
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 15 DECEMBER 2000-IIVOLUME 62, NUMBER 24
Transmission through quantum networks
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We use a simple formalism to calculate the conductance of any quantum network made of one-dimensional
quantum wires. We apply this method to analyze, for two periodic systems, the modulation of this conductance
with respect to the magnetic field. We also study the influence of an elastic disorder on the periodicity of the
Aharanov-Bohm oscillations, and we show that a recently proposed localization mechanism induced by the
magnetic field resists such a perturbation. Finally, we discuss the relevance of this approach for the under-
standing of a recent experiment on GaAs/GaAlAs networks.
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It is well known that quantum transport exhibits devi
tions from classical transport, resulting in corrections to
classical addition rules of conductances or resistances
spectacular example is the Aharonov-Bohm~AB! effect,
where the conductance of a ring is a periodic function of
magnetic fluxf through its opening, with periodf05h/e.
Since the observation of this effect in condensed matt1

many papers have been devoted to the study of coher
effects in transport, especially in the ring geometry. One
proach uses the Landauer formalism in which the cond
tance is proportional to the transmission coefficient. In t
framework, disorder effects have been considered
single-channel2 and multichannel rings.3 On the other hand
the conductance of diffusive systems has been also ex
sively studied within the Kubo approach, where the we
localization correction is related to the modulation by t
magnetic field of the return probability of a diffusiv
particule.4 Although being a transport property, this corre
tion is a spectral quantity, since it is related to the spectr
of the diffusion equation, more precisely to its spect
determinant.5

In this paper, we focus on the transmission properties
quantum networks, generalizing the original works of t
1980s.2,6 This work is motivated by recent conductance me
surements of normal metallic networks etched on a tw
dimensional~2D! GaAs/GaAlAs electron gas.7 Remarkably,
for the particularT3 network shown in Fig. 1, the magnetor
sistance presents largef0-periodic oscillations which are
barely visible for a more conventional geometry like t
square lattice. This is the first observation of stro
f0-periodic oscillations in a macroscopic system where,
principle, ensemble average due to a finite coherence le
is expected to destroy them.

The experimental study of theT3 network has been moti
vated by the recent prediction of a type of magnetic-fie
induced localization. Indeed, it has been shown, in a tig
binding approach, that when the fluxf per elementary
plaquette equalsf0/2 ~half-flux!, the electron motion is com
pletely confined inside the so-called AB cages8 resulting
from a subtle quantum interference effect. This surpris
phenomenon has been experimentally observed in super
ducting (T3) networks,9 where it was found that the critica
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e
A

e

,
ce
-

c-
s
in

n-
-

m
l

f

-
-

n
th

-
t-

g
n-

current almost vanishes atf5f0/2. The standard mapping
between the Ginzburg-Landau theory and the tight-bind
problem10 actually allows one to relate this current to th
energy band curvature, predicting a zero critical curren
half-flux. However, it is interesting to know whether th
localization effect still exists in normal metallic network
and if it could be at the origin of the oscillations discuss
above.7

The aim of this paper is threefold. First, we describe
simple formalism allowing one to calculate the transmiss
coefficient of any network made up of one-dimension
wires. Second, we concentrate on two regular structures
square and theT3 networks and study the flux dependence
the transmission coefficient which is reminiscent of t
butterfly-like structure of the tight-binding spectrum. W
then consider the influence of elastic disorder that we mo
by a distribution of the wire lengths. We show that theT3
network exhibitsf0-periodic oscillations which are robus
with respect to disorder and which are much larger th
those observed in the square network. We also discuss
crossover from a ballistic~in the pure case! to a disorder
dominated behavior, revealed by the emergence
f0/2-periodic oscillations reminiscent of the wea
localization regime. This model gives strong support to
interpretation of the above-mentioned experiment7 in terms
of the AB cages.

FIG. 1. A piece of theT3 network ~right! and of the square
lattice ~left!. Black ~respectively, gray! dots represent the connec
tions to the input~respectively, output! channels. The central blac
dot is the input channel chosen for the bulk injection.
R16 294 ©2000 The American Physical Society
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We consider a graph made up ofN nodes and connecte
to Nin wires ~also called channels! defining the input reser
voir and toNout wires defining the outgoing reservoir~see
Fig. 1!. In the Landauer approach, the two-terminal cond
tance is proportional to the total transmission coefficient
fined by

T5(
i , j

ut i j u2, ~1!

where i P@1,Nin# denotes the i th input channel and
j P@N2Nout11,N# denotes thej th output channel. This co
efficient is the sum of each individual transmission coe
cient obtained by injecting a wavepacket in thei th channel.
We emphasize that actually Eq.~1! assumes that there is n
phase relationship between the different input channels.11

