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Electromagnetic energy transfer in plasmon wires consisting of chains of closely spaced metal nanoparticles
can occur below the diffraction limit by means of coupled plasmon modes. Coherent propagation with group
velocities that exceed 04 is possible in straight wires and around sharp corfieending radius much less
than wavelength of visible light Energy transmission through chain networks is possible at high efficiencies
and is a strong function of the frequency and polarization direction of the plasmon mode. Although these
structures exhibit transmission losses due to heating of about 3 dB/500 nm, they have optical functionality that
cannot be obtained in other ways at a length segleum.

The fundamental physical properties of nanometer-size®f metal nanoparticles are considered. In combination with
metal particles have been intensively researched for the lasther structures they form the basic building blocks for fully
hundred year$? Until recently, most effort has focused on interconnected systems of complex architecture. The depen-
statistically large numbers of particles in disordered arraysdence of the behavior on the metal particle size and shape,
From this work it is well established that at the surface plasthe interparticle spacing, the polarization direction of
mon frequency light strongly interacts with metal particlescoupled plasmon mode, and the dielectric properties of the
and excites a collective electron motion, or plasridinese ~ Nost matrix will be discussed.

frequencies are typically in the visible and near-infrared part 1 he dispersion relation for coupled plasmon modes is de-
of the spectrunf.In nanometer size particlémuch smaller veloped for a linear chain of equally spaced metal particles

N . separated by a distance as is shown in the inset of Fig. 1.
t_han the wavelength .Of the ex_cmng l.'gm) plasmon excita- Tranvers€T) plasmon modes exist with dipole moments ori-
tions produce an oscillating dipole field.

ented perpendicular to the chain axis and longitudital

Recent developments in particle synthesis and physicafissmon modes exist with dipole moments along the propa-
characterization of nanostructures have enabled the investirtion direction. where a mode is defined by the magnitude

gation of the optical properties of single nanopartitiesd ¢ the induced dipole momenis: .(t) in the polarization
ordered arrays of closely spaced nanoparticles. In such arraygrectioni at all pointsm of the chain.

collective effects and interparticle interactions play an im-  The oscillating dipole electric fielé vector consists of
portant role. For example, it has been demonstrated that athree termsEp= Er + E\,+ Er, whereEg is proportional to
rays of particles under broad-beam excitation show collec-

tive behavio® Furthermore, numerical simulations have 2

shown that electromagnetiEM) energy can be transported ®

below the diffraction limit along linear chains of closely
spaced metal nanoparticl2his finding could have impor-
tant consequences for integrated optics which faces the fun-
damental limitation that, for the guiding, modulation, and ®
amplification of light, structures are needed that have dimen-

sions comparable to the wavelength of ligithe EM en-

ergy transport along chains of metal nanoparticles relies on 0)02- 207
the near-field electrodynamic interaction between metal par-

ticles that sets up coupled dipole or plasmon mdd&his

2 2
o, +20; [

h A Prm
type of coupling is analogous to the process of resonant en- P LH
ergy transfer, which is observed in systems that contain cem2 M1 e M2 ..
closely spaced optically excited atoms, molecules, or semi- 0 R ,[ .
conductor nanocrystafs? a 2d 0 2d d
In this paper, the dispersion relation for coupled plasmon K i

modes is developed for a linear chain of equally spaced

metal particles using an analytical model that describes the g 1. Dispersion relation for plasmon modes in a linear chain
near-field EM interaction between the particles in the dipolest metal nanoparticles, depicted in the inset, including the twofold
limit. The model provides estimates for the group velooily — degenerate branch of the transverse modes and the longitudinal
and the attenuation coefficieatof the allowed coupled plas- mode. The calculation is performed for nearest-neighbor interac-
mon waves. Furthermore, the transport of EM energytions only(solid curve, next-nearest-neighbor interactioftashed
through corners and tee’s that consist of intersecting chainsurve), and fifth-nearest-neighbor interactiof@otted curve.
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R 3 Ey to R™2, andEg to R™1, whereR is the distance %= w3+ 27y,0? cogkd)cosh ad), (4
from the dipolet? The termEg describes the radiation field ,

and dominates wheR>\. The Faster fieldEg is dominant _ w’T'r 5 . )

in the quasistatic limitR<\. For this reason, the description 0=wl+ w3 +2yjoy sinkd)sinh(ad). ©)

of the interaction between two closely spaced dipolds ( . ) ) ) )
<\) only involves the Ecster field. An oscillating dipole EQuation (4) is the dispersion relation for the plasmon-
Pi.m at a pointmin the chain thus produces an electric field polariton waves. For small dampingd<1, Eq.(4) reduces

