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We consider theD(4) symmetric point in the phase diagram of an electron system in which there is a
transition betweenl,2_,2 density-wave order and,2_> superconductivity. If the pseudospin SURPD(4)
symmetry is disordered by quantum fluctuations, the nodal liquid can result. In this conte@t) eenstruct
a pseudospir model, (2) discuss its topological excitation€3) point out the possibility of gpseudospin-
Peierlsstate, and4) propose a phase diagram for the underdoped cuprate superconductors.

Introduction. Competing interactions and fluctuations 2K
have led to a cornucopia of interesting phenomena in the O3=f 2[¢aT(k)(//a(k)+k—>k+Q],
cuprate superconductors. Unfortunately, these phenomena RBZ(2T)

have not led to the unambiguous determination of the phase

diagram of these materials, possibly because some of the +_J’ %k O 2
phases realized in these materials are characterized by par- - RBZ(Zﬂ')ZIwT( ) (—k+Q). )
ticularly subtle forms of order. This dilemma is rather acute

on the underdoped side of the phase diagram, where it is stilflhe order parameters form a triplet under this(3UWe

not clear if the pseudogap can be ascribed to a new phase vill use underlined lowercase Roman letters suchias
matter, a nearby critical point, or a crossover. Since a better1,2,3 to denote pseudospin triplet indices and uppercase
understanding of proposed exotic phases and the transitiofoman letters to denote peudospin doublet indiesl,2.
between them may mitigate this difficulty, we study the tran-|_ owercase Roman indices=1,2,3 will be vector indices
sition between thed,>_,2 superconducting state of the cu- (j.e., real spin triplet indicésand Greek lettersr=1,2 will
prates and a putative2_2 density-wave statéalso known  be used for real spin S@) spinor indices. Pauli matrices

as the staggered flux statesee Ref. 2which is a semime-  will be used for pseudospin, while® will be reserved for
tallic state with charge-carrying excitations at the nodes okpin. The integrals are over the reduced Brillouin zone
the gap. We ask if the pseudogap—which appears to havgrBz).

dy2—y2 symmetry—could be due to the proximity of the ex-  There is a small but important difference between our
perimental system to this transition. The resulting phase diapseudospin S(2) and Yang's® the factors ofi in O*. They
gram automatically includes the nodal liquid stitea state  gre necessary since a commensumde 2 density wave
with spin-charge separation. We discuss the possible repreaksT, while a superconductor does not; hence, our pseu-
evance of this theoretical cuprate phase diagram to the eXffospin SW2) does not commute witf. Pseudospin S(@),

perimental one. spin SU2), and time reversal combine to form the symmetry
O(4) formulation of d2_,2 ordered states at half-filling. groupO(4).
In Ref. 2, we adapted Yang'’s pseudospin(3lsymmetry—® The electron fields transform as a doublet under both

to a critical point between d,2_ 2 density-wave state and a Su(2)’s. We will group them intoW 4, :
dy2_y2 superconductor. The original pseudospin(3Unas
germane to the transition between a charge-density wave and Via ¥, (K)
an swave superconductor; Zhang's closely related(S0 (q, )Z(ie ST (—k+Q)
was germane to the transition between an antiferromagnet 2a h
and ad-wave superconductor. N _ Near the transition betweendjz_,2 density wave and a

We first consider a traHSIthn at half-fllllng between a S|n'dx27y2 superconductor, we can focus on the |0W_energy de-
glet commensurate,2_,2 density wave and d,2_,2 super-  grees of freedom: the order parameters and the nodal fermi-
conductor. We combine the order parameters into onic excitations. We can write down ad(4)-invariant ac-

tion for this transition:

. 3

V2 Re(yf(k+ a2y (—k+ai2))} i
D(@10=| VZimi(ulr a2k 2] | s [ar R o - o1,
(g (k- Q+ /20 (k= a12) 2m

(1) d2 d2q q
o +igj dr ——®(q)f(k)| €P¥,| k+ 5
wheref (k) = coska—coskja. Although we focus initially on (2m)?% (2m)? - 2
half-filling, both order parameters make perfect sense away
from half-filling as well. Following Yand, we introduce the 5 (CAIB (_ i Aat| 4 ﬂ)
pseudospin S(2) generator©3,0*,0"=(0")" € Wep| Kt 5| TV Kt 3
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iB_BCy,BAT q 2 2 d?k tfryt 3 3
X1y €W _k+§ + | drd*x{ (4,P;) + | dr XU -A P )U—a,r2
- (27)
1 1 _ Tiig A -3 3
+51 0D+ ﬂu(qn_(bi_)z : (4) veU (idx— Axm)U tvpay 2],
“Microscopic” models with this symmetry were constructed + f drd®[[(id,— a,—A,)Z]*+\(z'z—2)].
in Ref. 2. In thisO(4)-symmetric action, we have, by a
rescaling, set thé; velocities,v;, and stiffnesseg; , to 1. (8)

