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Muffin-tin orbitals of arbitrary order
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We have derived orbital basis sets from scattering theory. They are expressed as polynomial approximations
to the energy dependence of a set of partial waves, in quantized form. The corresponding matrices, as well as
the Hamiltonian and overlap matrices, are specified by the values on the energy mesh of the screened resolvent
and its first energy derivative. These orbitals are a generalization of the third-generation linear muffin-tin
orbitals and should be useful for electronic-structure calculations in general.

For electrons in condensed matter, it is often desirable tds that the conduction band is crossed by, or has avoided
express the one-electron wave functiohgr) with energies  crossings with other band&ig. 2). Since this occurs an eV
g; in a certain range in terms of minimal setof energy- beloweg, this, too, is irrelevant for the low-energy physics,
independent orbitalgyg, (r). Here,Rlabels sites antl isthe  which should therefore be described using an orbital which
local symmetry(e.g.,L=Im). yields correct wave functions at and nesr and has errors
The simplest example of such an orbital is the Wannier<(s;—eg)N"1. The wider the energy range described cor-
function, x(r—R), for an isolated band. A more realistic rectly by this orbital, i.e., the higher thi, the longer its
example is illustrated in Fig. 1, the conduction-band orbitalspatial range.
of a cuprate high-temperature superconductor. This orbital is We have found aeneralmethod, the ordeN muffin-tin
centered on Cu, has anti-bonding,-Cudy2_,2—Q,p,  orbital (NMTO) method, by which for instance this kind of
character, and extends beyond the third-nearest-neighbor abital can be obtainetiWhat Fig. 1 shows is in fact a
oms. Its Bloch sum describes a tight-bindifiB) band:e, ~ muffin-tin orbital (MTO) with N=1, linear MTO (LMTO)
~(e)— 2t (cosk,+cosky) +4t’ cosk, cosk,—2t"(cos X, obtained from a density-functional local-density approxima-
+cos Xy) . This orbital is the starting point for descriptions tion (DF-LDA) NMTO calculation. This method has recently
of the low-energy physics of the cuprates. Its)at a Wan-  enabled us to compute how the hopping integrais, andt”
nier function. First of all because the conduction band isare influenced by chemical and structural factors, and it has
merely one partner of a bonding, nonbonding, antibondingroved successful for computing and t, for the ladder
triple with nearly degenerate Gliand Op levels so that the cuprates without resort to the common, but dubious proce-
three bands nearly stick togethersgi~s4 with a conelike  dure of fitting to guessed TB bands.
behavior at the center of the zone. As a result, the true Wan- In Fig. 2 we demonstrate thatsingleMTO of sufficiently
nier function of the antibonding band has very long rangehigh N is capable of describing thentire conduction band,
but sinces,~ &4 is 2—3 eV below the Fermi level, the low- including its conelike feature as well as smooth interpola-
energy physics is hardly influenced by this. The second redions across avoided crossings: The dotted band was ob-
son why the orbital of interest cannot be a Wannier functionfained variationally using an MTO witN=3, thus yielding
band errors of order 2N+ 1)=8. This figure also demon-
strates that one may use discrete mesh of energies,
T O S €y, - - . €N, tO construct the MTO, which then has errors

x(g;—€g)---(g;— €y). This is analogous to using Lagrange
’9 * S &3 d or Newton interpolation instead of Taylor expansion, and is

far more practical. The band obtained variationally has errors
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FIG. 1. The Cud,2_.-like LMTO, which describes théLDA) FIG. 2. Band structure of CaCyQuith a 7° buckle, calculated
conduction band of HgB&£uQ,, plotted in the Cu@plane. Cuand in the LDA with a single Bloch Cuw,2_,» CMTO (dotted com-
O sites are marked by, respectively,and %. pared with the full band structur@olid).
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Si p kinked partial wave Si p Imto tial waves. The resulting set okinked partial waves,
T '¢ ' ¢ri(g,r) evaluated on the energy mesh, is what HdTO
o4l ‘i‘-., ....... & ] set is expressed in terms of:
AN
N
F N N
o2 Xai (D=2 2 drulen DL R riLr - (1)
n=0 RL
- L 4 - This may be considered as a polynomial approximation to
Si «a og»s Si «a Si «0 0~ Si «aq

