuñ&, we imme-
diately find that the probability for the complete phonon b
sis statê i 50

N21uñ i& is proportional to exp(2a(i50
N21ñi). This is

reminiscent of the energy cut-off discussed above, and
therefore propose the following choice of phonon basis sta
at each site,

; i : $um i&} 5ON~$um&%) ~6!

um&5H opt. state uñ&, 0<m,m

bare stateun&, m<m,M
~7!

and for the complete phonon basis$ ^ S im i,Mum i&%, yielding

Dph5( N
N1M21). Implementation of this optimization proce

dure together with our existing Lanczos diagonalizati
code6 allows the study of interacting electron/spin-phon
systems in a much larger parameter space without reac
the limits of available supercomputers.

To demonstrate the power of the method, in the followi
we address two frequently discussed problems: bipola
formation and Luttinger liquid behavior in 1D polaronic me
als.

Bipolarons in the 1D Holstein-Hubbard model. Bipolaron
formation has been the subject of numerous studies over
last decades, stimulated for instance by the discovery
high-Tc cuprates, and the belief that the interplay betwe
strong electron-phonon and electron-electron interacti
plays a significant role in these highly correlated materia7

Nevertheless the influence of the Hubbard interactionU on
bipolaron formation is still not completely understood. B
side bipolaron formation itself, an interesting open quest
is the transition between two bipolaronic regimes, nam
the intersite and the onsite bipolaron. Since the Hubbard
teractionU and the electron-phonon interaction compete,

FIG. 1. Eigenvalueswñ of r calculated with the ground state o
the Holstein model of spinless fermions for weak and strong c

pling. For largerñ the eigenvalues are close to the numerical p
cision ('10214), explaining the flattening.
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usually need to consider intermediate to strong electr
phonon couplingg, or lªg2v/(2t), making the problem a
good testing ground for our optimized phonon algorithm.

In a recent work Boncˇa et al.8 studied mobile bipolarons
in the Hubbard model by means of a variational techniq
Their focus is mainly on theU dependence of the transitio
from unbound polarons to intersite bipolarons and from
tersite to onsite bipolarons at intermediate frequencies. Th
transitions also show a significantv dependence. Here th
adiabatic frequency range is of special interest, since th
are no appropriate analytic methods for small but fin
frequencies.

Using the optimized phonon approach on lattice sizes
to N512, we calculated the phase diagram for the transit
from unbound polarons to bipolarons at fixedU. The critical
couplinglc was determined by the conditionD50, whereD
is the energy difference between the two-particle grou
state and twice the one-particle ground state, i.e.,D5Eb
22Ep . As indicated in Fig. 2, the critical interactionlc
increases with frequency, reachingU/(4t) in the antiadia-
batic strong-coupling limit, where the phonon interaction
instantaneous and the Holstein-Hubbard model maps ont
effective Hubbard model withUeff5U24tl. As Ueff be-
comes negative an onsite bipolaron bound state is formed
the physically more relevant adiabatic regime, however,
retardation effect of the electron-phonon interaction may
vor the formation of more extended electron bound stat9

due to the time delay the second electron can take advan
of the lattice distortion left by the first one, still avoidin
direct Coulomb repulsion. Increasing the electron-phon
coupling the density-density correlation signals the transit
to such an intersite bipolaron followed by the formation
an onsite bipolaron~see inset!. Most notably, the behavior o
the kinetic energy indicates that the intersite bipolaron i
mobile quasiparticle even though its effective mass is s
stantially enhanced~cf., Fig. 3!. This is reminiscent of the
behavior of large bipolarons in models with long-ran
~Fröhlich-type! electron-lattice interaction. Another strikin
property is the almost perfect cosine band dispersion of

FIG. 2. Critical coupling for bipolaron formation at fixedU/t
56.0 and system sizeN512; inset:^ninj& correlation in the un-
bound, intersite and on-site cases forv/t50.4, N56.
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nearest-neighbor intersite bipolaron~see inset!. This free-
particle, like behavior, is indicative of a vanishing residu
bipolaron-phonon interaction and can be attributed to the
that the onsite and nearest-neighbor electron-phonon cor
tions are about the same size.10 In contrast the onsite bipo
laron is almost immobile~for l51.6 andv/t50.4 the renor-
malized bandwidth becomes smaller than 1023; cf., also the
sharp drop inEkin).

