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Electromagnetic energy transfer and switching in nanoparticle chain arrays
below the diffraction limit
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Electromagnetic energy transfer in plasmon wires consisting of chains of closely spaced metal nanoparticles
can occur below the diffraction limit by means of coupled plasmon modes. Coherent propagation with group
velocities that exceed 0.1c is possible in straight wires and around sharp corners~bending radius much less
than wavelength of visible light!. Energy transmission through chain networks is possible at high efficiencies
and is a strong function of the frequency and polarization direction of the plasmon mode. Although these
structures exhibit transmission losses due to heating of about 3 dB/500 nm, they have optical functionality that
cannot be obtained in other ways at a length scale!1 mm.
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The fundamental physical properties of nanometer-s
metal particles have been intensively researched for the
hundred years.1,2 Until recently, most effort has focused o
statistically large numbers of particles in disordered arra
From this work it is well established that at the surface pl
mon frequency light strongly interacts with metal particl
and excites a collective electron motion, or plasmon.2 These
frequencies are typically in the visible and near-infrared p

of the spectrum.3 In nanometer size particles~much smaller
than the wavelength of the exciting light,l! plasmon excita-
tions produce an oscillating dipole field.

Recent developments in particle synthesis and phys
characterization of nanostructures have enabled the inv
gation of the optical properties of single nanoparticles4 and
ordered arrays of closely spaced nanoparticles. In such ar
collective effects and interparticle interactions play an i
portant role. For example, it has been demonstrated tha
rays of particles under broad-beam excitation show col
tive behavior.5 Furthermore, numerical simulations hav
shown that electromagnetic~EM! energy can be transporte
below the diffraction limit along linear chains of close
spaced metal nanoparticles.6 This finding could have impor-
tant consequences for integrated optics which faces the
damental limitation that, for the guiding, modulation, a
amplification of light, structures are needed that have dim
sions comparable to the wavelength of light.7 The EM en-
ergy transport along chains of metal nanoparticles relies
the near-field electrodynamic interaction between metal p
ticles that sets up coupled dipole or plasmon modes.8 This
type of coupling is analogous to the process of resonant
ergy transfer, which is observed in systems that con
closely spaced optically excited atoms, molecules, or se
conductor nanocrystals.9–12

In this paper, the dispersion relation for coupled plasm
modes is developed for a linear chain of equally spa
metal particles using an analytical model that describes
near-field EM interaction between the particles in the dip
limit. The model provides estimates for the group velocityvg
and the attenuation coefficienta of the allowed coupled plas
mon waves. Furthermore, the transport of EM ene
through corners and tee’s that consist of intersecting ch
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of metal nanoparticles are considered. In combination w
other structures they form the basic building blocks for fu
interconnected systems of complex architecture. The dep
dence of the behavior on the metal particle size and sh
the interparticle spacing, the polarization direction
coupled plasmon mode, and the dielectric properties of
host matrix will be discussed.

The dispersion relation for coupled plasmon modes is
veloped for a linear chain of equally spaced metal partic
separated by a distanced, as is shown in the inset of Fig. 1
Tranverse~T! plasmon modes exist with dipole moments o
ented perpendicular to the chain axis and longitudinal~L!
plasmon modes exist with dipole moments along the pro
gation direction, where a mode is defined by the magnitu
of the induced dipole momentspi ,m(t) in the polarization
direction i at all pointsm of the chain.

The oscillating dipole electric fieldEP vector consists of
three terms:EP5EF1EM1ER , whereEF is proportional to

FIG. 1. Dispersion relation for plasmon modes in a linear ch
of metal nanoparticles, depicted in the inset, including the twof
degenerate branch of the transverse modes and the longitu
mode. The calculation is performed for nearest-neighbor inte
tions only ~solid curve!, next-nearest-neighbor interactions~dashed
curve!, and fifth-nearest-neighbor interactions~dotted curve!.
R16 356 ©2000 The American Physical Society
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R23, EM to R22, andER to R21, whereR is the distance
from the dipole.12 The termER describes the radiation fiel
and dominates whenR@l. The Förster fieldEF is dominant
in the quasistatic limit,R!l. For this reason, the descriptio
of the interaction between two closely spaced dipolesd
!l) only involves the Fo¨rster field. An oscillating dipole
pi ,m at a pointm in the chain thus produces an electric fie
Ei ,m , at the neighbor locationsm21 andm11, that is given
by

Ei ,m~ t !5
g i pi ,m~ t !