Let us consider an incoming wave function in thei th
channel defined by

c~x!5e2 ikx1r ii e
ikx, ~2!

wherer ii is the reflexion coefficient in this wire. We need
determine the transmission coefficientt i j giving the probabil-
ity for the wave packet to outgo into thej th channel. There-
fore, we first solve the Schro¨dinger equation on each bon
whose extremities are denoted bya andb. The correspond-
ing eigenfunctions are simply given by

cab~x!5
e2 igax

sinklab
@ca sink~ l ab2x!1eigabcb sinkx#,

~3!

wheregab5(2p/f0)*a
bA•dl is the circulation of the vecto

potential betweena and b, k is the wave vector related t
the eigenenergy byE(k)5\2k2/2m, x is the distance mea
sured from the nodea, and l ab is the length of the bond
(a,b), and ca,b5cab(x5a,b). The current conservation
on each internal node of the network~not connected to res
ervoirs! is satisfied if

FIG. 2. Averaged transmission coefficient^T(k, f )&k /Nin as a
function of the reduced flux for a (838) square lattice~square! and
a piece of theT3 network~triangle! with 75 sites. Input and outpu
channels are connected as displayed in Fig. 1. Inset: Avera
transmission coefficient for theT3 network with one input channe
at the center of the network.
-
-

-

Maaca1 (
^a,b&

Mabcb50, ~4!

whereM is a (N3N) matrix whose elements are given by

Maa5 (
^a,b&

cotklab , Mab52
eigab

sinklab
. ~5!

The symbol̂ a,b& indicates that the sums extend to all th
nodes b connected to the nodea. In addition, the off-
diagonal elementMab is nonzero only if the nodesa andb
are connected by a bond. Consider now the case where
current is injected in the channeli P@1,Nin#. The current
conservation at this node writes

Mii c i1 (
^ i ,b&

Mibcb5 i ~12r ii !. ~6!

For each nodej P@N2Nout11,N#, one also has

M j j c j1 (
^ j ,b&

M j bcb52 i t i j . ~7!

Finally, for i P@1,Nin# and j P@N2Nout11,N#, the continu-
ity of the wave function readsc i511r ii andc j5t i j . Equa-
tions ~4!,~6!,~7! constitute a (N3N) linear system12 from
which t i j 5c j ( j P@N2Nout11,N#) can be calculated. The
total transmission coefficient is finally obtained from Eq.~1!
by considering theNin input channels.

We now apply this formalism to the case of regular n
works where all the bonds have identical lengthl so that the
transmission coefficientT(k, f ) is a periodic function of the
wave vectork with period 2p/ l and a periodic function of
the reduced fluxf 5f/f0 with period 1. In principle, thek
dependence of the transmission coefficient can be pro
experimentally if the wave vectork is well defined, i.e., if the
energy of injected electrons is well controlled. Several fa
tors like finite temperature or finite bias contribute
broaden this energy. This can be taken into account by
ing a finite widthDk to the Fermi wave vector of the incom
ing wave packet. For example, in Ref. 14 the conductanc
a single ring was measured and it was found that the phas
the AB oscillations could be varied by tuning the gate vo
age, and thus the Fermi energy. One may therefore conc
that the widthDk is smaller than the period 2p/ l . These
oscillations are very well described by a Landauer sing
channel formalism, assuming that the ring is assymetric,
the two arms have a different length.2,14

For a givenk, the flux dependence ofT(k, f ) has a rich
structure which is reminiscent of the complexity of the as
ciated tight-binding spectrum. Here, for simplicity, we ha
chosen to average the transmission coefficient over a pe
kP@0,2p/ l #. The flux dependence of the average transm
sion ^T(k, f )&k is shown in Fig. 2 for the square andT3
networks. One clearly observes a few peaks in the transm
sion for particular values of the reduced flux:f 51/2,1/3 for
the square lattice andf 51/3,1/6 for theT3 lattice. One can
simply understand this structure by invoking the extend
nature of the corresponding eigenstates that are Bloch w
with a spatial period proportional to the denominator off.13

Due to the existence of the AB cages, the transmission c
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ficient is minimum atf 51/2 for theT3 network but, surpris-
ingly, it is not exactly zero. This is due to the existence
dispersive edge states15 that are able to carry current even f
f 51/2. Therefore,T converges toward a finite value for th
T3 network when the system size~and Nin) increases,
whereasT;Nin in the square lattice. However, when on
injects current in the bulk of the sample, the transmiss
completely vanishes for this flux~see the inset of Fig. 2!.
This study shows that the cage effect, originally predicted
a tight-binding model, also arises in aT3 network made up of
one-dimensional ballistic wires.

