
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 15 AUGUST 2000-IIVOLUME 62, NUMBER 8
Theory of the angle-resonant polariton amplifier
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A microscopic theory is presented for the giant amplification from microcavities in the strong exciton-
photon coupling regime, providing excellent agreement with recent angle-resolved pump-probe experiments.
The analytical and numerical solutions give insight into the physics of the polariton parametric amplifier. The
coherent gain, due to polariton four-wave-mixing, has a threshold dependence on the pump power and is
spectrally blueshifted from the lower polariton energy. The gain shift does not depend on the power, but on the
unperturbed polariton linewidth.
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Since the observation of the strong-coupling regime
tween quantum-well excitons and microcavity photon1

semiconductor microcavities have been the subject of a v
active research.2 The mixed exciton-photon modes, calle
polaritons, have a quasi-two-dimensional character due
the translational invariance in the microcavity embedd
quantum-well plane, while the motion is confined~quan-
tized! in the orthogonal direction. The polariton modes w
in-plane wave vectork can be excited by external photon
which are sent to the planar structure with a finite inciden
angle u, such as to have the same in-plane wave-vec
component.3 In principle, polaritons are fascinating quasipa
ticles, because they share at the same time the very s
energy dispersion of the cavity photons and the pronoun
electronic nonlinearities of excitons.

Many of the experiments in semiconductor microcavit
have studied the role of the collision broadening and
bleaching of the exciton resonance in the transition from
strong to the weak exciton-photon coupling regime.4,5 More
recently, several publications have reported nonlinear em
sion from microcavities in the strong-coupling regime.6–9 In
particular, Savvidiset al.8 have uncovered huge light ampl
fication ~.100! through angle-resolved pump-probe expe
ments. When a pump pulse with incidence angleup ~in-plane
wave vector kp) excites resonantly the lower polarito
branch and a probe beam is taken at normal incidence~in-
plane wave vectork50!, the probe amplification occurs a
the critical angle such that 2ELP(kp)5ELP(0)1ELP(2kp),
where ELP is the lower polariton energy. This experime
tally demonstrates the existence of a very efficient all-opt
amplifier through polaritons.

Apart from the natural need of a theory for such a rema
able effect, many and relevant questions have still to be
swered. Which is the role of the phase-coherent polariza
in the stimulated amplification process? Why does the g
spectrally occur blueshifted with respect to the unpertur
lower polariton? Why is the shift power independent? W
determines the maximum gain?

In this paper, we present a theory for the polariton pa
metric amplifier that explains the very recent observation
giant polariton amplification and answers all the cruc
questions above mentioned. The interacting polariton sys
is treated starting from a microscopic Hamiltonian includi
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exciton-exciton interaction and exciton saturation.10–15 The
analytical and numerical solutions lead to unexpected,
simple quantitative relations for the threshold conditio
spectral properties, and overall efficiency of the amplific
tion, opening the way to further significant developments

In the following, we focus on angle-resolved pum
probe spectroscopy with co-circularly polarized bea
~e.g.,s1s1). The free Hamiltonian for excitons and cavit
photons is

H05(
k

EX~k!b1,k
† b1,k1(

k
EC~k!a1,k

† a1,k .

The operatorb1,k
† creates an exciton with spins1 and in-

plane wave-vectork, while a1,k
† is the analogous one for th

cavity photon. The quantitiesEX(k) and EC(k) are the en-
ergy dispersions for exciton and cavity mode respective
The linear coupling between exciton and cavity photon
represented by the termHXC5(k\VRa1,k

† b1,k1H.c.,
where 2\VR is the vacuum Rabi splitting. The operatorb1,k
satisfies boson commutation rules, but the fermionic nat
of electrons and holes is accounted for through the excit
exciton interaction and exciton saturation. The Coulomb
teraction between carriers is responsible for an effec
exciton-exciton interaction that reads

HXX5
1

2 (
k,k8,q

Vq
effb1,k1q

† b1,k82q
† b1,kb1,k8 .

