RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 62, NUMBER 10 1 SEPTEMBER 2000-I1

Quantum chiral phases in frustrated easy-plane spin chains
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The phase diagram of antiferromagnetic sBiohain with XY-type anisotropy and frustrating next-nearest-
neighbor interaction is studied in the limit of large inte@with the help of a field-theoretical approach. It is
shown that the existence of gapless and gapped chiral phases found in recent numericdituckésiragi
et al, J. Phys. Soc. Jpi68, 3185(1999; T. Hikiharaet al, J. Phys. Soc. Jpi69, 259 (2000] is not specific
for S=1, but is rather a generic larggfeature. Estimates for the corresponding transition boundaries are
obtained, and a sketch of the typical phase diagram is presented. It is also shown that frustration stabilizes the
Haldane phase against the variation of the anisotropy.

In recent years, the problem of possible nontrivial order-rather a generic larg8-feature. Estimates for the corre-
ing in frustrated quantum spin chains has attracted considesponding transition boundaries are obtained, and a sketch of
able attentiort=° Nersesyaret al. predicted that in an aniso-  the typical phase diagram is presented. As a side result, we
tropic (easy-plang antiferromagnetic S=3 chain with  also show that the domain of stability of the Haldane phase
sufficiently strong frustrating next-nearest-neighlgiNN) against the anisotropy variation grows when the frustrating
coupling, a new phase with a broken parity would appearcoupling j is increased, in accordance with the numerical
which would be characterized by the nonzero value ofresults’
chirality We use the well-known technique of spin coherent

state$?*® which effectively replaces spin operators by clas-

kn=(($ XS+ 1)2); (1) sical vectors & ,S%) = S(sin 6,€¢n,cosé,) and incorporates
note thatNdefinitioril) differs from the other, so-called scalar ;gzg:_%m:mcgen?itgﬁ;i%Smg%riz)?f -:-T]ee p(j;hsé?;?rgloz\f; all
chirality x=S,_1-(S$,%XSy+1) which is often discussed in state of Eq.(2) is well known: the spins always lie in the
the context of the isotropic spin chaifighis prediction was easy planeXy), i.e., 6= (m/2), for j<% the alignment of
m.ade on the basis of the.bosonlzatlon technlque comblne.g,ipinS is antiferromagnetigz,= o+ 7n, and forj>* a he-
with a subsequent mean-field-type decoupling procedure. fica| structure with incommensurate magnetic order devel-
similar conclusion can be reacHeay means of a mean-field 0pS, ¢n= o= (m—\o)N, where\y=arccos(1/4), and the

decoupling of the quartic terms in the Jordan-Wigner trans- signs above correspond to the two possible chiralities of
formed fermionic version of the Hamiltonian, in the spirit of {he helix.

the Haldane’s treatment of a spontaneously dimerized |n one dimension the long-range helical ordering is im-
phasé’ Up to now, however, this prediction f@=3 was  possible since it would imply a spontaneous breaking of the
not confirmed in numeric studiés.On the other handwo  continuous in-plane symmetry; in contrast to that, the exis-
different types of chiral ordered phases, gapped and gaplesgnce of the finite chiralitye? = (sin(gn1— @y)) is not pro-
were 41‘(5)und numerically in th&=1 easy-plane frustrated phipited by the Mermin-Wagner theorem.
chain’> At present, to our knowledge, there is no theoretical ; ; |
analysis addressing the problem of chiral ordered phases f?ﬁoLZi aﬁisxg/zoggggéfge,rg Eaf(l;?{,vi]gr?;ie:lafjlgss
the S=1 case. o the pitch of the helix. The effective field theory for the iso-
The aim of the present Communication is to study theyqpic case is the so-calle8O(3) nonlinear sigma model,
generic largeS behavior of antiferromagnetic easy-plane \ith the order parameter described by the local rotation
integerS chain with frustrating NNN interaction, described 51rix 1911 The physics becomes simpler in the presence of
by the following Hamiltonian: anisotropy since the modes with=+ & acquire a finite
mass. Our starting point will be the following ansatz for the
A=02 {(SiSe1)ai(SiS2)a+D(SHF.  (2)  angularvariables)e:
0= T/2+ pp+ (£, N+ EFeTI)/2,
Here, 6,5,),=S|S;+SS+AS[S;, S, denotes the spi&
operator at thenth site, the lattice spacing has been set to On= TN+ P+ (Woel N+ w* e 1902, 3)
unity, J>0 is the nearest-neighbor exchange constant)
is the relative strength of the NNN coupling, ank@ <1  We assume that the fluctuatiops ¢, w are small and that
and D>0 are, respectively, the dipoldmter-ion) and the they are smooth functions of slowly varying over the char-
single-ion anisotropies. acteristic distancé,=2m/\(; the same property is assumed
We argue that the existence of gapless and gapped chirédr the function\,= ¢, 1— 1, which can be viewed as a
phases found in Refs. 4 and 5 is not specific3er1, butis  dual variable tog.**
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After passing to the continuum in the effective Lagrang-interested in the behavior of E) for j close to the Lifshitz

