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Spin anisotropy and quantum Hall effect in the kagomélattice: Chiral spin state
based on a ferromagnet
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A ferromagnet with spin anisotropies on the two-dimensional~2D! kagome´ lattice is theoretically studied.
This is a typical example of the flat-band ferromagnet. The Berry phase induced by the tilting of the spins
opens the band gap and quantized Hall conductancesxy56e2/h is realized. This is the most realistic chiral
spin state based on the ferromagnetism. We also discuss the implication of our results to the anomalous Hall
effect observed in the metallic pyrochlore ferromagnetsR2Mo2O7 (R5Nd, Sm, Gd!.
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The spin Berry phase plays an important role in the qu
tum transport of strongly correlated electronic systems. C
sider an electron hopping from sitei to j coupled to a spin a
each site with Hund’s couplingJH .1 The Hamiltonian is ex-
pressed by the double-exchange model

H5(
NN

ti j c is
† c j s2JH(

i
c ia

† sW ab•SW ic ib , ~1!

wherec is
† is the spins electron creation operator, andSW i is

the localized spin on site i, which we assumed to be class
WhenJH is strong enough the spin of the hopping electron
forced to align parallel toSW i and SW j at each site, with the
spin-wave function beingux i& and ux j&, respectively. The
spin wave function is explicitly given by

ux i&5 tFeibi cos
u i

2
,ei (bi1f i ) sin

u i

2 G , ~2!

where we have introduced the polar coordinates

^x i uSW i ux i&5 1
2 (sinui cosfi ,sinui sinfi , cosui). The overall

phasebi corresponds to the gauge degrees of freedom
does not appear in physical quantities. Therefore, the ef
tive transfer integralt i j

e f f is given by1

t i j
e f f5t^x i ux j&

5tei (2bi1bj )Fcos
u i

2
cos

u j

2
1ei (2f i1f j ) sin

u i

2
sin

u j

2 G
5teiai j cos

u i j

2
, ~3!

whereu i j is the angle between the two spinsSW i andSW j . The
phaseai j is the vector potential generated by the spin, a
corresponds to the Berry phase felt by the hopping elect
Let us consider an electron hopping along a loop 1→2→3
→1. The total phase that the electron obtains is the ga
flux by ai j , which corresponds to one half of the solid ang
subtended by the three spinsSW i ( i 51,2,3). This is called the
spin chirality and is one of the key concepts in the physics
strongly correlated electronic systems.2–7 One can easily see
that the spin chirality is absent for collinear and coplan
spin alignment, and the spin chirality has been intensiv
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discussed in the context of the quantum spin liquid where
spins and henceai j fluctuate quantum mechanically.2–7 This
ai j is the leading actor in the gauge theory of strongly c
related electronic systems.3,6

Among them the proposal of chiral spin state with brok
time-reversal symmetry in a triangular lattice2 and the

kagome´ lattice,7,8 and later the anyon superconductivity4 at-
tracted great interest at the early stage of the high-Tc re-
search. Wenet al.5 constructed a mean-field theory for a ch
ral spin liquid on a square lattice. They start from thep-flux
state, and break the time-reversal symmetry by introduc
the next-nearest-neighbor hopping with a phase. Howeve
turned out to be rather difficult to find physical realization
the ~chiral! spin liquid in real materials, even in frustrate
lattices.

The spin Berry phase has been discussed also in the
text of the anomalous Hall effect~AHE! in manganites.9 It is
proposed that the spin-orbit interactionH8 leads to the cou-
pling between the magnetizationM and the spin chirality,
i.e., the gauge flux,b as expressed byH85lbM. At finite
temperatureT, Skyrmions are thermally excited and the ba
ance between the positive and negative chiralities is bro
by H8 to give rise to a finite averagêb&. This ^b& gives an
additional ‘‘magnetic field’’ and hence leads to the anom
lous Hall effect proportional to the coupling constantl and
Skyrmion density;e2D/T, whereD is the excitation energy
of the Skyrmion. This mechanism is the one coming from
Berry phase of the spins compared with the conventio
skew-scattering mechanism.10–12 However, it shares a fea
ture with these conventional theories, namely the AHE v
ishes in the zero-temperature limit, which is the case in
conventional ferromagnetic metals experimentally.10 It is re-
lated to the fact that the spin chirality is zero in the grou
state. However, it is noted that a recent work proposes
staggered flux state as the ground state of the double
change model on a cubic lattice with doping.13

