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Quantum chiral phases in frustrated easy-plane spin chains
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~Received 23 June 2000!

The phase diagram of antiferromagnetic spin-S chain withXY-type anisotropy and frustrating next-nearest-
neighbor interaction is studied in the limit of large integerSwith the help of a field-theoretical approach. It is
shown that the existence of gapless and gapped chiral phases found in recent numerical studies@M. Kaburagi
et al., J. Phys. Soc. Jpn.68, 3185~1999!; T. Hikiharaet al., J. Phys. Soc. Jpn.69, 259 ~2000!# is not specific
for S51, but is rather a generic large-S feature. Estimates for the corresponding transition boundaries are
obtained, and a sketch of the typical phase diagram is presented. It is also shown that frustration stabilizes the
Haldane phase against the variation of the anisotropy.
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In recent years, the problem of possible nontrivial ord
ing in frustrated quantum spin chains has attracted consi
able attention.1–5 Nersesyanet al.predicted1 that in an aniso-
tropic ~easy-plane! antiferromagnetic S5 1

2 chain with
sufficiently strong frustrating next-nearest-neighbor~NNN!
coupling, a new phase with a broken parity would appe
which would be characterized by the nonzero value
chirality

kn
z[^~Sn3Sn11!z&; ~1!

note that definition~1! differs from the other, so-called scala
chirality k̃}Sn21•(Sn3Sn11) which is often discussed in
the context of the isotropic spin chains.6 This prediction was
made on the basis of the bosonization technique comb
with a subsequent mean-field-type decoupling procedure
similar conclusion can be reached7 by means of a mean-field
decoupling of the quartic terms in the Jordan-Wigner tra
formed fermionic version of the Hamiltonian, in the spirit
the Haldane’s treatment of a spontaneously dimeri
phase.8 Up to now, however, this prediction forS5 1

2 was
not confirmed in numeric studies.4,2 On the other hand,two
different types of chiral ordered phases, gapped and gap
were found numerically in theS51 easy-plane frustrate
chain.4,5 At present, to our knowledge, there is no theoreti
analysis addressing the problem of chiral ordered phase
the S>1 case.

The aim of the present Communication is to study
generic large-S behavior of antiferromagnetic easy-plan
integer-S chain with frustrating NNN interaction, describe
by the following Hamiltonian:

Ĥ5J(
n

$~SnSn11!D1 j ~SnSn12!D1D~Sn
z!2%. ~2!

Here, (S1S2)D[S1
xS2

x1S1
yS2

y1DS1
zS2

z , Sn denotes the spin-S
operator at thenth site, the lattice spacinga has been set to
unity, J.0 is the nearest-neighbor exchange constant,j .0
is the relative strength of the NNN coupling, and 0,D,1
and D.0 are, respectively, the dipolar~inter-ion! and the
single-ion anisotropies.

We argue that the existence of gapless and gapped c
phases found in Refs. 4 and 5 is not specific forS51, but is
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rather a generic large-S feature. Estimates for the corre
sponding transition boundaries are obtained, and a sketc
the typical phase diagram is presented. As a side result
also show that the domain of stability of the Haldane ph
against the anisotropy variation grows when the frustrat
coupling j is increased, in accordance with the numeric
results.9

We use the well-known technique of spin cohere
states12,13 which effectively replaces spin operators by cla
sical vectors (Sn

1 ,Sn
z)5S(sinune

iwn,cosun) and incorporates
the quantum features by means of the path integral ove
space-time configurations of (u,w). The classical ground
state of Eq.~2! is well known: the spins always lie in th
easy plane (xy), i.e., u5 (p/2), for j , 1

4 the alignment of
spins is antiferromagnetic,wn5w01pn, and for j . 1

4 a he-
lical structure with incommensurate magnetic order dev
ops, wn5w06(p2l0)n, wherel05arccos(1/4j ), and the
6 signs above correspond to the two possible chiralities
the helix.

In one dimension the long-range helical ordering is i
possible since it would imply a spontaneous breaking of
continuous in-plane symmetry; in contrast to that, the ex
tence of the finite chiralitykn

z5^sin(wn112wn)& is not pro-
hibited by the Mermin-Wagner theorem.

