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Classical phase fluctuations in incommensurate Peierls chains

Lorenz Bartosch and Peter Kopietz
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In the pseudogap regime of one-dimensional incommensurate Peierls systems, fluctuations of the phase of
the order parameter prohibit the emergence of long-range order and generate a finite correlation length. For
classical phase fluctuations, we present exact results for the average electronic density of states, the mean
localization length, the electronic specific heat, and the spin susceptibility at low temperatures. Our results for
the susceptibility give a good fit to experimental data.
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Continuous symmetries in one-dimensional electro
systems are not spontaneously broken at any finite temp
tureT. The mean-field prediction of a finite critical temper
ture Tc

MF is incorrect in this case. The experimentally o
served Peierls transition at a finite temperatureTc

3D!Tc
MF in

many quasi-one-dimensional conductors is due to weak
terchain coupling which triggers a crossover to three dim
sionality. In the intermediate temperature regimeTc

3D&T
!Tc

MF , the physical properties of Peierls chains are do
nated by one-dimensional order-parameter fluctuations.1 This
is the so-called pseudogap regime where mean-field theo
not even qualitatively correct.

In this work, we shall present an exact solution of
effective model for the low-temperature thermodynamics
incommensurate Peierls chains. For incommensurate ch
the order parameterD(x) is complex, so that in the
pseudogap regime the generalized Ginzburg-Landau po
tial has the form of a ‘‘Mexican hat.’’1 It is then a good
approximation to ignore amplitude fluctuations ofD(x)
5uD(x)ueiq(x) and focus on the gapless fluctuations of t
phaseq(x). At long wavelengths and low energies, the th
modynamics of phase fluctuations can be described b
classical Hamiltonian which is formally identical with th
kinetic energy of a superfluid1

Hq5
1

2
m* nsE

0

L

dx vs
2~x!, vs~x!5

]xq~x!

2m*
. ~1!

Here, m* is the effective mass of the electrons,L is the
length of the chain, and the one-dimensional densityns mea-
sures the stiffness of the system with respect to lo
wavelength distortions of the phase of the order parame2

A two-dimensional analog of Eq.~1! has been used by Em
ery and Kivelson3 to explain the pseudogap behavior of u
derdoped high-temperature superconductors. In one dim
sion, the problem is much simpler, because there is
Kosterlitz-Thouless transition and the thermodynamics of
phase variable is trivial. However, the calculation of the el
tronic properties amounts to solving a one-dimensional r
dom problem with colored noise. Usually, problems of th
type cannot be solved exactly.4 At low energies, the elec
tronic degrees of freedom can be described by the Ha
tonian of the so-called fluctuating gap model5,6 ~FGM!

Hel52 ivF]xs31D~x!s11D* ~x!s2 , ~2!
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wherevF is the Fermi velocity,s i are the usual Pauli matri
ces, with s65 1

2 (s16 is2). In the pseudogap regime, th
gapped amplitude fluctuations are frozen out, so that we m
set D(x)5Dse

iq(x), where Ds is determined by the loca
minimum of the generalized Ginzburg-Landau function
From Eq.~1!, it is then easy to show that

^D~x!D* ~x8!&5Ds
2 e2ux2x8u/j, ~3!

where ^ . . . & denotes the thermodynamic average with
spect to the HamiltonianHq given in Eq.~1!, and the order-
parameter correlation length isj5ns /(2m* T). In this work,
we calculate the average electronic density of states~DOS!
r(v)5^Tr d(v2Hel)& of the model defined via Eqs.~1!–~3!
exactly for arbitraryj.

Previously, the DOS of the FGM has been calculated
suming a Gaussian distribution ofD(x) with covariance
given by Eq.~3!.5,7–9 Although in this case the problem i
not exactly solvable,8,9 a sophisticated algorithm has bee
developed7 which produces an expression forr(v) which is
reasonably close to the exact numerical result for Gaus
disorder.9 However, as explained above, the assumption o
Gaussian distribution ofD(x) centered atD50 is rather un-
physical in the pseudogap regime. It is therefore not surp
ing that in this regime the true behavior ofr(v) ~to be dis-
cussed below! is very different from the DOS for Gaussia
disorder.

The electronic contribution to the thermodynamic prop
ties of our system including the coupling to the phase fl
tuations can be obtained from the disorder-averaged free
ergy

F52TE
2`

`

dvE
0

L

dx ^r~x,v!& ln~11e2v/T!. ~4!