On the other hand, recent transport experiments on fe
magnetic pyrochloresR2Mo2O7 (R5Nd, Sm, Gd! revealed
that the AHE increases asT is lowered and approaches to th
saturated value.16,17 This behavior is qualitatively differen
from the conventional one.10 One clue to explain this anoma
lous feature is that the pyrochlore structure has geometr
frustration.14 It consists of corner-sharing tetrahedrons a
R6065 ©2000 The American Physical Society
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the antiferromagnetic interactions between nearest-neig
spins are frustrated. It was recently pointed out that even
ferromagnetic interaction is frustrated, if the spin easy a
points to the center of the tetrahedron.15 In this case, becaus
the spin configuration becomes noncoplanar, we expect
the spin chirality appears and affects the quantum trans
of electrons, especially the transverse conductivitysxy .
However, it is a nontrivial issue whether the spin chiral
really contributes tosxy when the spins form a periodi
structure.

Motivated by these pyrochlore compounds, we study
this paper the two-dimensionalkagome´ lattice, which is the
cross section of the pyrochlore lattice perpendicular to
~1,1,1! direction.14 We show that the chiral spin state is r
alized in anorderedspin system on thekagome´ lattice, when
the spin anisotropy is introduced. When the Fermi energ
in the gap, the system shows a quantized Hall effect. Im
cations of our results to these pyrochlore compounds are
discussed especially on the AHE which does not vanish
low temperatures.

We consider the double-exchange ferromagnet on
kagome´ lattice shown in Fig. 1. Here the triangle is the o
face of the tetrahedron, and the easy axis of the spin an
ropy points to the center of each tetrahedron and has
out-of-plane component. In this situation the three spins
sites A, B, and C in Fig. 1 have different directions and t
spin chirality emerges.18

The effective Hamiltonian for the hopping electro
strongly Hund-coupled to these localized spins is given b

H5(
NN

ti j
e f fc i

†c j , ~4!

with t i j
e f f being given in Eq.~3!. We set the flux originated

from the spin chirality per triangle asf, which satisfy
eif5ei (aAB1aBC1aCA). The flux penetrating one hexagon
determined as22f. We take the gauge, in which the pha
of t i j

e f f is the same for all the nearest-neighbor pairs with
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direction shown by the arrows in Fig. 1.18 Note that the net
flux through a unit cell vanishes due to the cancellation
the contribution of two triangles and a hexagon. It should
also noted that time-reversal symmetry is broken except
the case off50,p.

From now on we choose the unit oft cos(uij /2)51, and
set the length of each bond as unity. We define three vec
aW 15(21/2,2A3/2),aW 25(1,0), and aW 35(21/2,A3/2),
which represent the displacements in a unit cell from A to
site, from B to C site, from C to A site, respectively. In th
notation, the Brillouin zone~BZ! is a hexagon with the cor
ners of kW56(2p/3)aW 1 ,6(2p/3)aW 2 ,6(2p/3)aW 3, two of
which are independent.

To diagonalize the Hamiltonian, we rewrite the Ham
tonian in the momentum space asH5(kWc

†(kW )h(kW )c(kW ),
where c(kW )5 t

„cA(kW ),cB(kW ),cC(kW )… and h(kW ) is a 333
matrix:

FIG. 1. kagome´ lattice. The dotted line represents the Wigne
Seitz unit cell, which contains three independent sites~A,B,C!. It is
assumed that each site has a different spin anisotropy axis.
arrows on bonds mean the sign of the phases of the transfer int
t i j .
h~kW !5S 0 2 cos~kW•aW 1!e2 if/3 2 cos~kW•aW 3!eif/3

2 cos~kW•aW 1!eif/3 0 2 cos~kW•aW 2!e2 if/3

2 cos~kW•aW 3!e2 if/3 2 cos~kW•aW 2!eif/3 0
D . ~5!
fea-
After diagonalization, we obtain eigenvaluesEi

and eigenvectors uc i(kW )&5@ai(kW )cA
†(kW )1bi(kW )cB

†(kW )

1ci(kW )cC
† (kW )#u0&, which satisfy h(kW )uc i(kW )&

5Ei(kW )uc i(kW )&. There are three bands with dispersion re
tions

Eupper~kW !54A11 f ~kW !