The classicalisotropicsystem has forj . 1
4 three massless

modes with wave vectorsq50, q56d, whered[p2l0 is
the pitch of the helix. The effective field theory for the is
tropic case is the so-calledSO(3) nonlinear sigma model
with the order parameter described by the local rotat
matrix.10,11 The physics becomes simpler in the presence
anisotropy since the modes withq56d acquire a finite
mass. Our starting point will be the following ansatz for t
angular variablesu,w:

un5p/21pn1~jneidn1jn* e2 idn!/2,

wn5pn1cn1~wneidn1wn* e2 idn!/2. ~3!

We assume that the fluctuationsp, j, w are small and that
they are smooth functions ofn, slowly varying over the char-
acteristic distancel 052p/l0; the same property is assume
for the functionln[cn112cn which can be viewed as a
dual variable toc.14
R6057 ©2000 The American Physical Society
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After passing to the continuum in the effective Lagran
ian L5*dxL5\S(n(12cosun)]twn2H(u,w) we average
over l 0, making the oscillating terms disappear. The result
expression forL is

L5\S$p~] tc!~12uju2/4!1@w* ~] tj!1w~] tj* !#/4%

2JS2$V@l#~12uju2/2!1A0p21~A1/2!uwu2%2~JS2/4!

3$M uju21FDu]xju2%, ~4!

where the following notation has been used:

V@l#5 j cos 2l2cosl2U01~ j /2!cos 2l~]xl!2,

U05 j cos 2l02cosl0 , F5cosl024 j cos 2l0 ,

A05D1D~11 j !2U0 , M52@D2~12D!U0#,

A15cos2l01 j cos2 2l02U0 . ~5!

Integrating out the ‘‘slave’’ fieldsp.2(\/2JSA0)] tc, w
.(\/2JSA1)] tj, and passing to the imaginary timey5 ict,
c5JS(2A0)1/2/\, we obtain the effective Euclidean action

AE5
1

g0
E E dx dy$ 1

2 ~]yc!21V@l#%~12 1
2 uju2!

1
Ẽ

4g0
E d2X$~]mj* !~]mj!1m0

2uju2%, ~6!

where (X1 ,X2)5(x,ic8t), c85JS(A1FD)1/2/\, ]m

5]/]Xm , and the constantsg0 , Ẽ, m0 are given by

g05
A2A0

S
, Ẽ5S A0FD

A1
D 1/2

, m0
25

M

FD
. ~7!

Further, integrating out the massivej yields the effective
action forc only, with a renormalized couplinggeff :

AE5
1

geff
E E dx dy$ 1

2 ~]yc!21V@l#%,

geff5g0 Y S 12
g0

2pẼ
ln~11L2/m0

2!D , ~8!

whereL5p is the lattice cutoff. A similar derivation may b
carried out forj ,1/4: starting from the ansatz of the type~3!
with real j, w andd5p, one arrives at the same result~8!,
but with l0 set to zero in all quantities defined in Eq.~5! and
~7!.

We have mapped the initial quantum one-dimensio
~1D! model to the 2D classicalXY helimagnet at effective
‘‘temperature’’geff described by the effective action~8!. The
validity of this mapping is determined by the requireme
g0!1, uwu!uju!1, p!1, which translate into

S@~2A0!1/2, Le2pẼ/g0!m0!Sg0 /Ẽ. ~9!

The first inequality above means that we are not allowed
consider largej *S2/2, and the second one requires the a
isotropy to be within a certain range. We will be main
-

g

l

s

o
-

interested in the behavior of Eq.~8! for j close to the Lifshitz

point j L[ 1
4 , then the condition for the anisotropy transform

into

zp2«e22pSAz«!3m/8!1, ~10!

wherem[12D14D/3, «[u j 2 j Lu, and the constantz51
for j , j L andz52 for j . j L , respectively.

