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Role of in-plane dissipation in dynamics of a Josephson vortex lattice
in high-temperature superconductors
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~Received 19 April 2000!

We calculate the flux-flow resistivity of the Josephson vortex lattice in a layered superconductor taking into
account both the interplane and in-plane dissipation channels. We consider the limiting cases of small fields
~isolated vortices! and high fields~overlapping vortices!. In the case of the dominating in-plane dissipation,
typical for high-temperature superconductors, the field dependence of flux-flow resistivity is characterized by
three distinct regions. As usual, at low fields the flux-flow resistivity grows linearly with field. When the
Josephson vortices start to overlap the flux-flow resistivity crosses over to the regime ofquadratic field
dependence. Finally, at very high fields the flux-flow resistivity saturates at thec-axis quasiparticle resistivity.
The intermediate quadratic regime indicates the dominant role of the in-plane dissipation mechanism. The
shape of the field dependence of the flux-flow resistivity can be used to extract both components of the
quasiparticle conductivity.
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A stack of low dissipative Josephson junctions formed
the atomic layers of high-temperature superconductors1 rep-
resents a nonlinear system with unique dynamic proper
The magnetic field applied along the layers creates the la
of Josephson vortices~JV’s!.2 Transport properties of this
state are determined by dynamics of the Josephson lat
Two distinct regimes exist depending on the strength of
applied magnetic field. At low fields the Josephson vortic
are isolated and form a triangular lattice, strongly stretch
along the direction of layers. An isolated JV is characteriz
by the nonlinear core, the region within which the pha
difference between the two central layers sweeps from 0
2p. The core size is given by the Josephson length,gs,
whereg is the anisotropy of the London penetration dep
ands is the interlayer spacing. This regime of a dilute latti
is characterized by the linear field dependence of flux-fl
resistivity r f f}B. The linear flux-flow branch in
Bi2Sr2CaCu2O8 ~BSCCO! at small fields has been observe
experimentally.3,4

When a magnetic field exceeds the crossover field,Bcr
5F0 /pgs2, the cores of JV’s start to overlap and a den
Josephson lattice is formed, in which JV’s fill all layers.5 In
this regime the linear field dependence of the flux-flow res
tivity breaks down. Further field behavior depends on
mechanism of dissipation.

Moving Josephson vortices generate both in-plane and
terplane electric fields, which induce dissipative quasipart
currents. Usually only dissipation due to the tunneling
quasiparticles between the layers is taken into accoun
calculation of the viscosity of JV’s.6 However in the high-Tc
superconductors the in-plane quasiparticle conductivitysab
is strongly enhanced in the superconducting state as c
pared to the normal conductivity due to reduction of pha
space for scattering,7,8 while thec-axis componentsc rapidly
decreases with temperature in the superconducting st9

Below the transition temperature the anisotropy of dissi
tion sab /sc becomes larger than the superconducting ani
ropy g2. This leads to the dominating role of the in-plan
dissipation in the dynamics of the Josephson lattice.
PRB 620163-1829/2000/62~6!/3616~4!/$15.00
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In this paper we calculate the field dependence of
flux-flow resistivity r f f(B) taking into account both the in
plane and interplane dissipation channels. We separa
consider the regimes of small and high fields. The flux-flo
resistivity at high fields, taking into account the in-plane d
sipation, has been studied before in Ref. 10. For the cas
purelyc-axis dissipation linear growth of the flux-flow resis
tivity saturates at thec-axis quasiparticle resistivityrc when
the magnetic field exceeds the crossover fieldBcr . Dominat-
ing in-plane dissipation leads to qualitative change of
shape ofr f f(B). In this caser f f also increases linearly a
small fields. The slope of this dependence is mainly de
mined bysab , and atB'Bcr the resistivityr f f is still much
smaller thanrc . At B'Bcr the field dependence ofr f f
crosses over to even faster,quadratic, dependence. Only at
significantly higher field,B'Asab /(g2sc)Bcr , r f f reaches
rc . Therefore the field dependence ofr f f can be used to
extract both components of the quasiparticle conductivity

Dynamics of the moving Josephson lattice is governed
the coupled Sine-Gordon equations for the interlayer ph
differences.11 The equations taking into account in-plane d
sipation have been derived in Refs. 10 and 12. Consid
layered superconductor in a magnetic field applied along
layers (y direction! and carrying transport current along thec
axis (z direction!. We express fields and currents in terms
the gauge invariant phase difference between the layerun
5fn112fn2(2ps/F0)Az and the in-plane superconduc
ing momentumpn5¹xfn2(2p/F0)Ax . The local mag-
netic field Bn between the layersn and n11 can be ex-
pressed as

Bn~x!5
F0

2ps S ]un

]x
2pn111pnD . ~1!