The local DOS r(x,v) can be expressed asr(x,v)
52p21Im Tr G(x,x,v1 i01), where the Green function
G(x,x8,v1 i01) satisfies

@v2Hel# G~x,x8,v1 i01!5d~x2x8!s0 . ~5!

Here, s0 is the 232 unit matrix. For periodic boundary
conditions, the averagêr(x,v)& is independent ofx and can
be identified with the average DOSr(v).

Following Ref. 10, we eliminate the phase of the ord
parameterD(x)5Dse

iq(x) via a gauge transformation,
R16 223 ©2000 The American Physical Society
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G~x,x8,v!5ei /2s3q(x)G̃~x,x8,v!e2 i /2s3q(x8). ~6!

The transformed Green functionG̃ satisfies an equation o
the form ~5!, but with Hel replaced by

H̃el52 ivF]xs31V~x!s01Dss1 , ~7!

whereV(x)5(vF/2)]xq(x). Equation~6! is a chiral trans-
formation that eliminates the phase ofD(x) in favor of a
forward scattering random potentialV(x). The local DOS is
invariant under this transformation, so that we may repl
G→G̃ in all expressions involving the DOS. The crucial poi
is now that withHq given by Eq.~1!, the probability distri-
bution ofV(x) is determined by Gaussian white noise,10 with
zero average and covariance^V(x)V(x8)&5vF

2(2j)21d(x
2x8). This enables us to map well-known results valid in t
white-noise regime6,11,12 for the integrated Green functio
G(v) defined via ]vG(v)5Tr ^G(x,x,v1 i01)& onto re-
sults for the problem with a finite correlation length. We fin

G~v![ l 21~v!2 ipN~v!5pr0DsI 2 in8 ~g!/I 2 in~g!, ~8!

wherer05(pvF)21 is the DOS forD50, and I in(g) is a
modified Bessel function with imaginary indexin. The di-
mensionless parametersg andn are

g5
4Dsj

vF
5

2ns

m* vF

Ds

T
, n5

4vj

vF
5g

v

Ds
. ~9!

The imaginary part ofG(v) is proportional to the integrate
average DOSN(v) which satisfies]vN(v)5r(v) while,
according to Thouless,13 the real part ofG(v) can be iden-
tified with the inverse mean localization lengthl 21(v), i.e.,
the Lyapunov exponent.6 Using a Wronski relation for
I 2 in(g),14 one gets

N~v!5
r0vF

4pj

sinh~pn!

uI in~g!u2
. ~10!

The inverse mean localization length can be written as

l 21~v!5
Ds

vF

]

]g
lnuI in~g!u. ~11!

Recall that Eqs.~8!, ~10!, and ~11! determine the DOS and
inverse localization length for phase fluctuations with ar
trary correlation lengthsj and were derived by a reinterpre
tation of parameters due to a gauge transformation10 of
known results in the white-noise limitj→0.11

We now discuss the behavior of the average DOS.
causer(v) is an even function ofv, we restrict ourselves to
v>0. Using14 uI in(0)u25(pn)21sinh(pn), one easily veri-
fies thatN(v);r0v for g→0, so that in this limit we re-
cover the result for free electrons with linearized energy d
persion. While for smallg, the leading corrections can b
calculated perturbatively in powers ofg, in the pseudogap
regimeg@1, the behavior of the average DOS is quite co
plicated. It is convenient to measure frequencies in units
Ds and to express Eq.~10! in terms of the Bessel function
Jin( ig) with imaginary index and argument, usingI in(g)
5enp/2Jin( ig).14 Defining v̄5v/Ds5n/g, we may write
e

-

-

-

-
f

r~v!5
r0

2pg

]

]v̄

12e22pgv̄

uJigv̄~ ig !u2
. ~12!

In Fig. 1, we show a graph of Eq.~12! for several values of
g. For a more quantitative analysis, we use the unifo
asymptotic expansion ofJigv̄( ig) for largeg and fixedv̄,14

which reveals three different regimes: First of all, for 12v̄
*g22/3 ~i.e. for frequencies sufficiently far belowDs), the
average DOS in the pseudogap regimeg@1 can be approxi-
mated by

r~v!/r0'2g~12v̄2!1/2exp@22gQ~v̄ !#

3@11e22pgv̄#arccos~v̄ !, ~13!

where Q(v̄)5(12v̄2)1/22v̄ arccos(v̄). In particular, for
small v̄, we may expandQ(v̄)'12p/2v̄1 1

2 v̄2, so that

r~v!/r0'2pge22gcosh@pgv̄# e2gv̄2
, gv̄3!1.

~14!

