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O„4…-invariant formulation of the nodal liquid
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We consider theO(4) symmetric point in the phase diagram of an electron system in which there is a
transition betweendx22y2 density-wave order anddx22y2 superconductivity. If the pseudospin SU(2),O(4)
symmetry is disordered by quantum fluctuations, the nodal liquid can result. In this context, we~1! construct
a pseudospins model, ~2! discuss its topological excitations,~3! point out the possibility of apseudospin-
Peierlsstate, and~4! propose a phase diagram for the underdoped cuprate superconductors.
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Introduction. Competing interactions and fluctuation
have led to a cornucopia of interesting phenomena in
cuprate superconductors. Unfortunately, these phenom
have not led to the unambiguous determination of the ph
diagram of these materials, possibly because some of
phases realized in these materials are characterized by
ticularly subtle forms of order. This dilemma is rather acu
on the underdoped side of the phase diagram, where it is
not clear if the pseudogap can be ascribed to a new pha
matter, a nearby critical point, or a crossover. Since a be
understanding of proposed exotic phases and the transi
between them may mitigate this difficulty, we study the tra
sition between thedx22y2 superconducting state of the cu
prates and a putativedx22y2 density-wave state~also known
as the staggered flux state;1 see Ref. 2! which is a semime-
tallic state with charge-carrying excitations at the nodes
the gap. We ask if the pseudogap—which appears to h
dx22y2 symmetry—could be due to the proximity of the e
perimental system to this transition. The resulting phase
gram automatically includes the nodal liquid state,3–5 a state
with spin-charge separation. We discuss the possible
evance of this theoretical cuprate phase diagram to the
perimental one.

O(4) formulation of dx22y2 ordered states at half-filling.
In Ref. 2, we adapted Yang’s pseudospin SU~2! symmetry6–8

to a critical point between adx22y2 density-wave state and
dx22y2 superconductor. The original pseudospin SU~2! was
germane to the transition between a charge-density wave
an s-wave superconductor; Zhang’s closely related SO~5!,9

was germane to the transition between an antiferroma
and ad-wave superconductor.

We first consider a transition at half-filling between a s
glet commensuratedx22y2 density wave and adx22y2 super-
conductor. We combine the order parameters into

F i~q! f ~k!5S A2 Re$^c↑
†~k1q/2!c↓

†~2k1q/2!&%

A2 Im$^c↑
†~k1q/2!c↓

†~2k1q/2!&%

i ^ca†~k1Q1q/2!ca~k2q/2!&
D ,

~1!

wheref (k)5coskxa2coskya. Although we focus initially on
half-filling, both order parameters make perfect sense a
from half-filling as well. Following Yang,6 we introduce the
pseudospin SU~2! generatorsO3,O1,O25(O1)†
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d2k

~2p!2
@ca†~k!ca~k!1k→k1Q#,

O15E
RBZ

d2k

~2p!2
ic↑

†~k!c↓
†~2k1Q!. ~2!

The order parameters form a triplet under this SU~2!. We
will use underlined lowercase Roman letters such ai
51,2,3 to denote pseudospin triplet indices and upperc
Roman letters to denote peudospin doublet indicesA51,2.
Lowercase Roman indicesa51,2,3 will be vector indices
~i.e., real spin triplet indices! and Greek lettersa51,2 will
be used for real spin SU~2! spinor indices. Pauli matricest i

will be used for pseudospin, whilesa will be reserved for
spin. The integrals are over the reduced Brillouin zo
~RBZ!.

There is a small but important difference between o
pseudospin SU~2! and Yang’s:6 the factors ofi in O6. They
are necessary since a commensuratedx22y2 density wave
breaksT, while a superconductor does not; hence, our ps
dospin SU~2! does not commute withT. Pseudospin SU~2!,
spin SU~2!, and time reversal combine to form the symme
groupO(4).

The electron fields transform as a doublet under b
SU~2!’s. We will group them intoCAa :

S C1a

C2a
D 5S ca~k!

i eabcb†~2k1Q!
D . ~3!

Near the transition between adx22y2 density wave and a
dx22y2 superconductor, we can focus on the low-energy
grees of freedom: the order parameters and the nodal fe
onic excitations. We can write down anO(4)-invariant ac-
tion for this transition:

Seff5E dt
d2k

~2p!2
CAa†

@]t2e~k!#CAa

1 igE dt
d2k

~2p!2

d2q

~2p!2
F i~q! f ~k!FeabCCaS k1

q

2D
3eCAtA

iBCBbS 2k1
q

2D1eabCAa†S k1
q

2D
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3tA
iBeBCCBb†S 2k1

q

2D G1E dtd2xS ~]mF i !
2

1
1

2
rF iF i1

1

4!
u~F iF i !

