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Green’s tensors for anisotropic elasticity: Application to quantum dots
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Real-space Green’s tensors for the calculation of the strain in systems containing buried quantum dots of
arbitrary shape and composition, including the cubic anisotropy of elastic constants, are presented, to the best
of our knowledge, for the first time. The Green’s tensors are obtained as a series with very good accuracy
obtained using the first two terms. The Green’s function for the hydrostatic strain is of a simple form and it is
shown that the cubic anisotropy leads to a nonzero hydrostatic strain outside a dot. The axial strain is shown
to depend on the orientation of the dot in the crystal.
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There is considerable experimental and theoretical inte
in semiconductor quantum dot~QD! structures because de
vices offer the prospect of improved electronic and opti
properties arising from the zero-dimensional quantum c
finement of carriers.1 Knowledge of thestrain distribution in
and around individual QD’s is essential input to calculatio
of the electronic and optical properties of devices,2–6 trans-
mission electron microscopy~TEM! image simulation,7,8 and
crucial for the understanding of the mechanics of growth.9–11

The calculation of the strain distribution due to a buri
inclusion with uniform misfit is usually tackled using finite
element~FE! techniques.2,3,7,8 However, these are computa
tionally intensive, making it difficult to adjust parameters
obtain a best fit with experiment, the treatment of the bou
ary conditions requires care and QD arrays or QD’s w
compositional variation pose difficulties. Methods based
Green’s functions, on the other hand, are generally qu
portable, large systems involving many QD’s or dots w
graded composition pose no difficulty and analytic expr
sions are sometimes tractable to provide deeper insight
the physics, revealing trends, and simple relations.4–6,12–15

For example, full analytical expressions for the strain dis
bution have been derived for ellipsoidal, cuboidal, a
truncated-pyramidal dots.5,13

The chief restriction of the Green’s function approach
that isotropy of elastic constants is assumed. For some p
lems an isotropic solution may be justified because there
much greater uncertainties~such as dot size and shap!
which dominate the accuracy of the calculation, or anis
ropy is not significant for the phenomena und
investigation.7 Yet most semiconductorsare cubic crystals
with an anisotropy coefficient, defined in terms of the elas
constants by (C112C12)/2C44, typically equal to 0.5 com-
pared to the isotropic value of 1, suggesting that the sim
isotropic approach may miss some key features of the st
field. For example, Holy´ et al. and Pinczolitset al. have
demonstrated that thelateral ordering of QD’s can be ex
plainedonly if the full cubic anisotropy of the crystal is take
into account.9,10 The most accessible strain analysis whi
includes the cubic anisotropy of elastic constants is by A
dreevet al. who use a Fourier series method to obtain
lattice relaxation associated with a sinusoidal variation
lattice constant.16 The Fourier series yields the strain dist
bution for an infinite array of evenly-spaced QD’s which
semianalytic for most common QD shapes.17 Even so, calcu-
lations are lengthy, accuracy depends on the number of F
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rier terms, performing the calculation for a single QD or
QD with variable composition is troublesome, and the te
nique lacks the simplicity of applicability of the Green
function approach.

In this paper we present explicit real-space Green’s t
sors which enable the strain distribution in and around Q
to be calculated rapidly and accurately, including the cu
anisotropy of the elastic constants. Our expressions are
rived from the work of Mura and Kinoshita18 who described
from first-principles how the Green’s tensor for anisotrop
elasticity can be determined in series form based on the w
of Lifshits and Rosentsverg.19

In the summary which follows it is assumed, first, that t
elastic properties are linear, second, the same elastic con
pertain to the QD and the surroundings~the use of the elastic
constants of the barrier material for both barrier and QD
been justified elsewhere!16,13and, third, the QD is embedde
in an infinite matrix. We obtain an expansion for the stra
Green’s tensor,Ge(, of the form

Ge(5G0
e(1DG1

e(1D2G2
e(

•••, ~1!

where the first term is the isotropic Green’s tensor,G0
e( , and

subsequent terms provide successive orders of correc
converging to the full anisotropic result. The expansion c
efficient D5m8/(l12m) where m5C44, l5C12 are the
usual Lame´ constants andm85C112C1222C44. D;2 1

3

for typical semiconductor materials. Cubic crystals are i
tropic whenm850. The superscripts ‘‘e ’’ and ‘‘ ( ’’ indicate
that this Green’s tensor yields the strain and is specific
QD’s, respectively. All quantities in boldface are tensors.