The components of the electric field can be approximat
represented as

Ex'
F0

2pc

]pn

]t
; Ez'

F0

2pcs

]un

]t
. ~2!
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These expressions are valid assuming fast equilibration
side the layers. More general situations have been consid
in Refs. 10,13–15. The components of electric currentj x
and j z , consist of the quasiparticle and superconducting c
tributions

j x5sab

F0

2pc

]pn

]t
1

cF0

8p2lab
2

pn , ~3!

j z5sc

F0

2pcs

]un

]t
1 j J sinun , ~4!

wheresab and sc are the components of the quasipartic
conductivity,lab andlc are the components of the Londo
penetration depth, andj J5cF0 /(8p2slc

2) is the Josephson
current density. Note that the in-plane current is actua
concentrated inside the superconducting layers and ph
cally meaningful quantities are the two-dimensional curr
densitiesJxn in the layers. To be precise, the bulk current
Eq. ~3! is defined at discrete pointszn5ns as j x(zn)
[Jxn /s. Using the above relations we rewrite thez and x
components of the Maxwell equation

4p

c
j1

]D

]t
5¹3B

as

2scF0

c2s

]un

]t
1

4p

c
j J sinun1

«cF0

2pc2s

]2un

]t2
5

]Bn

]x
, ~5!

2sabF0

c2

]pn

]t
1

F0

2plab
2

pn52
Bn2Bn21

s
. ~6!

In the second equation we replaced]B/]z by the discrete
derivative (Bn2Bn21)/s. We also neglected the in-plan
displacement current]Dx /dt, because typical frequencie
involved in Josephson dynamics are much smaller than
in-plane plasma frequencyc/lab . Equations~1!, ~5!, and~6!
give closed system which describes dynamics of the ph
un(x,t), fields Bn(x,t), and momentapn(x,t). The moving
lattice generates both in-plane andc-axis electric fields@Eq.
~2!# leading to dissipation. The rate of energy dissipationW
per unit volume is given by

W5S F0

2pcD 2Fsc

s2 K S ]un

]t D 2L 1sabK S ]pn

]t D 2L G . ~7!

For the steady state motion with small velocityv the phase
differences vary in space and time asun(x,t)5un

(0)(x2vt),
whereun

(0)(x) is the static phase distribution, and Eq.~7! can
be rewritten as

W5hJv
2,

where
n-
red

-

y
si-
t

e

es

hJ5S F0

2pcD 2Fsc

s2 K S ]un
(0)

]x D 2L 1sabK S ]pn
(0)

]x D 2L G ~8!

is the linear viscosity coefficient of the lattice per unit vo
ume and̂ •••& means averaging with respect tox andn. The
flux-flow resistivity rJ f f is connected withhJ by relation
rJ f f5B2/(c2hJ).

Consider the regime of small fields,B!Bcr
5F0 /(pgs2). In this regime the JV’s are isolated and di
sipation is concentrated in the vicinity of nonlinear vort
cores. In this casehJ is proportional to the fieldhJ
5BhJv /F0, wherehJv is the viscosity coefficient of an in
dividual JV per unit length. The viscosity coefficient due
the c-axis dissipation has been calculated by Clem a
Coffey.6 Similar problems of viscous friction have been stu
ied for an Abrikosov vortex~see, e.g., Ref. 16! and for a
Josephson vortex in a single junction.17

In the vicinity of the vortex cores one can neglect scre
ing effects and express the phase differencesun(x) and mo-
menta pn(x) via the in-plane phasesfn(x), un

(0)'fn11

2fn , pn
(0)'¹xfn ~we are using the gauge divA50). Nu-

merically accurate phase distributionfn(x) in the vicinity of
the vortex core was obtained in Ref. 18,

fn~u!'arctan
n21/2

u
1

0.35~n21/2!u

@~n21/2!21u210.38#2

1
8.81~n21/2!u„u22~n21/2!212.77…

@~n21/2!21u212.02#4
~9!

with u[x/gs.19 We can represent now the viscosity coef
cient hJv as

hJv5
1

gs2 S F0

2pcD 2FCcsc1Cab

sab

g2 G ,

with

Cc5 (
n52`

` E
2`

`

duS ]~fn112fn!

