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Optimized phonon approach for the diagonalization of electron-phonon problems
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We propose an optimized phonon approach for the numerical diagonalization of interacting electron-phonon
systems combining density-matrix and Lanczos algorithms. We demonstrate the reliablity of this approach by
calculating the phase diagram for bipolaron formation in the one-dimensional Holstein-Hubbard model, and the
Luttinger parameters for the metallic phase of the half-filled one-dimensional Holstein model of spinless

fermions.
Problems of electrons or spins interacting with lattice de- D-1D,-1
grees of freedom play an important role in condensed-matter |y = > Yor| V)Y (2
r=0 »=0

physics. To name only a few, consider for instance polaron

and bipolaron formation in various transition metal oxidesexpressed in terms of the bagj®)|r)} of the direct product
such as tungsten oxide or high-cuprated, Jahn-Teller ef- spaceH=H,®H,, we wish to reduce the dimensid, of
fects in colossal magnetoresistance mangafi@spPeierls  he spaceH , by introducing a new basis,

and spin-Peierls instabilities in quasi-one-dimensional

materials bt
As a generic model for such systems the one-dimensional |v)= E a;,|v), 3
(1D) Holstein-Hubbard model, =0

with =0 ... (D;—1) andD;<D,. We call{|7)} an opti-
mized basis, if the projection dfy) on the corresponding
H= —tz (CI(,ci+1’,,+ H.c.)+ UZ N, Nit subspacél =H;®H,CH is as close as possible to the origi-
e ' nal state. Therefore we minimiiéy) — |4)|? with respect to

the a3, under the conditiod?’|v)= 8,7, where
+gwY, (bf+b)cf ¢ +w> blb;, (1) ')
Lo I D,-1Dj;-1 D,-1
=2 2 2w, yadnn @
= v=0 »,v' =0

+

is frequently considered, whea$!) andb{" describe fermi-

ons and bosons on a siterespectively. In many physically S the projected state. Since we find

relevant situations the energy scales of electron®))( D,~1D05-1 D,~1
phonons () and their interactiondw) are of the same or- TN 12—1 S V..
der of magnitude, causing analytic methods, and especially Il)=1#)*=1 2‘0 go VVE,:O G Yo Yurr @y

adiabatic techniques, to fail in most of these cases. Even for
numerical methods strong interactions are a demanding task, =1-Tr(apa"), 5
since they require some cut-off in the phonon Hilbert space. D,—1 . . .
Starting with the work of Whith in 1003, during the ast | Wherep=37 "%y, is called the density matrix of the
years a class of algorithms became very popular, based diate|y), we observe immediately that the staf¢s)} are
the use of a so-called density matrix for the reduction ofoptimal if they are elements of the eigenspacepaforre-
large Hilbert spaces to manageable dimensions. Considerai#@onding to itsD; largest eigenvalues; .
focus has been placed on renormalization methods for one- Following Zhanget al.> we apply these features to con-
dimensional systems in the thermodynamic limit. However struct an optimized phonon basis for the eigenstates of an
exact diagonalization of finite clusters also benefit substaninteracting electron/spin-phonon system. Consider a system
tially from these ideas, as we will demonstrate in thecomposed oN sites, each contributing a phonon degree of
present paper. freedom|v;), »;=0...%, and some othefspin or elec-
Optimized phonon approackirst we resume the connec- tronic) states|r;). Hence, the Hilbert space of the model
tion between density matrices and optimized basis statesinder consideration is spanned by the b&si8 ;| v;)|r;)}.
Starting with an arbitrary normalized quantum state Of course, to numerically diagonalize a Hamiltonian operat-
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ing on this space, we need to restrict ourselves to a finite- : ' ' ' ' ]
dimensional subspace. To calculate, for instance, the lowes O—00=05, wt=0.1
eigenstates of the Holstein-Hubbard mod#&), we could 10° | & —09=10, o=01 .
limit the phonon space spanned hy)=(»;!) ~Y4b/)"|0)