Luttinger liquid behavior. The Holstein model of spinles
fermions is defined by omitting the electron spins and con-
sequently the Coulomb interactionU in Hamiltonian~1!. In
one dimension and at half filling, depending on the coupl
strengthg, this model undergoes a transition from a gaple
metallic phase to a Peierls distorted phase with a gap
tween the ground-state and lowest excitations. Details of
transition and the properties of the different phases w
studied with several methods over the last years.11–14 One
interesting aspect is the description of the metallic phase
terms of an effective Luttinger model, which, according
the ‘‘Luttinger liquid hypothesis’’ of Haldane,15 should be an
universal picture for the low-temperature properties of
one-dimensional metals. The two parameters of the Luttin
model, the renormalized Fermi velocityur and effective cou-
pling constantKr , can be determined through the scalin
behavior of the ground-state energyE0 and the energy of
charge excitationsE61 with respect to the system sizeN:

E0~N!

N
5e`2

pur

6N2
, E61~N!2E0~N!5

pur

2KrN
. ~8!

In a recent work14 we used a variational method to calc
late eigenstates and the resulting Luttinger parameters fo
Holstein model at half filling. Unfortunately the metho
failed to give consistent results especially forKr in the an-
tiadiabatic regime of large frequenciesv@t where the Hol-
stein model can be well described by second order pertu
tion theory, leading to an effectiveXXZ spin model11 with
known Luttinger parameters. For large frequencies theXXZ

FIG. 3. Bipolaron kinetic energy as a function of couplin
strengthl for frequenciesv/t50.4 and 3.0, comparing optimize
~OPM! and bare~ED! phonons. Inset: rescaled bipolaron dispersi
at v/t50.4, l5U/(4t), whereDE/t50.0103 is the bandwidth.
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model, as well as Monte Carlo12 and density-matrix renor
malization group~DMRG!13 calculations for the Holstein
model, yieldKr,1 corresponding to a repulsive interactio
If Kr , starting with the value 1 for the noninteracting ca
reaches1

2 with increasing coupling strength, the model u
dergoes a Kosterlitz-Thouless transition to a gapped ph
In contrast, the variational technique yields an attractive
teraction (Kr.1) for all frequencies. Lanczos diagonaliz
tion without optimized phonons could not resolve this uns
isfying situation, because the Hilbert space required
calculate the requested eigenstates with sufficient precisio
far too large for all available computers.

Even with the above choice of an optimized phonon ba
we need many states (M*N), since at large electron-phono
coupling we have to cover two different distortion patter
for an empty or occupied site. We therefore implemente
more sophisticated variant of the above algorithm, using
different sets of optimized phonon states, one for each p
sible fermion occupation number~cf., Ref. 5!. Together with
the cut-off, this results in a further reduction of the Hilbe
space (M;N/2), which is required for the diagonalization o
larger systems. It is worth noting that this advantage
gained at the expense of a less sparse matrix, since e
hopping is connected with the projection of the actual p
non state onto the other basis set. Hence, for more com
cated models, such as Jahn-Teller problems with two or th
phonon modes per site, the diagonalization can be t
consuming.

In Fig. 4 we show the Luttinger parameters we found
scaling the energies for system sizes up toN510. In the
antiadiabatic frequency range the renormalized Fermi ve
ity ur is drastically supressed within the metallic pha
while for low phonon frequencies it remains almost u
changed up to the phase transition. A very interesting re
te
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is the changing character of the interaction belowv;t. For
small frequencies the effective fermion-fermion interaction
attractive, while it is repulsive for large frequencies, i.
there is a transition point, depending ong andv, where the
model is free in lowest order.

In conclusion, we have proposed an advanced phonon
timization algorithm for application in Lanczos diagonaliz
tion, and demonstrated its reliability for two strongly inte
acting electron-phonon systems.
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FIG. 4. Luttinger liquid parameters for the Holstein model
spinless fermions at phonon frequenciesv50.1, 1.0, and 10.
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