The model~8! possesses two basic types of topologic
defects:15 ~i! domain walls connecting regions of opposi
chirality, and~ii ! vortices, existing inside the domains wit
certain chirality and destroying the long-range helical ma
netic order~only quasi-long-range helical order is possible
finite geff). Thus one may expect two phase transition
Ising-type transition~‘‘freezing’’ of the domain walls! which
corresponds to the onset of the chiral order, and
Kosterlitz-Thouless~KT! transition ~vortex unbinding! cor-
responding to the transition from the gapless chiral ph
with algebraically decaying helical magnetic correlatio
^cosc(x)cosc(0)&}(1/x)geff/2p to the gapped chiral phas
with only short-range helical order~but still with the long-
range chiral order̂kz(x)kz(0)&→const,x→`). For thetwo
transitions to be possible, one has to assume that the cri
temperature of the Ising-type transition ishigher than the
corresponding temperature of the KT transition. In the op
site case, onlyonechiral phase, namely the gapless one, w
exist.

Inside the phase with broken chiral symmetry one can
c56l0x1f6 , then l.6l01]xf6 and V@l#
. 1

2 F(]xf6)2. One then obtains the following estimate fo
the KT temperature:

gc
KT.~p/2!AF. ~11!

The equationgeff5gc
KT determines the transition from th

chiral gapless to the chiral gapped phase atj . j L , as well as
the transition from the nonchiral (l050) gaplessXY phase
to the nonchiral gapped Haldane phase atj , j L . Note that
Eq. ~11! is still valid away from the Lifshitz pointj 5 j L ,
since the fieldf remains smooth far from the vortex cor
and the KT transition temperature is determined by the lo
rithmic divergence in the free vortex energy at large d
tances.

In order to estimate the critical temperature of the Isi
transition, let us first make some observations concerning
properties of chiral domain walls. The domain wall~DW!
energy can be easily calculated in the vicinity of the Lifsh
point, wherel!1, so that the potentialV@l#.(1/8)$(l2

2l0
2)21(]xl)2% takes the form of thew4 model, and one

readily obtains the static DW solutionl5l0tanh$l0(x
2xDW)% and the corresponding energy~per unit length in the
y direction!

EDW.l0
3/3, j 2 j L!1. ~12!

Further, it is easy to see that the chiral DW cannot mo
freely, since the infinitesimal displacement of the DW coo
dinatexDW would cause global change of the phasec at x
→`. The DW can only ‘‘jump’’ by the integer multiples o
p/l0, then the phase at infinity changes by the integer m
tiples of 2p. The jump bynp/l0 involves formation ofn
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vortices bound on the DW, the elementaryn51 jump is
schematically shown in Fig. 1. The energy per such abound
vortexcan be estimated as

Ebv.pAF ln~p/l0!, l0!1. ~13!

Since the Ising transition is governed by the discrete fl
tuations of the DW interface, it is natural to use the so-cal
Müller-Hartmann-Zittartz~MHZ! approximation.16 In this
approach the transition temperature is determined by look
for the point where the free energys of the DW interface
becomes zero; a simple calculation yields the followi
equation for the critical couplingg5gc

I :

s5EDW2
g

d0
lnH 11d0Fcotanh

Ebv

2g
21G J 50, ~14!

whered0.p/(l0AF) is the characteristic size of the boun
vortex in they direction ~in the derivation of Eq.~14! we
have assumed that the distance along they axis between two
successive ‘‘jumps’’ should be greater thand0). This equa-
tion can be solved numerically, and forj <0.26 the solution
is well fitted with the functiongc

I .1.62l010.28l0
2 , thus at

j→ j L the Ising transition temperature is larger than the
one,gc

I .gc
KT. (p/2) l0.

Away from the Lifshitz point the above discussion of th
Ising transition is no longer valid, because the characteri
size of the bound vortex and the DW thickness become c
parable with the lattice constant, and the continuum desc
tion breaks down. However, it is known14 thatEDW saturates
at CDW'0.87 for j *0.8; one could also speculate that f
j→` the energy of the bound vortexEbv→CbvAj , where
Cbv is some constant, and then from Eq.~14! one obtains
gc

I .CbvAj / ln j at j→`. On the other hand, according to E
~11!, gc

KT→pAj in the same limit. Thus, one may expect th
above a certain critical value ofj the Ising transition tem-
peraturegc

I becomes lower thangc
KT , and the gapped chira

phase disappears.
The resulting conjectured phase diagram of the 2D h

magnet~8! is shown in Fig. 2. It should be mentioned th
our picture of the transitions in the 2DXY helimagnet dis-