by allowing only the states;<D;. Most simply we can
chooseD;=M V i yielding D= MN for the dimension of
the total phonon space. However, if we think of the states
{® o|vi)} as eigenstates of the Hamiltoniar,y,
=w32Nblb;, it is more suitable for most problems to
choose an energy cut-off instead. Thus we used the conditiol 10 | S
S i< M, leading toD 5= (NN 1), for most of our pre- 0 1 2 3 4 5

vious numerical worksee, e.g., Ref.)6 For weakly interact- v

ing .systems already a small numbérof phonon states is FIG. 1. Eigenvaluesv; of p calculated with the ground state of
sufficient to reach very good convergence for ground statege Holstein model of spinless fermions for weak and strong cou-

and low-lying excitations. However, with increasing Cou- yjing For largers the eigenvalues are close to the numerical pre-
pling strength most systems require a large number of thgjsjon (~10-14), explaining the flattening.

above “bare” phonons, thus exceeding capacities of even
large supercomputers. In some cases one can avoid theseThe first problem is solved by including all those states
problems by choosing an appropriate unitary transformatiofinto the phonon basis that can be created by symmetry op-
of the Hamiltonian, but in general it is desirable to find anerations, and by calculating the density matrix in a symmet-
optimized basis automatically. ric way, i.e., by adding the density matrices generated with
Within the present density-matrix algoritfrfor the con-  respect to every site, not just site:0. Concerning the sec-
struction of an optimal phonon basis the phonon subsysterand problem we note that the eigenvalugsof the density-
is considered as a product of one “large” and a number ofmatrix p decrease approximately exponentially, see Fig. 1. If
“small” sites. Each site except the large one uses the samge interpretw;~exp(—av) as the probability of the system
optimized basig|u;)}={|7)} with v=0...(m—1), while  to occupy the corresponding optimized sthie, we imme-
the basis of the large site consists of the stdtes} plus  diately find that the probability for the complete phonon ba-
some bare state§ »)}, {|uo)}=ON({[P)1U{|»)}), where sis staten ;) is proportional to expta=iL;'n). This is
ON( .. .) denotes orthonormalization. After a first initializa- reminiscent of the energy cut-off discussed above, and we
tion the optimized states are improved iteratively through théherefore propose the following choice of phonon basis states

w(v) of p

eigenvalue
g
s

—_
o
T
1

following steps at each site,
(1) calculating the requested eigenstpté of the Hamil- )
tonian in terms of the actual basis, Voir o {|u)} =ON({|u)}) (6)

(2) replacing{|v)} with the most importanti.e., largest
eigenvaluesv;) eigenstates of the density matrix calcu-
lated with respect tdy) and{| o)},

(3) changing the additional statés)} in the set{| uo)}, _ o

(4) orthonormalizing the sef|uo)}, and returning to and for the complete phonon basiss , <w|wi)}, yielding
step(1). Dpn= ("N 1. Implementation of this optimization proce-

A simple way to proceed in ste3) is to sweep the bare dure together with our existing Lanczos diagonalization
states{|v)} through a sufficiently large part of the infinite- codé allows the study of interacting electron/spin-phonon
dimensional phonon Hilbert space. One can think of the alsystems in a much larger parameter space without reaching
gorithm as “feeding” the optimized states with bare the limits of available supercomputers.
phonons, thus allowing the optimized states to become in- To demonstrate the power of the method, in the following
creasingly perfect linear combinations of bare phonon statesve address two frequently discussed problems: bipolaron
Of course the whole procedure converges only for eigenformation and Luttinger liquid behavior in 1D polaronic met-
states ofH at the lower edge of the spectrum, since usuallyals.
the spectrum of a Hamiltonian involving phonons has no Bipolarons in the 1D Holstein-Hubbard mod@&ipolaron
upper bound. The applicability of the algorithm was demon-formation has been the subject of numerous studies over the
strated in Ref. 5 with the Holstein modgle., U=0 in Eq. last decades, stimulated for instance by the discovery of
(1)] as an example. high-T. cuprates, and the belief that the interplay between

