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Low-energy dynamics of the one-dimensional multichannel Kondo-Heisenberg lattice
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We determineexactlythe fixed point Hamiltonian of the one-dimensional multichannel Kondo-Heisenberg
lattice model for any number of channelsN>2. It is found to belong to a new class of non-Fermi-liquid fixed
points, different from the usual Luttinger or Luther-Emery liquids. The fixed point describes an anomalous
singlet with nontrivial internal dynamics manifesting itself in unconventional order. We compute the correla-
tion functions of the various conventional and composite order parameters of the system, and find that forN
<4 the composite order parameters induce the dominant instabilities.
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The Kondo lattice is one of the most challenging pro
lems in contemporary theoretical condensed matter phys
If the single impurity Kondo problem, a local moment an
ferromagnetically coupled to conduction electrons, is by n
well understood thanks to a variety of theoretic
techniques,1 the problem of a regular three-dimensional arr
of local moments in a metal~the Kondo lattice! still defies
theoretical analysis. The difficulty stems from the fact th
there are two competing effects, the tendency of the lo
moments to form singlets with the conduction electrons~or
more complicated states2 if more than one band is available!
and the tendency of the moments to order due to
Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction medi-
ated by the conduction electrons. Besides its intrinsic th
retical interest for the general theory of strongly correla
fermions, the Kondo lattice model is believed to capture
non-Fermi liquid physics of a class of rare-earth or actin
compounds3 in which f-shell local moments couple to th
electron bands. In this context,4 it has been suggested that th
two-channel Kondo model could be relevant in Ce31 or U41

based alloys such as UBe13 and CeCu2Si2. This hypothesis is
supported by experiments on diluted alloys that show a t
channel single impurity behavior in the specific heat or m
netic susceptibility. A full understanding of the multichann
Kondo lattice would also be of great significance for expe
ment.

Many problems of strongly correlated fermions can
treated very effectively in one dimension thanks to power
analytical5 and numerical6 techniques available there. In pa
ticular, the full phase diagram of the one-dimensional sin
channel Kondo lattice has been determined.7 An insulating
state with a spin gap obtains at half-filling. Away from ha
filling a small Kondo coupling produces a paramagne
metal and a large one leads to ferromagnetism. Adding
antiferromagnetic Heisenberg interaction between the lo
moments~Kondo-Heisenberg lattice! produces a spin-gappe
metal8 with nonconventional pairing fluctuations.9

In this Communication, we investigate the ground sta
excitations, and dominant instabilities of the multichann
one-dimensional Kondo-Heisenberg lattice model for inco
mensurate fillings and zero temperature. We find that scre
ing of the local moments occurs via the ‘‘chiral stabiliz
tion’’ mechanism,12 resulting in a ground state that is a chir
non-Fermi liquid we callcoset singlet. We show that the
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dominant instability for a low number of channelsN<4 is of
the nonconventional pairing type as in the single chan
case,9 and that for a larger number of channels, one recov
conventional pairing instabilities as the dominant on
Fermi liquid physics is regained in the limit of a very larg
number of channels. We also discuss the effect of chan
anisotropy.

The Hamiltonian of the one-dimensional multichann
Kondo-Heisenberg lattice is:

H52t (
i ,n,s

~ci ,n,s
† ci 11,n,s1ci 11,n,s

† ci ,n,s!1lH(
i

SW iSW i 11

1lK(
i ,n

SW i .ci ,n,a
† sW a,bci ,n,b , ~1!

wheres5↑,↓ is the spin of an electron,n51, . . . ,N is the
channel index, andSW i is a localized spin 1/2.t is the band-
width, lH.0 the Heisenberg coupling of the localized spin
andlK.0 the Kondo coupling.

To study the low-energy physics of the model we follo
the standard strategy:11 keep only linear electron mode
around6kF captured in terms of the left and right movin
fieldscL,R,s,n(x), as well as the low-lying spin-lattice mode
aroundp/a. The low-energy physics is then described by
continuum Hamiltonian expressed using non-Abeli
bosonization10,11 as a quadratic form of various currents: th
SU(2)1 ~left and right! spin currentssW L,R of the local mo-
ments, the SU(2)N ~left and right! spin currentSW L,R(x) of the
electrons and the electron charge and channel currents w
decouple from the spin currents in the continuum. The no
tion SU(M)k indicates that the currents~generically denoted
JL,R

a ) satisfy a Kac-Moody~KM ! algebra:@JL
a(x),JL

b(x8)#
5d(x2x8) f abcJL

c(x)1(k/2p)d8(x2x8), wheref abc are the
structure constants of the SU~M! Lie algebra. A similar re-
lation holds for the currentsJR , while theJR andJL currents
commute. The KM algebra generates a conformal fi
theory ~CFT! known in Lagrangian form as the
Wess-Zumino-Novikov-Witten10 ~WZNW! model. All the
physical operators of the original lattice theory~1! can be
expressed in terms of the primary or descendant fields of
CFT, allowing the calculation of the asymptotic behavior
R3596 ©2000 The American Physical Society
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their correlators. This is at the heart of all applications
non-Abelian bosonization to condensed matter physics.