This cannot be done in the asymmetric cagg=p.=ps  The U(1) gauge fielda,, is a Lagrange multiplier which re-
#ppw=p3- In general, symmetry-breaking terms will be moves the redundant phase variable in the parametrization of
present, but they can scale to zero at a critical point, therebg P! by z, . A coupling betweeny,, and y has been added
dynamically restoring the symmetry, as we discuss laterio the first term and subtracted from tbéJU terms so as to
Hence, we fO_CUS on the symmetric case. make the latter invariant under the gauge transformatjpn
When @, is ordered, the fermionic spectrum B(k) g%z, .\ is a Lagrange multiplier which fixe®?=a?. We
= Ve?(k)+g®;®;f?(k). In the following, we ignore the have introduced the external electromagnetic fielg, in
fermionic excitations which are not associated with theorder to keep track of the charge quantum numbers of the
nodes of thal,2_ > order parameter. We lineariz¢k) about  fields. Whena is large,®'= 7" 71 z; condenses and the sys-
the Fermi surface ant(k) about the nodes. If we rotate our tem js in one of thel,>_,> ordered states. Whemis small,
axes so that thi, axis is perpendicular to the Fermi surface ¢! js disordered. Thereyis a critical point ata. .
at one antipodal pair of nodes, then we can wriE) The nodal liquid revisitedln the ordered phases) is a
fNVUFkx andg|<I>i|f.(.k)wv.Aky. As in Ref. 3, we will have to  constant, so th&)ToU terms in Eq.(8) can be dropped:; the
|_ntroduce an addmonal_ index= 1,2 for the two sets of an- nodal quasiparticles are coupled to the external electromag-
tipodal nodes which differ by the replacemegt—k,. In  netic field. Note that thel,2_,2 density wave is an ordered
order to avoid unnecessary clutter, this index will be supstate in this formalism, unlike in Refs. 3—5, where it is a

pressed. disordered state. In the disordered phases,ztheector of
It is convenient to adopt a nonlinear-model approach  the theory develops a gap. Hence, the fourth and fifth lines of
and assume that the magnitudedaf is fixed, ®?=a? Fol-  Eq. (8) can be dropped at low energies. To analyze these
lowing Refs. 10 and 11, we employGP?* representation of phases further, we introduce a dual representatiorzfor
the nonlineato model: following Refs. 5 and 12. The effective action now takes the
_ form
=AYz, (5)
; 2 2_,2 ; _ A 1 + -
with [z4]°+[2,|*=a* and rotate the pseudospins of the fer- Set= SF[XA,%HE SGL[CD ,E(a#ta#)
mions to the local direction of the order parameter: A
Wa=U8Rxs, (6) +f drd?X(@, €, 0,8y +AL€,,03,85 ),  (9)
where _ _ )
whereSe[ xa,a,] is the first three lines of E(8), ®A an-
1/z, -2 nihilates a vortex irg,, and
= 5( * ) (7
Z;

1 1
. : . Lo(P,a,)==|(id,—a,)P[*+V(P)+ 5 (f,,)?
The latter change of variables is a direct(8lJanalog of the ou(®.a,) 2 (i9,~a,)®] (@) 2( ur)

original U(1) nodal liquid constructior.As in that case, it is (10
double valued, so we must introduce a Chern-Simons term aasnth: 3,a% are thez, number and pseudospihcur-
in Ref. 4 which couples thg’s to the topological current p = Eun ooy A A A p —

i = €€ @LI"PLA DK, This term is only important at the rents. When th&Z, symmetry®®——d" is unbroken, we

I, . . . . an rewrite the effective action in terms of the fields
h ransitions sin h logical current vanishes in th
phase transitions since the topological current vanishes t%q)lq)Z, - —dlP2’ We now have

ordered phases since the pseudospins are aligned and in the
disordered phases since it is odd under #yesymmetry B + _
®3— — d3. We suppress this term below. Sert=Selxa @, ]+ St @72, 1+ Se [0, ]

In terms ofz,, xa, the effective action takes the form
+ f drd®X(@,€, 00,8y +AL€,,00,80 ). (11)
— 2y Aat 3 H 3