2D . ~4!

‘‘Microscopic’’ models with this symmetry were constructe
in Ref. 2. In this O(4)-symmetric action, we have, by
rescaling, set theF i velocities,v i , and stiffnesses,r i , to 1.
This cannot be done in the asymmetric case,r15r2[rs

ÞrDW[r3 . In general, symmetry-breaking terms will b
present, but they can scale to zero at a critical point, ther
dynamically restoring the symmetry, as we discuss la
Hence, we focus on the symmetric case.

When F i is ordered, the fermionic spectrum isE(k)
5Ae2(k)1g2F iF i f

2(k). In the following, we ignore the
fermionic excitations which are not associated with t
nodes of thedx22y2 order parameter. We linearizee(k) about
the Fermi surface andf (k) about the nodes. If we rotate ou
axes so that thekx axis is perpendicular to the Fermi surfa
at one antipodal pair of nodes, then we can writee(k)
'vFkx andguF i u f (k)'vDky . As in Ref. 3, we will have to
introduce an additional indexa51,2 for the two sets of an
tipodal nodes which differ by the replacementkx↔ky . In
order to avoid unnecessary clutter, this index will be su
pressed.

It is convenient to adopt a nonlinears-model approach
and assume that the magnitude ofF i is fixed,F i

25a2. Fol-
lowing Refs. 10 and 11, we employ aCP1 representation of
the nonlinears model:

F i5zA†tA
iBzB ~5!

with uz1u21uz2u25a2 and rotate the pseudospins of the fe
mions to the local direction of the order parameter:

CA5UA
BxB , ~6!

where

U5
1

a S z1 2z2*

z2 z1*
D . ~7!

The latter change of variables is a direct SU~2! analog of the
original U~1! nodal liquid construction.3 As in that case, it is
double valued, so we must introduce a Chern-Simons term
in Ref. 4 which couples thex ’s to the topological curren
j m5emnle i j kF

i]nF j]lFk. This term is only important at the
phase transitions since the topological current vanishes in
ordered phases since the pseudospins are aligned and
disordered phases since it is odd under theZ2 symmetry
F3→2F3. We suppress this term below.

In terms ofzA , xA , the effective action takes the form

Seff5E dtd2xxAa†~]t1att
32vFi ]x2vFaxt

3!xAa

1 i E dt
d2k

~2p!2
@eabxCaeCAtA

3BvDi ]yxBb

1eabxAa†tA
3BeBCvDi ]yx

Bb†#
y
r.

-

as

he
the

1E dt
d2k

~2p!2
xa†@U†~]t2Att

3!U2att
3

2vFU†~ i ]x2Axt
3!U1vFaxt

3#xa

1E dtd2x@ u~ i ]m2am2Amt3!zu21l~z†z2a!#.

~8!

The U~1! gauge fieldam is a Lagrange multiplier which re
moves the redundant phase variable in the parametrizatio
CP1 by zA . A coupling betweenam andxA has been added
to the first term and subtracted from theU†]U terms so as to
make the latter invariant under the gauge transformationzA

→eiuzA . l is a Lagrange multiplier which fixesF i
25a2. We

have introduced the external electromagnetic field,Am , in
order to keep track of the charge quantum numbers of
fields. Whena is large,F i5zA†tA

iBzB condenses and the sys
tem is in one of thedx22y2 ordered states. Whena is small,
F i is disordered. There is a critical point ata5ac .

The nodal liquid revisited.In the ordered phases,U is a
constant, so theU†]U terms in Eq.~8! can be dropped; the
nodal quasiparticles are coupled to the external electrom
netic field. Note that thedx22y2 density wave is an ordere
state in this formalism, unlike in Refs. 3–5, where it is
disordered state. In the disordered phases, thezA sector of
the theory develops a gap. Hence, the fourth and fifth line
Eq. ~8! can be dropped at low energies. To analyze th
phases further, we introduce a dual representation forzA ,
following Refs. 5 and 12. The effective action now takes t
form

Seff5SF@xA ,am#1(
A

SGLFFA,
1

2
~am

16am
2!G

1E dtd2x~amemnl]nal
11Amemnl]nal

2!, ~9!

whereSF@xA ,am# is the first three lines of Eq.~8!, FA an-
nihilates a vortex inzA , and

LGL~F,am!5
1

2
u~ i ]m2am!Fu21V~F!1

1

2
~ f mn!2

~10!

andJm
65emnl]nal

6 are thezA number and pseudospin3 cur-
rents. When theZ2 symmetryFA→2FA is unbroken, we
can rewrite the effective action in terms of the fieldsF1

5F1F2, F25F1F2†. We now have

Seff5SF@xA ,am#1SGL@F1,am
1#1SGL@F2,am

2#

1E dtd2x~amemnl]nal
11Amemnl]nal

2!. ~11!

