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Dynamical phases of driven vortices interacting with periodic pinning
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The finite temperature dynamical phases of vortices in films driven by a uniform force and interacting with
the periodic pinning potential of a square lattice of columnar defects are investigated by Langevin dynamics
simulations of a London model. Vortices driven along fBel] direction and at densities for which there are
more vortices than columnar defect8%B,) are considered. At low temperatures, two dynamical phases,
elastic flow and plastic flow, and a sharp transition between them are identified and characterized according to
the behavior of the vortex spatial order, velocity distribution, and frequency-dependent velocity correlations.

There is a great deal of current interest in the study ohonents irF’{* ~°9(t) with Q-V4=0 (or QL V). This force
dynamical phases of vortices driven by an external force angk jyst that resulting from the potential obtained by averaging
interacting with various arrays of pinning centers. One posyyv-cd(r) in the direction of drive. Thermal fluctuations lead,
sibility is periodic pinning resulting from alatt|ce.of ar_t|f|C|aI after sufficient time, to relaxation into the thermodynamic
defects. Understanding the dynamical phases in this Case.é?quilibrium state of theN, vortices interacting between

of interest be'caus.e I may be 'p0§S|bIe to observe them 'themselves and with this average potential. This state is re-
superconducting films with periodic arrays of holes, Mag-r. red to here as the infinite-drive state

netic dots and columnar defec(€D). Several techniques . o . .
have been developed to fabricate these films and studies of Since at lowT the infinite-drive and the zero-drive states

vortex dynamics in them have been reportédrheoretical &€ generally different, reordering of the vortices must take
workers have carried out investigations, mostly numerical, of/ace as the driving force is varied. This predicts the exis-
driven vortices under periodic pinnirfg® However, as dis- tence of at least two dynamical phases and, possibly, of one
cussed here, several questions remain open. Qynamlcal phase transition. On_e result obtamgd in this paper
To be specific, this paper considers two-dimensional voris to show that this prediction is correct. Studies of vortices
tices interacting with a columnar defect lattic@DL). The  interacting with a CDL carried out &t=0 find a rich variety
motion of N, such vortices is assumed to be governed byof phases, but no reordering to the infinite drive sfate.
Langevin equations for massless particles, which forl the For driven vortices interacting with a random pinning po-
vortex reads, tential, the existence of reordering and of a dynamical tran-
sition as the driving force is varied are well establisfeth
| oo —o—cd this case the pinning potential averaged in the direction of
ﬂa:':l TR AR D drive remains random in the direction perpendicular to it,
and has nontrivial effects on the dynamical phase diagram,
where 7 is the friction coefficientf!" = _Ez\lL:lVlUUU(rI as extensively discussed in Ref. 13. For motion on a periodic
—r;) is the force of interaction with other vortices? ~°¢ ELnoun?hg?t\?g:t'Zk ?g(;?ggﬁgl 5|mulat|pn§ _repor_ted in Ref. 14
g to the infinite-drive state only

=—3xV,U""%Yr,—R) is the force of interaction with the . s .
- . L occurs if sufficient thermal fluctuations are present. Other-
CDL, R denotes the CDL position§, is the driving force, ; ) .
wise the vortices are trapped in a metastable state.

an?nrtlhlg ;%eséﬁzgoorp;ﬁ\r/?ﬁ g%grgf r'tﬁf;g["t”egnriﬂﬁ]regﬁ;zes The numerical simulations reported here investigate the
of this system(hereafter called zer’o- drive statare studied properties _of the moving vortices steady_ states as a function
of the driving force, for a range of beginning at a value

(at lowT) in Refs. 8-10. well below the infinite-drive state melting temperatufg,,

dri\'/::sflf ijnitgis”(]:(:\sz'Egisgrtz;ljsagggte?cgfu:ﬁ ig;\ﬂ;/?%vzlgh and extending up td,,. The simulations are initialized with
) the vortices in the infinite-drive state and large enobgh

with velocity Vyq=F4/7 and in the CM frame of reference, In subsequent runs, at the sameF, is progressively de-

defined b.yr' =r|—th., t.he equations of .motlon are as in Eq. creased. The main conclusions reached by this approach are
(1), but without the driving ternirg and with the vortex-CDL 5, forT<T,, a dynamical phase with the spatial symmetry
force replaced by the tlme-ggpendent INteractionyt the infinite-drive state, elastic flow and long-range time
F/7e9(t)=So(—iQU" *Y(Q)e'® e/ Ve, whereQ de-  order exists foiF > F(T). At Fy=F(T) a transition sepa-
notes the CDL reciprocal lattice vectors adt°%(Q) isthe  rates it from another dynamical phase with distinct spatial
Fourier transform ofU?~¢Y(r). For high enough drives the order and plastic flow. It is found that the transition is sharp
Fourier components i’ (" ~°¥(t) for which Q-V4#0 os-  at low T and thatF.(T) increases a—T,,.