SEﬁ_f Ard™Xx ™07+ @r7=— VRl VR aT=) Xaa Integrating outa,, we can solve the resulting constraint to
Y expressa;; in terms ofy,: Jg = x '3y, J::UFX.T’Tg)(.
+if dr [exc ECAT%BUAia Xog Now suppose that the syst_em becomes dlsorder_ed as a
(2m)? “ Y result of the condensation @b~. By the Anderson-Higgs
Aat 3B _BC. . Bt mechgnisma; aquires a gap. Integrating oaff, , we finq no
teapx” g € valdyx""T] coupling ofA, to the remaining degrees of freedogy is a
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neutral spin-1/2 fermion. The change of variabJ&s). (6)] T
has effectively “bleached” the fermions by using the order
parameter to screen their pseudospimcluding their
charge. This state is none other than the nodal liquid.
Pseudospin-Peierls ordelf the system is, instead, disor-
dered by the condensation d@f'? thenJ: must vanish at

low energies. The only allowed excitati%ns at low energies

are those combinations gf,'s which are invariant undezr%B dDW B
rotations, i.e., neutral excitations. At finite energy, there are dsc

also solitonic excitations which carry one quantum af;( 1/a 1;]}

ia;)/z flux, i.e., chargee and spin 1/2. According to the PP

analogy between the pseudospin(8Uphysics of our sys-
tem and the spin S@) physics of a quantum antiferromag-  FIG. 1. The proposed phase diagram for the cuprates. The thick
net, we might, in this disordered phase, expect the pselines are first-order phase transitions; the thin one, second-order.

dospin analog of spin-Peierls ordepseudospin Peierls The large dots are bicritical points, as is the entire thin line con-
order, necting them.

(D (k+K)- D(k)— DX 9,D(k+K) D xa,d(k))=sinka the o model—d)". must point out of theig plane. This can
12 e done by pointing along the 3 axis. en+3 merons
(12 bed b t I the 3 Wh 3
, &8 dominate(in the presence of an infinitesima, symmetry-
with K=(7/a,0) or (Os/a), as a result of Berry phase€s  preaking field, the superconductor undergoes a transition to
which we have neglected in Eg). L thed,2_,2 density-wave state. When there are equal numbers
f.”'Ph&LSG transnrl]oer&s at r:jalf—fl]l|ngThe tragsﬁ:n at half- ¢ + 3 merons, the superconductor instead undergoes a tran-
1ing detwteen t dx?*yz Ensﬂy wave ;n L 2><2*Y2 su- . sition to the disordered state. This condition on the densities
E?é;ﬁir;] u;ec;; IS driven by a pseudospin-2  SYMMEUy~y¢ + 3 merons is reminiscent of and cognate to the vortex-
9 ' pairing scenario of Refs. 4 and 5, but is weaker since it
allows for the two possibilities discussed earlier. The transi-

Su=uf drd’x(P3— P2—D3). (13)  tion from the dyz_,2 density-wave state to the disordered
state can be understood in termss&rmioncondensation.
Foru<0, the3 axis is an easy axis and thigz_,2 density- Discussion.Transitions of the type which we have dis-

cussed above do not in the cuprates occur at half-filling
but—if at all—nearx,, the doping at which superconductiv-
ity first appears. We assume<0 to suppress superconduc-
tivity at half-filling. In order to move away from half-filling,

tuations destroy order at th@(4)-symmetric point. This bi- we vary the chemical potential, which can be done by adding

critical point and the quantum critical regitnt* are de- the O(4)-breaking term:

scribed by the physics of the critical fluctuations coupled to

nodal fermionic excitations. F@&<a., u=0 the system lies S;L:/‘Os::“f drd?x( €5 ®@;0,P;+ VT 2W). (14
along theO(4)-symmetric line in the nodal liquid phase. A - 7

small increase or decreasewfvill not cause order, and the By increasingu, we can drive the system through a first-
system will still be in the nodal liquid phase, albeit with order pseudospin-flop transition into the superconducting
lower symmetry, U(1X Z,. Further increase or decrease of state. Asa is decreased, a bicritical point will again be
u will lead to second-order phase transitionsugt(a) into ~ reached. The coupling betweeg and x, only enters at two
thed,2_,2 superconducting andyz_,2 density-wave phases, l00ps; at one loop, we can appeal to known results for the
respectively. pure nonlineawr model, which indicate that th@(4) sym-

