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Low-energy dynamics of the one-dimensional multichannel Kondo-Heisenberg lattice
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We determineexactlythe fixed point Hamiltonian of the one-dimensional multichannel Kondo-Heisenberg
lattice model for any number of channéls=2. It is found to belong to a new class of non-Fermi-liquid fixed
points, different from the usual Luttinger or Luther-Emery liquids. The fixed point describes an anomalous
singlet with nontrivial internal dynamics manifesting itself in unconventional order. We compute the correla-
tion functions of the various conventional and composite order parameters of the system, and findNhat for
<4 the composite order parameters induce the dominant instabilities.

The Kondo lattice is one of the most challenging prob-dominant instability for a low number of channd&s<4 is of
lems in contemporary theoretical condensed matter physicghe nonconventional pairing type as in the single channel
If the single impurity Kondo problem, a local moment anti- case’ and that for a larger number of channels, one recovers
ferromagnetically coupled to conduction electrons, is by nowconventional pairing instabilities as the dominant ones.
well understood thanks to a variety of theoretical Fermi liquid physics is regained in the limit of a very large
techniques,the problem of a regular three-dimensional arraynu_mber of channels. We also discuss the effect of channel
of local moments in a metdthe Kondo lattice still defies ~ anisotropy.
theoretical analysis. The difficulty stems from the fact that The Hamiltonian of the one-dimensional multichannel
there are two competing effects, the tendency of the locaKondo-Heisenberg lattice is:
moments to form singlets with the conduction electréms
more complicated stated more than one band is available
and the tendency of the moments to order due to theH=—t> (¢, ,Cii1noTCliinoCineg FAn SSi1

I

Ruderman-Kittel-Kasuya-YosidéRKKY ) interaction medi- Lne

ated by the conduction electrons. Besides its intrinsic theo-

retical interest for the general theory of strongly correlated  +\> S .¢] | 070 4Cin g )
fermions, the Kondo lattice model is believed to capture the Ln

non-Fermi liquid physics of a class of rare-earth or actinide

COI’T]pOUhd% in which f-shell local moments couple to the whereo=1,] is the spin of an electrom=1, ... N is the

electron bands. In this conteit has been suggested that the channel index, anéi is a localized spin 1/2t is the band-

; 4+
two-channel Kondo model could be relevant i"Cer U™\ iqip, Ay>0 the Heisenberg coupling of the localized spins,
based alloys such as UBeand CeCySi,. This hypothesis is and\«>0 the Kondo coupling.
supported by experiments on diluted alloys that show a two- 14 gty the low-energy physics of the model we follow
channel single impurity behavior in the specific heat or magine standard stratedy: keep only linear electron modes
netic susceptibility. A full understanding of the multichannel around+ ke captured in terms of the left and right moving
Kondo lattice would also be of great significance for experi-ﬁe|ds UL ron(X), as well as the low-lying spin-lattice modes
ment. . aroundsr/a. The low-energy physics is then described by a

Many problems of strongly correlated fermions can beqqqin,ym  Hamiltonian expressed using non-Abelian
treated very effectively in one dimension thanks to powerfu'bosonizatioﬁo'” as a quadratic form of various currents: the

analyticaP and numeric&ltechniques available there. In par- . . -
ticular, the full phase diagram of the one-dimensional singlesu(z)l (left and righ} spin currentso  of the local mo-

channel Kondo lattice has been determifeth insulating ~ments, the SU(Z (left and righy spin currentS_ g(x) of the
state with a spin gap obtains at half-filling. Away from half- €lectrons and the electron charge and channel currents which
filing a small Kondo coupling produces a paramagneticdecouple from the spin currents in the continuum. The nota-
metal and a large one leads to ferromagnetism. Adding aHon SU(M), indicates that the currentgenerically denoted
antiferromagnetic Heisenberg interaction between the localf g) satisfy a Kac-Moody(KM) algebra:[Jf(x),JP(x')]
momentsKondo-Heisenberg lattigeroduces a spin-gapped = 8(x—x') {208 (x) + (k/2m) 8’ (x—x"), wheref ., are the
metaf with nonconventional pairing fluctuatiofis. structure constants of the 8U) Lie algebra. A similar re-

