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Green’s tensors for anisotropic elasticity: Application to quantum dots
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Real-space Green'’s tensors for the calculation of the strain in systems containing buried quantum dots of
arbitrary shape and composition, including the cubic anisotropy of elastic constants, are presented, to the best
of our knowledge, for the first time. The Green's tensors are obtained as a series with very good accuracy
obtained using the first two terms. The Green'’s function for the hydrostatic strain is of a simple form and it is
shown that the cubic anisotropy leads to a nonzero hydrostatic strain outside a dot. The axial strain is shown
to depend on the orientation of the dot in the crystal.

There is considerable experimental and theoretical interester terms, performing the calculation for a single QD or a
in semiconductor quantum do®QD) structures because de- QD with variable composition is troublesome, and the tech-
vices offer the prospect of improved electronic and opticalnique lacks the simplicity of applicability of the Green's
properties arising from the zero-dimensional quantum confunction approach.
finement of carrierd. Knowledge of thestrain distribution in In this paper we present explicit real-space Green'’s ten-
and around individual QD’s is essential input to calculationssors which enable the strain distribution in and around QD’s
of the electronic and optical properties of deviéedirans-  to be calculated rapidly and accurately, including the cubic
mission electron microscopff EM) image simulatiof;2and  anisotropy of the elastic constants. Our expressions are de-
crucial for the understanding of the mechanics of growffl.  rived from the work of Mura and Kinoshitawho described

The calculation of the strain distribution due to a buriedfrom first-principles how the Green’s tensor for anisotropic
inclusion with uniform misfit is usually tackled using finite- elasticity can be determined in series form based on the work
element(FE) technique$:>"®However, these are computa- of Lifshits and Rosentsvery.
tionally intensive, making it difficult to adjust parameters to  In the summary which follows it is assumed, first, that the
obtain a best fit with experiment, the treatment of the boundelastic properties are linear, second, the same elastic constant
ary conditions requires care and QD arrays or QD’s withpertain to the QD and the surrounding@se use of the elastic
compositional variation pose difficulties. Methods based orconstants of the barrier material for both barrier and QD has
Green’s functions, on the other hand, are generally quickbeen justified elsewheré&2and, third, the QD is embedded
portable, large systems involving many QD’s or dots within an infinite matrix. We obtain an expansion for the strain
graded composition pose no difficulty and analytic expresGreen’s tensor<®, of the form
sions are sometimes tractable to provide deeper insight into
the physics, revealing trends, and simple relatfbfig?-1°
For example, full analytical expressions for the strain distri-
bution have been derived for ellipsoidal, cuboidal, and

truncated-pyramidal dofs:® _ _ where the first term is the isotropic Green’s ten&f{> , and

The chief restriction of the Green’s function approach iSs;hsequent terms provide successive orders of correction
that isotropy of elastic constants is assumed. For some probgnyerging to the full anisotropic result. The expansion co-
lems an isotropic solution may be justified because there argfficient A= u'/(A+2ux) where u=C,,, \=C;, are the
much greater uncertaintiesuch as dot size and shape usual Lameconstants andu’=Cy;— Cqp— 2Cgy. A~—3
which dominate the accuracy of the calculation, or anisotor typical semiconductor materials. Cubic crystals are iso-
ropy is not significant for the phenomena underggnic wheny'=0. The superscriptsé” and “ ©” indicate
investigation” Yet most semiconductorare cubic crystals that this Green’s tensor yields the strain and is specific to
with an anisotropy coefficient, defined in terms of the elasticoprs, respectively. All quantities in boldface are tensors.
constants by €;;—C;,)/2C4y, typically equal to 0.5 com- The strain tensor is obtained by integrating the Green’s

pared to the isotropic value of 1, suggesting that the simplesnsor over the volume of the dot. thus
isotropic approach may miss some key features of the strain

field. For example, Holyet al. and Pinczolitset al. have

demonstrated that thiateral ordering of QD’s can be ex- o) _ Oror o1 o © .0 .0
plainedonly if the full cubic anisotrop%/ of the crystal is taken € (X1.X2,X5) = fVG (X1,%2,X3) AVIX1 X5 . X3), (2)
into account''® The most accessible strain analysis which

includes the cubic anisotropy of elastic constants is by An-

dreevet al. who use a Fourier series method to obtain thewherex; =x;—x;’ are Cartesian coordinates. Here the coor-
lattice relaxation associated with a sinusoidal variation ofdinate superscript®” refers to points within the volume of
lattice constant® The Fourier series yields the strain distri- the QD andV therefore represents the volume of the dot. The
bution for an infinite array of evenly-spaced QD’s which is strain tensor can therefore be obtainedday QD shape.
semianalytic for most common QD shapgé&ven so, calcu- We have found that the'" term of the seriesz<” , in Eq.
lations are lengthy, accuracy depends on the number of Foul) may be written