The exciton and cavity photon are strongly coupled for wa
vectors much smaller than 1/lX , where lX is the two-
dimensional exciton radius. We point out that forqlX!1,
Vq

eff.V0
eff56e2lX /(e0A) with e0 the dielectric constant o

the quantum well andA the macroscopic quantization are
The composite nature of the exciton quasiparticles manif
itself in an anharmonic saturation term in the light-excit
coupling

HXC
sat52 (

k,k8,q

\VR

nsatA
a1,k1q

† b1,k82q
† b1,kb1,k81H.c.,

where nsat57/(16plX
2) is the exciton saturation density

Finally, the coupling to the external radiation field
R4825 ©2000 The American Physical Society
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accounted for within the quasimode HamiltonianHfield

5$g(k\V1,k(t)a1,k
† 1H.c.%. The quantityg is the quasi-

mode coupling constant, while\V1,k(t) is the Rabi energy
of the external electromagnetic field.

The experiments we want to model are such that
pump is spectrally narrow and resonantly excites the lo
polariton branch. Therefore, in such a situation it is p
sible to neglect nonlinear contributions related to the up
polariton branch and consider only the lower polariton sta
The lower polariton annihilation operator ispk5Xkb1,k
1Cka1,k , whereXk andCk are the Hopfield coefficients fo
the exciton and cavity fraction, respectively. The coefficie
are real and such thatXk.0 and Ck,0. In terms
of the lower polariton operators, our model Hamiltoni
is H5HLP1HPP

eff 1Hqm . The free polariton term isHLP

5(kELP(k)pk
† pk with ELP(k) the lower polariton energy

dispersion. The effective polariton-polariton interaction te
reads

HPP
eff 5

1

2 (
k,k8,q

lX
2

A
Vk,k8,q

PP pk1q
† pk82q

† pk pk8 .

The effective potential for the polariton-polariton interactio
coming from the exciton-exciton interaction and excit
saturation, is

Vk,k8,q
PP

5H 6e2

elX
Xk1qXk812

\VR

nsatlX
2

3~ uCk1quXk81uCk8uXk1q!J Xk82qXk .

Finally, we have the quasimode Hamiltonian in the polarit
basisHqm5$g(k\V1,k(t)Ck pk

†1H.c.%.
Let us now consider an excitation configuration w

the probe at normal incidence and the pump at a finite in
dence angle. Namely, we haveV1,k(t)5dk,kp

Vpump(t)
1dk,0 Vprobe(t). The optical response of the probe beam
given by the expectation valuêp0&, that is the polarization
of the s1 lower polariton with in-plane wave vectork50.
Such a quantity is coupled through polariton-polariton int
action to^pkp

&, that is the polarization induced by the pum
The polariton-polariton diffusion produces a wave-mixi
component at the idler wave vector 2kp. When one neglects
all terms of order higher than one in the probe field a
factorizes all the many-operator expectation values in pr
ucts of^p0&, ^pkp

&, ^p2kp
&, it is possible to obtain a close se

of equations for the three expectation values mentio
above. It is convenient to consider the rescaled quan
Pk5^pk&lX /AA. Note that uPku25nklX

2 , where nk is the
coherent density~per unit area! of lower polaritons with
wave vectork. Thus, the equation of motion for the pola
ization at the probe wave vector is

]P0

]t
5

i

\
$@ẼLP~0!1 ig#P01EintP2kp

* Pkp

2 1Fprobe~ t !%.

~1!

The driving term is Fprobe(t)5(lX /AA)gC0 \Vprobe(t),
while the coupling energy isEint5

1
2 (Vkp,kp,kp

PP 1Vkp,kp,2kp

PP ).
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The polarization at the probe wave vector is resonant at
blueshifted energyẼLP(0)5ELP(0)12V0,kp,0

PP uPkp
u2. The

blueshift is due to the polariton-polariton interaction. T
energy 2g is the polariton linewidth@full width at half maxi-
mum ~FWHM!#. The equation for the pump reads

]Pkp

]t
5

i

\
$~ẼLP~kp!1 ig#Pkp

12EintPkp
* P0P2kp

1Fpump~ t !%. ~2!

