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Spin anisotropy and quantum Hall effect in the kagomelattice: Chiral spin state
based on a ferromagnet

Kenya Ohgushi, Shuichi Murakami, and Naoto Nagaosa
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
(Received 13 December 1999

A ferromagnet with spin anisotropies on the two-dimensidq@&l) kagomelattice is theoretically studied.
This is a typical example of the flat-band ferromagnet. The Berry phase induced by the tilting of the spins
opens the band gap and quantized Hall conductange +e?/h is realized. This is the most realistic chiral
spin state based on the ferromagnetism. We also discuss the implication of our results to the anomalous Hall
effect observed in the metallic pyrochlore ferromagri®ifo,0O; (R=Nd, Sm, Gd.

The spin Berry phase plays an important role in the quaneiscussed in the context of the quantum spin liquid where the
tum transport of strongly correlated electronic systems. Conspins and henca; fluctuate quantum mechanicafly’ This
sider an electron hopping from sit¢o j coupled to a spin at a;; is the leading actor in the gauge theory of strongly cor-
each site with Hund’s couplindy . The Hamiltonian is ex-  related electronic system$.

pressed by the double-exchange model Among them the proposal of chiral spin state with broken
time-reversal symmetry in a triangular latfic@nd the
H=2 t 6l tie—In ¥latas Sithis, (1)  kagomelattice/® and later the anyon superconductiist-
NN i

tracted great interest at the early stage of the Highre-
where ! is the spino electron creation operator, alis ~ Séarch. Wert al® constructed a mean-field theory for a chi-

the localized spin on site i, which we assumed to be classical@! SPin liquid on a square lattice. They start from thélux
forced to align parallel tcéi and §j at each site, with the the next-nearest-neighbor hopping with a phase. However, it

spin-wave function beindy;) and |x;), respectively. The turned outto pe rlath_er'difficult to finq physical r_ealization of
spin wave function is explicitly given by the (chiral) spin liquid in real materials, even in frustrated

lattices.
_ 0, . 6 The spin Berry phase has been discussed also in the con-
— t| aib; L Qi (bi+ &) ! 2 3 - .
xi)="| " cos e sin—|, (20 text of the anomalous Hall effe¢AHE) in manganites. It is

proposed that the spin-orbit interactiéti leads to the cou-
where we have introduced the polar coordinates agling between the magnetizatid and the spin chirality,
(xilSilxi) =% (sin 6 cos¢; ,sind sing,, cosd). The overall i.e., the gauge fluxb as expressed bii’=\bM. At finite
phaseb; corresponds to the gauge degrees of freedom antemperaturel, Skyrmions are thermally excited and the bal-
does not appear in physical quantities. Therefore, the effe@nce between the positive and negative chiralities is broken

tive transfer integrat?' is given by by H’ to give rise to a finite average). This (b) gives an
additional “magnetic field” and hence leads to the anoma-
te''=t(xilx;) lous Hall effect proportional to the coupling constanand
—AIT

Skyrmion density~e , WhereA is the excitation energy
of the Skyrmion. This mechanism is the one coming from the
Berry phase of the spins compared with the conventional
skew-scattering mechanisti.*? However, it shares a fea-
—teldi] cosﬁ, (3)  ture with these conventional theories, namely the AHE van-
2 ishes in the zero-temperature limit, which is the case in the
conventional ferromagnetic metals experimentilit.is re-
ated to the fact that the spin chirality is zero in the ground

_ tate. However, it is noted that a recent work proposes the
corresponds to the Berry phase felt by the hopping electrony, yqereq flux state as the ground state of the double ex-

Let us consider an electron hopping along a loep 2— 3 change model on a cubic lattice with dopitig.

