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Classical phase fluctuations in incommensurate Peierls chains
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In the pseudogap regime of one-dimensional incommensurate Peierls systems, fluctuations of the phase of
the order parameter prohibit the emergence of long-range order and generate a finite correlation length. For
classical phase fluctuations, we present exact results for the average electronic density of states, the mean
localization length, the electronic specific heat, and the spin susceptibility at low temperatures. Our results for
the susceptibility give a good fit to experimental data.

Continuous symmetries in one-dimensional electroniovherev is the Fermi velocityg; are the usual Pauli matri-
systems are not spontaneously broken at any finite temperaes, witho.=3%(o,;*io5,). In the pseudogap regime, the
ture T. The mean-field prediction of a finite critical tempera- gapped amplitude fluctuations are frozen out, so that we may
ture TYF is incorrect in this case. The experimentally ob-set A(x)=A.'?™, where A is determined by the local
served Peierls transition at a finite temperafﬂf@«T('\:"F in minimum of the generalized Ginzburg-Landau functional.
many quasi-one-dimensional conductors is due to weak infFrom Eq.(1), it is then easy to show that
terchain coupling which triggers a crossover to three dimen- )
sionality. In the intermediate temperature regimg’<T (A)A* (x'))=AZ e xlle, 3
<T2"F, the physical properties of Peierls chains are domi

: : ) ‘where( . ..) denotes the thermodynamic average with re-
nated by one-dimensional order-parameter fluctuatiarigs (o) y g

) . . spect to the Hamiltoniahl 3 given in Eq.(1), and the order-
is the so-calle_d pfseudogap regime where mean-field theory arameter correlation length §s=ng/(2m* T). In this work,
hot even qualitatively correct. we calculate the average electronic density of stdB39)

In this work, we shall present an exact solution of an ) :
. ' : (w)=(Tr 8(w—Hygy)) of the model defined via Eq&l)—(3)
effective model for the low-temperature thermodynamics o exactly for arbitraryé.

incommensurate Peierls chains. For incommensurate chains, Previously, the DOS of the FGM has been calculated as-

the order pare_lmeteIA(x) Is qomplex, so that in the suming a Gaussian distribution &f(x) with covariance
p_seudogap regime the gene.rallzed Cimzpurg-Landau pOte'E;'iven by Eq.(3).57-° Although in this case the problem is
tial has_ the_ form Qf a MeX|ca_n hat™ It is then a good not exactly solvablé&® a sophisticated algorithm has been
ipriroxm%tggn t% ]lgnore artnhplltudel ﬂuc;tluat;on? Af(x)f th developed which produces an expression fofw) which is
_h| (gye At?n ocus Ion the gag ?SS uctua 'Orlz Oth ereasonably close to the exact numerical result for Gaussian
phas (X)_' ong wave engins and low energies, the Mer- ;5,400 However, as explained above, the assumption of a
modynamlcs Qf phase ﬂgctu_aﬂons can .be Qescr|ped by Baussian distribution ok (x) centered at\ =0 is rather un-
c!as§|cal Hamiltonian Wh'i? is formally identical with the physical in the pseudogap regime. It is therefore not surpris-
kinetic energy of a superfiuid ing that in this regime the true behavior pfw) (to be dis-
9.9(X) cussed beloyis very different from the DOS for Gaussian
X

1 L ;
Hy=5m* nsf dxvi(x), ve(x)= . (1 disorder. _ o _
2 0 2m* The electronic contribution to the thermodynamic proper-

ties of our system including the coupling to the phase fluc-

. , ,
Here, m” is the effective mass of the electroris,is the y aiqng can be obtained from the disorder-averaged free en-
length of the chain, and the one-dimensional densijtynea- ergy

sures the stiffness of the system with respect to long-
wavelength distortions of the phase of the order paranieter. x L

A two-dimensional analog of Ed1) has been used by Em- F= —Tf dwf dx(p(x,w))In(1+e “T). (4)
ery and Kivelsof to explain the pseudogap behavior of un- ‘°° 0

derdoped high-temperature superconductors. In one dimefne |ocal DOS p(x,w) can be expressed ap(X,o)
sion, the problem is much simpler, because there is NQ. _ 7-1im Trg(x,x,w+i0"), where the Green function
Kosterlitz-Thouless transition and the thermodynamics of the;(x x’ ,+i0*) satisfies

phase variable is trivial. However, the calculation of the elec-

tronic properties amounts to solving a one-dimensional ran- [0—Hg] G(X,X",0+i0")=8(x—x")oy. (5)
dom problem with colored noise. Usually, problems of this ] ] . o