the energy dependence of the partial-wave set, in quantized
FIG. 3. Sip,_,, kinked partial wave, its constituents,¢°, form. In the fo_II0W|r(1Ng), we derive the expressions for the
and ¢, and the LMTO(X2). No empty spheres were useds the Lagrange mgtrlcesLn K and theNMTO Hamiltonian gnd
range of the central potential well. overlap matrices, starting out from the conceptually simplest
way of solving Schrdinger’s equation, namely by matching
- partial solutions. Our formalism should prove useful also in
Fc_>r some purposes, it is better to use a larger set of Morginer contexts.
Io_callzed qrb|ta_lls_. For instance, in order to unders_tand the \we consider the case where the wave functidng) are
microscopic origins of, t’, andt”, we used a set with Cu solutions of a Schiinger equation with a MT potential,
dyxz—y2, Opy, Opy, and Cis, obtained by upfolding through  HW,(r)=[— A +V(r)]¥;(r)=¢;¥(r). For simplicity, we
a screening transformatidrf:® first assume that the MT wells do not overlap and have
Materials with many bands and strong correlations are rangesag. At the end, definitions will be modified in such a
being studied intensively. The first step of a quantitative deway that the formalism holds also for overlapping wells. The
scription is a one-electron mean-field theory requiring a baa’s will be hard-sphere radii which define the screening and,
sis, flexible enough to give individual orbitals desired prop-hence, the shape of the orbitals.
erties. For thiSNMTO’s are uniquely suited. Kinked partial waves Inside a MT sphere, the partial
As an example of a minimal set spanning all states in @olutions factorize into energy-dependent radial functions,
wide energy range, let us consider the LDA valence andpri(e,l'r), and angular functions. In the interstitial, we use
conduction bands for GaAs, 18 of which fall in the rangescreened spherical waves, which are defined as those solu-
between—15 and+20 eV. With a Gasp®d® As sp®d®f’  tions of the wave equationA(t &) ¢r (&,r) =0, which sat-
basis of merely 2 =2 MTO’s per GaAs, and mesh points isfy the homogeneous boundaryAcondmon that the projection
at —15, 0, and 10 eV, we obtained a variational band strucof ¢z (&,r) onto 8(rr —ar:) Y /(rg/) be dgr oL+ . In fact,
ture, which only above+15 eV yielded errors as large as 0.1 only those solutions witlRL corresponding to the so-called
eV. Even for this 35 eV range, which includes the Gé 3 active channels will be usedin Fig. 1, the central Cu
semicore band at-15 eV, no principal quantum numbers dx2-y2), and only the projections onto othactive channels
were needed. To most practitioners, this is a surprising reill vanish (all noncentral Cud,2_2 projections. The pro-

sult. NMTO’s should be useful for computing excited-statel®ction of ¢z (e,r) onto aninactive channe(all other than
properties with the GW method. dy2_y2 on any Cu sphejesatisfies the boundary condition

For ground-state properties, only the Gd &nd the va- that .ilts. radial Iogarithmic dgrivative eguals that of the radial
lence bands must be described. Using the minimas Fal® Schraiinger solution. The_ km_ked partial wav@RL(s,r_), 1S
As sp® MTO set, we find accuracies in the sum of the one-"OW @ri(e,1r) Y (rr) inside its own sphere and for its own
electron energies of 50 and 5 meV per GaAs for, respectivelingular momentum. It igig, (e,r) in the interstitial region.
N=1 andN=2.! This is highly satisfactory and opens the "Sidé the sphere ar’, it vanishes for any otherR'L
way for accurate and efficient DF calculations, for instanceiRL) active R channel, ) bUt_ s proportional  to
for large systems using techniques where the computatiofir'1/(8,rr))YL/(rr) for an inactive channel. As a result,
increases merely linearly with the size of the system. HithWith the normalizationeg(z,ag)=1, the kinked partial
erto, such calculations have only been possible with less ad¥ave is a continuous solution of Schiinger's equation with
curate or geometry-restricted methods, such as semiempiric§'€79ye - But since it has kinks at the spheres in the active
TB,® screened LMTO-ASA, or screened multiple-scattering channels, .'t |snota.wave function. . .
method< The sc_>I|d curve in the Ieft—hand_ part of I_:|g. 3 shows the Si