The strain tensor is obtained by integrating the Gree
tensor over the volume of the dot, thus

e(~x1 ,x2 ,x3!5E
V
Ge(~x18 ,x28 ,x38! dV~x1

( ,x2
( ,x3

(!, ~2!

wherexi85xi2xi
( are Cartesian coordinates. Here the co

dinate superscript ‘‘( ’’ refers to points within the volume of
the QD andV therefore represents the volume of the dot. T
strain tensor can therefore be obtained forany QD shape.

We have found that thenth term of the series,Gn
e( , in Eq.

~1! may be written
R4798 ©2000 The American Physical Society
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Gn
e(5

e0

n!4n11pmn~2m1l!uxu4n15 S Gni
e(~x1 ,x2 ,x3! Gn'

e(~x1 ,x2 ,x3! Gn'
e(~x1 ,x3 ,x2!

••• Gni
e(~x2 ,x3 ,x1! Gn'

e(~x2 ,x3 ,x1!

••• ••• Gni
e(~x3 ,x1 ,x2!

D , ~3!
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where the symbolsi and' indicate plane and shear stra
components and the tensor elements are polynomial fu
tions of coordinates of order 4n12. For example,

G0i
e(~x1 ,x2 ,x3!52~2m13l!~ uxu223x1

2!, ~4!

G0'
e(~x1 ,x2 ,x3!53~2m13l!x1x2 , ~5!

where uxu25x1
21x2

21x3
2. Equations~4! and ~5! combined

with Eq. ~3! with n50 yield the well-known Green’s func
tions for the plane and shear strain components, respecti
for isotropic crystals.

The higher-order terms are new results. The Green’s fu
tions for n51 may be written,

G1i
e(~x1 ,x2 ,x3!5(

i 50

3

(
j 50

32 i

Ki j
e(x1

2ix2
2 j x3

622i 22 j , ~6!

G1'
e(~x1 ,x2 ,x3!5x1x2(

k50

2

(
i 50

22k

Lki
e(x3

2kx1
2ix2

422i 22k . ~7!

The constantsKe( and Le( are presented in Table I. Th
functions comprising then52 Green’s tensor are polynom
als of order 10,

G2i
e(~x1 ,x2 ,x3!5(

i 50

5

(
j 50

52 i

M i j
e(x1

2ix2
2 j x3

1022i 22 j , ~8!

G2'
e(~x1 ,x2 ,x3!5x1x2(

k50

4

(
i 50

42k

Nki
e(x3

2kx1
2ix2

822i 22k , ~9!

where the constantsM e( andNe( are listed in Table II. The
first-order or second-order correction to a plane strain co

TABLE I. The coefficientsKi j
e( ~upper table! and Lki

e( ~lower
table! are of the formf (Am21Bml1Cl2) wherem andl are the
Laméconstants.

i j f A B C

3 0 2 14 19 9
2 0,1 29 14 35 17
1 0,2 9 6 19 15

1 236 2 3 0
0 0,3 21 2 1 9

1,2 6 4 12 3

k i f A B C

2 0 3 22 51 39
1 0,1 23 26 83 42
0 0,2 3 22 41 24

1 23 26 93 57
c-

ly,

c-

-

ponent can be calculated by substituting Eq.~6! or both Eqs.
~6! and~8! into Eqs.~1!–~3! and integrating over the volum
of the dot. The principle of superposition allows the strain
systems containing large numbers of QD’s to be determi
and composition variation within the QD is also easily c
tered for by makinge0 a function of position and including i
inside the integral. The numerical integration may be co
pleted in minutes on a standard workstation, making th
calculations several orders of magnitude faster than any
ternative numerical technique. The ease and speed of
calculation opens up the possibility of using QD paramet
such as size, shape, and composition profile as fit param
in order to compare with experiment, for example, with TE
images.