cillate fast, thus having a negligible effect on the vortex The details of the model are as followsVortices and
trajectory'! The vortex-CDL force in the CM frame reduces CD are placed on a square lattice subjected to periodic
then to the static one obtained by summing the Fourier comboundary conditionghereafter called the space latlicwith
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N square primitive cell of dimensiondxd, oriented with

the sides in thex andy directions. The vortex has a core of
linear dimensiond,>d[d,~2£(0)]. The interactions be-
tween vortices and between vortices and CD are chosen to
model films in the London limit. The vortex-vortex interac-
tion potential is a screened Coulomb dReppropriate for

the space lattice, with a short distance cutoff to account for T/T,
the vortex cor€. That is,U""(r) is the lattice Fourier trans-

form of UY(k)=4n2Jexp(—kkA)/(k*+A~?), where J F/F
=(¢2d,/32°\?) is the energy scale for vortex-vortex b
interactions'® \ is the penetration depth¢®=4 sirf(k,d/2) b) loessorsse Rlvesesseyy
+4 sirf(k,d2), k.=2 sin(@d/2d,) is the cutoff ink space, Besserlsevs SRepAsSSde
and A is the screening lengthA(C>\). The CD-lattice has ,'.’.‘.’.‘.’.’.'.-'_-.» K ,',’.'.‘." '.0:0 .
. . . . L e w e es 1 pMANS’ '
N.q Sites arranged on a square lattice, with lattice constant I Y A Y ’.‘..-‘-:;,','.'.‘.'
a.y, and is commensurate with the space lattice. The ;_','.‘.'.:.'_.'_-'_-_- ;:_'.’.‘.'.’_.'_.':'o
vortex-CD potential is chosen with deptt ~¢%(0), range e e e toniesasims
R.q>d, and a spatial dependence that gives square equipo- y ',37;(;:':,;-:{ 4 RBOE e
tentials and an attractive pinning force of constant modulus A TN el
Fp=|U""°%0)|/Req. That is, U’~°d(r)=U’"°4(0)(1 g}i‘<v‘:(ﬁ g il el e
—|x|/Rsq) for |X|<R.q, —I|x|<y=<|x|, and U"~°Y(r) T '.:::, SANT Catataeieieiele s
=U"%0)(1-]yl/Rea) for [y|<Req, —|yl=x=<|yl. RAANGOANK moeseleielelele,

The algorithm for the simulation of this model follows the
usual procedur® In the results reported next space lattices
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FIG. 1. (@ Structure function forB=2B, and T/T,=0.1.

with N=256X 256 and 51X 512 sites are used to accommo- SquaregCcircles: k= typical infinite (zerg- drive state reciprocal-
date a CDL withN.q=64 and 256, respectively, both with lattice vector of smallest modulus. InsEt, vs T. (b) Corresponding

a.q=32d. Other parameters are fixed &f=4d, A=160d,
U c40)=—J, R,q=3d,=12d, from which it follows that
F,=J/12d. The vortex systems studied halg=1.23N.q
and N4 or, in terms of the magnetic inductiorB
=128, andB=2B,, whereB,= ¢olazy is the matching
field. Typical run times are 25x10° steps of 1027 (r

P(r) for: (1) infinite-drive state,(2) elastic flow phase afF
=0.7F,, (3) plastic flow phase aFy=0.6F,, and(4) zero-drive
state forFy<<0.45,. The originr=0 is at each picture center.
Gray scale in each picture is proportional Bgr), but scales in
different pictures are unrelated.