—1. The total phase that the electron obtains is the gauge o the other hand, recent transport experiments on ferro-
flux by a;; , which corresporlds to one half of the solid anglemagnetic pyrochlore®,Mo,0, (R=Nd, Sm, Gd revealed
subtended by the three spiSs(i=1,2,3). This is called the that the AHE increases &sis lowered and approaches to the
spin chirality and is one of the key concepts in the physics okaturated valué®!’ This behavior is qualitatively different
strongly correlated electronic systefi$.0ne can easily see from the conventional on¥.One clue to explain this anoma-
that the spin chirality is absent for collinear and coplanarous feature is that the pyrochlore structure has geometrical
spin alignment, and the spin chirality has been intensivelyfrustration'* It consists of corner-sharing tetrahedrons and

| 6 6 0 . O
—tai(—bi+h) ' cos= + el (¢t ) sin— sin—
te Y cos7 cos- +e sinmsins

where#; is the angle between the two spiisandS; . The
phasea;; is the vector potential generated by the spin, an
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the antiferromagnetic interactions between nearest-neighbor -2¢ -2¢ 260
spins are frustrated. It was recently pointed out that even the \ /qx /4\ /
ferromagnetic interaction is frustrated, if the spin easy axis
points to the center of the tetrahedrGrin this case, because ¢ \ ¢
the spin configuration becomes noncoplanar, we expect that 20 20 X
the spin chirality appears and affects the quantum transport o o
of electrons, especially the transverse conductivity, . i B. ¢
However, it is a nontrivial issue whether the spin chirality L -
really contributes too,, when the spins form a periodic —2¢
structure. ¢

Motivated by these pyrochlore compounds, we study in
this paper the two-dimensionahgomelattice, which is the \1/ \4/ \4/
cross section of the pyrochlore lattice perpendicular to the —2¢ -2¢

. 14 . . . )
(11,1 direction.” We show that the chiral spin state is re FIG. 1. kagomelattice. The dotted line represents the Wigner-

?rlllezi(:);: grrﬁ);gﬁ g;?/sizl ri]n?/c?(tjil;nec(;n wﬁggot?:?:tgﬁﬁi \év::rr;y i SSeitz unit cell, which contains three independent qife8,C). It is
. ) . .assumed that each site has a different spin anisotropy axis. The
n t_he gap, the system shows a quantized Hall effect. Imp“'arrows on bonds mean the sign of the phases of the transfer integral
cations of our results to these pyrochlore compounds are algo
discussed especially on the AHE which does not vanish at'’

low temperatures.

We consider the doub|e-exchange ferromagnet on thgirection shown by the arrows in F|91§.N0te that the net
kagomelattice shown in Fig. 1. Here the triangle is the oneflux through a unit cell vanishes due to the cancellation of
face of the tetrahedron, and the easy axis of the spin anisothe contribution of two triangles and a hexagon. It should be
ropy points to the center of each tetrahedron and has aalso noted that time-reversal symmetry is broken except for
out-of-plane component. In this situation the three spins orthe case okp=0,.
sites A, B, and C in Fig. 1 have different directions and the From now on we choose the unit btos@;/2)=1, and
spin chirality emerge¥ set the length of each bond as unity. We define three vectors

The effective Hamiltonian for the hopping electrons g, =(—1/2,~3/2),a,=(1,0), and a;=(—1/2,3/2),
strongly Hund-coupled to these localized spins is given by which represent the displacements in a unit cell from A to B

site, from B to C site, from C to A site, respectively. In this
H=> tiejff@b;rlﬂj , (4) ~ notation, the BriIIouinﬁzonéBZ) isﬁa hexagon with the cor-
NN ners of k== (2m/3)a;,* (2m/3)a,,* (2m/3)as, two of

with " being given in Eq(3). We set the flux originated which are independent. , ,
from the spin chirality per triangle ag, which satisfy To diagonalize the Hamiltonian, we rewrjte tpe I—lamll-
ei*=¢l(@s+asctaca) The flux penetrating one hexagon is tonian in the momentum space &=y (k)h(k) %(K),
determined as- 2¢. We take the gauge, in which the phasewhere ¢(K) = '(¥a(K), #5(K), #c(K)) and h(k) is a 3x3

of tﬁ” is the same for all the nearest-neighbor pairs with thematrix:

0 2 cogk-a;)e '?? 2 cogk-az)e'??
h(k)=| 2cogk-a;)e*? 0 2 cogk-a,)e 'R | | (5)
2 cogk-az)e '?® 2 cogk-a,)e'?? 0
|
After d.iagonalization, we obt:';\inT »eigenv»alussl?i ) 1+ (K) Q(E)JFZW
and  eigenvectors |#;(K))=[a;(K) ¢a(k)+b;i(K) yr5(k) Ejowel K) =4 3 CoS— 35—, (6)

