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Muffin-tin orbitals of arbitrary order
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We have derived orbital basis sets from scattering theory. They are expressed as polynomial approximations
to the energy dependence of a set of partial waves, in quantized form. The corresponding matrices, as well as
the Hamiltonian and overlap matrices, are specified by the values on the energy mesh of the screened resolvent
and its first energy derivative. These orbitals are a generalization of the third-generation linear muffin-tin
orbitals and should be useful for electronic-structure calculations in general.
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For electrons in condensed matter, it is often desirable
express the one-electron wave functionsC i(r ) with energies
« i in a certain range in terms of aminimal setof energy-
independent orbitals,xRL(r ). Here,R labels sites andL is the
local symmetry~e.g.,L[ lm).

The simplest example of such an orbital is the Wann
function, x(r2R), for an isolated band. A more realist
example is illustrated in Fig. 1, the conduction-band orb
of a cuprate high-temperature superconductor. This orbita
centered on Cu, has anti-bonding Oxpx–Cudx22y2–Oypy
character, and extends beyond the third-nearest-neighbo
oms. Its Bloch sum describes a tight-binding~TB! band:«k
;^«&22t (coskx1cosky) 14t8 coskx cosky22t9(cos 2kx
1cos 2ky) . This orbital is the starting point for description
of the low-energy physics of the cuprates. Its isnot a Wan-
nier function. First of all because the conduction band
merely one partner of a bonding, nonbonding, antibond
triple with nearly degenerate Cud and Op levels so that the
three bands nearly stick together at«p;«d with a conelike
behavior at the center of the zone. As a result, the true W
nier function of the antibonding band has very long ran
but since«p;«d is 2–3 eV below the Fermi level, the low
energy physics is hardly influenced by this. The second
son why the orbital of interest cannot be a Wannier functi

FIG. 1. The Cudx22y2-like LMTO, which describes the~LDA !
conduction band of HgBa2CuO4, plotted in the CuO2 plane. Cu and
O sites are marked by, respectively,1 and'.
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is that the conduction band is crossed by, or has avoi
crossings with other bands~Fig. 2!. Since this occurs an eV
below«F , this, too, is irrelevant for the low-energy physic
which should therefore be described using an orbital wh
yields correct wave functions at and near«F and has errors
}(« i2«F)N11. The wider the energy range described co
rectly by this orbital, i.e., the higher theN, the longer its
spatial range.

We have found ageneralmethod, the order-N muffin-tin
orbital ~NMTO! method, by which for instance this kind o
orbital can be obtained.1 What Fig. 1 shows is in fact a
muffin-tin orbital ~MTO! with N51, linear MTO ~LMTO!
obtained from a density-functional local-density approxim
tion ~DF-LDA! NMTO calculation. This method has recent
enabled us to compute how the hopping integralst, t8, andt9
are influenced by chemical and structural factors, and it
proved successful for computingt i and t' for the ladder
cuprates without resort to the common, but dubious pro
dure of fitting to guessed TB bands.3

In Fig. 2 we demonstrate that asingleMTO of sufficiently
high N is capable of describing theentire conduction band,
including its conelike feature as well as smooth interpo
tions across avoided crossings: The dotted band was
tained variationally using an MTO withN53, thus yielding
band errors of order 2(N11)58. This figure also demon
strates that one may use adiscrete mesh of energies
e0 , . . . ,eN , to construct the MTO, which then has erro
}(« i2e0)•••(« i2eN). This is analogous to using Lagrang
or Newton interpolation instead of Taylor expansion, and
far more practical. The band obtained variationally has err
}(« i2e0)2

•••(« i2eN)2.

FIG. 2. Band structure of CaCuO2 with a 70 buckle, calculated
in the LDA with a single Bloch Cudx22y2 CMTO ~dotted! com-
pared with the full band structure~solid!.
R16 219 ©2000 The American Physical Society
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For some purposes, it is better to use a larger set of m
localized orbitals. For instance, in order to understand
microscopic origins oft, t8, and t9, we used a set with Cu
dx22y2, Opx , Opy , and Cus, obtained by upfolding through
a screening transformation.1,4,5

Materials with many bands and strong correlations a
being studied intensively. The first step of a quantitative
scription is a one-electron mean-field theory requiring a
sis, flexible enough to give individual orbitals desired pro
erties. For this,NMTO’s are uniquely suited.