= »d?/J is the unit of time, after the steady state is reached. <F, in thex direction. ForB> B, these states have only two
The reported results represent the average over several difessible spatial orders: incommensur@ssentially triangu-

ferent realizations of the random force-{0). The driving
force is assumed to be aloyd CDL (0,1)-direction].

lar) at B sufficiently large, and commensurate with the
x-direction periodicity at lowerB. The preciseB value at

To characterize the dynamical phases the following quanwhich the ground-state changes from one type to the other

tities are calculated in the steady-state regifmeTime av-
erage of the individual vortex velocities; (j=1, ...
their mean or the center of mag€M) velocity, V™
=3,vj/N,, and root-mean square deviatiolV;"

=V2(vja— VEM?IN,, where a=x,y. (i) Time-averaged
density-density correlation functiorR(r), and its Fourier
transform, the structure functio(k). (iii) Time-dependent
correlation functions for the CM velocityCS™(t) = (VE™(t
+s)VE"(s))s, and for the vortex velocity autocorrelation
function averaged over all vortice€S'(t) = (1/N,)Zi(vi(t
+9)vi4(S))s, Where( )s denotes average with respect to
time s, and the respective Fourier transfor8§™(») and
sz(w). Physically,P(r) is proportional to the probability of
finding a pair of vortices separated bywhereasC:™(w) is
proportional to the noise power spectrum.

The possible infinite-drive states and the corresponding
T,, are determined by equilibrium Monte Carlo simulations
of the model described above, with the vortex-CDL interac- 0.00F  uA TTe00s4—0
tion potential replaced by its average in thdirection. This
is a periodic washboard potential, consisting of grooves of
width 2R.4 running along they direction and separated by

depends on a nontrivial way on the model parameters. It is
found that, for the above described model parameters, two
typical such infinite-drive states are the vortex latti¢&k)
for B=2B,, with the P(r) shown in Fig. 1b.1), and for
B=1.28, with the vortex arrangement shown in Figap
The latter can also be seen as consisting of pairs of vortex
chains located within the grooves and displaced relative to
one another by half intrachain spacing. It is found that the
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FIG. 2. B=1.28,: (a Full circles: vortex positions for

acq along thex direction. Inside the groove the vortex is infinite-drive state. Full line: VL primitive unit cell. Open squares:
attracted to its center by a force of constant modufus CDL. (b) CM velocity Vi™ (unitsd/7) and 6om=AV{™ V™.
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FIG. 3. B=2B,: (8 CM velocity Vy"™ (units d/7) and &,
=AVy"/Vi™. (b) Correlation functiorCf,f(a)) atF4/F, values in-
dicated in the figure. The ordinate axiarbitrary unit$ in each
curve is scaled to show all curves in the same graghdenotes
wcy atFg/F,=1.0. Peaks are centered@{, in all curves.

FIG. 4. P(r) for B=1.28 in 512xX 512 space lattice(a) elas-
tic flow phase atFy=1.3F,, (b) plastic flow phase atFq
=1.2F,.

p

this interaction. The frequency dependenceCif'(w) and

sf .
VL for B=2B, melts to a vortex liquid af,,=0.9, and C. (@) suggest long-range time order.
that the VL forB=1.25B,, first melts to a smectic phase at (1) Transition region Fy~F, low T, both B Vortex
T/To~0.85) and then to a liquid at much highdt The spatial order changes in a sm&l| interval. This is seen both
results reported here f@=1.2%B,, are restricted ta/Tg,, P(r) and inS(k), for k equal to high-drive ground-state

~0.1. Monte Carlo simulations are also used to determinéeciprocal lattice vectors(Fig. 1). The value ofF, is esti-

the zero-drive states for thegvalues. ForB=2B, a VL mqted as the mldpplnt of this mterva!, as indicated in Fig. 1.
This rapid change in the vortex spatial order suggests a dis-

fr? mme;r:smrjra;eﬂ\]/v 'thctgﬁ Cﬁr;ia\r/]d hi\i{{mg ﬁnie ex;:air\]/o(;te)i(naéontinuous jump irS(k). However, the present data cannot
€ center ot the P ° Jnit cell 1S obtained, N oyt a sharp crossover. In the safginterval, theVy™

agreement with previous resutt® This state’sP(r) is Y F ;

o a 4 curves changes slope, as seefRigs. 2b) and 3a)]
shown in '.:'g' b4 For3—1.253¢ a cqmple{( COMMEeNsU- and the sharp peaks 68 ™(w) and CS/(w) are found to
rate VL with several vortices in the unit cell is found. disappear @ «

The results of the dynamical simulations carried out here, (iii) Plastic flow Fy<F., low T, B=2B,,. Plastic flow
. . . . . . (R} 3y - ¢ .
to be discussed in detail next, identify two dynamical phasesygys i, forF, just belowF, and relative motion increases as

elastic flow and plastig flow, and a transition between therq:d decreases, as evidenced by the sharp change in slope and
around Fy=F(T). It is found that forB/B,=1.25 and  .;ntinuous growth inAVf,m/V§m shown in Fig. 8a). The
T/Ty~0.2,Fc/F,~1.25 and that foiB/B,=2 the Fo(T)  yortices become pinned in the zero-drive state fey
CUrve 1s that shown.m Fig. (8. In bOth ﬂ.OW regl_mes.the <0.45,. Itis found that all vortices become pinned simul-
time-averaged velocity of all vortices is in the direction of taneously aF 4=0.45 , . The vortices are disordered B¢,