FIG. 1. Elementary ‘‘kink’’ of the chiral domain wall interface
corresponding to the jump of the wall byp/l0. The arrows show
the anglec; the vortex inc corresponds to the two ‘‘half-vortices’
in the fieldsf65c7l0x living at the opposite sides of the bound
ary. The position of the domain wall is indicated with the dash
line.
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agrees strongly with that presented in Ref. 15. In the la
work, using the arguments of Ref. 17, it was concluded t
at low temperatures the vortices are bound by strings, wh
would suppress the KT transition and make the Ising tran
tion occur first with increasing the temperature. Howev
the argument of Ref. 17 is adequate only for systems w
broken in-plane symmetry, which is not the case here. A
other point is that in the description used in Ref. 15, t
fields f6, measuring the deviations from the twodifferent
possible helix states with opposite chirality, are allowed
live and interact at thesamespace-time point, which, in ou
opinion, is rather unphysical.

The above picture of the transitions in the 2DXY heli-
magnet is now easily translated into the phase diagram of
frustrated spin chain, which is schematically shown in Fig
for D50. Very close toj L , wherem0@L, which in terms of
«[u j 2 j Lu andm[(12D)1 4

3 D means«!3m/(8zp2), the
renormalization of the coupling constant is small,geff.g0,
and the transition boundaries are approximately given by

«c
a5

Ka

p2S2 S D1
315D

4 D . ~15!

Here the coefficientKC:C.1 for the transition between gap
less and gapped chiral phases,KC:H.0.94 for the transition

d

FIG. 2. Sketch of the conjectured phase diagram of the 2D
limagnet described by Eq.~8!.

FIG. 3. Schematic phase diagram of the anisotropic frustra
spin chain~2!.
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from the chiral gapped to the Haldane phase, andKH:XY
.2 for the Haldane-XY transition. One can see that th
slope of the transition lines in the vicinity ofj L is very large
~proportional toS2), and the boundaries move closer a
closer to the classical Lifshitz pointj 5 j L5 1

4 asS→`.
At larger deviations fromj 5 j L , when m0!L, one has

the following equations for the phase boundaries:

mc
a5

8zp2

3
«e22pSAz(A«2A«0

a), «0
a5

2Ka

p2S2
, ~16!

which are valid forA«2A«0
a@1/S. One can see that th

chiral gapped phase shrinks with increasingj. It is interesting
to note that forj , j L the Haldane phase is stabilized by t
frustration, in accordance with the numerical results.9 Further
away from j L , when l0 becomes of the order of 1, th
theory breaks down; however, from the above argume
concerning the behavior ofgc

I we expect that the chira
gapped phase disappears above a certain critical valuej.

Certain limitations of the present theory should be m
tioned. Our approach does not distinguish between inte
and half-integerS, since we have integrated out the out-o
plane components, and the only remaining topologi
charge, in-plane vorticity, plays no role. The topologic
term present in the full theory of the unit vector field co
tains another quantum number, the so-called Pontryagin
dex; for j , j L this term is known13 to suppress the KT tran
sition for half-integerS, preventing the appearance of th
e
s
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n

ts

-
er

l
l

n-

Haldane phase. Atj . j L there is no topological term,10,11and
one may expect that the KT transition forj . j L survives also
for half-integerS. However, this point is not so clear sinc
the ground state of a half-integer spin chain at sufficien
strong frustration is spontaneously dimerized,8 and our ap-
proach does not allow one to capture this feature. Anot
limitation is that we cannot describe the hidden~string! order
in any way, and thus it is not possible to analyze the co
istence of the string order and chirality in the gapped ch
phase observed in Refs. 4 and 5 nor to study the transitio
the so-called double Haldane phase characterized by the
sence of the string order.18

Note added in proof.Recently, we noted that several im
portant results on the topic have appeared. It is now belie
that at least one chiral phase exists in theS5 1

2 case.19 New
types of chiral phases were observed numerically in theS51
chain with single-ion uniaxial anisotropy.20 Chiral phase in
the Josephson-junction ladder was reported.21 A general-S
XY version of model~2! was studied via the bosonizatio
approach,22 the results being basically in agreement w
those presented here.
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