As an example of a minimal set spanning all states i
wide energy range, let us consider the LDA valence a
conduction bands for GaAs, 18 of which fall in the ran
between215 and120 eV. With a Gasp3d5 As sp3d5f 7

basis of merely 25N52 MTO’s per GaAs, and mesh point
at 215, 0, and 10 eV, we obtained a variational band str
ture, which only above115 eV yielded errors as large as 0
eV. Even for this 35 eV range, which includes the Gad
semicore band at215 eV, no principal quantum number
were needed. To most practitioners, this is a surprising
sult. NMTO’s should be useful for computing excited-sta
properties with the GW method.7

For ground-state properties, only the Ga 3d and the va-
lence bands must be described. Using the minimal Gasp3d5

As sp3 MTO set, we find accuracies in the sum of the on
electron energies of 50 and 5 meV per GaAs for, respectiv
N51 andN52.1 This is highly satisfactory and opens th
way for accurate and efficient DF calculations, for instan
for large systems using techniques where the computa
increases merely linearly with the size of the system. H
erto, such calculations have only been possible with less
curate or geometry-restricted methods, such as semiemp
TB,6 screened LMTO-ASA,4 or screened multiple-scatterin
methods.8

The LMTO’s of the first and second generations4 were

expressed in terms of partial waves,wRl(e0 ,r R)YL( r̂ R), and

their energy derivatives,ẇRl(e0 ,r R)YL( r̂ R), truncated out-
side the atomic spheres (r R[ur2Ru). Everything else was
neglected in the atomic-spheres approximation~ASA!, which
then gave rise to a simple formalism and fast computat
The third generation5 succeeds in making this formalism
valid for overlapping MT potentials,V(r )5 (RvR(r R), to
first order in the overlap of thev ’s, thus making the ASA
superfluous. This is accomplished by attaching tails
screened spherical waves with the proper energy to the

FIG. 3. Si px5y5z kinked partial wave, its constituentsw,wo,
andc, and the LMTO~32!. No empty spheres were used.s is the
range of the central potential well.
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tial waves. The resulting set ofkinked partial waves,
fRL(«,r ) evaluated on the energy mesh, is what theNMTO
set is expressed in terms of:

xR8L8
(N)

~r !5 (
n50

N

(
RL

fRL~en ,r !LnRL,R8L8
(N) . ~1!

This may be considered as a polynomial approximation
the energy dependence of the partial-wave set, in quant
form. In the following, we derive the expressions for th
Lagrange matrices,Ln

(N) , and theNMTO Hamiltonian and
overlap matrices, starting out from the conceptually simpl
way of solving Schro¨dinger’s equation, namely by matchin
partial solutions. Our formalism should prove useful also
other contexts.

We consider the case where the wave functionsC i(r ) are
solutions of a Schro¨dinger equation with a MT potential
HC i(r )[@2D1V(r )#C i(r )5« iC i(r ). For simplicity, we
first assume that the MT wells do not overlap and ha
ranges,aR . At the end, definitions will be modified in such
way that the formalism holds also for overlapping wells. T
a’s will be hard-sphere radii which define the screening a
hence, the shape of the orbitals.

Kinked partial waves.5 Inside a MT sphere, the partia
solutions factorize into energy-dependent radial functio
wRl(«,r R), and angular functions. In the interstitial, we u
screened spherical waves, which are defined as those
tions of the wave equation, (D1«)cRL(«,r )50, which sat-
isfy the homogeneous boundary condition that the projec
of cRL(«,r ) ontod(r R82aR8)YL8( r̂ R8) bedRR8dLL8 . In fact,
only those solutions withRL corresponding to the so-calle
active channels will be used~in Fig. 1, the central Cu
dx22y2), and only the projections onto otheractivechannels
will vanish ~all noncentral Cudx22y2 projections!. The pro-
jection of cRL(«,r ) onto aninactive channel~all other than
dx22y2 on any Cu sphere! satisfies the boundary conditio
that its radial logarithmic derivative equals that of the rad
Schrödingersolution. The kinked partial wave,fRL(«,r ), is
now wRl(«,r R)YL( r̂ R) inside its own sphere and for its ow
angular momentum. It iscRL(«,r ) in the interstitial region.
Inside the sphere atR8, it vanishes for any other (R8L8
ÞRL) active channel, but is proportional t
wR8 l 8(«,r R8)YL8( r̂ R8) for an inactive channel. As a resul
with the normalizationwRl(«,aR)[1, the kinked partial
wave is a continuous solution of Schro¨dinger’s equation with
energy«. But since it has kinks at the spheres in the act
channels, it isnot a wave function.