4p«0n2d3 , ~1!

in which g i is a polarization-dependent constant for whi
gT51 andgL522, «0 is the free space permittivity, andn
is the refractive index of the host material.12 Because of the
1/d3 dependence ofEi ,m nearest-neighbor interactions a
dominant. We quantify the effects of the next-neare
neighbor and more distant neighbor dipole interactions,
for the moment assume only nearest-neighbor interacti
For a chain of Hertzian dipoles,13 wherepi ,m5qxi ,m , for a
chargeq, andxi ,m its distance from equilibrium in thei di-
rection at pointm in the chain, the equation of motion is

p̈i ,m52v0
2pi ,m2G I ṗi ,m1

GR

v0
2 p̂i ,m2g iv1

2~pi ,m211pi ,m11!.

~2!

The first term describes dipole eigenmotion at angular re
nance frequencyv0 and the second term and third ter
model the damping of plasmon waves along the chain.
constantG l is the electronic relaxation frequency due to i
teractions with phonons, electrons, lattice defects, and im
rities andGR is the relaxation frequency due to radiation in
the far field.14 The fourth term incorporates the electrod
namic interaction with the nearest-neighbor dipoles atm
21 andm11. This term is responsible for the existence
propagation wave solutions. The coupling strength is de
mined by the value ofv1

2, which is given by v1
2

5qe/4pm* «0n2d3, whereq is the magnitude of the oscil
lating charge,m* is the optical effective electron mass, ande
is the electron charge. For an array of 25 nm radius
particles spaced by 75 nm in vacuum (n51) the value of
v151.431015rad/s21. For this calculation we have used
chargeq56.1310213C @rel55.8531022/cm3 ~Ref. 15!# and
the m* 58.7310231kg for Ag.16 The value ofv1 is of the
same magnitude asv0'531015rad/s in vacuum, indicative
of a strong interparticle coupling.

Propagating wave solutions to Eq.~2! are of the form:

pi ,m5Pi ,0 exp@2amd1 i ~vt6kmd!#, ~3!

where (vt2kmd) is appropriate when the phase and gro
velocity are parallel and (v1kmd) is appropriate when the
phase and group velocity are antiparallel. The value ofPi ,0
determines the dipole moment atm50 in the directioni. The
damping of the plasmon wave per unit length is given by
attenuation coefficienta. The angular frequency and wav
vector of the plasmon wave are given byv and k, respec-
tively. Substitution of Eq.~3! into Eq. ~2! and equating rea
and imaginary parts yields
t-
ut
s.

o-

e

u-

f
r-

g

e

v25v0
212g iv1

2 cos~kd!cosh~ad!, ~4!

05vG I1
v3GR

v0
2 12g iv1

2 sin~kd!sinh~ad!. ~5!

Equation ~4! is the dispersion relation for the plasmo
polariton waves. For small damping,ad!1, Eq.~4! reduces
to

v25v0
212g iv1

2 cos~kd!. ~6!

The solid lines in Fig. 1 show the dispersion relations in E
~6! for T and L modes. Also plotted are dispersion curv
calculated including next-nearest-neighbor interactio
~dashed curves!, and up to fifth-nearest-neighbor interactio
~dotted curves!. It is clear that nearest-neighbor interactio
are most significant for the transport properties of the na
particle chains. The bandwidth of theL branch DvL , is
larger than that of the twofold degenerateT branch,
DvT . The group velocity of these waves is given byvg,i

5dv/dk5(dv2/dk)/(dv2/dv)5g iv1
2d sin(kd)/v. Since

the dv2/dk is the slope of the dispersion curves in Fig. 1,
can easily be seen that at a givenv the L waves propagate
faster than theT waves. At resonance the group velocities f
both theL wave and theT wave are maximum andvg,L
52vg,T . This results from the stronger EM coupling forL
waves than forT waves.

For an array of 25 nm radius Ag particles spaced by
nm in vacuum (n51), we find that the group velocities a
resonance arevg,T52.93107 m/s andvg,L55.83107 m/s.
These values are about two orders of magnitude higher
the saturation velocities of electrons in semiconductors.17 For
these parameters, the corresponding bandwidths
DvT57.931014 s21 ~520 meV! and DvL51.631015 s21

~1.05 eV!. Because of the large bandwidths, the plasm
wave group velocity is a slowly varying function ofv near
v0 , i.e., the dispersion is minimal.