Integrating outam , we can solve the resulting constraint
expressam

1 in terms ofxA : J0
15x†t3x, Jx

15vFx†t3x.
Now suppose that the system becomes disordered

result of the condensation ofF2. By the Anderson-Higgs
mechanism,am

2 aquires a gap. Integrating outam
2 , we find no

coupling ofAm to the remaining degrees of freedom:xA is a



er

-

ie

ar

-
e

try

t

A

th
of

,

he

-
n-

rg
1

ng
e
te
s

to
ers

tran-
ties
ex-

it
si-
d

-
ing
-

c-

ing

t-
ing
e

the

sce-
in
a

-

we

s

hick
rder.
on-

RAPID COMMUNICATIONS

PRB 62 R6137O(4)-INVARIANT FORMULATION OF THE NODAL LIQUID
neutral spin-1/2 fermion. The change of variables@Eq. ~6!#
has effectively ‘‘bleached’’ the fermions by using the ord
parameter to screen their pseudospin~including their
charge!. This state is none other than the nodal liquid.

Pseudospin-Peierls order.If the system is, instead, disor
dered by the condensation ofF1,2, thenJm

6 must vanish at
low energies. The only allowed excitations at low energ
are those combinations ofxA’s which are invariant undertA

3B

rotations, i.e., neutral excitations. At finite energy, there
also solitonic excitations which carry one quantum of (am

1

6am
2)/2 flux, i.e., chargee and spin 1/2. According to the

analogy between the pseudospin SU~2! physics of our sys-
tem and the spin SU~2! physics of a quantum antiferromag
net, we might, in this disordered phase, expect the ps
dospin analog of spin-Peierls order,pseudospin Peierls
order,

^FW ~k1K !•FW ~k!2FW 3]tFW ~k1K !•FW 3]tFW ~k!&5sinkxa
~12!

with K5(p/a,0) or (0,p/a), as a result of Berry phases16

which we have neglected in Eq.~8!.
Phase transitions at half-filling.The transition at half-

filling between thedx22y2 density wave and thedx22y2 su-
perconductor is driven by a pseudospin-2 symme
breaking field,

Su5uE dtd2x~F3
22F1

22F2
2!. ~13!

For u,0, the3 axis is an easy axis and thedx22y2 density-
wave state is favored; foru.0, the 122 plane is an easy
plane and thedx22y2 superconducting state is favored. Atu
50, a first-orderpseudospin-floptransition occurs, provided
a.ac . At the bicritical pointa5ac , u50, quantum fluc-
tuations destroy order at theO(4)-symmetric point. This bi-
critical point and the quantum critical region13,14 are de-
scribed by the physics of the critical fluctuations coupled
nodal fermionic excitations. Fora,ac , u50 the system lies
along theO(4)-symmetric line in the nodal liquid phase.
small increase or decrease ofu will not cause order, and the
system will still be in the nodal liquid phase, albeit wi
lower symmetry, U(1)3Z2. Further increase or decrease
u will lead to second-order phase transitions atucr

6 (a) into
thedx22y2 superconducting anddx22y2 density-wave phases
respectively.

At the second-order transition from the nodal liquid to t
dx22y2 density wave, theZ2 symmetry of translation by one
lattice site is broken. At the second-orderXY transition from
the nodal liquid to thedx22y2 superconductor, electromag
netic U~1! is broken. At the first-order pseudospin-flop tra
sition between thedx22y2 superconductor and thedx22y2

density-wave, U~1! is restored andZ2 is simultaneously bro-
ken. In the formulation discussed here, spin-cha
confinement—which, in the language of Refs. 4,5 and
~see also Ref. 17! is due to the absence of vortex pairing—
occurs simultaneously with translational symmetry breaki

Topological excitations.We can give a narrative for th
destruction of superconductivity in the language of vor
condensation. In the superconducting phase, the pseudo
F i lies in the1-2 plane. In the core of a vortex—ameronin
s

e

u-

-

o

e
5

.

x
pin

the s model—F i must point out of the1-2 plane. This can
be done by pointing along the63 axis. When13 merons
dominate~in the presence of an infinitesimalZ2 symmetry-
breaking field!, the superconductor undergoes a transition
thedx22y2 density-wave state. When there are equal numb
of 63 merons, the superconductor instead undergoes a
sition to the disordered state. This condition on the densi
of 63 merons is reminiscent of and cognate to the vort
pairing scenario of Refs. 4 and 5, but is weaker since
allows for the two possibilities discussed earlier. The tran
tion from the dx22y2 density-wave state to the disordere
state can be understood in terms ofskyrmioncondensation.