. . AT,
drive. TheVy™(Fq) curves ¥-I curve at low T are depicted just belowF [Fig. 1(b.3)] and, asF further decreases, the
in Figs. 2b) and 3a). The detailed properties of these phases,griices show increasing order in the zero-drive state sym-
are as follows. _ metry, as suggested by tiSék) vs F4 curves fork equal to
~ (i) Elastic flow Fq>F, low T, both B The moving vor- ;a1 drive state reciprocal lattice vectdiig. 1(a)]. This
tices remain localized with respect to each other around thg,crease in order arises becauseFgglecreases the vortices
infinite-drive state rela_ltive_ equilibrium positions. This is SUg-spend more of their travel time near the zero-drive state equi-
gested byP(r) shown in Figs. {b.1), 1(b.2), and 4a). These jiprium positions. There is no long-range time order as
consist of isolated spots with the symmetry of this state. Apown by the absence of sharp peaks in the frequency de-
Fq—F. these spots become larger, indicating increase "bendence 0E™(w) andCS'(w) [Fig. 3b)].
relative vortex motion in the CM frame. The time-averaged ;) Plastic flow: low T Fe<F.. B=1.28,,. For Fy

: ; s . .

vglocity cifmallc\r/nortices is, yvithin the simulation grrorvcm, just belowF, some spatial order remains. For0 andx
since AV, "IV (a=x.y) is small for Fy>F [Figs. 2b),  '—5 . P(r) [Fig. 4b)] consists of isolated spots, indicating
and 3a)]. Similar results are found foAV{™/ V™. Vortex  that the double vortex chain-structure of the infinite-drive
motion consists of a translation in the direction of drive with state transforms to a single chain one with, roughly, nearest-
Vy™ and of periodic oscillations with frequency.,  neighbor chains displaced relative to each other by half in-
=27rV§m/acd and higher harmonics around the infinite-drive trachain spacing, and that the vortices oscillate around the
state equilibrium positions. These oscillations are suggestetbrresponding equilibrium positions. For largethe spots

by C:™(w) andef(w) which are found to have sharp peaks become interconnected by stripes in the direction of motion,
at ., and peaks with smaller amplitudes at some harmonic#dicating that interchain relative motion at these separa-
as illustrated in Fig. ®). This frequency coincides with the tions, and thus plastic flow, is taking place. The behavior of
oscillation frequency of the vortex-CDL interaction in the AV{™/Vi™ across the transitiorfFig. 2(b)] shows little
frame moving with the CM. This suggests that the periodicchange, suggesting that plastic flow is weak. The frequency
vortex motion is thénonlineay elastic response of the VL to dependence ofCS™(w) and CS/(w) is found to remain
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sharply peaked. These results are interpreted as indicatingore difficult to observe, particularly foB=1.25,. For
that vortices move together with the chain, oscillating around= 2B, the F(T) curve is shown in Fig. ().

their equilibrium position within it, but relative motion be-  For other values oB>B,, and drive in the0,1) or (1,0
tween chains is taking place. A%, decreases further plastic di_rections, the possible i_nfinite-drive states are eithgr a nearly
flow continues with increasing VS™/Vi™, but the vortices triangular VL, or a VL withn vortex chains trapped in each
remain ordered in single chains and are unpinnedHgr groove, so that a similar dynamical phase diagram is antici-
>0 [Fig. 2(b)]. It is expected that vortex reordering and pated. . L .

pinning would take place ds,4 decreases. The failure to see The experimental verification of the dynamical phases

this in the oresent simulations is interoreted vidence th nd of the transition predicted in this paper may be possible
S In the present simulations 1S Intérpreted as evidence clean superconducting films with sufficient thermal fluc-
trapping in a metastable state is taking place.

_ ) tuations to allow relaxation to the infinite-drive state to take
(v) T dependenceAs T increased=.(T) also increases,

place at large drives. Signatures of these phases are present
because thermal fluctuations make the infinite-drive state Vlin the V-l curve and in the noise power spectrum. Visualiza-

softer. Thermal fluctuations also lead to smaller values ofion of the spatial order may also be possible using decora-
S(k). This makes the dynamical transitions described abovéon or fast scanning tunnel microscope techniques.
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