type cannot be solved exacflyAt low energies, the elec- Here, oq is the 2X2 unit matrix. For periodic boundary
tronic degrees of freedom can be described by the Hamilconditions, the average(x, »)) is independent ok and can

tonian of the so-called fluctuating gap motfe(FGM) be identified with the average DQRw).
Following Ref. 10, we eliminate the phase of the order
He= —ivpdyoz+ A(X) o +A* (X)o_, (2)  parameter\ (x)=Ae' ?™ via a gauge transformation,
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g(X,X/,w):ei/203ﬁ(x)'é(x’xl,w)e—i/20'31‘}(></). (6) 3 T

The transformed Green functio satisfies an equation of

the form(5), but with Hg, replaced by 5 | 1

F|e|=—iv,:r9X0'3+V(X)0'O+ASO'1, (7) %

where V(x) = (vg/2)d,9(x). Equation(6) is a chiral trans- = o4

formation that eliminates the phase &f{x) in favor of a 1po

forward scattering random potenti(x). The local DOS is 12

invariant under this transformation, so that we may replace 0/

G—G in all expressions involving the DOS. The crucial point 0 40/ co :

is now that withH y given by Eq.(1), the probability distri- 0 1 2 3

bution of V(x) is determined by Gaussian white notSayith w/A,

zero average and covariand®(x)V(x'))=v2(2£) 18(x
—Xx"). This enables us to map well-known results valid in the
white-noise regim&'? for the integrated Green function
I'(w) defined viad,I'(w)=Tr{G(x,x,0+i0")) onto re- —2mge
sults for the problem with a finite correlation length. We find _ P09 1-e

79 Jo |Jig,(i9)]

FIG. 1. Frequency dependence of the DOS given in(E#). for
g=4A¢/ve=0.4,1.2, 4.0, 12, 40, and.

(12)
I'(w)=1"Yw)—imMo)=mpedd (@)1 i,(9), 8 ,
. . In Fig. 1, we show a graph of E¢12) for several values of
where po=(mvg) " is the DOS forA=0, andl;,(g9) isa g For a more quantitative analysis, we use the uniform
modified Bessel function with imaginary index. The di- asymptotic expansion afig.(ig) for largeg and fixedew 4

mensionless parametegsand » are which reveals three different regimes: First of all, for &
=g~ 28 (i.e. for frequencies sufficiently far below,), the
4w 1) . . .
=—=g—. 9) average DOS in the pseudogap regig¥el can be approxi-
UF Ag mated by

4N € 2ng Ag

UF m*v,: T ’
The imaginary part of (w) is proportional to the integrated - T, . —
average DOSV(w) which satisfiesd N w)=p(w) while, p(@)lpo=~29(1— w?)%exd —29Q(w)]
according to ThoulesS the real part of'(w) can be iden- X[1+e—2wg;]arcco$_), (13)

tified with the inverse mean localization lengdtht(w), i.e., o o o o
the Lyapunov exponefit.Using a Wronski relation for where Q(w)=(1—w?)?— o arccosp). In particular, for

14 i il — =
I_i,(9),”" one gets small w, we may expan®@(w)~1— 7/2w+ 3 w?, so that

. - — = _
Meo)= ZOUF Smr(ﬂ'v;. (10 p(w) po~2mge coshimgw] e 9", goi<l.
™ [1i,(9)]

(14

Hence, foro=0, the DOS is exponentially smalh(0)/pq

The inverse mean localization length can be written as 5 i )
~2mge 9. As shown in Fig. 2, such a strong suppression

|1 _As al | 11 1
(w)—;a nli,(9)]. (12) - 3

Recall that Eqs(8), (10), and(11) determine the DOS and
inverse localization length for phase fluctuations with arbi-
trary correlation lengthg and were derived by a reinterpre-
tation of parameters due to a gauge transform&liaf
known results in the white-noise limigt— 0.1t

We now discuss the behavior of the average DOS. Be-
causep(w) is an even function o, we restrict ourselves to
0=0. Usind* |1;,(0)|?= (7v) 'sinh(rv), one easily veri-
fies that V{w)~pow for g—0, so that in this limit we re-
cover the result for free electrons with linearized energy dis- 0 0 1 )
persion. While for smallg, the leading corrections can be
calculated perturbatively in powers gf in the pseudogap 1/g = vr/4As
regimeg>1, the behavior of the average DOS is quite com-
plicated. It is convenient tQ measure frequencies in uqits Ognergy for classical phase fluctuations as a function @ 1/
As "_’md to_ EXpress E({lQ) in terms of the Bessel_ function =vl4A¢€. For a comparison, the dashed line shows the result
Ji»(ig) with imaginary index and argument, using,(9)  found in the leading-order Bomn approximatiéRef. 5 and the
=e""2J, (ig).* Defining w= w/A¢=v/g, we may write diamonds give the DOS for Gaussian statistRefs. 9 and 1R