The pump field isFpump(t)5(lX /AA)gCkp
\Vpump(t). The

polarization at the pump wave vector is resonant at the re
malized energyẼLP(kp)5ELP(kp)12Vkp,kp,0

PP uPkp
u2. Finally,

the equation for the idler polarization reads

]P2kp

]t
5

i

\
$@ẼLP~2kp!1 ig#P2kp

1EintP0* Pkp

2 #%, ~3!

with ẼLP(2kp)5ELP(2kp)12V2kp,kp,0
PP uPkp

u2. Of course,

there is no external driving field for the idler.
Concerning the solution of the polariton amplifier equ

tions, we proceed in two steps. First, we extract the sal
physical features by finding analytical results for the stea
state regime. Second, we provide numerical results for
pulsed excitation case. Let us start with the analytical tre
ment of the steady-state case. In the rotating frame appr
mation, the pump polarization isPkp

(t)5 P̄kp
eivpt and the

cw-probe field readsFprobe(t)5F̄probee
ivt. Consequently, the

stationary solutions for the probe and idler polarizations h
the form P05 P̄0e

ivt and P2kp
5 P̄2kp

ei (2vp2v)t. Taking Eq.
~1! and the complex conjugated of Eq.~3!, we have the linear
inhomogeneous system that determines the quantitiesP̄0 and
P̄2kp

* as a function ofP̄kp
. We point out that such equation

are analogous to that involved in the parametric ampli
model.16 With simple algebra, we find that the probe pola
ization spectrum has two poles, namelyP̄0}1/@(E22\v)
3(E12\v)#, where the complex energies of the poles a

E65
ẼLP~0!12\vp2ẼLP~2kp!

2
1 ig6

1

2
AQ,

with Q5(ẼLP(0)1ẼLP(2kp)22\vp)224(EintuP̄kp
u2)2.

The nonlinear response of the probe becomes singular w
one of the two poles is real. Such a condition is fu
filled when ẼLP(0)1ẼLP(2kp)22\vp50 ~energy conser-
vation for the wave mixing! and for athreshold densitysuch
as EintuP̄kp

u25g. This way, E2 becomes real andE2

2ELP(0)52gV0,kp,0
PP /Eint.2g, while E15E21 i2g. This

implies thatthe gain peak energy is blueshifted with respe
to the unperturbed lower polariton and does not depend
the pump intensity. When the energy conservation is not sa
isfied, the threshold density is higher and the amplificat
clearly smaller. As in the parametric amplifier model,16 the
singularity of the probe polarization at\v5ẼLP(0) is only
formal and becomes finite when the equation for the pum
consistently solved. In fact, the pump polarizationP̄kp

is not
independent fromP̄0 .
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The enlightening results for the steady-state regime al
to understand the basic physics also for the pulsed excita
To complete the study, we solve numerically Eqs.~1!, ~2!,
and ~3! for a realistic GaAs microcavity system with Ra
splitting 2\VR57 meV and polariton broadeningg50.5
meV. We take a resonant pump pulse~3 ps is the intensity
FWHM! and probe the system with a broad-band 100
pulse. We choose the pump wave vector such as to sa
the energy conservation conditionELP(0)1ELP(2kp)
52ELP(kp) and tune the pump spectrally resonant with t
lower polariton branch at the same angle@\vp5ELP(kp)#.
The pump incidence angleup is defined by the relation
kp5vp /c sinup . In the considered case, the angle satisfy
the energy conservation is nearly 15°@see Fig. 1~a!#. In
Fig. 1~b!, we show the results for the frequency-depend
quantity uP0(v)u2, that is the spectrum of the squared pola
ization at the probe wave vector. The thin line represents
case without pump. When a threshold intensity is reach
enormous amplification occurs. The spectral line shap
strongly asymmetric. The peak energy of the spectrum d
not coincide with the mean energy Emean
5$*dv\vuP0(v)u2%/$*dvuP0(v)u2%. In the regime of
strong gain,Emean does not depend on the pump intensi
but only on the polariton linewidth. In fact, we have car
fully verified that Emean coincides with the pole energ
E2 of the steady-state case.

In Fig. 2 we show the spectrally integrated gain as a fu
tion of the pump incidence angle@\vp5ELP(kp) for each
angle#. The gain is actually resonant around the angle sa
fying the energy conservation condition. As a function
intensity the peak angle slightly shifts due to the renorm
ization of the polariton energies.