lan L=[dxL=ASZ,(1-cosb)den—H(6,¢) Wwe average pointj = %, then the condition for the anisotropy transforms
overly, making the oscillating terms disappear. The resultingpio

expression fotC is

L=1S{p(dup) (1~ | E[214) + [W* (0,) +W(d,&*) 114}
—IS{VINI(1-[€%12) + Agp?+ (A/2)|w|?} = (IS/4)

(mlee 2V <3,/8<1, (10)

whereu=1—A+4D/3, e=|j—j.|, and the constan=1
for j<j_and{=2 for j>]j,, respectively.

X{M| &2+ FA|a.&|?, (4) The model(8) possesses two basic types of topological
. ] defects™® (i) domain walls connecting regions of opposite
where the following notation has been used: chirality, and(ii) vortices, existing inside the domains with

certain chirality and destroying the long-range helical mag-
netic order(only quasi-long-range helical order is possible at
finite ge). Thus one may expect two phase transitions:
Ising-type transitior(freezing” of the domain wall$ which

corresponds to the onset of the chiral order, and the

V[N]=] cos A —cosh — U+ (j/2)cos 2\ (9,\)?,

Ug=] OS2 (y—COS\y, F=cC0SAy—4j cos g,

Ao=D+A(1+])=Ug, M=2[D—(1-A)Uo], Kosterlitz-ThoulesgKT) transition (vortex unbinding cor-
) responding to the transition from the gapless chiral phase
Ay=coS\o+] coS 2\ o—Uo. (5 with algebraically decaying helical magnetic correlations

(cosy(x)cosy(0))=(1/x)%2™ to the gapped chiral phase
with only short-range helical ordeébut still with the long-
range chiral orde¢«*(x) «*(0))— const,x— ). For thetwo
transitions to be possible, one has to assume that the critical
1 temperature of the Ising-type transition tégher than the
AE=—f f dx dy{7(ay)?+VINI}(1—3|€%) corresponding temperature of the KT transition. In the oppo-
% site case, onlpnechiral phase, namely the gapless one, will

Integrating out the “slave” fieldsp=— (A/2JSA) d i, W
=(h[I2ISA)d;&, and passing to the imaginary tinye=ict,
c=JS(2A,) Y%, we obtain the effective Euclidean action

exist.

E f : . .
+— | d®X{(9,6%)(9,8)+mi| &3, (6) Inside the phase with broken chiral symmetry one can set
490 8z . ol g=tAX+ ., then A==xNy+ded. and V[A]
l 2 - . .
oy it ' 1/2 =35F(d«¢+)°. One then obtains the following estimate for
where (43, Xp)=(x,ic’t), ¢ ‘]S(AlF,A) " 0u he kT temperature:
=dldX,, and the constanigy, E, m, are given by
2, AgFA| 12 M ge'=(m12) JF. D
_ =_ 2_
9o=7g E_( A, » Mo=gx- @ The equationg.s=g5 ' determines the transition from the

chiral gapless to the chiral gapped phasg=af, , as well as

the transition from the nonchirahg=0) gaplessXY phase

to the nonchiral gapped Haldane phasg<af, . Note that

Eq. (11) is still valid away from the Lifshitz poinf=j,,

AE:if f dx dy{%(ayd/)ZwLV[)\]}, since the field¢ remains smooth far from the vortex core,

Geff and the KT transition temperature is determined by the loga-

rithmic divergence in the free vortex energy at large dis-
tances.