Consider the Hamiltonian withlK50. The electrons are
free, and in the basis described above, charge, spin,
channel excitations propagate independently of each ot
and decouple from the local-moment excitations. Turning
a small antiferromagnetic Kondo coupling 0,lK!t,lH at
incommensurate filling, the charge and flavor excitations
main decoupled from the spin excitations. We can thus
strict ourselves to the latter, described by the Hamiltonia

H5E F 2pv
N12

~SW L•SW L1SW R•SW R!1
2pvs

3
~sW L•sW L1sW R•sW R!

1lK
f ~SW L•sW L1SW R•sW R!1lK

b ~SW L•sW R1SW R•sW L!G , ~2!

where we dropped irrelevant terms such assW L•sW R The cou-
pling lK

f describes the forward scattering,lK
b the backward

scattering, and lK
f 5lK

b 5lK to begin with. Under
renormalization-group~RG! transformations,lK

f does not
flow near the weak coupling fixed point and merely ren
malizes the velocity. On the other hand,lK

b is relevant and
drives the system to a new strong coupling fixed point. W
will thus takelK

f 50 andvs5v in Eq. ~2! and determine the
fixed point. We will later prove that the neglected terms a
irrelevant near the strong coupling fixed point.

Under these circumstances the spin sector is describe
H5H11H2, where

H15E dxF 2pv
N12

SW R•SW R1
2pv

3
sW L•sW L1lKSW R•sW LG ,

H25E dxF 2pv
N12

SW L•SW L1
2pv

3
sW R•sW R1lKSW L•sW RG .

In H1 (H2), the left ~right! branch of the SU(2)N WZNW
model is coupled to the right~left! branch of the SU(2)1
WZNW model, leading to a chiral asymmetry ofH1 (H2).
We readily identify the strong coupling fixed point of Eq.~3!
exactly via ‘‘chiral stabilization.’’12 The chiral asymmetry in
H1 or H2 is invariant under the RG flow and characteriz
the fixed point. We find this way that the theory~3! flows
under RG to a fixed point theory that is the product of a co
theory13 by a WZNW theory:

H* 5
SU~2!13SU~2!N21

SU~2!N
^ SU~2!N21 , ~3!

where the coset theory, SU(2)13SU(2)N21 /SU(2)N de-
scribes the local moment spin sector, and the SU(2)N21
WZNW theory describes the electron spin sector. Note t
at the fixed point, the left and right componentsH1 andH2
are recombined, and chiral symmetry is globally preserv

What is the physics around the fixed point? The co
theory describes a spin singlet which the local moments fo
with the electrons. It is a different type of a singlet, acoset
singlet: a fraction 6/(N11)(N12) of the local moment
‘‘modes’’ are paired with the same number of electron s
‘‘modes.’’ Thus the system loses twice this amount of d
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grees of freedom as seen in the total specific heat~including
channel and charge degrees of freedom!:

Ctotal5
p

6 S 2N112
12

~N11!~N12! DT. ~4!

The susceptibility is given by

x5
1

2pv
~N21! ~5!

and the Wilson ratio: Rw5$2N112@12/(N11)(N
12)#%/(N21). The coset singlet still retains degrees
freedom whose number is given by the central charge of
theoryc5126/(N11)(N12). This fraction decreases wit
the number of channelsN since it is ‘‘easier’’ to form the
singlet whenN increases. This also shows up in the effecti
coupling of the electrons to the local moments which d
creases with the number of channels,lK* ;1/N.

Consider the two-channel case.14 For N52, local mo-
ments are described by aSU(2)13SU(2)1 /SU(2)25Ising
theory, or equivalently by a Majorana fermion. Such a M
jorana fermion picture is very appealing since it is w
known15 that the single impurity two channel Kondo mod
will be described at the fixed point by a local Majorana fe
mion degree of freedom. These Majorana fermions form
band when coupled with each other, thus suppressing
single impurity residual entropy atT50.