The solid curve in the left-hand part of Fig. 3 shows the
px5y5z kinked partial wave for« in the middle of the va-
lence band and forr along the@111# line in the diamond
structure from the central Si atom, through the neares
neighbor, and halfway into the back-bond void. The oth
curves will be explained when we come to consider poten
overlap. The kinks at thea spheres~chosen smaller than
touching! are clearly seen. Since this kinked partial wave
designed for use in a minimalsp3 basis, only the Sis andp
waves were chosen as active. The inactive waves must th
fore be provided by the tails of the kinked partial wav
centered at the neighbors, and this is the reason for the st
Si d character seen inside the nearest-neighbor sphere.
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we been willing to keep Sid orbitals in the basis, the Sid
channels would have been active so that only waves wil
.2 would have remained inside the neighbor sphe
whereby the kinked partial wave would have been more
calized. Hence, the price for a smaller kinked-partial wa
basis, is longer spatial range and a stronger energy de
dence.

The elementKR8L8,RL(«) of the Hermitiankink matrix is
defined as the kink offRL(«,r ) at theaR8 sphere, projected
onto YL8( r̂ R8)/aR8

2 . Hence, it specifies how the Hamiltonia
operates on the set of kinked partial waves:

~H2«!fRL~«,r ![@2D1V~r !2«#fRL~«,r !

52 (
R8L8

d~r R82aR8!YL8~ r̂ R8!KR8L8,RL~«!.

~2!

Although an individual kinked partial wave is not
wave function, any smooth linear combination,
(RLfRL(«,r )cRL,i , is. Schro¨dinger’s equation may therefor
be formulated as the matching- or kink-cancellation con
tion: (RLKR8L8,RL(« i)cRL,i50 for all R8L8, which is a set of
homogeneous linear equations, equivalent with the Korrin
Kohn-Rostoker~KKR! equations.9 Here, the indices run only
over active channels.

Since the kink matrix is expensive to compute, it is n
efficient to find a one-electron energy from detuK(« i)u50,
and then solve the linear equations for the correspond
cRL,i . Rather, we construct a basis set,x (N)(r ), with the
property that it spans any wave functionC i(r ) with an en-
ergy « i in the neighborhood ofN11 chosen energies
e0 , . . . ,eN , to within an error }(« i
2e0)•••(« i2eN), and then solve the generalized eige
value problem

(
RL

^xR8L8
(N) uH2« i uxRL

(N)&bRL,i50 for all R8L8, ~3!

resulting from the Raleigh-Ritz variational principle.
MTO’s. Since all wave functions with« i5« may be ex-

pressed as(RLfRL(«,r )cRL,i , the MTO’s with N50 are
simply the kinked partial waves at the chosen ener
xRL

(0)(r )5fRL(e0 ,r ). The Hamiltonian and overlap matrice
are, respectively, ^x (0)uH2e0ux (0)&52K(e0) and

^x (0)ux (0)&5K̇(e0), as may be found from Eq.~2! and the
normalization chosen. Here,.[]/]«.