At the second-order transition from the nodal liquid to themetry is dynamically restored at the bicritical potfitAs a
dy2_2 density wave, th&, symmetry of translation by one result, theO(4)-symmetric critical theory discussed above
lattice site is broken. At the second-ord¢Y transition from ~ Will apply in the low-frequency, long-wavelength limit. A
the nodal liquid to thed,2_,2 superconductor, electromag- Possible phase diagram for the cuprates, based on this sce-
netic U1) is broken. At the first-order pseudospin-flop tran- nario, is depicted in Fig. 1. An alternative, not depicted in
sition between thed,2_,2 superconductor and the,z_,2  Fig. 1, can occur ifos<ppw. In this case, there can be a
density-wave, (1) is restored and, is simultaneously bro- phase with bottd,2_,2 superconducting and,2_ 2 density-
ken. In the formulation discussed here, spin-chargavave order, and a tetracritical poinf,=Tpc, ©=upc, at
confinement—which, in the language of Refs. 4,5 and 18vhich both orders become critical. Fpr<guy, there will
(see also Ref. 17is due to the absence of vortex pairing— be a regimeT$°<T<T", above the superconducting tran-
occurs simultaneously with translational symmetry breakingsition temperature, which has density-wave order.

Topological excitationsWe can give a narrative for the The dotted line in Fig. 1 is the pseudogap scale, which we
destruction of superconductivity in the language of vortexinterpret as the scale below whieh! has fixed magnitude
condensation. In the superconducting phase, the pseudospnd the nonlinearr model description is available. Let us
@! lies in thel-2 plane. In the core of a vortex—aeronin consider the physics below this scale. Asis increased,

wave state is favored; fan>0, the1—2 plane is an easy
plane and thel,2_,2 superconducting state is favored. At
=0, a first-ordempseudospin-flopransition occurs, provided
a>a;. At the bicritical pointa=a., u=0, quantum fluc-
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Fermi pockets open at the nodes of the_,> density wave half-filling is approached, and antiferromagnetism takes
state. Eventually, the system undergoes a transition from thever. In neither case will our description of the critical re-
d,2_y2 density-wave to thel,. .2 superconductor. The na- gime be affected.

ture of this transition depends on the valueaoivhich, os- Our nonlinearr-model analysis mirrors that of Ref. 9, but
tensibly, varies among the materials in the cuprate family. lis on firmer footing because thkz_ 2 density wave—unlike
may, perhaps, be controlled by chemical substitution or apthe antiferromagnet—has a nodal fermionic spectrum similar
plied pressure. Fa large, the transition will be first order as {5 that of thed,2_,2 superconductor into which the pseu-
depicted by the thick line. Foa small, it occurs via tWo  jogpin symmetry rotates it. Fluctuations betweendpe 2
second-order phase transitions; the nodal liquid is sandyengjry wave and superconducting states are also a key fea-
wiched between these two transitions. Neitherdpe 2 su- ture of the SU2) mean-field theory of the-J model?? In

perconductor nor the nodal liquid has Fermi pockets, thq L .
) ! act, a parallel approach to the nodal liquid state was taken in
latter because the second term in E) can be dropped in his framework in Ref. 23. However, the &) is local in

. . . t
the disordered phase. Appealing to the phase diagram of tr}ﬁat approach, which leads to complications arising from the

spin-flop transition in magnetically ordered systems, we ex- itant field. O it t th i
tend the first-order phase transition to finite temperature(fOncoml ant gauge held. Une viriué o € noniinear

where it meets the second-ordeyz_,2 density-wave and o-model approach is that we can use the physics of quantum
superconducting ordering transitions. antlferromlagne.ts as a guide. In thls way, we identified
Whither the antiferromagnet? As HSuand Gro& pseudospin-Peierlorder as a possible alternative to the
pointed out, thed,2_,> density-wave state has good short- noda! quyid phgse. Anot.her striking upshqt of our analysis is
ranged antiferromagnetic correlations, reflected in its excelthe bicritical point at which thel,2_ 2 density-waved,2_2
lent numerical variational energy. Hence, one possibility issuperconducting, and nodal liquid phases touch. It is possible
that the only additional physics needed to describe the antthat it is responsible for recent experimental hints of quan-
ferromagnetic state at half-filing is a moderate triplettum critical behavior in the cupraté$?®
quasiparticle-quasihole condens#tsimilar ideas may ap- ) ) .
ply to the nodal liquid state, making it an equally good plat- | would like to thank S. _Chakrav_art_y for dlscu53|onsz and
form for the antiferromagnetic state at half-filling. Another S- Sachdev and T. Senthil for pointing out an error in an
possibility is thatd,2_,> density-wave order is suppressed asearlier version of this paper.
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