In the regime of small damping, Eq.~5! can be rewritten
as

a5
G I1~v2/v0

2!GR

2vg
, ~7!

showing that the attenuation of the plasmon-polariton wa
is given by the ratio of the total decay rate divided by tw
times the group velocity of the wave. The attenuation of
signal intensity is given by 2a. The magnitude ofG I is de-
termined by the mean free path of the electrons in the m
nanoparticles. The mean free path of an electron in a na
particle is reduced compared to its bulk valuelB due to
inelastic collisions with the particle surface. Under the a
sumption that the collision processes are independent,
relaxation rates can be added according to Matthiess
rule18 andG I5vF /lB1CvF /R, in which C is a constant of
order 1.19 For Ag vF51.383106 m/s and lB557 nm.20

When we assumeC to be 1, the value ofG I for a 25 nm
radius Ag particle isG I57.931013s21, corresponding to a
13 fs decay time. Such a decay time accords with femtos
ond decay-time measurements of 10 fs on
nanoparticles.21 The value of GR is given by GR5v0

2t,
where t is a constant given by t52e2/3m* c3

56.26310224s21.14 For anv0'531015rad/s the value of
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GR51.63108 s21, corresponding to a 6.4 ns decay tim
Since G I is about 5 orders of magnitude higher thanGR ,
radiation losses can be neglected. On the other hand, tr
mission losses and heating of these wires due to inela
collisions is a serious consideration. The value ofa at reso-
nance for our standard example of a longitudinal wa
propagating along a chain of 25 nm Ag particles spaced
75 nm in vacuum isa56.83105 m21, corresponding to a
decay length of 1.5mm or 20 interparticle spacings. Base
on this value ofa, the attenuation coefficient for the sign
intensity of a longitudinal wave along this wire is 2a51.4
3106 m21, corresponding to 3 dB/500 nm. This value is
close agreement with the numerical calculation from Quin
et al. that predicted a signal attenuation coefficient of 2a
51.13106 m21,6 corresponding to 2.4 dB/500 nm. Th
negative effect of a quite severe attenuation is partly co
teracted by the resonant enhancement of the EM field n
the first particle in the chain.6 Furthermore, it should be re
alized that the nanoscale dimensions of plasmon wires
have electromagnetic functionality that cannot be obtaine
other ways at a length scale!1 mm.

The EM energy transport through corners and tee ju
tions can be calculated by requiring continuity of the pla
mon waves and conservation of energy flux at the inters
tion of the chains. In general, part of the incident wave flo
through the structure and part is reflected. The efficiency
the power transmission depends on the geometry of
structure, the frequency, and polarization directions of
plasmon waves that enter and exit a structure. In this pa
only structures that consist of chains and 90° corners
considered. This greatly simplifies the modeling since in t
case only three situations need to be distinguished:~1! in a
turn anL wave transforms into aT wave, ~2! in a turn aT
wave transforms into anL wave, and~3! in a turn aT wave
remains aT wave. At certain values ofv the importance of
the frequency and polarization direction is manifested in
dispersion relation showing onlyL modes can exist andT
modes are forbidden. This implies that a 90° corner in wh
L waves are transformed intoT waves acts as a frequency
polarization filter. It can also be shown that the transmiss
efficiency through any structure is maximum atv5v0 ~Ref.
22! and in the work here the value ofv0 is assumed. Figure
2 shows calculated power transmission coefficients,h, in the
nearest-neighbor approximation for all realizable 90° cor
and tee structures. Anh value of 1 corresponds to 100%
transmission. Notice that all structures haveh values exceed-
ing 0.64, showing that power flow around 90° corners w
dimensions much smaller than the wavelength of light
possible at high efficiencies. This is impossible in conve
tional dielectric waveguide technology,7 and is more akin to
certain photonic crystal structures.23 Beyond the nearest
neighbor dipole-dipole interaction approximation more d
tailed analysis of plasmon wire structures can be made u
full field EM simulations using, e.g., finite difference tim
domain calculations, which will be reported.22

