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Transmission through quantum networks

Julien Vidal! Gilles Montambaux,and Bend Dougot?!

! aboratoire de Physique des Solides, CNRS UMR 8502, Univétaiis Sud, Ba 510, 91405 Orsay, France
2Laboratoire de Physique Theique et Hautes Bergies, CNRS UMR 7589, UniversitParis 6 et 7, 4, place Jussieu,
75252 Paris Cedex 05 France

(Received 30 June 2000; revised manuscript received 22 September 2000

We use a simple formalism to calculate the conductance of any quantum network made of one-dimensional
quantum wires. We apply this method to analyze, for two periodic systems, the modulation of this conductance
with respect to the magnetic field. We also study the influence of an elastic disorder on the periodicity of the
Aharanov-Bohm oscillations, and we show that a recently proposed localization mechanism induced by the
magnetic field resists such a perturbation. Finally, we discuss the relevance of this approach for the under-
standing of a recent experiment on GaAs/GaAlAs networks.

It is well known that quantum transport exhibits devia- current almost vanishes d@t= ¢4/2. The standard mapping
tions from classical transport, resulting in corrections to thebetweenothe Ginzburg-Landau theory and_ the tight-binding
classical addition rules of conductances or resistances. Rroblent® actually allows one to relate this current to the
spectacular example is the Aharonov-Boh#B) effect, €nergy band curvature, predicting a zero critical current at
where the conductance of a ring is a periodic function of thenalf-flux. However, it is interesting to know whether this
magnetic fluxé through its opening, with periog,=h/e localization effect still exists in normal metallic networks

; ; ; 4 ] and if it could be at the origin of the oscillations discussed
Since the observation of this effect in condensed matter, 7 9

many papers have been devoted to the study of coheren_ Thé aim of this paper is threefold. First, we describe a

effects in transport, especially in the rir!g geometry. One apsimple formalism allowing one to calculate the transmission
proach uses the Landauer formalism in which the Conducéoefficient of any network made up of one-dimensional
tance is proportional to the transmission coefficient. In th'.SWires. Second, we concentrate on two regular structures, the

fr.amework, disorder ‘?ﬁeCts he_lve been considered Ir§quare and th&; networks and study the flux dependence of
single-channéland multichannel ring3.On the other hand, e ransmission coefficient which is reminiscent of the
the conductance of diffusive systems has been also exteyerfly-like structure of the tight-binding spectrum. We
sively studied within the Kubo approach, where the weakyhen consider the influence of elastic disorder that we model
localization correction is related to the modulation by theby a distribution of the wire lengths. We show that tfg
magnetic field of the return probability of a diffusive network exhibits¢g-periodic oscillations which are robust
particule? Although being a transport property, this correc- with respect to disorder and which are much larger than
tion is a spectral quantity, since it is related to the spectrunihose observed in the square network. We also discuss the
of the diffusion equation, more precisely to its spectralcrossover from a ballisti¢in the pure caseto a disorder
determinant. dominated behavior, revealed by the emergence of

In this paper, we focus on the transmission properties oth,/2-periodic  oscillations reminiscent of the weak-
guantum networks, generalizing the original works of thelocalization regime. This model gives strong support to the
1980s% This work is motivated by recent conductance mea-interpretation of the above-mentioned experiméntterms
surements of normal metallic networks etched on a two-of the AB cages.
dimensional(2D) GaAs/GaAlAs electron gasRemarkably,
for the particularZ; network shown in Fig. 1, the magnetore-
sistance presents largég-periodic oscillations which are
barely visible for a more conventional geometry like the
square lattice. This is the first observation of strong
¢o-periodic oscillations in a macroscopic system where, in
principle, ensemble average due to a finite coherence length
is expected to destroy them.

The experimental study of th& network has been moti-
vated by the recent prediction of a type of magnetic-field-
induced localization. Indeed, it has been shown, in a tight-
binding approach, that when the flug per elementary
plaquette equalgy/2 (half-flux), the electron motion is com-
pletely confined inside the so-called AB calessulting FIG. 1. A piece of theT; network (right) and of the square
from a subtle quantum interference effect. This surprisingattice (left). Black (respectively, graydots represent the connec-
phenomenon has been experimentally observed in supercotions to the inpuirespectively, outpiitchannels. The central black
ducting (73) networks’ where it was found that the critical dot is the input channel chosen for the bulk injection.
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Reduced flux

FIG. 2. Averaged transmission coefficief(k,f)),/N;, as a
function of the reduced flux for a (88) square latticésquare and
a piece of theZ; network (triangle with 75 sites. Input and output

current is injected in the channek[1N;,]. The current
conservation at this node writes

Miﬂﬁﬁ(%) Migihg=i(1—rj). (6)

For each nodé e[N—N,,+1,N], one also has

channels are connected as displayed in Fig. 1. Inset: Averaged

transmission coefficient for th@&; network with one input channel
at the center of the network.