Having obtained the low energy theory~3! describing the
spin sector, we proceed to express the original operator
terms of the operators of the fixed point theory. This w
enable us to check that the operators we discarded in Eq~2!
are indeed irrelevant at the strong coupling fixed point,
well as determine the dominant instability of the multicha
nel Kondo-Heisenberg lattice. The needed identification
operators as well as the calculation of the scaling dimens
was done in Ref. 12. Let us briefly summarize the meth
To obtain the conformal weight of a given operator, we fi
decompose it into a product of operators belonging to e
of the two decoupled chiral theories. Then, for each ch
theory, we decompose operators of SU(2)N^ SU(2)1 on op-
erators of SU(2)N21 in an expansion formally similar to the
Clebsch-Gordan expansion, the role of the Clebsch-Gor
coefficients being played by operators of the coset theor12

The operator with the lowest scaling dimension in this e
pansion is then retained as the fixed point form of the or
nal operator.

The results are summarized in Table I for the theory
scribed byH1. The conformal weights of the theory de
scribed by H2 are obtained by interchangingL and R.
These conformal weights are such that the opera
SW L(x)•sW L(x), SW R(x)•sW R(x), and (vs2v)(sW R•sW R1sW L•sW L)
that we have previously discarded are indeed irrelevant~mar-
ginally irrelevant forN52). This proves the self-consistenc
of our treatment.

The fixed point is a non-Fermi liquid. The Green’s fun
tion of the right moving fermions is given by

^TcR~x,t !cR
†~0,0!&;

1

~x2vt !11(1/2)dN~x1vt !(1/2)dN
,
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wheredN53/(N11)(N12). Here we have taken, for sim
plicity, charge, spin, and channel velocities to be equal,
combined exponents from all sectors, neglecting the non
versal Luttinger interaction in the charge sector~it can be
easily taken into account12!. Further, if a contribution in the
channel sector is generated it is ferromagnetic and flow
zero.GL(x,t) is obtained by replacingx6vt by x7vt. We
note that a weak singularity appears at the Fermi levelkF ,
and there is no large Fermi surface. Also note that all dim
sions tend to their Fermi liquid values in the limit of a larg
number of channels.

We now examine the possible order parameters of
system. Beginning with the localized moments, we haveSW i

5sW L(x)1sW R(x)1eıpx/anW (x), where nW (x), the staggered
magnetization, is given bynW (x)5 1

2 (a,bg̃R,a
† sW a,bg̃L,b ,

where g̃R,a , (g̃L,a) are the right~left! WZNW fields. We
find

^nW ~x!•nW †~x8!&;
1

ux2x8u11 6/~N11!
. ~6!

More order parameters are available in the electron sec
The order parameters for charge density wave~CDW!, spin
density wave~SDW!, singlet~SS!, and triplet~TS! supercon-
ducting are defined in the table and their dimension is giv
from which it follows that they are degenerate and fall with
power of 212dN . As the fluctuations of these order param
eters are weaker than in the one-dimensional metal, we
led to investigate the possibility of dominant fluctuations
sociated with a nonconventional order parameter9 odd-
frequency singlet pairing16 ~c-SP! and composite charge
density wave order~c-CDW!: Oc-SP5nW •OW TS and Oc-CDW

5nW •OW SDW. The composite operators have momentu
6p/a and 2kF6p/a, respectively, and their correlations d

TABLE I. The conformal weights of the operators in the theo
described by Eq.~3!. Here,dN53/(N11)(N12). For N52, the

conformal weights ofsW L andsW R are, respectively, (0,1) and (1,0

Operator
Conformal weights
at the fixed point

cR,n,s ( 1
2 1dN /4,dN /4)

cL,n,s (dN /4,1
2 1dN /4)

g̃L,b @3/4(N11),1
4 13/4(N11)#

g̃R,b @
1
4 13/4(N11),3/4(N11)#

sW L(x) @2/(N11),112/(N11)#,N>3

sW R(x) @112/(N11),2/(N11)#,N>3

SW R(x) (1,0)

SW L(x) (0,1)

OCDW5cL,n,s
† cR,n,s @(11dN)/2,(11dN)/2#

OW SDW5cL,n,s
† sW s,s8cR,n,s8

@(11dN)/2,(11dN)/2#

OSS52ıcL,n,sss,s8
y cR,n,s8 @(11dN)/2,(11dN)/2#

OW TS52ıcL,n,s(sW sy)s,s8cR,n,s8
@(11dN)/2,(11dN)/2#

Oc-SP5nW •OW TS @
3
4 23/2(N12),3

4 23/2(N12)#

Oc-CDW5nW •OW SDW @
3
4 23/2(N12),3

4 23/2(N12)#
d
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cay with the power of 326/(N12). The presence of gaples
excitations at 2kF6p/a is compatible with the results o