The LMTO’s of the first and second generatibngere Px=y=7 Kinked partial wave for in thg m!ddle of .the va-

) ) « lence band and for along the[111] line in the diamond
expressed in terms of partial waves(€o,rr) YL(Tr), @nd  strycture from the central Si atom, through the nearest Si
their energy derivativespg(€q,rgr) Y (rr), truncated out- neighbor, and halfway into the back-bond void. The other
side the atomic spheres{=|r—R|). Everything else was curves will be explained when we come to consider potential
neglected in the atomic-spheres approximati®8A), which  overlap. The kinks at the spheres(chosen smaller than
then gave rise to a simple formalism and fast computationtouching are clearly seen. Since this kinked partial wave is
The third generatichsucceeds in making this formalism designed for use in a minimalp® basis, only the S§ andp
valid for overlapping MT potentialsV(r)= Zrvg(rg), to  waves were chosen as active. The inactive waves must there-
first order in the overlap of the's, thus making the ASA fore be provided by the tails of the kinked partial waves
superfluous. This is accomplished by attaching tails ofcentered at the neighbors, and this is the reason for the strong
screened spherical waves with the proper energy to the paBi d character seen inside the nearest-neighbor sphere. Had
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we been willing to keep Sd orbitals in the basis, the $i  such asK and G, denote matricess, €, RL, and N are
channels would have been active so that only waves Wwith numbers, though The confined Green function is thus fac-
>2 would have remained inside the neighbor spherestorized into a Green matri(e) which has the full energy
whereby the kinked partial wave would have been more lodependence, and a vector of functiapée,r) which has the
calized. Hence, the price for a smaller kinked-partial wavefull spatial dependence and a weak energy dependgnie.
basis, is longer spatial range and a stronger energy depeanergy windows we consider are limited in size by the re-
dence. quirement thatpg (e,r) and ¢g (e’,r) cannot be orthogo-
The elemenKg/ g (&) of the Hermitiankink matrixis  nal] Finally, we want to factorize the ande dependences
defined as the kink ofg (e,r) at theag: sphere, projected completely and, hence, to approximate the confined Green

onto Y, /(rr/)/a%, . Hence, it specifies how the Hamiltonian function by x™(r)G(&): We note that subtracting from the

operates on the set of kinked partial waves: Green function a function which is analytical in energy,
é(e,1)G(e)—wM(e,r)=xMN(e,r)G(e), produces an
(H—¢&)dri(e,r)=[—A+V(r)—e]dr(e,r) equally good Green function in the sense that both yield the

same Schidinger-equation solutions. If we can therefore de-
termine the vector of analytical functions{N)(&,r), in such
a way that eachy"Y(e,r) takes thesamevalue, Y (r), at
@ all mesh points, thep(g\f_)(s,r)=X(RN,_)(r)+O[(s— €) (&
—ey)]. Hence,xN(r) is the set of NMTO’s. Now, since
Although an individual kinked partial wave is not a x"(eo.r)=---=x"(ey,r), theNth divided difference of
wave function, any smooth linear combination, x™(e.r)G(e) equalsy™(r) times theNth divided differ-
S rbri(e.1)Cry i » iS. Schidinger's equation may therefore ence ofG(s). Moreover, if we leto™(e,r) be a polyno-
be formulated as the matching- or kink-cancellation condi-mial in energy of N—1)st degree, itdNth divided differ-
tion: S KeeL ri(e)CrLi=0 forallR’L’, which is asetof enceon the meshAMo™(r)/A[0 .. .N], will vanish. We
homogeneous linear equations, equivalent with the Korringabave, therefore, found the following solution:
Kohn-Rostoke(KKR) equations. Here, the indices run only
over active channels. (N) (e
Since the kink matrix is expensive to compute, it is not x ()= A[O...N]
efficient to find a one-electron energy from |dets;)|=0,