We consider a graph made up fhodes and connected
to N;, wires (also called channelslefining the input reser-
voir and toNg,; wires defining the outgoing reservdisee

Fig. 1. In the Landauer approach, the two-terminal conduc-

tance is proportional to the total transmission coefficient de
fined by

T:% Iti]2, 1)

where ie[1N;,] denotes theith input channel and
j € [N=Ngyu:t+1,N] denotes theth output channel. This co-
efficient is the sum of each individual transmission coeffi-
cient obtained by injecting a wavepacket in ftle channel.
We emphasize that actually E(.) assumes that there is no
phase relationship between the different input chantels.
Let us consider an incoming wave function in thié
channel defined by

P(x)=e 41 ekx (2

wherer;; is the reflexion coefficient in this wire. We need to
determine the transmission coefficigntgiving the probabil-
ity for the wave packet to outgo into théh channel. There-
fore, we first solve the Schdinger equation on each bond
whose extremities are denoted byand 8. The correspond-
ing eigenfunctions are simply given by

e*i}’ax

ap(X)= m[ o SINK(1 5= X) + €' Y8y s sinkX],

©)

Whereyaﬁ=(27-r/¢>0)f/jA«dl is the circulation of the vector
potential betweerx and B, k is the wave vector related to
the eigenenergy b¥ (k) =%2k?/2m, x is the distance mea-
sured from the nodey, andl ,; is the length of the bond
(a,B), and ¢, = ,5(X=a,B). The current conservation
on each internal node of the netwaot connected to res-
ervoirg is satisfied if

Mii¢j+<% Mjgthp=—iti; - @)

Finally, fori e[1,N;,] andj e[N—Ng,+ 1,N], the continu-
ity of the wave function readg; =1+r;; and;=t;; . Equa-
tions (4),(6),(7) constitute a NXN) linear systean from
which t;;=¢;(j € [N—Ng,+1N]) can be calculated. The
total transmission coefficient is finally obtained from Ed).
by considering theé\;, input channels.

We now apply this formalism to the case of regular net-
works where all the bonds have identical leng#o that the
transmission coefficient (k,f) is a periodic function of the
wave vectork with period 27/l and a periodic function of
the reduced fluX = ¢/ ¢y with period 1. In principle, thé
dependence of the transmission coefficient can be probed
experimentally if the wave vectdris well defined, i.e., if the
energy of injected electrons is well controlled. Several fac-
tors like finite temperature or finite bias contribute to
broaden this energy. This can be taken into account by giv-
ing a finite widthAk to the Fermi wave vector of the incom-
ing wave packet. For example, in Ref. 14 the conductance of
a single ring was measured and it was found that the phase of
the AB oscillations could be varied by tuning the gate volt-
age, and thus the Fermi energy. One may therefore conclude
that the widthAk is smaller than the period1. These
oscillations are very well described by a Landauer single-
channel formalism, assuming that the ring is assymetric, i.e.,
the two arms have a different lengtf?*

For a givenk, the flux dependence di(k,f) has a rich
structure which is reminiscent of the complexity of the asso-
ciated tight-binding spectrum. Here, for simplicity, we have
chosen to average the transmission coefficient over a period
ke[0,27/1]. The flux dependence of the average transmis-
sion (T(k,f)), is shown in Fig. 2 for the square arif}
networks. One clearly observes a few peaks in the transmis-
sion for particular values of the reduced flux= 1/2,1/3 for
the square lattice anfi=1/3,1/6 for theZ; lattice. One can
simply understand this structure by invoking the extended
nature of the corresponding eigenstates that are Bloch waves
with a spatial period proportional to the denominatoif.5t
Due to the existence of the AB cages, the transmission coef-
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FIG. 3. Transmission coefficiedT (k, f))qis/N;, averaged over
50 configurations of disorder fdd = 7/3 andkAl =1.47 as a func-

tion of the reduced flux.

ficient is minimum atf = 1/2 for theZ; network but, surpris-

ingly, it is not exactly zero. This is due to the existence of
dispersive edge statéshat are able to carry current even for
f=1/2. ThereforeT converges toward a finite value for the
7; network when the system siz@and N;,) increases,

whereasT~N;, in the square lattice. However, when one
injects current in the bulk of the sample, the transmission g 5 Amplitude of the second harmonigT(k,2)|)ais/Nin
completely vanishes for this flutsee the inset of Fig.)2
This study shows that the cage effect, originally predicted inconfigurations.
a tight-binding model, also arises ir7g network made up of

one-dimensional ballistic wires.
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versus disorder for different values &fafter averaging over 50