E; . at the neighbor locations—1 andm+ 1, that is given

by w?= w3+ 27y,0? cogkd). (6)
¥iPi m(t) The solid lines in Fig. 1 show the dispersion relations in Eq.
Eim(D)= AmegnZdd’ 1) (6) for T and L modes. Also plotted are dispersion curves

calculated including next-nearest-neighbor interactions
in which vy, is a polarization-dependent constant for which (dashed curvesand up to fifth-nearest-neighbor interactions
yr=1 andy =—2, gq is the free space permittivity, amd  (dotted curvek It is clear that nearest-neighbor interactions
is the refractive index of the host matertAlBecause of the are most significant for the transport properties of the nano-
1/d® dependence oE; , nearest-neighbor interactions are particle chains. The bandwidth of the branchAw, , is
dominant. We quantify the effects of the next-nearestlarger than that of the twofold degenerale branch,
neighbor and more distant neighbor dipole interactions, bu w. The group velocity of these waves is given by;
for the moment assume only nearest-neighbor interactions= dw/dk=(dw? dk)/(dw?/dw)=y,0?d sinkd)/w.  Since
For a chain of Hertzian dipoléS,wherep; ,=0X n, fora  thedw?/dk is the slope of the dispersion curves in Fig. 1, it
chargeq, andx; p, its distance from equilibrium in thedi-  can easily be seen that at a giverthe L waves propagate
rection at pointm in the chain, the equation of motion is  faster than th@ waves. At resonance the group velocities for

both thelL wave and theT wave are maximum andg

P S TR =2vg4 7. This results from the stronger EM coupling for
Pim= — @oPim Iﬂlpi,m"' w(z) Pi,m yiwl(pi,m—l+pi,m+l)- waves than foil waves.
2) For an array of 25 nm radius Ag particles spaced by 75

nm in vacuum f=1), we find that the group velocities at
The first term describes dipole eigenmotion at angular resoesonance are, 1=2.9x10'm/s andvy, =5.8x 10" m/s.
nance frequencyw, and the second term and third term These values are about two orders of magnitude higher than
model the damping of plasmon waves along the chain. Thene saturation velocities of electrons in semiconductbFor
ConStantr| is the electronic relaxation frequency due to in- these parameters, the Corresponding bandwidths are
teractions with phonons, electrons, lattice defects, and impu o =7.9x 10 s7! (520 meV) andAw, =1.6x 10" 571
rities andl'r is the relaxation frequency due to radiation into (1,05 e\). Because of the large bandwidths, the plasmon
the far field** The fourth term incorporates the electrody- \yave group velocity is a slowly varying function af near
namic interaction with the nearest-neighbor dipolesmat o, i.e., the dispersion is minimal.
—1 andm+1. This term is responsible for the existence of |n the regime of small damping, E¢6) can be rewritten
propagation wave solutions. The coupling strength is deterag
mined by the value ofw? which is given by w?
=qeldrm* gon?d®, whereq is the magnitude of the oscil- I+ (0% wj)l'g
lating chargem®* is the optical effective electron mass, and a= 20 ' @

is the electron charge. For an array of 25 nm radius Ag ) ) )
particles spaced by 75 nm in vacuum=(1) the value of showing that the attenuation of the plasmon-polariton wave