0.5

p(0)/po

FIG. 2. The solid line is a graph of the DQ&O0) at the Fermi
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2LAT w(9)
FofFér=20 3 | 14 02— = . (16

UrF  n=0 lg;n(g)

Where5n=(2n+l)7-rT/AS. For Iargean, the term in the

square bracket vanishes ag 2 so that the sum converges.
In the pseudogap regimg>1, we may use the uniform
asymptotic expansion olfg;n(g) for large g (Ref. 19 to
obtain an expansion of E16) in powers ofg~toc¢ 1o T,
For T<A( the leading terms are

M w)/vE' A

F_F§=°°:L A _U_F_i_O(g*Z) (17)
w/A, 166 7° 12xw¢ '
FIG. 3. Graph of the inverse localization length fgr D€ Physical interpretation of this result is simple: Becafise
=4A¢lve=0.4,1.2, 4.0, 12,40, and. is roughly the size of domains where the order parameter is

spatially constant, the prefactbr ¢ in Eq. (17) can be iden-
tified with the number of locally ordered domains in a sys-
em of sizelL. At distances of the order of, the phase
luctuations distort the order parameter, which leads to an

of the DOS at the Fermi energy is a unique feature for clas
sical phase fluctuations, which is neither reproduced withi

. . . . _1
the Born approximatioh[which predictsp(0)sxg™"1, nor increase of the energy. In the limk é/v—o, the energy

for Gaussm'n d|§ord%r[wherep(0)mg #, with p.~0.64]. scale associated with a twist in the order parameter is set by
The approxmatlo[(%?) breaks down when 13,“2’ beggmes As. For finite £ this energy scale decreases, because the time
comparable withg_“*. Note thatQ(1—e)~(2"73)e™"for /it takes for electrons to propagate over the distahise
€<1, so thatgQ(w)=0(1) when Eq.(13) ceases to be finite. This gives rise to the second term in H47). We
valid. In this case, we have to go back to our exact réd@t  emphasize that our exact res(6) gives the change in the
which implies for|w—1|<g %<1 free energy due to phase fluctuations for arbitréry
Tk;e Iovvz-temperature behavior of the specific h€at
— —Tod°F/dT< can be calculated analytically. Keeping in mind
p(0)lpo~a1g"T1-a,g* (0 —1)?]. (15 that £&=ng/(2m* T), we see that the leading contribution to
C is due to the first correction terifinvolving the energy
Here,a;=2"*%7"'c,/ci~0.7306 anda,=293(c,/c1)® /&) in Eq. (17),
—¢,/¢,]~0.3534, withc, = Ai(0) =[3%°'(2/3)] ! andc,
=—Ai"(0)=[3Y3I'(1/3)] ", where Ai() is the Airy func- C~(m%124)(ng/ng)?peL T, (18)
tion. From Eq.(15), we conclude that, to leading order in

— *
g>1, the average DOS exhibits a maximumuat A, with whereng=m*v g/, and we have used the fact that the con-

a height that diverges ag/3« Y3« T~ 3 for T—0. Finally, tribution fro_m F&E> s exponentiqlly small due_t_o the static _
— —23 gap. Thus, in the pseudogap regime, the specific heat consid-
for w—1=g" " our exact result12) reduces to the well- oo here s linear iff, just as the specific heat for noninter-
known expression for the DOS in the presence of a statig .. electrons in one dimensio@{’~ (7%/3)poLT. Note
gap,p(w)/po~wl Vo’ —1. At w—1~g 23 this expression  thatc/Cl®)=1(n,/ny)? for T—0. In general, we expect that
smoothly matches with the parabdlts). ns/ng is a number of the order of unity far<TH¥" ,'® so that