In order to find the MTO’s withN.0, we first define a
Green matrix: G(«)[K(«)21, and then, by an equation o
the usual type: (H2«)gRL(«,r )52d(r R2aR)YL( r̂ R), a
Green function,gRL(«,r ), which has one of its spatial vari
ables confined to thea spheres, i.e.,r 8→RL. Considered a
function of r , this confined Green function is a solution wi
energy « of the Schro¨dinger equation, except at its ow
sphere and for its own angular momentum, where it ha
kink of size unity. This kink becomes negligible when« is
close to a one-electron energy, because the Green fun
has a pole there. Equation~2! shows that g(«,r )
5f(«,r )G(«). ~Here and in the following, lower-case le
ters, such asg andf, denote vectors, and upper-case lette
s,
-

e
n-

i-

a-

t

g

-

:

a

ion

,

such asK and G, denote matrices;«, e, RL, and N are
numbers, though!. The confined Green function is thus fa
torized into a Green matrixG(«) which has the full energy
dependence, and a vector of functionsf(«,r ) which has the
full spatial dependence and a weak energy dependence.@The
energy windows we consider are limited in size by the
quirement thatfRL(«,r ) andfRL(«8,r ) cannot be orthogo-
nal.# Finally, we want to factorize ther and« dependences
completely and, hence, to approximate the confined Gr
function byx (N)(r )G(«): We note that subtracting from th
Green function a function which is analytical in energ
f(«,r )G(«)2v (N)(«,r )[x (N)(«,r )G(«), produces an
equally good Green function in the sense that both yield
same Schro¨dinger-equation solutions. If we can therefore d
termine the vector of analytical functions,v (N)(«,r ), in such
a way that eachxRL

(N)(«,r ) takes thesamevalue,xRL
(N)(r ), at

all mesh points, thenxRL
(N)(«,r )5xRL

(N)(r )1O@(«2e0)•••(«
2eN)#. Hence,x (N)(r ) is the set of NMTO’s. Now, since
x (N)(e0 ,r )5•••5x (N)(eN ,r ), theN th divided difference of
x (N)(«,r )G(«) equalsx (N)(r ) times theNth divided differ-
ence ofG(«). Moreover, if we letv (N)(«,r ) be a polyno-
mial in energy of (N21)st degree, itsNth divided differ-
enceon the mesh,DNv (N)(r )/D@0 . . .N#, will vanish. We
have, therefore, found the following solution:

x (N)~r !5
DNf~r !G

D@0 . . .N# F DNG

D@0 . . .N#G
21

[f~eN ,r !1
Df~r !

D@N21,N#
~E(N)2eN!1••• ~4!

1
DNf~r !

D@0 . . .N#
~E(1)2e1!•••~E(N)2eN!, ~5!

for theNMTO set. Since the kinks, (H2«)f(«,r )G(«), are
independent of«, NMTO’s with N.0 are smooth. By use o
the well-known expression for a divided difference:

DNf~r !G

D@0 . . .N#
5 (

n50

N
f~en ,r !G~en!

)m50,Þn
N ~en2em!

,

we finally obtain the expressions for the Lagrange matri
in Eq. ~1! and the energy matrices in Eq.~5!: E(M )

5(DM«G/D@0 . . .M #) (DMG/D@0 . . .M #)21, in terms of
the values of the Green matrix on the energy mesh.

TheNMTO set may thus be thought of as a ‘‘quantized
Lagrange interpolation of the kinked partial-wave set, wh
the weights are matrices rather thanNth-degree scalar poly
nomials in energy. Similarly, Eq.~5! may be interpreted as
‘‘quantized’’ Newton interpolation with the energies subs
tuted by matrices. If the mesh is condensed, New
interpolation becomes Taylor expansion:DNf/D@0 . . .N#
→(1/N!)dNf/d«N. The form~5! expresses theNMTO as a
kinked partial wave at the same site and with the same
gular momentum, plus a smoothing cloud of energ
derivative functions centered at all sites and with all angu
momenta. In the right-hand part of Fig. 3, the solid curve
the MTO withN51, and the dashed curve is the MTO wi
N50 shown also in the left-hand part. Here again, long
spatial range is the price for spanning the wave functions
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a wider energy range. The increase of range and smooth
with N follows from the relation:

~H2eN!x (N)~r !5x (N21)~r !~E(N)2eN!,

which also shows that theE’s are transfer matrices betwee
MTO sets of different order. Linear transformations of t
kinked partial waves,f̂(«,r )5f(«,r )T̂(«), change the
NMTO’s, but not the Hilbert space spanned by them.1 This
may be used to generate nearly orthonormal representa
where theÊ’s are Hamiltonians and wherêx̂ (M21)ux̂ (M )&
[1 for 1<M<N.