w,=1.4x 10"rad/s *. For this calculation we have used a is given by the ratio of the total decay rate divided by two
chargeq=6.1x 10" 3C [p.=5.85x 10”2/ cnt (Ref. 15] and times the grqup_velpcity of the wave. Th_e attenuat_ion of the
the m* =8.7x 10~3'kg for Ag.2® The value ofw, is of the S|gn§1I intensity is given by & The magnitude of! is de-
same magnitude as,~5x 10'5rad/s in vacuum, indicative termmed_by the mean free path of the electrons m'the metal
of a strong interparticle coupling. nanf)parpcles. The mean free path of an electron in a nano-
Propagating wave solutions to E@) are of the form: _partlclg is re.dluced qompared to its bulk valng due to
inelastic collisions with the particle surface. Under the as-
 _p _ . sumption that the collision processes are independent, the
Pim=Pio€xfl — amd+i(wt=kmd], @ relaxation rates can be added according to Matthiessen’s
where t—kmd) is appropriate when the phase and grouprule’ andTl’;=vg /\g+Cug /R, in which C is a constant of
velocity are parallel ande+kmd) is appropriate when the order 13 For Ag v=1.38<10° m/s and\g=57 nm?°
phase and group velocity are antiparallel. The valu®gf ~ When we assum€ to be 1, the value of’, for a 25 nm
determines the dipole momentrat=0 in the directiori. The  radius Ag particle isl',=7.9x10"s™, corresponding to a
damping of the plasmon wave per unit length is given by thel3 fs decay time. Such a decay time accords with femtosec-
attenuation coefficient. The angular frequency and wave ond decay-time measurements of 10 fs on Ag
vector of the plasmon wave are given byandk, respec- nanoparticle$! The value of 'y is given by I'g=wjr,
tively. Substitution of Eq(3) into Eq. (2) and equating real where 7 is a constant given by 7= 2e?/3m* ¢
and imaginary parts yields =6.26x10 ?*s 1.1 For anwy~5x10'°rad/s the value of
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I'r=1.6x10®s™ %, corresponding to a 6.4 ns decay time. L T -
Since I, is about 5 orders of magnitude higher thBg, .. e I8 o vee
P — . T «— L «— o |T
radiation losses can be neglected. On the other hand, trans- | "L ¢ N =89 T tyn-89 T 24q-1
mission losses and heating of these wires due to inelastic
collisions is a serious consideration. The value_mﬂ_t reso- L TTT] 1 T TLn _ g5 T
nance for our standard example of a longitudinal wave —> —> —>

.
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propaga}tmg along a chain of 25 n_n: Ag parncles.spaced by AT lTn=1/2 T qu=3/25 hEd T =49
75 nm in vacuum ise=6.8x10°m~%, corresponding to a

decay length of 1.5um or 20 interparticle spacings. Based

on this value ofa, the attenuation coefficient for the signal L, Lp-wes) I, Tp=wa| T, Tp=49
intensity of a longitudinal wave along this wire isx21.4 T }Tn- a2 < IRy < P Tr-49

x10°m~%, corresponding to 3 dB/500 nm. This value is in
close agreement with the numerical calculation from Quinten o o
et al. that predicted a signal attenuation coefficient af 2 FIG. 2. Calculated power transmission coefficientor nano-
=1.1x10fm~L6 corresponding to 2.4 dB/500 nm. The particle chain-array corner and tee structures with 90° corners. The
negative effect of a quite severe attenuation is partly coundrrows indicate the direction of the power flow of longitudinal
teracted by the resonant enhancement of the EM field neé{\‘aves(") and transverse waves). An 7 value of 1 corresponds to

0 o
the first particle in the chaifiFurthermore, it should be re- 00% transmission.

alized that the nanoscale dimensions of plasmon wires Can/ave,PS, to the power in the M waveP,, , the power in the

have electromagnetic functionality that cannot be obtained i|:|_r wave P~ can be made zero. in other words the switch is
s Trs 1]

other ways at a length scatel m. . in the off state. Figure 3 shows the dependence of the nor-
The EM energy transport through corners and tee JUNChalized transmitted powey, /P as a function of the nor-
tions can be calculated by requiring continuity of the plas-malized modulation powePTr/PSfor the case of a lonaitu-
mon waves and conservation of energy flux at the intersecs. P MITS g
dinal S wave and a transverse M wave. At z&p, the

tion of the chains. In general, part of the incident wave ﬂowsyalue of P, /P is determined by the transmission efficiency
i Tel] Tr S
through the structure and part is reflected. The efficiency o f the structure for longitudinal S waves. WhBgy, /P is 2

the power transmission depends on the geometry of th o .
struth)ure, the frequency, anr()j polarization ogllirectionz of thd ?SW'tCh IS 1n the off-state and for highky, /Ps the trans- .
plasmon waves that enter and exit a structure. In this papdf!ttéd power is dominated more and more by the power in
only structures that consist of chains and 90° corners ari'¢ M wave and the dependence @f,/Ps on Py /Ps be-
considered. This greatly simplifies the modeling since in thaf°Mes linear. The differential power gauiPr,/dPy, as a
case only three situations need to be distinguiskigdin a _unc.tlon ofPM/Psls qbtamed by differentiation of t.he curve
turn anL wave transforms into @ wave, (2) in a turn aT N Fig. 3. It is negative belowPy /Ps=2 and positive for
larger values.