+ei(k)yc(k)10),  which  satisfy  h(K)|yi(K)) i i
=E;(K)|¢i(k)). There are three bands with dispersion rela-where 6(k) (0= (k)< ) is defined by

tions

N N \/ 1+f(R)\ ,

ﬁ [1+f(k)  6(K) o(k)=arg f(k)cosp+i \ 4| — —[f(k)cos¢]?|,
Euppe = 3 cCoOsS——

3 (7)

_ ) andf(K) is given byf(k)= 2 cosk-a;)cosk-a,)cosk-ay).
E e(l2)=4 , /1+f(k) cose(k)_zw As special cases, the energy dispersions#fer0,7/3 are
middl 3 3 shown in Fig. 2. The spectra have some characteristic fea-



RAPID COMMUNICATIONS

PRB 62 SPIN ANISOTROPY AND QUANTUM HALL EFFECT IN . .. R6067

whereﬁq(IZ) is the vector potential defined with tién Bloch
wave function as

Ai(K) = (ai(K), by (K), ¢i(K))* - V(i (K), bi(K) ,ci(K)),

9
and C; is the so-called first Chern number. This value is
invariant ~ under  gauge transformation |yl (K))
=e'90)| g (Kk)),A/ (K)=A;(k) +1Vig(k), where g(k) is an
arbitrary smooth function df. To calculate the Hall conduc-
tance explicitly, we fix the gauge, for example by setting

ai(IZ) to be real. If this gauge choice is applicable in the
whole region of the BZ, the evaluation of E() leads to
a;yzo. However, generally speaking, there might be some

points where the amplitude (za‘i(IZ) becomes zero. We call
these points as the center of vortices. At the center of the
vortices, our previous choice of the gauge is ill defined, and

we have to choose another gauge, for exan”qq(eﬁ) is real
around them. It is this phase mismatch between patches in
the BZ that contributes to the nonzero Hall conductance.

In our model, we can calculate the Hall conductance of
each band analytically. We take the lower band as an ex-
ample and we will omit the band index in this paragraph. We

choose the gauge of rea(IZ), and rewrite the eigenvector
FIG. 2. The energy spectf&q. (6)] in the case ofa) =0 and  as (a(k),b(k),c(k))=(a’(k),b’(k)e "k ¢’ (k)e &),
(b) $=l3. where a’(k)>0b’(k)>0c'(k)>0,&,(K),&(K) are real
numbers. This gauge choice is ill defined at the pdint
tures. The relatiof|oyed K) < Emigaid K) <EuppelK) is @lways = (0,7/y/3); therefore, we take the gauge of reafk)
satisfied, and the equality is achieved only when the systeraround it. The first Chern number is written as
is time-reversal symmetric, i.e¢p=0,7. When ¢=0, the
lower band becomes dispersionl@Efbwe,(IZ)z —2=const,

which is the reflection of the fact that thegomedattice is a
line graph of the honeycomb structdfeThis flat band

touches at the center of the BE{:O) with the middle band, where the integral is over the closed lobparound the vor-

. . . . - o tex. An explicit calculation leads t€y,e,= — sgn(sing). In
2 lower
whose dispersion relation around it Byigak) k™. The 5 qinijar way, we can calculate the contribution from the

middle band and the upper band touch at two independerp.};]iddle and the upper band, and the results Grguqe

corners of the BZ. Around each of the two corners, the dis-_ 0.Cupper=SAN(sing). This means that the quantum Hall ef-

persion is expressed by a massless Dirac fermion. The Spegse it zero total flux in the unit cell is realized in the
trum of ¢= 7 is a particle-hole conjugate of that gf=0; (E)fresent moded2

therefore, the upper band becomes flat with an eigenvalue It is noted here that an infinitesimal tilting of spin and