In this Communication, we investigate the ground statelation holds for the currentdz, while theJg andJ, currents
excitations, and dominant instabilities of the multichannelcommute. The KM algebra generates a conformal field
one-dimensional Kondo-Heisenberg lattice model for incomtheory (CFT) known in Lagrangian form as the
mensurate fillings and zero temperature. We find that screetWess-Zumino-Novikov-Wittel? (WZNW) model. All the
ing of the local moments occurs via the “chiral stabiliza- physical operators of the original lattice thedd) can be
tion” mechanismt? resulting in a ground state that is a chiral expressed in terms of the primary or descendant fields of this
non-Fermi liquid we callcoset singletWe show that the CFT, allowing the calculation of the asymptotic behavior of
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their correlators. This is at the heart of all applications ofgrees of freedom as seen in the total specific kieatuding
non-Abelian bosonization to condensed matter physics.  channel and charge degrees of freegtom

Consider the Hamiltonian witlh,=0. The electrons are
free, and in the basis described above, charge, spin, and T
channel excitations propagate independently of each other, CtotaI:g
and decouple from the local-moment excitations. Turning on
a small antiferromagnetic Kondo coupling<.x<t,Ay at  The susceptibility is given by
incommensurate filling, the charge and flavor excitations re-
main decoupled from the spin excitations. We can thus re-
strict ourselves to the latter, described by the Hamiltonian: X=5—~(N= 1) )

-

+M(Se 0L+ SpeoR) FAK(SL - 0r+ Sge ) |,

12

2N+ 1= NI D (N+2)

T. 4

270 o oz a2, 2TUs - - . o and the Wilson ratio: R,={2N+1-[12/(N+1)(N
N+2 (LSS St g (0oLt oR- o) +2)]M(N—1). The coset singlet still retains degrees of
freedom whose number is given by the central charge of the
) theoryc=1-6/(N+1)(N+2). This fraction decreases with
the number of channels since it is “easier” to form the
.. singlet whenN increases. This also shows up in the effective
where we dropped irrelevant terms suchogsog The cou-  coupling of the electrons to the local moments which de-
pling A describes the forward scatteringy the backward creases with the number of channel§,~ 1/N.
scattering, and \f=A2=\¢ to begin with. Under Consider the two-channel ca¥eFor N=2, local mo-
renormalization-group(RG) transformations,k{< does not ments are described by&U(2),; X SU(2),/SU(2),=Ising
flow near the weak coupling fixed point and merely renor-theory, or equivalently by a Majorana fermion. Such a Ma-
malizes the velocity. On the other hand; is relevant and jorana fermion picture is very appealing since it is well
drives the system to a new strong coupling fixed point. Weknowri® that the single impurity two channel Kondo model
will thus take\f =0 andvs=v in Eq. (2) and determine the Will be described at the fixed point by a local Majorana fer-
fixed point. We will later prove that the neglected terms areMion degree of freedom. These Majorana fermions form a

irrelevant near the strong coupling fixed point. band when coupled with each other, thus suppressing the
Under these circumstances the spin sector is described I§jngle impurity residual entropy &t=0. -
H=H,+H,, where Having obtained the low energy theo¥) describing the

spin sector, we proceed to express the original operators in
terms of the operators of the fixed point theory. This will
H.i= f dx , enable us to check that the operators we discarded itZEq.
are indeed irrelevant at the strong coupling fixed point, as
well as determine the dominant instability of the multichan-
Hff dx nel Kondo-Heisenberg lattice. The needed identification of
operators as well as the calculation of the scaling dimensions
_ was done in Ref. 12. Let us briefly summarize the method.
In Hy (Hy), the left (right) branch of the SU(2) WZNW  1¢ optain the conformal weight of a given operator, we first
model is coupled to the righfleft) branch of the SU(2)  decompose it into a product of operators belonging to each
WZNW model, leading to a chiral asymmetry bify (H;).  of the two decoupled chiral theories. Then, for each chiral
We I’eadily |dent|fy the Strong Coupling fixed pOint of Hq) theory' we decompose operators of SL‘K®BU(2)1 on op_
H, or H, is invariant under the RG flow and characterizesclebsch-Gordan expansion, the role of the Clebsch-Gordan
the fixed point. We find this way that the theol) flows  coefficients being played by operators of the coset th&ory.
under |§G to a fixed point theory that is the product of a cosefrhe operator with the lowest scaling dimension in this ex-
theory® by a WZNW theory: pansion is then retained as the fixed point form of the origi-
nal operator.