The expressions for the Hamiltonian and overlap matri
needed in Eq.~3! may be worked out and given as1

DNG

D@0 . . .N#
^x (N)u«2Hux (N)&

DNG

D@0 . . .N#

5
D2NG

D@@0 . . .N21#N#
1~«2eN!

D2N11G

D@@0 . . .N##
. ~6!

DM1N11G/D@@0 . . .M #N# is the (M1N11)st derivative
of that polynomial of degreeM1N11 which takes the val-
uesG(e0), . . . ,G(eN) at theN11 mesh points and, at the
first M11 points, also the valuesĠ(e0), . . . ,Ġ(eM) of the
energy derivatives. The one-electron energies are ‘‘ratios’
energy derivatives of such ‘‘Hermite interpolations’’ o
G(«), which itself has poles inside the mesh.

Having seen that the formalism is expressed in terms
one matrix, e.g.,K(«)5^x (0)u«2Hux (0)&5G(«)21, let us
indicate how this is generated:5,10 The elements of the
bare KKR structure matrix,9

BR8L8,RL
0

~«![( l 94pi 2 l 1 l 82 l 9

3CLL8 l 9 knl 9~kuR2R8u!YL9
* ~R2R8̂!

for RÞR8, and [0 for R5R8, specify how the spherica
waves, nl(kr R)YL( r̂ R), are expanded in regular spheric
waves,j l 8(kr R8)YL8( r̂ R8). The corresponding expansions o
the screened spherical waves are now specified by a scre
structure matrix, defined via

Ba~«!21[B0~«!211k21 tana~«!,
l

e

.

ess

ns

s

f

f

ned

and obtained by matrix inversion ofB0(«)1k cota(«).
Here,k cota(«) is a diagonal matrix withaRL(«) being the
hard-sphere phase shift tanaRl(«)[ j l(kaR)/nl(kaR), if the
channel is active, and the true phase shifthRl(«) if the chan-
nel is inactive.Ba(«) has short spatial range for energi
well below the ‘‘hard-sphere continuum,’’ as defined by t
division into active and inactive channels and the choice oa
radii for the former. The kink matrix is finally

K~«!52@kn~ka!#21@Ba~«!1k cotha~«!#@kn~ka!#21,

where ha(«) is the phase shift in the medium of harda
spheres: tanha(«)[tanh(«)2tana(«). Ba(«) contains the
essence of the hopping integrals, whose dependence o
local environment enters through the screening.

When the potentials overlap, we need to redefine
kinked partial waves as illustrated in Fig. 3:fRL(«,r )
[@wRl(«,r R)2wRl

o («,r R)#YL( r̂ R)1cRL(«,r ). Here,w(«,r )
~dot-dashed! is the radial solution for the central MT well
which now extends tos(.a). wo(«,r ) ~dotted! is the phase-
shifted wave proceeding smoothly inwards froms to the cen-
tral a sphere, where it is matched with a kink to the screen
spherical wavec ~dashed!. It is easily shown that with this
modification, the formalism holds to first order in the pote
tial overlap.1,5,10 In practice, this means that radial overla
of up to 30% may be treated without changes, and that o
laps as large as in Fig. 3, may be treated by adding a sim
kinetic-energy correction.1,5,10,11This should make the use o
empty spheres superfluous and open the way for effic
DF-molecular-dynamics calculations. Thea radii now
specify the screening, with a default value which is 80%
the atomic or ionic radius, and for semicore states, the c
radius.

In conclusion, we have solved the long-standing probl
of deriving useful, minimal sets of short-ranged orbitals fro
scattering theory. Into a calculation enters:~1! The phase
shifts of the potential wells.~2! A choice of which orbitals to
include in the set, the so-called active channels.~3! For
these, a choice of screening radii,aRL , to control the orbital
ranges.~4! An energy mesh on which the set will provid
exact solutions. These MTO’s have significant advanta
over those used in the past.
*Present address: S.N. Bose Centre, Calcutta 700091, India.
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