]u D 2

,

Cab5 (
n52`

` E
2`

`

duS ]2fn

]u2 D 2

.

Using the phase distribution@Eq. ~9!# we computeCc'9.0
andCab'2.4. Finally, we obtain the following result for th
flux-flow resistivity at small fieldsrJ f f5F0B/(c2hJv):

rJ f f'
4.4gs2B

F0~sc10.27sab /g2!
, atB,Bcr . ~10!

The case of dominatingc-axis dissipation (sab!g2sc) has
been considered by Coffey and Clem.6 They obtain the co-
efficient 2.8 instead of 4.4 using the approximate phase
tribution.

Now we consider the regime of high fields,B.Bcr . In
this regime we can obtain a simple analytical result us
expansion with respect to the Josephson current.10 For the
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static lattice in the zero order with respect toj J we have
Bn(x)5B, pn(x)50, and un(x)52psBx/F01pn. The
first iteration with respect toj J[cF0/8p2slc

2 gives

Bn~x!5B2
F0

2

16p2s2lc
2B

cosS 2psB

F0
x1pnD , ~11!

pn~x!5
F0

pBs3g2
cosS 2psB

F0
x1pnD . ~12!

Substituting expressions forun(x) andpn(x) into Eq.~8! we
obtain

hJ5S F0

pcgs2D 2FscS ps2gB

F0
D 2

1
sab

2g2G ~13!

and

rJ f f5
B2

B21Bs
2

rc , Bs5Asab

sc

F0

A2pg2s2
~14!

for B.Bcr .20 At B'Bcr this result approximately matche
with Eq. ~10!. Equations~10! and ~14! represent the main

FIG. 1. Schematic field dependence of the flux-flow resistiv
for the cases of dominatingc-axis dissipation channel (sab /sc

!g2) and dominating in-plane dissipation channel (sab /sc@g2).
For strong in-plane dissipation the dependencer f f(B) has pro-
nounced upward curvature atB*Bcr and approachesrc at the field
Bs much larger than the crossover fieldBcr .
et
results of this paper. We see that the shape ofrJ f f(B) is
determined by the ratiosab /(g2sc). In the high-temperature
superconductors typicallysab /sc'g2 near the transition
temperature. However, the ratiosab /sc rapidly becomes
much larger thang2 with a temperature decrease because
~i! a significant enhancement ofsab due to the suppressio
of in-plane scattering of quasiparticles8 and ~ii ! a fast de-
crease ofsc .9 This means that dependencerc}B2 holds in a
wide field rangeBcr,B,Bs . The fieldBcr is almost tem-
perature independent and for optimally doped BSCCOg
'500) Bcr'0.5 T. The fieldBs has strong temperature de
pendence viasab(T) and sc(T). Taking typical values for
T'20 K, sc5231023(V cm)21 and sab'5
3104(V cm)21, we obtain estimateBs'4 T. The field de-
pendencies for the cases of dominatingc-axis dissipation and
dominating in-plane dissipation are sketched in Fig. 1. T
shapes of the field dependencies are qualitatively differ
for these two cases. In particular, they have opposite cu
tures atB&Bcr . Therefore, the shape ofrJ f f(B) can be used
to extract both components of the quasiparticle conductiv
At present, there are no published data for the field dep
dence of the flux-flow resistivity in a wide field range. Dy
namics of the Josephson lattice at high fields has been s
ied by G. Hechtfischeret al.21 From the I -U curves
presented in this paper one can see that the slopedI/dU for
the first flux-flow branch indeed has a strong field dep
dence with upward curvature in the field range 223.5 T.

In conclusion, we calculated the flux-flow resistivity o
the Josephson lattice at small and high fields and dem
strated that strong in-plane dissipation qualitatively modifi
its field dependence.
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