Hence, forv50, the DOS is exponentially small,r(0)/r0
;2pge22g. As shown in Fig. 2, such a strong suppressi

FIG. 1. Frequency dependence of the DOS given in Eq.~12! for
g[4Dsj/vF50.4, 1.2, 4.0, 12, 40, and̀.

FIG. 2. The solid line is a graph of the DOSr(0) at the Fermi
energy for classical phase fluctuations as a function ofg
[vF/4Dsj. For a comparison, the dashed line shows the re
found in the leading-order Born approximation~Ref. 5! and the
diamonds give the DOS for Gaussian statistics~Refs. 9 and 12!.
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of the DOS at the Fermi energy is a unique feature for c
sical phase fluctuations, which is neither reproduced wit
the Born approximation5 @which predictsr(0)}g21], nor
for Gaussian disorder9 @where r(0)}g2m, with m'0.64].
The approximation~13! breaks down when 12v̄ becomes
comparable withg22/3. Note thatQ(12e);(23/2/3)e3/2 for
e!1, so thatgQ(v̄)5O(1) when Eq.~13! ceases to be
valid. In this case, we have to go back to our exact result~12!

which implies foruv̄21u&g22/3!1

r~v!/r0'a1g1/3@12a2g4/3~v̄21!2#. ~15!

Here,a15224/3p21c2 /c1
3'0.7306 anda2522/3@3(c2 /c1)2

2c1 /c2#'0.3534, withc15Ai(0) 5@32/3G(2/3)#21 and c2
52Ai 8(0)5@31/3G(1/3)#21, where Ai(x) is the Airy func-
tion. From Eq.~15!, we conclude that, to leading order
g@1, the average DOS exhibits a maximum atv5Ds , with
a height that diverges asg1/3}j1/3}T21/3 for T→0. Finally,
for v̄21*g22/3, our exact result~12! reduces to the well-
known expression for the DOS in the presence of a st

gap,r(v)/r0'v̄/Av̄221. At v̄21'g22/3, this expression
smoothly matches with the parabola~15!.

In Fig. 3, we show the exact inverse localization leng
l 21(v) given in Eq.~11! for several values ofg. For g@1,
we obtain the following approximations:l 21(v)'(Ds /

vF)(12v̄2)1/2 for 12v̄*g22/3; for uv̄21u&g22/3 we find
l 21(v)'(Ds /vF)@a3g21/32(3g)21#, with a35222/3c2 /c1

'0.4592; finally, for v̄21*g22/3 the leading behavior is
l 21(v)'(Ds /vF)@2g(v̄221)#21.

Let us now consider the free energyF defined in Eq.~4!
which describes the electronic system coupled to phase
tuations. For the FGM with a linearized energy dispersi
Eq. ~4! is ultraviolet divergent, because then the DOS a
proaches a constant foruvu→`. However, physical quanti
ties involve derivatives ofF, which at low temperatures de
pend only on the low-energy part of the spectrum and
finite. For convenience, we regularize Eq.~4! by subtracting
from F the free energyFj5` for an infinite correlation
length, where the gap is static. After an integration by pa
we express the integral in Eq.~4! in terms of a fermionic
Matsubara sum and obtain

FIG. 3. Graph of the inverse localization length forg
[4Dsj/vF50.4, 1.2, 4.0, 12,40, and̀.
-
n

ic

c-
,
-

e

s,

F2Fj5`5
2LDsT

vF
(
n50

` FA11v̄n
22

I gv̄n
8 ~g!

I gv̄n
~g!

G , ~16!

where v̄n5(2n11)pT/Ds . For largev̄n , the term in the
square bracket vanishes asv̄n

22 , so that the sum converge
In the pseudogap regimeg@1, we may use the uniform
asymptotic expansion ofI gv̄n

(g) for large g ~Ref. 14! to

obtain an expansion of Eq.~16! in powers ofg21}j21}T.
For T!Ds the leading terms are

F2Fj5`5
L

16j FDs2
vF

12pj
1O~j22!G . ~17!

The physical interpretation of this result is simple: Becausj
is roughly the size of domains where the order paramete
spatially constant, the prefactorL/j in Eq. ~17! can be iden-
tified with the number of locally ordered domains in a sy
tem of sizeL. At distances of the order ofj, the phase
fluctuations distort the order parameter, which leads to
increase of the energy. In the limitDsj/vF→`, the energy
scale associated with a twist in the order parameter is se
Ds . For finitej this energy scale decreases, because the
j/vF it takes for electrons to propagate over the distancej is
finite. This gives rise to the second term in Eq.~17!. We
emphasize that our exact result~16! gives the change in the
free energy due to phase fluctuations for arbitraryj.