wave transforms into ah wave, and3) in a turn aT wave . .
remains al wave. At certain values ab the importance of The transport properties of plasmon wire and network

the frequency and polarization direction is manifested in theSfuctures are dependent on the physical properties of the
dispersion relation showing only modes can exist and metal particles and the host matrix. The noble metals Ag, Cu,

modes are forbidden. This implies that a 90° corner in whick2nd AU have a long mean free path of electrons, which mini-
L waves are transformed infowaves acts as a frequency or mizes the attenuation of plasmon waves due to resistive heat-

polarization filter. It can also be shown that the transmission

efficiency through any structure is maximumagt w, (Ref. 1.0
22) and in the work here the value af; is assumed. Figure
2 shows calculated power transmission coefficientsn the 0.8} lM

nearest-neighbor approximation for all realizable 90° corner M

and tee structures. Am value of 1 corresponds to 100% o 0.6F g . Te
transmission. Notice that all structures hayealues exceed- % —>eeccce e —
ing 0.64, showing that power flow around 90° corners with o’ 0.4

dimensions much smaller than the wavelength of light is
possible at high efficiencies. This is impossible in conven-

. ; . . . . 0.2}
tional dielectric waveguide technolodgyand is more akin to
certain photonic crystal structuré$.Beyond the nearest-
neighbor dipole-dipole interaction approximation more de- 0'00 1 2 3 4 5 6 7 8 9 10
tailed analysis of plasmon wire structures can be made using P /P
, . ; . O . wPs
full field EM simulations using, e.g., finite difference time
domain calculations, which will be reportéd. FIG. 3. Normalized transmitted powd?y, /Ps, as a function of

A plasmon switch or inverter consisting of a tee structureyhe normalized modulation powe,, /P, of the switch depicted in
is pictorially shown in the inset of Fig. 3. It shows the incCi- the inset. The switch consists of two orthogonal chains of metal
dent signal S and modulation M waves and an outgointhanoparticles. The specific functional dependence is valid for a lon-
transmitted Tr wave. When the S and M waves have thgjitudinal signal plasmon wavs, a longitudinal transmitted plas-
same polarization and possess opposite phases they destruwn waveT, , and a transverse the modulation plasmon wave that
tively interfere. For a specific ratio of the power in the Sis out of phase witls.
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ing. Particle sizes larger than the mean free path show mfrared® Third, an increase im of the matrix decreases the
reduced effect of inelastic electron scattering from the metatoupling strength between the particles and thus reduges
particle/host matrix compared to smaller ones, but larger in- T0 date, we have performed experiments using nanopho-
terparticle spacing reduces the confinement of the EM enfonic analog structures that operate in the microwave fre-
ergy to the chain and reduceg. Particle shape also plays quency regime8 GH2).™ For example, for structures with

. ) ) N an interparticle spacing of 0.0§ the transmitted intensities
an important role. For example, since ellipsoids can b&oynd both sharp corners is about 4 dB, in close agreement
spaced closer together than spheres of the same volume tfigth the results of microwave device simulations.
group velocity along a chain of ellipsoids can be made In conclusion, we have developed a general framework
higher than for a chain of spheres of equivalent volume. Thdor analysis of plasmon wire structures with characteristic
choice of host matrix can matter in three ways. First, a poofimensions<0.1 A in which EM energy can be transported
choice of host can result in significant damping of the plasP€low the diffraction limit, with high efficiencies, and at
mon wave because the plasmons can couple to various qdfoup velocities>0.1c.
grees of freedom in the hotSecond, by varying the refrac-  we would like to acknowledge S. A. Maier and K. J.

tive indexn of the matrix, the resonance wavelength can bevahala for useful discussions. This work was supported by
shifted over several hundred nm from the visible to the neathe NSF.
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