== 2 5(rR’_aR’)YL’(FR’)KR’L’,RL(s)-
R/L

-1

ANG(r)G ANG
A[0...N]

and then solve the linear equations for the corresponding _ Ag(r) N _
CrLi- Rather, we construct a basis sgt™)(r), with the =dlen.n+ A[N—l,N](E en)+ @
property that it spans any wave functidn(r) with an en-
ergy ¢; in the neighborhood ofN+1 chosen energies, AN (1)
€0, - - €N to within an error (g + m(E(l)—ﬂ)' (EM=-ey), (5
—¢€y)---(g;—€y), and then solve the generalized eigen-
value problem for theNMTO set. Since the kinks,{—¢) ¢(&,r)G(e), are
independent o, NMTQO’s with N>0 are smooth. By use of
%:_ <X(R’\'l)|_f|H_8i|X(RNL)>bRL,i:O forall R'L', (3) the well-known expression for a divided difference:
ANG(NG o dl(en,1)Glen)

resulting from the Raleigh-Ritz variational principle.
MTO'’s. Since all wave functions witle;=¢ may be ex-

pressed asg ¢dri(e,r)CrLi, the MTO’s with N=0 are ' . . .

simply the kinked partial waves at the chosen energywe finally obtain the expressions for the Lagrange matrices

S -~ >’in Eq. (1) and the energy matrices in Ed5): EM
x9(r)= pr(€o.r). The Hamiltonian and overlap matrices =(A'\S'I é/)A[O M) (A'\"g)//A[O M) ig t)erms of
are, respectively, (xO|H—elx?)=-K(e;) and N e o ’

O] (On & the values of the Green matrix on the energy mesh.

X Ix™)=K(ep), as may be found from Eq2) and the The NMTO set may thus be thought of as a “quantized”
normalization chosen. Here=d/de. _ _ Lagrange interpolation of the kinked partial-wave set, where
In order to find the MTO'’s withtN>0, we first define a  the weights are matrices rather thisith-degree scalar poly-

Green matrix: Ge)=K(z) !, and then, by an equation of nomials in energy. Similarly, Eq5) may be interpreted as a
the usual type: X —e¢)yri(e,r)=—38(rr—ar)Y, (rg), @ “quantized” Newton interpolation with the energies substi-
Green function,yg (e,r), which has one of its spatial vari- tuted by matrices. If the mesh is condensed, Newton
ables confined to tha spheres, i.ex’—RL. Considered a interpolation becomes Taylor expansiohN¢/A[O .. .N]
function ofr, this confined Green function is a solution with — (1/N!)dN¢/deN. The form(5) expresses thBIMTO as a
energy ¢ of the Schrdinger equation, except at its own kinked partial wave at the same site and with the same an-
sphere and for its own angular momentum, where it has gular momentum, plus a smoothing cloud of energy-
kink of size unity. This kink becomes negligible whenis  derivative functions centered at all sites and with all angular
close to a one-electron energy, because the Green functianomenta. In the right-hand part of Fig. 3, the solid curve is
has a pole there. Equatiorf2) shows that y(e,r)  the MTO withN=1, and the dashed curve is the MTO with
=¢(e,r)G(g). (Here and in the following, lower-case let- N=0 shown also in the left-hand part. Here again, longer
ters, such ay and ¢, denote vectors, and upper-case lettersspatial range is the price for spanning the wave functions in