2. Generally the energy spectra has_no pgrticle-holg SYMMEance the spin chiralityp opens the gap, and the bands ob-
try except for the case op=* /2, in which the middle i chiralities. Although this situation is similar to the chiral
band becomes dispersionle&s;qai(K) =0. _ spin liquid? still there are crucial differences between these
We now calculate the Hall conductance of this system. liyyo cases. In the present model, both the spin direction on
is clear that the Hall conductaneg,, is equal to zero ¢xy  each site and the flux through a plaquette are ordered. This is
=0) in the time-reversal symmetric cas¢s=0,7. There-  in sharp contrast to the chiral spin liquid where only the flux
fore, we focus on the case @f# 0,7. In this case there is an through a plaquette is ordered, and the direction of spin on
energy gap between each band, and we first assume that tBgch site is fluctuating. Furthermore, in the present case, the
Fermi energy is lying in the gap. The Hall conductance isphysical observabler,, is nonvanishing and quantized while
given by the summation of that for each band below they, is zero. In the chiral spin liquid, on the other hawd,
Fermi energyu,, =g -¢_0,,, and the Hall conductance is and e, always vanish because the charge degree of freedom
generally quantized, i.eg,, = ve?/h (v: integed.”* The con-  is missing there. Even when carriers are doped and the anyon
tribution to the Hall conductance from ath band is written ~ superconductivity occursthe Meissner term in the action,

as ie., ps,&-,&, is dominant and detection af,, through the
electric Hall effect is difficult.
o2 Up to now, we have concentrated on the ferromagnet rep-
f deAz~Vg><5\i(IZ)= FC‘ ' (8) rese_nted by the double-exchange model. Our theory is also
BZ applicable to the ferromagnet based on the Hubbard model,

_ 1 P .
C 5= § R Vet ), 10

eZ
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because in the mean-field level the Hamiltonian is expresseabove argument is not straightforwardly applicable to discuss
by the double-exchange moddq. (1)], where we identify  the large nonvanishing AHE at zero temperature. However,
§ with the classical iw,=0) component of the OuUr results show that each band contributes to the Hall con-

Stratonovich-Hubbard field. It is proved that the ground statductance as a whole in the ground state, and nonvanishing
of the Hubbard model on theagomdattice is a ferromagnet anomalous Halllconducta_nce IS e?(peCted to be reahze_d even
if the flat band is half-filled® and this flat-band ferromag- \éVS;EattT\?euF/ecms?srt]:rqg)\;wlt?] Lﬂg%}'(gi‘ﬁ;;ﬂf ltr’m?é (‘:"ggghﬂ'lse

netism is robust under introduction of a small dispersion to : . g’ '

the dispersionless barfl.Furthermore the spin-orbit cou- magnitude ofoy, depends on band dispersion and also the

pling gives the spin anisotropies, which are different forIn‘eume of the quasiparticles. Thus, the quantitative discus-

three crystallographically independent sites. This introduced O™ 'S beyond the scope of our present analysis. Consider-

the tilting of the spins from the perfect ferromagnetic align-gF'onS pf trllese |sr2§es allsf v¥ellfas the edxtensmn to three-
ment, as was assumed in Ed). Therefore, from the theo- Imensional syste are eft for ut_ure StL.J 1€s. . .
retica{l oint of view, we can étron ly ex ’ect that once the In summary, we studied the chiral spin state realized in

P L gly expec . the flat-band ferromagnet with spin anisotropy on the two-
electron density is 1/3 per atom on tkagomelattice, the

i . . . dimensionalkkagomelattice. If the Fermi energy is lying in
chiral spin stat'e present_ed hfre is realized and Hall condu%he gap, we expect quantized Hall conductanag,
tance is quantized as,,= *e“/h.

Finally, we discuss the recent experimentsRyMo,0 =+¢e?/h. In other cases, the system behaves as an itinerant
' 27 ith fini -
(R=Nd, Sm, G487 which are itinerant ferromagnets on ferromagnet with finite Hall conductance at zero tempera

the verde of a Mott transition on the pvrochlore lattice Theture. This feature is qualitatively in good accordance with

- ge of a Mo Py . S recent experiments on the pyrochlore oxidegMo,0O,; (R
spin polarization is almost perfett,and the tight-binding

; . . 2 =Nd, Sm, Gd.

model Eq.(4) is the appropriate one for these spin-polarized
electrons. Although the spin structure of these materials are The authors acknowledge Y. Tokura, Y. Taguchi, and A.
not yet determined, we can expect that easy-axis spin aniso&banov for fruitful discussions. This work was supported by
ropy produces the spin chirality by the symmetry consider-Grant-in-Aid for Scientific Research on Priority Areas and
ation. These compounds show metallic behaviors, whiclGrant-in-Aid for COE research from the Ministry of Educa-
means that the Fermi energy is not in the band gap, and th#on, Science, Culture and Sports of Japan.
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