In Fig. 3, we show the exact inverse localization length . .
|~ w) given in Eq.(11) for several values ofl. For g>1 ’ C/C(e?)=0(1). In the same regime, we find from Eq14)

we obtﬂn the foIIOﬂing approxinlr;\tionsl:*l(w)w(As/ that
ve)(1— ) Y2 for 1—w=g~?3 for |o—1|=g~?* we find N Ag 4 ng Ag
I"Hw)=(As/ve)[azg” "~ (3g) 1], with az=2""c,/c; p(0>/po~4n—O TR T, T
~0.4592; finally, forw— 1=g 2" the leading behavior is
1" (w)=(As/vp)[2g(w®—1)] 71

Let us now consider the free enerfydefined in Eq.(4)

i.e., the average DOS at the Fermi energy is exponentially

small (see the dashed line in Fig).4it should be recalled

which describes the electronic system coupled to phase fluéhat the linear depen_dence Gfon T.'S due to theT depen-
dence of the correlation length. This term expresses the cou-

twations. For the FGM with a linearized energy dispersionblm of electronic degrees of freedom to phase fluctuations
Eq. (4) is ultraviolet divergent, because then the DOS ap_Thegd namics of clasgical hase quctuatioFr)1$ which were noi
proaches a constant fw|— . However, physical quanti- y P '

ties involve derivatives oF, which at low temperatures de- considered here, should also lead to a contribution of order

pend only on the low-energy part of the spectrum and aré‘T/UF' so that the total specific heat is expected to be of

(0)
finite. For convenience, we regularize E4) by subtracting orderCe, ' . -
from F the free energyFé=> for an infinite correlation Givenp(w), we may also calculate the spin susceptibility

Tl 2 :
length, where the gap is static. After an integration by partsY =1 ~Jodwp(w)cosh <(«/2T). A graph ofy as a function
we express the integral in E¢4) in terms of a fermionic of T/TM is shown in Fig. 4 (solid ling. The low-
Matsubara sum and obtain temperature behavior can again be calculated analytically. If
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similar to the corresponding graph given by Lee, Rice, and
AndersorT, Note, however, that these authors assumeshh
order parameter and an exponentially large correlation length
at low temperatures. Because incommensurate Peierls chains
are characterized by @mplexorder parameter and a corre-
lation length that diverges only as a power lag& T2, the
agreement between the theory of Ref. 5 and experiments for
incommensurate chaitfsseems to be accidental. Here, we
have shown that the susceptibility data for incommensurate

/ Peierls chains can be explained by a nonperturbative treat-
/ ment of classical phase fluctuations. Keeping in mind that
id our model is strictly one-dimensional and ignores amplitude
0 05 1 fluctul\aﬂlltzions(which begome important at tempera_lture_s of or-
T/TMF der T."), our theoretical curve foi(T) shown in Fig. 4
¢ agrees reasonably well with the susceptibility d&ta.

FIG. 4. Graph of the susceptibility(T) calculated for&(T) In summary, we have presented exact results for the av-
=ny(T)/2m* T with n(T) given in Ref. 15 and\(T) determined ~ €'a0€ DOS, the mean localization Ieng.th, the 'susceptlbllllty
by minimizing a generalized Ginzburg-Landau functional. Theand the Iow-tempe_rature thgrmo_dynamlcs of dlsordered_ln-
symbols represent susceptibility data from Ref. 16. The dashed linEoMmmensurate Peierls chains in the pseudogap regime,
is the DOS at the Fermi energy. where only phase fluctuations are important. In particular,

we have derived the exact frequency dependencp(af)
g>1 but ng/ny<:, we find y~2p(0) (assuming nows which can be measu_red by means of angular integrat_ed pho-
=2 for spin degenerady. On the other hand, fan,/n,>%  toemission; we predict that at low temperatupé¢s) exhib-
the frequency integral is dominated by a new saddle point dfS @ maximum atw=As, the height of which scales as
w=cosr, wherer = (7/8)(no/n). Using Eq.(13), we obtain  T_ " Since this result only applies to the pseudogap regime
TP<T<TY, whereT3P~ T the scalingo(Ag) =T 3
will probably be very difficult to observe experimentally.

X! xo~22m)Y2(A, IT)%exd — A, IT], (19

We thank G. Graer and M. Grioni for discussions and J.
Bartosch for helping us prepare Fig. 4. This work was finan-
cially supported by the DF@GGrants Nos. Ko 1442/3-1 and
Ko 1442/4-2.

where A, =(sinr/r)Ag and xo=2pg is the susceptibility of
free electronsng/ny> 3 impliesr </2, so that at low tem-
peratures the ratiq/2p(0) is exponentially largey/2p(0)

cexd (1—sinr)Ag/(rT)]. Our graph ofy(T) in Fig. 4 is quite
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