When we implemented the above algorithm together withstrong electron-phonon and electron-electron interactions
a Lanczos exact diagonalization method for our systems gflays a significant role in these highly correlated matefials.
interest, we found two objections against the above choice dflevertheless the influence of the Hubbard interactioon
an optimized basis(i) the basis is not symmetric under the bipolaron formation is still not completely understood. Be-
symmetry operations of the Hamiltonide.g., translations  side bipolaron formation itself, an interesting open question
and (i) the phonon Hilbert space is still largeDf, is the transition between two bipolaronic regimes, namely
=MmN~1 whereM is the dimension at the large sitsince  the intersite and the onsite bipolaron. Since the Hubbard in-
we usually need more than one optimized state per site. teractionU and the electron-phonon interaction compete, we

opt. state [7), Os=u<m

| ()

" | bare state|v), m=su<M
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FIG. 2. Critical coupling for bipolaron formation at fixed/t
=6.0 and system sizbl=12; inset:(n;n;) correlation in the un-
bound, intersite and on-site cases @it=0.4, N=6.

FIG. 3. Bipolaron kinetic energy as a function of coupling
strength\ for frequenciesw/t=0.4 and 3.0, comparing optimized
(OPM) and barg ED) phonons. Inset: rescaled bipolaron dispersion
at w/t=0.4, \=U/(4t), whereAE/t=0.0103 is the bandwidth.

usually need to consider intermediate to strong electron- . . , . . .
phonon couplingg, of X :=g2w/(2t), making the problem a nearest-neighbor intersite bipolardeee inset This free-

good testing ground for our optimized phonon algorithm. particle, like behavior, is indicative of a vanishing residual
In a recent work Boe et al® studied mobile bipolarons bipolaron-phonon interaction and can be attributed to the fact

in the Hubbard model by means of a variational technique?hat the onsite and nearest-neighbor electron-phonon correla-

Their focus is mainly on the) dependence of the transition 1ONS are about the same siZeln contrast the onsite bipo-
from unbound polarons to intersite bipolarons and from in-/aron is aimostimmobiléfor A =1.6 andw/t=0.4 the renor-
tersite to onsite bipolarons at intermediate frequencies. ThedBalized bandwidth becomes smaller than f0ct., also the
transitions also show a significant dependence. Here the Sharp drop inEyp). _ _ _
adiabatic frequency range is of special interest, since there Luttinger liquid behaviorThe Holstein model of spinless
are no appropriate analytic methods for small but finitef€mions is defined by omitting the electron spirand con-
frequencies. seque_ntly the Coulomb mte_ractlam in Har_mltoman(l). In _
Using the optimized phonon approach on lattice sizes uf"€ dlmensu_)n and at half filling, depeno_llng on the coupling
to N=12, we calculated the phase diagram for the transitiorst'€19thg, this model undergoes a transition from a gapless
from unbound polarons to bipolarons at fixed The critical ~ Metallic phase to a Peierls distorted phase with a gap be-
coupling\ . was determined by the conditidn=0, whereA tween the ground-state and lowest excitations. Details of this

is the energy difference between the two-particle groundrans_ition _and the properties of the different phases were
state and twice the one-particle ground state, de=E,  Studied with several methods over the last yeary One