It is important to establish how many terms of the ser
expansion given in Eq.~1! are necessary to provide an acc
rate determination of the strain including the cubic anis
ropy of elastic constants. We therefore calculate the st
due to a spherical QD. Here, the difference between the

TABLE II. The coefficientsMi j
e( ~upper table! andNki

e( ~lower
table! are of the formf (Am31Bm2l1Cml21Dl3) wherem and
l are the Lame´ constants.

i j f A B C D

5 0 22 26 35 44 3
4 0,1 21 1350 2477 2060 741
3 0,2 2 1860 7336 7405 2373

1 4 1350 5611 4975 1158
2 0,3 21 1690 7307 11080 4371

1,2 3 1170 3223 340 2621
1 0,4 2 80 274 225 273

1,3 22 1270 5291 5755 1158
2 6 150 197 380 621

0 0,5 1 2 217 92 3
1,4 5 14 211 122 39
2,3 25 86 457 230 75

k i f A B C D

4 0 3 38 37 8 117
3 0,1 26 374 1221 1524 531
2 0,2 3 818 3687 4248 1677

1 8 176 1094 666 281
1 0,3 26 294 871 929 276

1,2 2 784 5566 5499 981
0 0,4 3 118 177 78 57

1,3 22 1042 3103 3312 1233
2 1 2054 10781 14004 5121
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tropic and anisotropic results is significant and the strain
tribution is not complicated by geometrical effects. The el
tic constants used for all materials areC115118.8 GPa,l
553.8 GPa, andm559.4 GPa corresponding to the valu
for GaAs.20 The misfit strain,e0, is 20.067%. Figure 1
shows the strain componente11 plotted as a function ofx1

including the first-order correctionG0
e(1DG1

e( and the
second-order correctionG0

e(1DG1
e(1D2G2

e( . We present
results only for the region outside the QD becausee11 is
constant and very close to the isotropic resultinside the QD
in all cases.24 The results are compared to the calculations
Andreevet al. for an array of spherical dots with center-t
center separations of 18 nm using 20032003200 fourier
terms. Figure 1 shows that the first-order correction provi
a very good approximation to the strain. Addition of th
second-order term provides an almost exact correspond
with the results of Andreevet al. We conclude thatonly the
zeroth- and first-order termsof the strain Green’s tensor ex
pansion are required for good accuracy.

We now calculate the hydrostatic and axial strains fo
cuboidal QD with growth direction along thex3* axis as il-
lustrated in Fig. 2. Dimensionsa53 nm andb59 nm are

FIG. 1. The strain component,e11, is plotted as a function ofx1

for a spherical InAs QD of radius 3 nm contained in a GaAs mat
Results for the region outside the dot,x1.3 nm, are presented. Th
solid curve is the isotropic result. The dashed curve is the publis
result for an array of spherical QD’s including the cubic anisotro
of elastic constants. The Green’s function results include the fi
order correction (s) and the second-order correction (d).

FIG. 2. The geometric parameters which define a cuboidal
are illustrated. The growth direction is alongx3* .
-
-

f

s

ce

a

chosen because the 3:1 ratio is consistent with a rang
QD’s including the truncated pyramid characteristic of InA
GaAs systems~for example, Fryet al.!,21 the lens or cylin-
der, and so these results illustrate the general trends t
found in a range of QD systems. Elastic constants for Ga
are again used for all materials and the misfit strain is ta
to be 20.067%. We focus on three cases with the grow
direction along@001#, @110#, and @111#. With the x3* axis
aligned along@110#, thex1* andx2* axes are taken to be alon

@ 1̄10# and @001#, respectively, and when thex3* axis points

along @111# the x1* andx2* axes are in the@11̄0# and@112̄#
directions, respectively.