A[O...N] =6 N_osn(€n—€m)’
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a wider energy range. The increase of range and smoothneasd obtained by matrix inversion oB’(e)+ « cota(e).
with N follows from the relation: Here, k cota(e) is a diagonal matrix withvg, (&) being the
B hard-sphere phase shift tap,(¢)=j,(kag)/n|(xag), if the
(H=enx™ () =xN" D) (EM—ey), channel is active, and the true phase shifi(¢) if the chan-

which also shows that thE’s are transfer matrices between Nnel is inactive.B“(¢) has short spatial range for energies
MTO sets of different order. Linear transformations of the\cli\/_e!I _l)elqvx; the t"‘hard-zpher?’ Con'ﬂnuuml,” asddtﬁfinehd by thfe
kinked partial waves,$(z,r)=¢(e,r)T(e), change the GV!SIONINIO active andinactive channe’s and the choica o
NMTO's, but not the Hilbert space spanned by theihis radii for the former. The kink matrix is finally
may be used to generate nearly orthonormal representations
where theE’s are Hamiltonians and wherg™ 1| xM)) K(e)=—[«n(ka)] '[B*(e)+x cotn“(e)][xn(xa)] ™,
=1 for I<sM=<N.

The expressions for the Hamiltonian and overlap matricesvhere »%(¢) is the phase shift in the medium of haed
needed in Eq(3) may be worked out and given'as spheres: tam®(¢)=tanz(e) —tana(e). B%(¢) contains the
essence of the hopping integrals, whose dependence on the

N N
A—G<X(N)|8_H|X(N)>A—G local environment enters through the screening.
A[O...N] A[O .. .N] When the potentials overlap, we need to redefine the
ANG AN+1G kinked partial waves as illustrated in Fig. 3g (¢,r)
= — e — = —_ 0 r + .
A[[0...N—1]N] +(e EN)A[[O TN (6) [eri(e.rR) — @Rri(&,TR)IYL(MR) + ¥ri(e,r). Here p(e,r)

(dot-dashedlis the radial solution for the central MT well,
AMFNFIGIAT[O .. .M]N] is the (M+N+1)st derivative Wwhich now extends ts(>a). ¢°(e,r) (dotted is the phase-
of that polynomial of degre& + N+ 1 which takes the val- shifted wave proceeding smoothly inwards freito the cen-
uesG(ep), . ..,G(ey) at theN+1 mesh points and, at the tral a sphere, where it is matched with a kink to the screened
first M+1 points, also the valueB(e), . . . ,G(ey) of the sphe_r.icallwave// (dashepi It is easily §hown thgt with this
energy derivatives. The one-electron energies are “ratios” ofﬂOd'f'Cat'Orl‘%tlr(‘)e formal!sm h9|dS to first order in the poten-
energy derivatives of such “Hermite interpolations” of tial overlap.>*" In practice, thls_; means that radial overlaps
G(&), which itself has poles inside the mesh. of up to 30% may be_ treated without changes, an_d that over-
Having seen that the formalism is expressed in terms of@PS as large as in Fig. 35’) may be treated by adding a simple
one matrix, e.9.,K(g)=(x©@|e—=H|x@)=G(e) L, let us kinetic-energy correctioh®>%!This should make the use.o.f
indicate how this is generatéd® The elements of the €MPY spheres superfluous and open the way for efficient
bare KKR structure matrix® DF-molecular-dynamics calculations. Tha radii now
specify the screening, with a default value which is 80% of
the atomic or ionic radius, and for semicore states, the core
radius.
X Cprn kN k|R— R’|)Y’L*,,(R/—F’) In conclusion, we have solved the long-standing problem
of deriving useful, minimal sets of short-ranged orbitals from
for R#R’, and=0 for R=R’, specify how the spherical scattering theory. Into a calculation entet$) The phase
waves, n(krg) Y (fr), are expanded in regular spherical shifts of the potential well§2) A choice of which orbitals to

waves,j (kT r/) Y, (Tr/). The corresponding expansions of include in the set, the so-called active channés. For
the screened spherical waves are now specified by a screend@§se, a choice of screening radik, , to control the orbital

—

Bp s pu(e)=Spdai 't

structure matrix, defined via ranges.(4) An energy mesh on which the set will provide
exact solutions. These MTO’s have significant advantages
B%e) '=B%¢) '+« tana(e), over those used in the past.
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