We now consider the case of disordered networks théists in such a situation. Disorder can be introduced in sev-

motivation being to see whether the cage phenomenon pe
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FIG. 4. Variation of(|T(k,1)|)4is/N;, Versus disorder for dif-

ferent values ok after averaging over 50 configurations.

gral ways(randomly distributed pointlike scatterers, or more
generally, random elastic scattering matrix along the bpnds
Here, in order to simulate random phase shifts on each bond,
we consider a geometrical disorder defined by a random
modulation of the wire lengths while keeping the same con-
nectivity. Denoting byAl the amplitude of the length fluc-
tuations, the relevant dimensionless parameter to character-
ize the strength of the disorder is the quanktyl and thus
explicitly depends on the energy. Note that the incommensu-
rability between the different lengths breaks the periodicity
of T with respect tdk. This type of disorder also provides a
distribution of areas of widthI2A| so that the oscillations are
expected to disappear after abolk| periods. In the follow-

ing, we will focus on physical situations whefd/I<1 and
kl>1 so that the caskAl~1 may be reached without a
sizeable dispersion of the areas. Thus, we will not modify the
bond lengths in the phase factf«s so that the periodicity
with respect tokl (for fixed kAl) and with respect to the
reduced flux will be conserved.

For a given realization of disordef(k,f) exhibits a
¢o-periodic complex structure which is a signature of the
interference pattern through the network. In particular, the
transmission extremely sensitive koHowever, experimen-
tally, there is always a finite phase coherence lerigth
Therefore, a two-dimensional network of typical linear dize
must be considered as a set tﬂK_w)2 regions without phase
relationship. This provides a natural averaging mechanism
over disorder realizations. Thus, we have chosen to study the
disorder-averaged transmission coefficietT(k,f))qis
whose variations versus the reduced flux are displayed in
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Fig. 3 for fixedk and disorder strength. It is clearly seen thatobserved experimentally for th& network while it is not

for the square network, the periodicity 6T (k,f))qis with for the square latticé.

respect to the magnetic flux is no longég but ¢o/2. The The behavior of(|T(k,2)|)4is is shown in Fig. 5. It is
¢o-periodic oscillations have been washed out since they diyteresting to see that this harmonic becomes quickly domi-
not have a given phase. By contrast, thg2-periodic 0sCil-  nant for hoth networks and remains constant Karl=2.
lations are still present since they are related to phaserpg yajye of this constant depends on the system size and
coherent pairs of time-reversed trajectories according to thg, . eges to zero for the infinite lattice. Nevertheless, we

vyeak-locqlgahon picture. For_ th@ ngtwork, the ransmis- o ve the precise analysis of this scaling for further studies.
sion coefficient remaing, periodic with a large amplitude. Einally it should be stressed that experimentall

This strongly suggests that the cage effeehich locks the ~ Y, ) o P Y,
phase of the oscillationsurvives for this strength of disor- ¢ T(K.2)|)ais is further reduced by a fact@™ "¢ due to a

der. finite coherence length,, while the ¢4 contribution is only
For a finer analysis, it is interesting to compute the dis-educed by a factoe "¢, L being the perimeter of an
crete Fourier transform of defined by elementary plaquettb.

In conclusion, we have used a simple and general formal-
~ ) il ism to calculate the transmission coefficient of any network
T(k,w)=— ZO T(k,j/n)e=™M we[0On—-1], (8  made up of single-channel quantum wires. This coefficient
= can be simply expressed in terms of a connectivitylike ma-
wheren is the number of sampled values fofFigure 4 dis-  trix. We have used this formalism to study the AB cage
pla_ys<|"T'(k,:|_)|>dis as a function of the disorder strencgtAl phenomenon in th&; network and we have shown that this
for different values ofk. It shows that, when disorder is effect is robust to a moderate amount of elastic disorder. As
increased(|'~l'(k,1)|>dis persists much longer for th& net- @ consequence, the AB oscillations with pgribgi persist in
work than for the square network. We are thus led to con{h€ infinite 73 networks whereas they vanish in the square
clude that the cage effect is robust with respect to disordefattice:
Note that for weak disorde(,ﬁ'(k,l)|)diS depends ork but We acknowledge H. Bouchiat, P. Butaud, R. Deblock, G.
this dependence vanishes foAl=2. We strongly believe Faini, D. Mailly, R. Mosseri, C. Naud, and B. Reulet for
that this result explains why a@g-periodic conductance is useful discussions.
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