A plasmon switch or inverter consisting of a tee structu
is pictorially shown in the inset of Fig. 3. It shows the inc
dent signal S and modulation M waves and an outgo
transmitted Tr wave. When the S and M waves have
same polarization and possess opposite phases they de
tively interfere. For a specific ratio of the power in the
.
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wave,PS , to the power in the M wave,PM , the power in the
Tr wave,PTr , can be made zero, in other words the switch
in the off state. Figure 3 shows the dependence of the n
malized transmitted powerPTr /PS as a function of the nor-
malized modulation powerPM /PS for the case of a longitu-
dinal S wave and a transverse M wave. At zeroPM , the
value ofPTr /PS is determined by the transmission efficien
of the structure for longitudinal S waves. WhenPM /PS is 2
the switch is in the off-state and for higherPM /PS the trans-
mitted power is dominated more and more by the power
the M wave and the dependence ofPTr /PS on PM /PS be-
comes linear. The differential power gain,dPTr /dPM , as a
function ofPM /PS is obtained by differentiation of the curv
in Fig. 3. It is negative belowPM /PS52 and positive for
larger values.

The transport properties of plasmon wire and netwo
structures are dependent on the physical properties of
metal particles and the host matrix. The noble metals Ag,
and Au have a long mean free path of electrons, which m
mizes the attenuation of plasmon waves due to resistive h

FIG. 2. Calculated power transmission coefficienth for nano-
particle chain-array corner and tee structures with 90° corners.
arrows indicate the direction of the power flow of longitudin
waves~L! and transverse waves~T!. An h value of 1 corresponds to
100% transmission.

FIG. 3. Normalized transmitted power,PTr /PS , as a function of
the normalized modulation power,PM /Ps of the switch depicted in
the inset. The switch consists of two orthogonal chains of me
nanoparticles. The specific functional dependence is valid for a
gitudinal signal plasmon waveS, a longitudinal transmitted plas
mon waveTr , and a transverse the modulation plasmon wave t
is out of phase withS.
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ing. Particle sizes larger than the mean free path sho
reduced effect of inelastic electron scattering from the m
particle/host matrix compared to smaller ones, but larger
terparticle spacing reduces the confinement of the EM
ergy to the chain and reducesvg . Particle shape also play
an important role. For example, since ellipsoids can
spaced closer together than spheres of the same volum
group velocity along a chain of ellipsoids can be ma
higher than for a chain of spheres of equivalent volume. T
choice of host matrix can matter in three ways. First, a p
choice of host can result in significant damping of the pl
mon wave because the plasmons can couple to various
grees of freedom in the host.24 Second, by varying the refrac
tive indexn of the matrix, the resonance wavelength can
shifted over several hundred nm from the visible to the n
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To date, we have performed experiments using nanop
tonic analog structures that operate in the microwave
quency regime~8 GHz!.25 For example, for structures with
an interparticle spacing of 0.05l, the transmitted intensities
around both sharp corners is about 4 dB, in close agreem
with the results of microwave device simulations.

In conclusion, we have developed a general framew
for analysis of plasmon wire structures with characteris
dimensions<0.1 l in which EM energy can be transporte
below the diffraction limit, with high efficiencies, and a
group velocities.0.1 c.

We would like to acknowledge S. A. Maier and K.
Vahala for useful discussions. This work was supported
the NSF.

.

New York, 1996!, p. 429.
14J. D. Jackson,Classical Electrodynamics, 2nd ed.~Wiley, New

York, 1962!, p. 782.
15C. Kittel, Introduction to Solid State Physics~Wiley, New York,

1986!, p. 134.
16P. B. Johnson and R. W. Christy, Phys. Rev. B12, 4370~1972!.
17S. M. Sze,Physics of Semiconductor Devices~Wiley, New York,

1981!, p. 44.
18N. W. Ashcroft and N. D. Mermin,Solid State Physics~Saunders

College, Philadelphia, 1976!, p. 323.
19U. Kreibig and L. Geinzel, Surf. Sci.156, 678 ~1985!.
20K. Uchidaet al., J. Opt. Soc. Am. B11, 1236~1994!.
21B. Lamprecht, A. Leitner, and F. R. Aussenegg, Appl. Phys.

Lasers Opt.64, 269 ~1997!.
22M. L. Brongersmaet al. ~unpublished!.
23Attila Mekis et al., Phys. Rev. Lett.77, 3787~1996!.
24B. N. J. Persson, Surf. Sci.281, 153 ~1993!.
25S. A. Maier, M. L. Brongersma, and H. A. Atwater~unpublished!.