We now consider the case of disordered networks,
motivation being to see whether the cage phenomenon

FIG. 3. Transmission coefficient^T(k, f )&dis /Nin averaged over
50 configurations of disorder forkl5p/3 andkD l 51.47 as a func-
tion of the reduced flux.

FIG. 4. Variation of^uT̃(k,1)u&dis /Nin versus disorder for dif-
ferent values ofk after averaging over 50 configurations.
f

n

n

e
r-

sists in such a situation. Disorder can be introduced in s
eral ways~randomly distributed pointlike scatterers, or mo
generally, random elastic scattering matrix along the bon!.
Here, in order to simulate random phase shifts on each b
we consider a geometrical disorder defined by a rand
modulation of the wire lengths while keeping the same c
nectivity. Denoting byD l the amplitude of the length fluc
tuations, the relevant dimensionless parameter to chara
ize the strength of the disorder is the quantitykD l and thus
explicitly depends on the energy. Note that the incommen
rability between the different lengths breaks the periodic
of T with respect tok. This type of disorder also provides
distribution of areas of width 2lD l so that the oscillations are
expected to disappear after aboutl /D l periods. In the follow-
ing, we will focus on physical situations whereD l / l !1 and
kl@1 so that the casekD l;1 may be reached without
sizeable dispersion of the areas. Thus, we will not modify
bond lengths in the phase factoreigab so that the periodicity
with respect tokl ~for fixed kD l ) and with respect to the
reduced flux will be conserved.

For a given realization of disorder,T(k, f ) exhibits a
f0-periodic complex structure which is a signature of t
interference pattern through the network. In particular,
transmission extremely sensitive tok. However, experimen-
tally, there is always a finite phase coherence lengthLw .
Therefore, a two-dimensional network of typical linear sizeL
must be considered as a set of (L/Lw)2 regions without phase
relationship. This provides a natural averaging mechan
over disorder realizations. Thus, we have chosen to study
disorder-averaged transmission coefficient̂T(k, f )&dis
whose variations versus the reduced flux are displayed

FIG. 5. Amplitude of the second harmonic^uT̃(k,2)u&dis /Nin

versus disorder for different values ofk after averaging over 50
configurations.
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Fig. 3 for fixedk and disorder strength. It is clearly seen th
for the square network, the periodicity of^T(k, f )&dis with
respect to the magnetic flux is no longerf0 but f0/2. The
f0-periodic oscillations have been washed out since they
not have a given phase. By contrast, thef0/2-periodic oscil-
lations are still present since they are related to pha
coherent pairs of time-reversed trajectories according to
weak-localization picture. For theT3 network, the transmis-
sion coefficient remainsf0 periodic with a large amplitude
This strongly suggests that the cage effect~which locks the
phase of the oscillations! survives for this strength of disor
der.

For a finer analysis, it is interesting to compute the d
crete Fourier transform ofT defined by

T̃~k,v!5
1

n (
j 50

n21

T~k, j /n!ei2pv j /n, vP@0,n21#, ~8!

wheren is the number of sampled values off. Figure 4 dis-
plays^uT̃(k,1)u&dis as a function of the disorder strengthkD l
for different values ofk. It shows that, when disorder i
increased,̂ uT̃(k,1)u&dis persists much longer for theT3 net-
work than for the square network. We are thus led to c
clude that the cage effect is robust with respect to disor
Note that for weak disorder,̂uT̃(k,1)u&dis depends onk but
this dependence vanishes forkD l *2. We strongly believe
that this result explains why af0-periodic conductance is
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observed experimentally for theT3 network while it is not
for the square lattice.7

The behavior of^uT̃(k,2)u&dis is shown in Fig. 5. It is
interesting to see that this harmonic becomes quickly do
nant for both networks and remains constant forkD l *2.
The value of this constant depends on the system size
converges to zero for the infinite lattice. Nevertheless,
leave the precise analysis of this scaling for further studi

Finally, it should be stressed that, experimental

^uT̃(k,2)u&dis is further reduced by a factore22L/Lw due to a
finite coherence lengthLw , while thef0 contribution is only
reduced by a factore2L/Lw, L being the perimeter of an
elementary plaquette.4

In conclusion, we have used a simple and general form
ism to calculate the transmission coefficient of any netw
made up of single-channel quantum wires. This coeffici
can be simply expressed in terms of a connectivitylike m
trix. We have used this formalism to study the AB ca
phenomenon in theT3 network and we have shown that th
effect is robust to a moderate amount of elastic disorder.
a consequence, the AB oscillations with periodf0 persist in
the infinite T3 networks whereas they vanish in the squa
lattice.
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