The low-temperature behavior of the specific heatC5
2T]2F/]T2 can be calculated analytically. Keeping in min
that j5ns /(2m* T), we see that the leading contribution
C is due to the first correction term~involving the energy
vF /j) in Eq. ~17!,

C;~p2/24!~n0 /ns!
2r0LT, ~18!

wheren05m* vF /p, and we have used the fact that the co
tribution from Fj5` is exponentially small due to the stat
gap. Thus, in the pseudogap regime, the specific heat con
ered here is linear inT, just as the specific heat for noninte
acting electrons in one dimension,Cel

(0);(p2/3)r0LT. Note
thatC/Cel

(0)5 1
8 (n0 /ns)

2 for T→0. In general, we expect tha
ns /n0 is a number of the order of unity forT!Tc

MF ,15 so that
C/Cel

(0)5O(1). In the same regime, we find from Eq.~14!
that

r~0!/r0;4
ns

n0

Ds

T
expF2

4

p

ns

n0

Ds

T G ,
i.e., the average DOS at the Fermi energy is exponenti
small ~see the dashed line in Fig. 4!. It should be recalled
that the linear dependence ofC on T is due to theT depen-
dence of the correlation length. This term expresses the c
pling of electronic degrees of freedom to phase fluctuatio
The dynamics of classical phase fluctuations, which were
considered here, should also lead to a contribution of or
LT/vF , so that the total specific heat is expected to be
orderCel

(0) .
Givenr(v), we may also calculate the spin susceptibil

x5T21*0
`dvr(v)cosh22(v/2T). A graph ofx as a function

of T/Tc
MF is shown in Fig. 4 ~solid line!. The low-

temperature behavior can again be calculated analyticall
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g@1 but ns /n0, 1
4 , we find x; 1

8 r(0) ~assuming nows
52 for spin degeneracy2!. On the other hand, forns /n0. 1

4

the frequency integral is dominated by a new saddle poin
v5cosr, wherer 5(p/8)(n0 /ns). Using Eq.~13!, we obtain

x/x0;2~2p!1/2r 2~D r /T!3/2exp@2D r /T#, ~19!

where D r5(sinr/r)Ds and x052r0 is the susceptibility of
free electrons.ns /n0. 1

4 implies r ,p/2, so that at low tem-
peratures the ratiox/2r(0) is exponentially large,x/2r(0)
}exp@(12sinr)Ds/(rT)#. Our graph ofx(T) in Fig. 4 is quite

FIG. 4. Graph of the susceptibilityx(T) calculated forj(T)
5ns(T)/2m* T with ns(T) given in Ref. 15 andDs(T) determined
by minimizing a generalized Ginzburg-Landau functional. T
symbols represent susceptibility data from Ref. 16. The dashed
is the DOS at the Fermi energy.
,

-
y

is
at

similar to the corresponding graph given by Lee, Rice, a
Anderson.5 Note, however, that these authors assumed areal
order parameter and an exponentially large correlation len
at low temperatures. Because incommensurate Peierls ch
are characterized by acomplexorder parameter and a corre
lation length that diverges only as a power law,j}T21, the
agreement between the theory of Ref. 5 and experiments
incommensurate chains16 seems to be accidental. Here, w
have shown that the susceptibility data for incommensu
Peierls chains can be explained by a nonperturbative tr
ment of classical phase fluctuations. Keeping in mind t
our model is strictly one-dimensional and ignores amplitu
fluctuations~which become important at temperatures of o
der Tc

MF), our theoretical curve forx(T) shown in Fig. 4
agrees reasonably well with the susceptibility data.16

In summary, we have presented exact results for the
erage DOS, the mean localization length, the susceptib
and the low-temperature thermodynamics of disordered
commensurate Peierls chains in the pseudogap reg
where only phase fluctuations are important. In particu
we have derived the exact frequency dependence ofr(v)
which can be measured by means of angular integrated
toemission; we predict that at low temperaturesr(v) exhib-
its a maximum atv5Ds , the height of which scales a
T21/3. Since this result only applies to the pseudogap reg
Tc

3D&T!Tc
MF , whereTc

3D' 1
4 Tc

MF , the scalingr(Ds)}T21/3

will probably be very difficult to observe experimentally.

We thank G. Gru¨ner and M. Grioni for discussions and
Bartosch for helping us prepare Fig. 4. This work was fina
cially supported by the DFG~Grants Nos. Ko 1442/3-1 and
Ko 1442/4-2!.
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