—2E,. As indicated in Fig. 2, the critical interaction, interesting aspect _is the Qescription of the_ metallic phase in
increases with frequency, reachity(4t) in the antiadia- ternls Of. an effec_tlve Luttmg_er”model, which, according to
batic strong-coupling limit, where the phonon interaction ist"€ “Luttinger liquid hypothesis” of Haldang; should be an

instantaneous and the Holstein-Hubbard model maps onto émiver.sal pi_cture for the low-temperature properties OT all
effective Hubbard model withJq=U —4t\. As Uy be- one-dimensional me-tals. The tyvo parameters of the Luttinger
comes negative an onsite bipolaron bound state is formed. [fi0de!, the renormalized Fermi velocitly and effective cou-
the physically more relevant adiabatic regime, however, th ling gonstanth, can be determined through the scaling
retardation effect of the electron-phonon interaction may fa- ehavior Of, th.e ground'-state energy and the energy of
vor the formation of more extended electron bound states:Charge excitation& .., with respect to the system si2é

due to the time delay the second electron can take advantage

of the lattice distortion left by the first one, still avoiding
direct Coulomb repulsion. Increasing the electron-phonon

Eo(N)
— =

mu
p
€

6N2’

E.1(N)—Eo(N)=

U,
2K,N

®

coupling the density-density correlation signals the transition

to such an intersite bipolaron followed by the formation of  In a recent work® we used a variational method to calcu-
an onsite bipolarofisee inset Most notably, the behavior of late eigenstates and the resulting Luttinger parameters for the
the kinetic energy indicates that the intersite bipolaron is dolstein model at half filling. Unfortunately the method
mobile quasiparticle even though its effective mass is subfailed to give consistent results especially ¥y in the an-
stantially enhancedcf., Fig. 3. This is reminiscent of the tiadiabatic regime of large frequencies>t where the Hol-
behavior of large bipolarons in models with long-rangestein model can be well described by second order perturba-
(Frohlich-type electron-lattice interaction. Another striking tion theory, leading to an effectivEXZ spin modet! with
property is the almost perfect cosine band dispersion of th&nown Luttinger parameters. For large frequenciesXiX
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model, as well as Monte Carfoand density-matrix renor-
malization group(DMRG)®® calculations for the Holstein
model, yieldK ,<1 corresponding to a repulsive interaction.
If K,, starting with the value 1 for the noninteracting case,
reaches; with increasing coupling strength, the model un-
dergoes a Kosterlitz-Thouless transition to a gapped phase
In contrast, the variational technique yields an attractive in-
teraction K,>1) for all frequencies. Lanczos diagonaliza-
tion without optimized phonons could not resolve this unsat-
isfying situation, because the Hilbert space required to
calculate the requested eigenstates with sufficient precision i

®—@oit=0.1
—Wot=1.0
O— O wit=10.0

— == XXZ ot=10.0

1.0

attractive

= 06
o
>

108

far too large for all available computers.

Even with the above choice of an optimized phonon basis

we need many state$(=N), since at large electron-phonon
coupling we have to cover two different distortion patterns

for an empty or occupied site. We therefore implemented a

02 1 0.6

0.0
0.0

0.4

more sophisticated variant of the above algorithm, using two

different sets of optimized phonon states, one for each pos-

sible fermion occupation numbécf., Ref. 5. Together with
the cut-off, this results in a further reduction of the Hilbert
space M ~N/2), which is required for the diagonalization of
larger systems. It is worth noting that this advantage i

hopping is connected with the projection of the actual pho
non state onto the other basis set. Hence, for more compl

cated models, such as Jahn-Teller problems with two or thre

phonon modes per site, the diagonalization can be tim
consuming.

In Fig. 4 we show the Luttinger parameters we found by

scaling the energies for system sizes upNte 10. In the

)
gained at the expense of a less sparse matrix, since eve

FIG. 4. Luttinger liquid parameters for the Holstein model of
spinless fermions at phonon frequencies 0.1, 1.0, and 10.

is the changing character of the interaction belowt. For
small frequencies the effective fermion-fermion interaction is
tractive, while it is repulsive for large frequencies, i.e.,
ere is a transition point, depending grand w, where the
[podel is free in lowest order.

e In conclusion, we have proposed an advanced phonon op-
Imization algorithm for application in Lanczos diagonaliza-
ion, and demonstrated its reliability for two strongly inter-
acting electron-phonon systems.
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