The results are summarized in Table | for the theory de-
scribed byH;. The conformal weights of the theory de-
scribed by H, are obtained by interchanging and R
where the coset theory, SU(RISU(2)y-,/SU(2)y de- These conformal weights are such that the operators
scribes the local moment spin sector, and the S{(2) §L(X)-5L(X), éR(X)'&R(X)a and (US_U)((;R.(;R+ (;L_(;L)
WZNW theory describes the electron spin sector. Note thafhat we have previously discarded are indeed irrelegaat-
at the fixed point, the left and right componehits andH;  ginglly irrelevant forN = 2). This proves the self-consistency
are recombined, and chiral symmetry is globally preserved.of gur treatment.

What is the physics around the fixed point? The coset The fixed point is a non-Fermi liquid. The Green’s func-
theory describes a spin singlet which the local moments formgion, of the right moving fermions is given by
with the electrons. It is a different type of a singletcaset
singlet a fraction 6/(N+1)(N+2) of the local moment
“modes” are paired with the same number of electron spin (T (xt) 0,0y ~
“modes.” Thus the system loses twice this amount of de- (
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TABLE I. The conformal weights of the operators in the theory cay with the power of 3-6/(N+2). The presence of gapless
described by Eq(3). Here, 6y=3/(N+1)(N+2). ForN=2, the  excitations at R-*m/a is compatible with the results of
conformal weights ofr, andog are, respectively, (0,1) and (1,0). Yamanakaet al’

We observe that foN<5, the composite order param-
eters have the most divergent correlations. In this case a
large enough fraction of electron spin degrees of freedom is
YRno (+654/4,64/4) bound to the local moments to suppress the conventional

Conformal weights
Operator at the fixed point

Yo (814,54 5,14) order parameters and enhance the composite ones. This situ-
v N 12 N . . . . .
~ 1 ation is similar to the one-channel one-dimensional Kondo
EL'B [3/AN+1),z+3/4(N+1)] lattice cas® where composite pairing operators are also
Orp [3+3/4(N+1),3/4(N+1)] dominant. FoON=5, the two types of order are degeneraite
oL (x) [2/(N+1),1+2/(N+1)],N=3 the fixed pointand one needs to describe also the approach
ar(X) [1+2/(N+1),2/(N+1)],N=3 to the fixed point starting from the bare Hamiltonian to de-
S:(X) (1,0) termine the order. FON=6, the fraction of electron spin
3.0 (0,1) degrees_ of freedo_m bound to a local moment_is insufficient
Ocow= ¥ nolrne [(1+8)/2,(1+ 84)/2] to p_erm|: compo?te order pgramhetelzs to_(?_omgl?te_the con-
=] 2Gy o [(14 8,)/2,(1+ 84)/2] ventional ones, thus recovering the Fermi liquid limit.

Thus far, we assumed channel isotropy. In the single im-

— y
st— “//L,n,o'o-g—,g—’ R [(L+ 5N);2’(1+ 5N);2] purity problent channel anisotropy is a relevant perturba-
Ors= - ‘@,n,a(“ay)w"ﬁan,o' L(1+6n)/2,(1+ 6v)/2] tion, so we have to investigate its effect for a lattice. Assume
Oc.s=n-O7g 2_3/2(N+2),2-3/2(N+2)] N; channels couple to the local moments with coupling
Oc.cow="-Ospw [2-3/2(N+2),2—3/2(N+2)] strength\ i , andN,=N—N; channels couple with strength

)\ﬁ. Then, the spin excitations of thg; channels are de-
scribed by a SU(2,\)1 KM algebra, whereas those of tihg

where oy =3/(N+1)(N+2). Here we have taken, for Sim- remaining channels are described by a S(2)For A

pI|C|ty., charge, spin, and channel velocities tq be equal, an%}\g  cosetscreening occurs between the channels and
combined exponents from all sectors, neglecting the nonuni-