3
cos

u~kW !

3
,

Emiddle~kW !54A11 f ~kW !

3
cos

u~kW !22p

3
,

-

Elower~kW !54A11 f ~kW !

3
cos

u~kW !12p

3
, ~6!

whereu(kW )(0<u(kW )<p) is defined by

u~kW !5argF f ~kW !cosf1 iA4S 11 f ~kW !

3
D 3

2@ f ~kW !cosf#2G ,

~7!

and f (kW ) is given by f (kW )52 cos(kW•aW1)cos(kW•aW2)cos(kW•aW3).
As special cases, the energy dispersions forf50,p/3 are

shown in Fig. 2. The spectra have some characteristic
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tures. The relationElower(kW )<Emiddle(kW )<Eupper(kW ) is always
satisfied, and the equality is achieved only when the sys
is time-reversal symmetric, i.e.,f50,p. When f50, the
lower band becomes dispersionless@Elower(kW )5225const#,
which is the reflection of the fact that thekagome´ lattice is a
line graph of the honeycomb structure.19 This flat band
touches at the center of the BZ (kW50) with the middle band,
whose dispersion relation around it isEmiddle(kW )}kW2. The
middle band and the upper band touch at two independ
corners of the BZ. Around each of the two corners, the d
persion is expressed by a massless Dirac fermion. The s
trum of f5p is a particle-hole conjugate of that off50;
therefore, the upper band becomes flat with an eigenvalu
2. Generally the energy spectra has no particle-hole sym
try except for the case off56p/2, in which the middle
band becomes dispersionless:Emiddle(kW )50.

We now calculate the Hall conductance of this system
is clear that the Hall conductancesxy is equal to zero (sxy
50) in the time-reversal symmetric casesf50,p. There-
fore, we focus on the case offÞ0,p. In this case there is an
energy gap between each band, and we first assume tha
Fermi energy is lying in the gap. The Hall conductance
given by the summation of that for each band below
Fermi energy:sxy5(Ei<EF

sxy
i , and the Hall conductance i

generally quantized, i.e.,sxy5ne2/h (n: integer!.21 The con-
tribution to the Hall conductance from ani th band is written
as

sxy
i 5

e2

h

1

2p i EBZ
d2kẑ•¹kW3AW i~kW !5

e2

h
Ci , ~8!

FIG. 2. The energy spectra@Eq. ~6!# in the case of~a! f50 and
~b! f5p/3.
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whereAW i(kW ) is the vector potential defined with thei th Bloch
wave function as

AW i~kW !5„ai~kW !,bi~kW !,ci~kW !…* •¹kW
t
„ai~kW !,bi~kW !,ci~kW !…,

~9!

and Ci is the so-called first Chern number. This value
invariant under gauge transformation uc i8(kW )&
5eig(kW )uc i(kW )&,AW i8(kW )5AW i(kW )1 i¹kWg(kW ), where g(kW ) is an

arbitrary smooth function ofkW . To calculate the Hall conduc
tance explicitly, we fix the gauge, for example by setti
ai(kW ) to be real. If this gauge choice is applicable in t
whole region of the BZ, the evaluation of Eq.~8! leads to
sxy

i 50. However, generally speaking, there might be so

points where the amplitude ofai(kW ) becomes zero. We cal
these points as the center of vortices. At the center of
vortices, our previous choice of the gauge is ill defined, a
we have to choose another gauge, for example,bi(kW ) is real
around them. It is this phase mismatch between patche
the BZ that contributes to the nonzero Hall conductance.