GO=G"+AG"+A%Gs®. - -, (N
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n

where the symbol4 and L indicate plane and shear strain ponent can be calculated by substituting Ej.or both Egs.
components and the tensor elements are polynomial fung6) and(8) into Egs.(1)—(3) and integrating over the volume

tions of coordinates of ordernd+ 2. For example, of the dot. The principle of superposition allows the strain in
GE2 (X X Xa) = — (2 +30)(|X[2— 3%2), 4 systems containing Igrge numpers of QD’§ to be detgrmlned
ol (X1.:X2,X3) (2u (I ) @ and composition variation within the QD is also easily ca-
Ggf(xl,x2 X3)=3(2u~+ 3\)X X5, (5)  tered for by making a function of position and including it

inside the integral. The numerical integration may be com-
pleted in minutes on a standard workstation, making these
calculations several orders of magnitude faster than any al-
Yernative numerical technique. The ease and speed of the
calculation opens up the possibility of using QD parameters
“%uch as size, shape, and composition profile as fit parameters
in order to compare with experiment, for example, with TEM
_ images.
Giﬁ(xlaXZrXS)ZZO Z KiOEXEIx§ 272, (6) It is important to establish how many terms of the series
170170 expansion given in Eql) are necessary to provide an accu-
2 2- rate determination of the strain including the cubic anisot-
i?(Xl,Xz,Xs =X1X2 2 E E?ngxi'xg 2im2k, (7) ropy of elastic constants. We therefore calculate the strain
k=010 due to a spherical QD. Here, the difference between the iso-
The constantk<® and L<® are presented in Table I. The

where |x|2=x3+x5+x3. Equations(4) and (5) combined
with Eq. (3) with n=0 yield the well-known Green'’s func-
tions for the plane and shear strain components, respectivel
for isotropic crystals.

The higher-order terms are new results. The Green’s func
tions forn=1 may be written,

3 3-i

functions comprising the=2 Green’s tensor are polynomi- TABLE II. The coefficientsM <> (upper table andN<® (lower
als of order 10, table are of the formf (Au3+ B,ué)\+C,u)\2+ D\3) whereu and
5 5-i \ are the Lameonstants.
o) _ o) x0-2i=2]
G5 (X1,X2,X3) Z > Mi; X1 x5! , (8 i j ; A 5 c 5
4 4 5 0 -2 -6 35 44 3
G57 (X1, X2 Xg) =XaXp 2, 2 NEDXEXIXG™ 272, (9) 4 01 -1 1350 2477 2060 741
k=0 120 3 0,2 2 1860 7336 7405 2373
where the constantd €® andN<® are listed in Table Il. The 1 4 1350 5611 4975 1158
first-order or second-order correction to a plane strain com2 0,3 -1 1690 7307 11080 4371
1,2 3 1170 3223 340 —-621
TABLE I. The coefﬂuentst(D (upper tablg andLf (lower 1 0.4 2 30 —74 —25 273
table are of the formf (Au2+ B,u)\+C)\2) whereu and)\ are the 13 5 1270 5201 5755 1158
Lame constants. 2 6 150 197 380 621
i I Y SR
3 0 2 14 19 9 2,3 -5 86 457 230 75
2 0,1 -9 14 35 17
1 0,2 9 6 19 15
1 —-36 2 3 0 k i f A B C D
0 0,3 -1 2 1 9
12 6 4 12 3 4 0 3 38 37 8 117
3 0,1 -6 374 1221 1524 531
2 0,2 3 818 3687 4248 1677
K | f A B C 1 8 176 1094 666 —-81
1 0,3 -6 294 871 929 276
2 0 3 22 51 39 1,2 2 784 5566 5499 981
1 0,1 -3 26 83 42 0 0,4 3 118 177 78 57
0 0,2 3 22 41 24 1,3 -2 1042 3103 3312 1233

1 -3 26 93 57 2 1 2054 10781 14004 5121
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FIG. 1. The strain component,,, is plotted as a function of;

FIG. 3. The hydrostatic strain componeay,, plotted along the

for a spherical InAs QD of radius 3 nm contained in a GaAs matrix.growth axis is presented for the cuboidal QD illustrated in Fig. 2
Results for the region outside the def>3 nm, are presented. The with a=3 nm. The solid line is the isotropic result. The remaining
solid curve is the isotropic result. The dashed curve is the publishedurves correspond to the growth direction ald0g1] (-

result for an array of spherical QD’s including the cubic anisotropy -

), (110 (= = = = ), and[111] (- — = - 5.

of elastic constants. The Green’s function results include the first-

order correction ©) and the second-order correctio®).