In Fig. 3~a!, the net gain is shown as a function of th
pump intensity. The gain presents an abrupt threshold.
higher intensities, it increases up to a maximum of the or
of 102 and then saturates. In the range of gain between 121

and 102, the intensity dependence of the gain is hardly d
tinguishable from an exponential.The efficiency of the am

FIG. 1. ~a! Polariton energy dispersion~meV! versus angle
~deg!. ~b! uP0(v)u2 ~arb. units! versus probe detuning\v2EX

~meV! for pump intensities~arb. unitsI 0). Pump angle:up516°.
Probe intensity:I probe51023I 0. Thin solid line: signal~enlarged 10
times! without pump. The upper polariton peak is shown as a r
erence. Thick line:I pump5I 0. Other parameters in the text.
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plifier is dramatically sensitive to the polariton broadenin.
The dashed line shows that when the broadening is incre
by a factor of 2, the threshold intensity is increased by
factor of 2 and the maximum gain is decreased by nearly
order of magnitude. In Fig. 3~b!, the dependence on th
probe intensityI probe is shown. ForI probe tending toI pump,
the amplification decreases, because the gain is intrinsic
limited by the finite density of polaritons created by th
pump.

The coherent nature of the amplification is clearly sho
in Fig. 4~a! where the net gain~solid line! is plotted versus
the pump-probe delay. In panel~b!, the quantity
uPkp

u2/(nsatlX
2) is shown as a function of time. This quantit

represents the coherent density of polaritons at the pu
wave-vector in units of the exciton saturation densitynsat .
The dashed line represents the results without probe, w
the solid line is obtained withI probe50.1I pump. In this case,
the relatively intense probe induces a macroscopic tran
(.10%) of polaritons from the pump wave vectorkp to 0
and2kp. It is worth pointing out that our results are not on
in excellent agreement with the whole rich phenomenolo
of the experiments by Savvidiset al.,8 but give a precise
description of the conditions to achieve the gain thresho

-

FIG. 2. Spectrally integrated gain versus pump incidence an
~deg!. Same parameters as in Fig. 1. The dashed-line represent
shape of the unperturbed lower polariton angular dispersion.

FIG. 3. ~a! Spectrally integrated gain~log scale! versus pump
intensity I pump ~log scale,I 0 units! at up516° for two different
polariton linewidths. Solid line:g50.5 meV. Dashed line:g51
meV. ~b! Net gain versus probe intensityI probe ~log scale,I 0 units!.
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explain the nontrivial spectral features, and the dominant
of the polariton linewidth in determining the maximum valu
of the gain.

Finally, we add some additional remarks about the n
linearities in experiments without probe beam. It is know
that the spontaneous emission can act as a spontan
probe. The wave mixing of a spontaneous probe with
applied pump beam is known as hyper-Raman scatterin17

Houdréet al.9 have recently observed giant nonlinear em
sion of lower polaritons in cw experiments where the pu
resonantly excites the lower polariton branch at the an

FIG. 4. ~a! Solid line: net gain versus pump-probe delay~ps! for
I pump5I 0 and I probe51023I pump. Dashed line: pump intensity~arb.
units! as a function of time.~b! uPkp

u2/(nsatlX
2) as a function of

time ~ps!. Solid line: I probe50.1 I 0. Dashed line: no probe.
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satisfying the energy conservation condition for the wa
mixing. Moreover, the spectral shift of the nonlinear em
sion is just the the polariton linewidth in perfect agreeme
with our analytical result for the cw case. Unlike Refs. 8 a
9, the experiments in Refs. 6 and 7 have been perform
with a nonresonant pump. In such a case, the incohe
dynamics and the contribution of the upper polariton bran
have to be considered, complicating enormously the theo
ical description. Since the phenomenology and spectral
tures are reminiscent of the resonant and coherent case
ther investigation is encouraged in this direction.

In conclusion, we have presented microscopic equati
for the polariton parametric amplifier, whose solutions are
excellent agreement with recent experiments.8,9 The polar-
iton linewidth plays a key role in determining the thresho
for the amplification, the spectral shift, and the maximu
value of the gain. Our theory gives a new perspective to
current debate on the microcavity nonlinear optics, show
in a clear way the intrinsic polariton nonlinearities and pr
vides a powerful, manageable theoretical tool for furth
investigations.
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