Yamanakaet al.17

We observe that forN<5, the composite order param
eters have the most divergent correlations. In this cas
large enough fraction of electron spin degrees of freedom
bound to the local moments to suppress the conventio
order parameters and enhance the composite ones. This
ation is similar to the one-channel one-dimensional Kon
lattice case9 where composite pairing operators are a
dominant. ForN55, the two types of order are degenerateat
the fixed point, and one needs to describe also the appro
to the fixed point starting from the bare Hamiltonian to d
termine the order. ForN>6, the fraction of electron spin
degrees of freedom bound to a local moment is insuffici
to permit composite order parameters to dominate the c
ventional ones, thus recovering the Fermi liquid limit.

Thus far, we assumed channel isotropy. In the single
purity problem2 channel anisotropy is a relevant perturb
tion, so we have to investigate its effect for a lattice. Assu
N1 channels couple to the local moments with coupli
strengthlK

1 , andN25N2N1 channels couple with strengt
lK

2 . Then, the spin excitations of theN1 channels are de
scribed by a SU(2)N1

KM algebra, whereas those of theN2

remaining channels are described by a SU(2)N2
. For lK

1

!lK
2 , cosetscreening occurs between theN1 channels and

the local moments. The resulting theory is SU(21
^ SU(2)N121 /SU(2)N1

^ SU(2)N1213SU(2)N2
, with cen-

tral chargec52N11212/(N111)(N112) smaller thanc
52N11212/(N11)(N12), the charge of the symmetri
fixed point. It is the stable fixed point having the lower num
ber of degrees of freedom.18 This implies that channel an
isotropy is always relevant. Still, although unstable
anisotropies, it may still determine the behavior over a bro
intermediate regime of energies, and perhaps eventually
bilize unconventional order.

What would happen if we relax the conditionlK!lH ,t ?
Since in one dimension weak coupling and intermediate c
pling are connected this only gives a nonuniversal expon
Kr for charge excitations. This addsKr

2121 to the super-
conducting exponents,Kr21 to the density wave exponent
and (Kr1Kr

2122)/4 to the electron Green’s function expo
nent.

We have derived the fixed point theory describing t
one-dimensional multichannel Kondo-Heisenberg latti
This fixed point is in the class of chiral non-Fermi liquid
We showed that the dominant instability is of the compos
pairing type for a number of channels smaller than five a
of the conventional pairing type otherwise. Our results w
obtained in the limit of weak Kondo coupling, at zero tem
perature, and away from half-filling. At half-filling, it is
known that a spin gap develops only forN22S integer.20

There are many directions for future research: At fin
temperature, the behavior we described must disapp
above the larger of the Kondo temperaturesTK

e andTK
s , char-

acterizing the electron and local moment sectors, resp
tively. Also, the problem of exhaustion,21 how a large con-
centration of impurities reduces the Kondo scale, is s
unresolved. The conformal field theory approach of our
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per is not able to settle this issue. However, the mode~2!
happens to be Bethe ansatz integrable. This will allow u
settle the issue of the Kondo scales and their dependen
the filling—exhaustion—and discuss the full crossover to
zero temperature behavior. A simple generalization is to
place the spin-1/2 chain by an integrable spin-S chain19 of
local moments, which would lead to a replacement of
SU(2)1 by SU(2)2S Kac-Moody algebra. Another line o
future research relates to coupling two or more Kondo ch
to investigate the effects of the unstable fluctuations. A
question is whether the picture we have obtained persist
lK@t,lH or very low density, and if not, what is the stro
lK regime. Presumably, such a regime would be a ferrom
netic Nagaoka-like state as in the single channel case
to
e on
he
re-

he

ins
ast
for

g
ag-
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sides the various generalizations of the one-dimensio
Kondo-Heisenberg lattice problem, it would be interesting
determine whether the physics of the Kondo-Heisenb
problem persists in the Kondo limitlH50. It is known that
this is not so in the one-channel case.7,8 However, since in
the multichannel case there is only a partial screening of
electrons by the spins, one may expect that a RKKY int
action could be generated even in the pure Kondo probl
putting it in the universality class of the Kondo-Heisenbe
problems.
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