chosen because the 3:1 ratio is consistent with a range of
QD’s including the truncated pyramid characteristic of InAs/

tropic and anisotropic results is significant and the strain disGaAs systemgfor example, Fryet al),?! the lens or cylin-
tribution is not complicated by geometrical effects. The elasder, and so these results illustrate the general trends to be

tic constants used for all materials afg;=118.8 GPa\

found in a range of QD systems. Elastic constants for GaAs

=53.8 GPa, angv=59.4 GPa corresponding to the valuesare again used for all materials and the misfit strain is taken

for GaAs?® The misfit strain,ep, is —0.067%. Figure 1
shows the strain componeast, plotted as a function ok,
including the first-order correctiolG§”+AGS® and the
second-order correctioB§” + AGS®+A2G5” . We present
results only for the region outside the QD because is
constant and very close to the isotropic resudide the QD

in all case$’ The results are compared to the calculations of
Andreevet al. for an array of spherical dots with center-to-

center separations of 18 nm using 20000x 200 fourier

to be —0.067%. We focus on three cases with the growth
direction along[001], [110], and [111]. With the x5 axis
aligned alond110], thex} andx3 axes are taken to be along
[110] and[001], respectively, and when the axis points
along[111] the x andx3 axes are in th¢110] and[112]
directions, respectively.

The hydrostatic strain is defined ag= €1, + €,, + €3, ,
where the asterisk indicates the coordinate system illustrated
in Fig. 2, and shifts the conduction band and average

terms. Figure 1 shows that the first-order correction prowde%alence-band-edge energié<® We find that the Green's

a very good approximation to the strain. Addition of the 4,c(ion for the first-order correction te, for cubic crystals
second-order term provides an almost exact correspondenge ;¢ o particularly simple form

with the results of Andreeet al. We conclude thabnly the

zeroth- and first-order termsf the strain Green’s tensor ex-

pansion are required for good accuracy.

We now calculate the hydrostatic and axial strains for a

cuboidal QD with growth direction along the axis as il-
lustrated in Fig. 2. Dimensionga=3 nm andb=9 nm are

2a} |7

4

Xg

wo_ 3(2u+3N)g

4, L4, 4
— Xt X5+ X
L 477(2,u+)\)|x|7{ v

—B(X3x3+ x2x3+ x2x3)}. (10
Figure 3 presentg, as a function of distance along thg

axis through the center of the dot aloh@01], [110], and
[111]. Inside the QDg, is only a weak function of position
and a weak function of growth direction and ranges from
about—0.087[001] to —0.097[111] with the isotropic value
equal to—0.092. Outside the QDgy, is zero in the isotropic
approximation. Figure 3 demonstrates clearly that the cubic
anisotropy of the elastic constants leads to nonzero hydro-
static strain outside the QL2 is positive with a maximum
value of 0.0062 for a QD grown on @l11) surface and
larger and negative with a largest value-00.01 for growth

FIG. 2. The geometric parameters which define a cuboidal Qmalong the[001] axis. The hydrostatic strain will shift the

are illustrated. The growth direction is alor§ .

conduction band and average valance-band energies and is
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0.10 — ——— plotted as a function of distance along the growth axis. Inside
the QD, €, is typically 0.02 larger for a dot with §001]
0.08 f.ooivineennn, 1 growth direction compared to one grown alofidll]. The
i orientation dependence of the axial strain increases with an
0.06 FrT=Toli - 1 increasing rati[()) of characteristic dimensions. For example, a
cuboid with a 5:1 ratio of side dimensions possesses an axial
0.04 1 I strain of 0.096 and 0.071 for th€®01] and [111] growth
0.02 | | directions, respectively. These values are 0.128 and 0.098 in
o P the quantum-well limit? For both the hydrostatic and axial
0.00 | ] strain components, it is found that results are very similar to
the isotropic solutions for a growth axis along fHel0] di-
0.02 | ] rection.
In conclusion, the Green'’s tensors, in the form of a series,
-0.04 | enabling the calculation of strain distributions in buried QD
systems including the cubic anisotropy of the elastic con-

-0.06 —— stants are presented, to the best of our knowledge, for the
first time. It is demonstrated that very good accuracy is
achieved by including just the first-order correction enabling
FIG. 4. The axial strain component,,, plotted along the Simple, fast, calculations of the strain distribution. QD’s with
growth axis is presented for the cuboidal QD illustrated in Fig. 2COmMposition variation are trivial extensions of the method.
with a=3 nm. The solid line is the isotropic result. The remaining The Green’s function for the first-order correction to the hy-
curves correspond to the growth direction algog1] (- - - - drostatic strain is shown to be of a particularly simple form
9, [110 (- -+ =+ = ), and[111] (- — — — 5. and it is shown that the presence of cubic anisotropy intro-
duces nonzero hydrostatic strain outside the QD which is
é)ositive for a QD grown on &111) surface and negative for
growth on a(001) surface. The axial strain is shown to be
gignificantly dependent on the orientation of the dot.

significant over distances of the order of the dimension of th
dot (about 6 nm outside the QD in this case

Positive axial strain raises the energy of the heavy hole
with respect to the light holes and vice versa. Figure 4 pre- G.S.P. would like to thank the Engineering and Physical
sents the axial strain, defined ag,=es, — (€14 + €24), Sciences Research Coun(@il.K.) for financial support.
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