Discussion.Transitions of the type which we have dis
cussed above do not in the cuprates occur at half-fill
but—if at all—nearxc , the doping at which superconductiv
ity first appears. We assumeu,0 to suppress supercondu
tivity at half-filling. In order to move away from half-filling,
we vary the chemical potential, which can be done by add
the O(4)-breaking term:

Sm5mO35mE dtd2x~e3i jF i]tF j1C†t3C!. ~14!

By increasingm, we can drive the system through a firs
order pseudospin-flop transition into the superconduct
state. Asa is decreased, a bicritical point will again b
reached. The coupling betweenzA andxA only enters at two
loops; at one loop, we can appeal to known results for
pure nonlinears model, which indicate that theO(4) sym-
metry is dynamically restored at the bicritical point.18 As a
result, theO(4)-symmetric critical theory19 discussed above
will apply in the low-frequency, long-wavelength limit. A
possible phase diagram for the cuprates, based on this
nario, is depicted in Fig. 1. An alternative, not depicted
Fig. 1, can occur ifrs,rDW . In this case, there can be
phase with bothdx22y2 superconducting anddx22y2 density-
wave order, and a tetracritical point,T5Tbc , m5mbc , at
which both orders become critical. Form,mbc , there will
be a regime,Tc

sc,T,Tc
dw , above the superconducting tran

sition temperature, which has density-wave order.
The dotted line in Fig. 1 is the pseudogap scale, which

interpret as the scale below whichF i has fixed magnitude
and the nonlinears model description is available. Let u
consider the physics below this scale. Asm is increased,

FIG. 1. The proposed phase diagram for the cuprates. The t
lines are first-order phase transitions; the thin one, second-o
The large dots are bicritical points, as is the entire thin line c
necting them.
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Fermi pockets open at the nodes of thedx22y2 density wave
state. Eventually, the system undergoes a transition from
dx22y2 density-wave to thedx22y2 superconductor. The na
ture of this transition depends on the value ofa which, os-
tensibly, varies among the materials in the cuprate family
may, perhaps, be controlled by chemical substitution or
plied pressure. Fora large, the transition will be first order a
depicted by the thick line. Fora small, it occurs via two
second-order phase transitions; the nodal liquid is sa
wiched between these two transitions. Neither thedx22y2 su-
perconductor nor the nodal liquid has Fermi pockets,
latter because the second term in Eq.~14! can be dropped in
the disordered phase. Appealing to the phase diagram o
spin-flop transition in magnetically ordered systems, we
tend the first-order phase transition to finite temperatu
where it meets the second-orderdx22y2 density-wave and
superconducting ordering transitions.

Whither the antiferromagnet? As Hsu20 and Gros21

pointed out, thedx22y2 density-wave state has good sho
ranged antiferromagnetic correlations, reflected in its ex
lent numerical variational energy. Hence, one possibility
that the only additional physics needed to describe the a
ferromagnetic state at half-filling is a moderate trip
quasiparticle-quasihole condensate.20 Similar ideas may ap-
ply to the nodal liquid state, making it an equally good pl
form for the antiferromagnetic state at half-filling. Anoth
possibility is thatdx22y2 density-wave order is suppressed
B

. B
he
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-

d-

e

he
-

e,

l-
s
ti-
t

-

half-filling is approached, and antiferromagnetism tak
over. In neither case will our description of the critical r
gime be affected.

Our nonlinears-model analysis mirrors that of Ref. 9, bu
is on firmer footing because thedx22y2 density wave—unlike
the antiferromagnet—has a nodal fermionic spectrum sim
to that of thedx22y2 superconductor into which the pseu
dospin symmetry rotates it. Fluctuations between thedx22y2

density-wave and superconducting states are also a key
ture of the SU~2! mean-field theory of thet-J model.22 In
fact, a parallel approach to the nodal liquid state was take
this framework in Ref. 23. However, the SU~2! is local in
that approach, which leads to complications arising from
concomitant gauge field. One virtue of the nonline
s-model approach is that we can use the physics of quan
antiferromagnets as a guide. In this way, we identifi
pseudospin-Peierlsorder as a possible alternative to th
nodal liquid phase. Another striking upshot of our analysis
the bicritical point at which thedx22y2 density-wave,dx22y2

superconducting, and nodal liquid phases touch. It is poss
that it is responsible for recent experimental hints of qu
tum critical behavior in the cuprates.24,25

I would like to thank S. Chakravarty for discussions, a
S. Sachdev and T. Senthil for pointing out an error in
earlier version of this paper.
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