The hydrostatic strain is defined aseh5e1* 1e2* 1e3* ,
where the asterisk indicates the coordinate system illustr
in Fig. 2, and shifts the conduction band and avera
valence-band-edge energies.22,23 We find that the Green’s
function for the first-order correction toeh for cubic crystals
is of a particularly simple form

G1
eh(

5
3~2m13l!e0

4p~2m1l!uxu7
$x1

41x2
41x3

4

23~x1
2x2

21x2
2x3

21x3
2x1

2!%. ~10!

Figure 3 presentseh as a function of distance along thex3*
axis through the center of the dot along@001#, @110#, and
@111#. Inside the QD,eh is only a weak function of position
and a weak function of growth direction and ranges fro
about20.087@001# to 20.097@111# with the isotropic value
equal to20.092. Outside the QD,eh is zero in the isotropic
approximation. Figure 3 demonstrates clearly that the cu
anisotropy of the elastic constants leads to nonzero hy
static strain outside the QD.eh is positive with a maximum
value of 0.0062 for a QD grown on a~111! surface and
larger and negative with a largest value of20.01 for growth
along the@001# axis. The hydrostatic strain will shift the
conduction band and average valance-band energies a

.

d
y
t-

D

FIG. 3. The hydrostatic strain component,eh , plotted along the
growth axis is presented for the cuboidal QD illustrated in Fig
with a53 nm. The solid line is the isotropic result. The remaini
curves correspond to the growth direction along@001# (• • • •

• • • •), @110# ~– • – • – • –!, and@111# ~– – – – –!.
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significant over distances of the order of the dimension of
dot ~about 6 nm outside the QD in this case!.

Positive axial strain raises the energy of the heavy ho
with respect to the light holes and vice versa. Figure 4 p
sents the axial strain, defined aseax5e3 2 1

2 (e1 1e2 ),

FIG. 4. The axial strain component,eax , plotted along the
growth axis is presented for the cuboidal QD illustrated in Fig
with a53 nm. The solid line is the isotropic result. The remaini
curves correspond to the growth direction along@001# (• • • •

• • • •), @110# ~– • – • – • –!, and@111# ~– – – – –!.
* * *
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plotted as a function of distance along the growth axis. Ins
the QD, eax is typically 0.02 larger for a dot with a@001#
growth direction compared to one grown along@111#. The
orientation dependence of the axial strain increases with
increasing ratio of characteristic dimensions. For exampl
cuboid with a 5:1 ratio of side dimensions possesses an a
strain of 0.096 and 0.071 for the@001# and @111# growth
directions, respectively. These values are 0.128 and 0.09
the quantum-well limit.22 For both the hydrostatic and axia
strain components, it is found that results are very simila
the isotropic solutions for a growth axis along the@110# di-
rection.

In conclusion, the Green’s tensors, in the form of a ser
enabling the calculation of strain distributions in buried Q
systems including the cubic anisotropy of the elastic c
stants are presented, to the best of our knowledge, for
first time. It is demonstrated that very good accuracy
achieved by including just the first-order correction enabl
simple, fast, calculations of the strain distribution. QD’s wi
composition variation are trivial extensions of the metho
The Green’s function for the first-order correction to the h
drostatic strain is shown to be of a particularly simple fo
and it is shown that the presence of cubic anisotropy in
duces nonzero hydrostatic strain outside the QD which
positive for a QD grown on a~111! surface and negative fo
growth on a~001! surface. The axial strain is shown to b
significantly dependent on the orientation of the dot.
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