, (8 In order to estimate the critical temperature of the Ising
transition, let us first make some observations concerning the

whereA =  is the lattice cutoff. A similar derivation may be Properties of chiral domain walls. The domain weDW)

carried out forj < 1/4: starting from the ansatz of the ty(® energy can be easily calculated in the _V|C|n|ty of the L|f25h|tz

with real &, w and 6= 7, one arrives at the same res(8), pow;t,zwhere)\fl, so that the potentli‘l/[)\]z(1/8){()\

but with \, set to zero in all quantities defined in E§) and ~ —0)“ T (9x\)“} takes the form of thep” model, and one

7). readily obtains the static DW solutiom =\ gtani\q(x

We have mapped the initial quantum one-dimensionalXow)} and the corresponding energyer unit length in the

(1D) model to the 2D classica Y helimagnet at effective Y direction

“temperature” g.¢ described by the effective actid8). The 3 o

validity of this mapping is determined by the requirements Epw=\o/3, j—j. <L (12)

go<<1, |w|<|é|<1, p<1, which translate into

Further, integrating out the massiveyields the effective
action for ¢ only, with a renormalized couplinges:

Yo
= 1-——=In 1+A2/m2
Jeff go/( o E ( 0)

ks

Further, it is easy to see that the chiral DW cannot move
S>(2A0) Y2, Ae "El9o< Me<Sq/E. (9) freely, since the infinitesimal displacement of the DW coor-
dinatexpy would cause global change of the phasat x
The first inequality above means that we are not allowed te—«~. The DW can only “jump” by the integer multiples of
consider largg =S?/2, and the second one requires the an-m/\,, then the phase at infinity changes by the integer mul-
isotropy to be within a certain range. We will be mainly tiples of 27. The jump bynw/\q involves formation ofn
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FIG. 1. Elementary “kink” of the chiral domain wall interface,
corresponding to the jump of the wall by/\y. The arrows show
the angley; the vortex ing corresponds to the two “half-vortices”
in the fields¢.. = ¢+ \gx living at the opposite sides of the bound-
ary. The position of the domain wall is indicated with the dashed
line.

vortices bound on the DW, the elementary1 jump is
schematically shown in Fig. 1. The energy per sudioand
vortexcan be estimated as
Ep,=mVFIN(m/Ng), No<l. (13
Mdller-Hartmann-Zittartz(MHZ) approximatiort® In this

for the point where the free energy of the DW interface

equation for the critical coupling=g'c:

UZEDW_gln 1+d0

do

Ebv ] _
cotanh-——1|;=0, (19

29
wheredy=7/(\o\F) is the characteristic size of the bound
vortex in they direction (in the derivation of Eq(14) we
have assumed that the distance alongyth&is between two
successive “jumps” should be greater thdg). This equa-
tion can be solved numerically, and fps0.26 the solution
is well fitted with the functiongl,=1.62\4+0.28 3, thus at
j—]L the Ising transition temperature is larger than the KT
one,g.>gKT= (7/2) \,.

Away from the Lifshitz point the above discussion of the

Ising transition is no longer valid, because the characteristi

size of the bound vortex and the DW thickness become com-
parable with the lattice constant, and the continuum descrip-

tion breaks down. However, it is knowhthat E,, Saturates
at Cpy~0.87 for j=0.8; one could also speculate that for
j— the energy of the bound vortek,,— C,, Jj, where
Cp, is some constant, and then from H44) one obtains
gL:CbU Jj/Inj atj—oo. On the other hand, according to Eq.
(11), g&"— \/j in the same limit. Thus, one may expect that
above a certain critical value gfthe Ising transition tem-
peratureg, becomes lower thagX", and the gapped chiral
phase disappears.