In our model, we can calculate the Hall conductance
each band analytically. We take the lower band as an
ample and we will omit the band index in this paragraph. W
choose the gauge of reala(kW ), and rewrite the eigenvecto
as „a(kW ),b(kW ),c(kW )…5„a8(kW ),b8(kW )e2 i jb(kW ),c8(kW )e2 i jc(kW )

…,
where a8(kW ).0,b8(kW ).0,c8(kW ).0,jb(kW ),jc(kW ) are real
numbers. This gauge choice is ill defined at the poinkW

5(0,p/A3); therefore, we take the gauge of realb(kW )
around it. The first Chern number is written as

C5
1

2p R
G
dkW•¹kWjb~kW !, ~10!

where the integral is over the closed loopG around the vor-
tex. An explicit calculation leads toClower52sgn(sinf). In
a similar way, we can calculate the contribution from t
middle and the upper band, and the results areCmiddle
50,Cupper5sgn(sinf). This means that the quantum Hall e
fect with zero total flux in the unit cell is realized in th
present model.22

It is noted here that an infinitesimal tilting of spin an
hence the spin chiralityf opens the gap, and the bands o
tain chiralities. Although this situation is similar to the chir
spin liquid,5 still there are crucial differences between the
two cases. In the present model, both the spin direction
each site and the flux through a plaquette are ordered. Th
in sharp contrast to the chiral spin liquid where only the fl
through a plaquette is ordered, and the direction of spin
each site is fluctuating. Furthermore, in the present case
physical observablesxy is nonvanishing and quantized whil
sxx is zero. In the chiral spin liquid, on the other hand,sxy
andsxx always vanish because the charge degree of free
is missing there. Even when carriers are doped and the an
superconductivity occurs,4 the Meissner term in the action
i.e., rsAW •AW , is dominant and detection ofsxy through the
electric Hall effect is difficult.

Up to now, we have concentrated on the ferromagnet r
resented by the double-exchange model. Our theory is
applicable to the ferromagnet based on the Hubbard mo
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because in the mean-field level the Hamiltonian is expres
by the double-exchange model@Eq. ~1!#, where we identify
SW i with the classical (ivn50) component of the
Stratonovich-Hubbard field. It is proved that the ground st
of the Hubbard model on thekagome´ lattice is a ferromagne
if the flat band is half-filled,19 and this flat-band ferromag
netism is robust under introduction of a small dispersion
the dispersionless band.20 Furthermore the spin-orbit cou
pling gives the spin anisotropies, which are different
three crystallographically independent sites. This introdu
the tilting of the spins from the perfect ferromagnetic alig
ment, as was assumed in Eq.~4!. Therefore, from the theo
retical point of view, we can strongly expect that once t
electron density is 1/3 per atom on thekagome´ lattice, the
chiral spin state presented here is realized and Hall con
tance is quantized assxy56e2/h.

Finally, we discuss the recent experiments onR2Mo2O7
(R5Nd, Sm, Gd!,16,17 which are itinerant ferromagnets o
the verge of a Mott transition on the pyrochlore lattice. T
spin polarization is almost perfect,16 and the tight-binding
model Eq.~4! is the appropriate one for these spin-polariz
electrons. Although the spin structure of these materials
not yet determined, we can expect that easy-axis spin an
ropy produces the spin chirality by the symmetry consid
ation. These compounds show metallic behaviors, wh
means that the Fermi energy is not in the band gap, and
G.
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above argument is not straightforwardly applicable to disc
the large nonvanishing AHE at zero temperature. Howev
our results show that each band contributes to the Hall c
ductance as a whole in the ground state, and nonvanis
anomalous Hall conductance is expected to be realized e
when the Fermi energy is lying inside the band, which
qualitatively consistent with the experiment. In this case,
magnitude ofsxy depends on band dispersion and also
lifetime of the quasiparticles. Thus, the quantitative disc
sion is beyond the scope of our present analysis. Consi
ations of these issues as well as the extension to th
dimensional systems23 are left for future studies.

In summary, we studied the chiral spin state realized
the flat-band ferromagnet with spin anisotropy on the tw
dimensionalkagome´ lattice. If the Fermi energy is lying in
the gap, we expect quantized Hall conductancesxy
56e2/h. In other cases, the system behaves as an itine
ferromagnet with finite Hall conductance at zero tempe
ture. This feature is qualitatively in good accordance w
recent experiments on the pyrochlore oxidesR2Mo2O7 (R
5Nd, Sm, Gd!.
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