versal Luttinger interaction in the charge sectitrcan be the local moments. The resulting theory 1S SU(2)
easily taken into accoutd). Further, if a contribution in the @ SU(2N,-1/SU(2)n, @ SU(2)y, -1 X SU(2)y,, with cen-
channel sector is generated it is ferromagnetic and flows t§al chargec=2N+1—12/(N;+1)(N;+2) smaller thanc
zero.G, (x,t) is obtained by replacing* vt by x¥vt. We ~ =2N+1-12/(N+1)(N+2), the charge of the symmetric
note that a weak singularity appears at the Fermi léyel fixed point. It is the stable flxeq pglnt havmg the lower num-
and there is no large Fermi surface. Also note that all dimenber of degrees of freedoffi.This implies that channel an-
sions tend to their Fermi liquid values in the limit of a large iSotropy is always relevant. Still, although unstable to
number of channels. anisotropies, it may still determine the behavior over a broad
We now examine the possible order parameters of th%jltgrmediate re%ime IOf %nergies, and perhaps eventually sta-
L - 2 ilize unconventional order.
s_yitem. B(Eglnnlngu\:\)/(;gh*the Iocallzeda moments, we héye What would happen if we relax the conditiag <<\ ,t ?
=0 (x)+og(x) +€7n(x), where n(x), the staggered gjnce in one dimension weak coupling and intermediate cou-

magnetization, is given byn(x)=3%, 40k «Ta 0L,  pling are connected this only gives a nonuniversal exponent
whereggr ., (9.,,) are the right(left)y WZNW fields. We K, for charge excitations. This addl@;l—l to the super-
find conducting exponent& ,— 1 to the density wave exponents,
and K,+ K;1—2)/4 to the electron Green'’s function expo-
- - nent.
(n(x)~nT(x'))~W- (6) We have derived the fixed point theory describing the

one-dimensional multichannel Kondo-Heisenberg lattice.

This fixed point is in the class of chiral non-Fermi liquids.

More order parameters are available in the electron sectofye showed that the dominant instability is of the composite
The order parameters for charge density we®@BW), Spin  hairing type for a number of channels smaller than five and
density wave(SDW), singlet(SS), and triplet(TS) supercon- o the conventional pairing type otherwise. Our results were
ducting are defined in the table and their dimension is givengpiained in the limit of weak Kondo coupling, at zero tem-
from which it follows that they are degenerate and fall with Aperature, and away from half-filling. At half-filling, it is

power of 2+245y . As the fluctuations of these order param- |, own that a spin gap develops only fd- 2S integer®
eters are weaker than in the one-dimensional metal, we are There are many directions for future research: At finite

led to investigate the possibility of dominant fluctuations aStemperature, the behavior we described must disappear

fsomated with Ia nopqggventéonal (cj)rder pargm"etﬁdd- above the larger of the Kondo temperatufgsandTy , char-
requency singlet pairing (c-SP and composite charge- acterizing the electron and local moment sectors, respec-

density wave orderc-CDW): Oc.sp=n-Ors and Oc.cow tively. Also, the problem of exhaustidi,how a large con-
=n-Ogpyw. The composite operators have momentumcentration of impurities reduces the Kondo scale, is still
+a/a and Xg* 7/a, respectively, and their correlations de- unresolved. The conformal field theory approach of our pa-
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per is not able to settle this issue. However, the m@del sides the various generalizations of the one-dimensional
happens to be Bethe ansatz integrable. This will allow us tdondo-Heisenberg lattice problem, it would be interesting to
settle the issue of the Kondo scales and their dependence igtermine whether the physics of the Kondo-Heisenberg
the filling—exhaustion—and discuss the full crossover to the’roblem persists in the Kondo limiy=0. It is known that
zero temperature behavior. A simple generalization is to rethis is not so in the one-channel ¢ §aﬂowever, since in
place the spin-1/2 chain by an integrable sBichairt® of the multichannel case there is only a partial screening _of the
local moments, which would lead to a replacement of thef!€ctrons by the spins, one may expect that a RKKY inter-
SU(2), by SU(2),s Kac-Moody algebra. Another line of action could be generated even in the pure Kondo problem,
future research relates to coupling two or more Kondo chaingum?g it in the universality class of the Kondo-Heisenberg
to investigate the effects of the unstable fluctuations. A lasP roblems.

question is whether the picture we have obtained persists for we are grateful to P. Lecheminant, P. Azaria, O. Parcol-
A>1,\y or very low density, and if not, what is the strong let, and A. Rosch for illuminating discussions and comments.
Mk regime. Presumably, such a regime would be a ferromage.O. acknowledges support from NSF under Grant Nos.
netic Nagaoka-like state as in the single channel case. B&MR 96-14999 and DMR 9976665.
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