The resulting conjectured phase diagram of the 2D heli
magnet(8) is shown in Fig. 2. It should be mentioned that
our picture of the transitions in the 2RY helimagnet dis-

QUANTUM CHIRAL PHASES IN FRUSTRATED EASY. ..
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FIG. 2. Sketch of the conjectured phase diagram of the 2D he-

limagnet described by Eg8).

agrees strongly with that presented in Ref. 15. In the latter
work, using the arguments of Ref. 17, it was concluded that
at low temperatures the vortices are bound by strings, which

would suppress the KT transition and make the Ising transi-

tion occur first with increasing the temperature. However,
the argument of Ref. 17 is adequate only for systems with
brokenin-plane symmetry, which is not the case here. An-
other point is that in the description used in Ref. 15, the
Since the Ising transition is governed by the discrete flucfields ¢=, measuring the deviations from the twdifferent
tuations of the DW interface, it is natural to use the so-callegossible helix states with opposite chirality, are allowed to
live and interact at theamespace-time point, which, in our
approach the transition temperature is determined by lookingpinion, is rather unphysical.
The above picture of the transitions in the 20¢ heli-
becomes zero; a simple calculation yields the followingmagnet is now easily translated into the phase diagram of the
frustrated spin chain, which is schematically shown in Fig. 3
for D=0. Very close tg, , wheremy> A, which in terms of
e=|j—j.| andu=(1—A)+ 2D meanse<3u/(8{7?), the
renormalization of the coupling constant is small¢=g,,
and the transition boundaries are approximately given by

Ka

a

€T

S

3+5A
+

(15

4

Here the coefficienK.c=1 for the transition between gap-
less and gapped chiral phas&s;.;=0.94 for the transition
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FIG. 3. Schematic phase diagram of the anisotropic frustrated

spin chain(2).
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from the chiral gapped to the Haldane phase, #ndy, Haldane phase. At>j, there is no topological terd?;**and
=2 for the HaldaneXY transition. One can see that the one may expect that the KT transition for j, survives also
slope of the transition lines in the vicinity ¢f is very large  for half-integerS. However, this point is not so clear since
(proportional toS?), and the boundaries move closer andthe ground state of a half-integer spin chain at sufficiently

closer to the classical Lifshitz poifit=j, =7 asS—x. strong frustration is spontaneously dimeriZeand our ap-
At larger deviations fromj=j_, whenmy<A, one has proach does not allow one to capture this feature. Another
the following equations for the phase boundaries: limitation is that we cannot describe the hiddstring) order
5 in any way, and thus it is not possible to analyze the coex-
Ma:8§7r ce 2mSVI(Ve~ Jed) ed= 2Ky (16) istence of the string order and chirality in the gapped chiral
¢ PO e phase observed in Refs. 4 and 5 nor to study the transition to

the so-called double Haldane phase characterized by the ab-
sence of the string ordéf.
Note added in proofRecently, we noted that several im-

which are valid for e —\e3>1/S. One can see that the
chiral gapped phase shrinks with increasjinig is interesting

to note that forj <j, the Haldane phase is stabilized by the . . .
frustration, in ajccérLdance with thepnumerical res%lfmrthgr portant resuits on the topic have appeared. It is now believed

. . . l 9
away fromj_, when\, becomes of the order of 1, the that at Ifea;t olnehchlral phasebeX|stsc;n Bre; .ca\Tlel.. NE e|\g
theory breaks down; however, from the above argumentghp?ﬁ Svit% 'r?nﬁ ﬁsﬁs vx?reicjl Sr?irvetr %Lér?gi'fa; yhl N
concerning the behavior oc_[;:: we expect that the chiral cha singie-ion uniaxial anisotropy. al phase

. oo . the Josephson-junction ladder was repoffed. generalS
gapped phase disappears above a certain critical valpe of

Certain limitations of the present theory should be men-xY version of model(2) was studied via the bosonization

tioned. Our approach does not distinguish between integf%ahpopsrgacri’s et:tzdrisel:gs being basically in agreement with
and half-integelS since we have integrated out the out-of- P '

plane components, and the only remaining topological | would like to thank B. A. Ivanov, H.-J. Mikeska, and U.
charge, in-plane vorticity, plays no role. The topological Schollwack for fruitful discussions, and the hospitality of the
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dex; forj<j, this term is knowf to suppress the KT tran- eral Ministry for Research and Technolo@®MBFT) under
sition for half-integerS preventing the appearance of the the contract 03MI5HANS.
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