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Effective bending stiffness of carbon nanotubes

C.Q.RU
Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8
(Received 7 April 200D

Owing to their single atom-layer structure, actual bending stiffness of single-walled carbon nanotubes is
much lower than that given by the elastic shell model if the commonly defined representative thickness is used.
In this paper, it is proposed that the effective bending stiffness of single-walled nanotubes should be regarded
as an independent material parameter not related to the representative thickness by the classic bending stiffness
formula. Based on this concept, the modified formulas for the critical axial strain and the wavelength of axially
compressed buckling are found to agree well with known data of molecular-dynamic simulations. On the other
hand, in contrast to single-walled nanotubes, bending stiffness of multiwalled nanotubes is found to be well
estimated by the classic bending stiffness formula when adjacent nanotubes are squeezed severely so that the
induced high friction barrier prevents interlayer slips. In particular, these results offer a plausible interpretation
for the wavelength of large-strain local buckling of multiwalled carbon nanotubes under bending observed by
Falvo et al. [Nature(London 389, 582(1997].

The discovery of carbon nanotuBés 1991 has attracted shell theory have been commonly applied to carbon nano-
wide attention and stimulated extensive studiéumerous tubes. In many applications, it has been tacitly assumed that
studies showed that carbon nanotubes exhibit superior mé¢he bending stiffness of a SWNT or MWNT, as an elastic
chanical properties over any other known materials and holghell, is given by the classic formdfa
substantial promise as superstrong fibers for composite.

Hence, one of the most important applications of carbon D— Eh? 1)
nanotubes is likely to take advantage of their exceptionally C12(1-)’

high stiffness combined with excellent resilience. Recently,

mechanical deformation of carbon nanotubes has been thehere h is the thickness of the nanotubghen h=t
subject of many experimental and molecular-dynamic=0.34nm for a SWNT, andh=Nt for an N-layered
simulations® In particular, axially compressed buckling of MWNT), E is the in-plane Young’s modulus, andis the
carbon nanotubes has been one of the topics of primarfoisson ratio. In particular, formulél) predicts that the
interest*®=° For example, Yakobson, Brabec, and Bernfiolc bending stiffness is proportional to the cube of the thickness.
compared the results of atomistic modeling for axially com-Unfortunately, as noted by Yakobson, Brabec, and
pressed buckling ofsingle-walled nanotub@SWNT's with ~ Bernhole] the actual bending stiffness of SWNT’s is much
elastic shell model. Their results, together with many otherslower than given by Eq(1) if the representative thickness
showed that “the laws of continuum mechanics are amaz=0.34 nm is used. In fact, the effective bending stiffness of a
ingly robust and allow one to treat even intrinsically discreteSWNT is 0.85 eV, while its in-plane stiffness iEt
objects only a few atoms in diameter(Yakobson and =360J/nt.*!! As pointed out by Yakobson, Brabec, and
Smalley). Thus, because atomistic modeling remains pro-Bernhole! if the classic relationshifil) between the bending
hibitively expensive for large-sized atomic systems, elasticstiffness and the thickness is retained, the thickness of
continuum shell models are particularly useful for the studySWNT’s would be 0.066 nm, which is even much smaller
of carbon nanotubes. than the C-C bond lengttebout 0.14 nm If such a small

To apply the elastic shell model to carbon nanotubes, @epresentative thickness is used in the elastic shell model for
basic quantity that has to be defined appropriately is the repeach layer, interior gaps exist between adjacent shells of in-
resentative thickness of SWNT’s. Consistent with the conterlayer spacing=0.34 nm. In the present author’s opinion,
cept established for graphite sheet, almost all previous rethis causes not only an inconsistency with the common con-
searchers have used the equilibrium interlayer spacing afept of the representative thickness established for graphite
adjacent nanotubes, denoted byabout 0.34 nn) as the sheet, but also some inconvenience in application of the elas-
representative thickness of a SWNSee, e.g., Refs. 5, 7 and tic shell theory to MWNT’s. No doubt, to confirm the appli-

8, and Yuet al®). One of the advantages of this definition is cability of the elastic shell model to carbon nanotubes, it is
that multilayer graphite and(multiwalled nanotubes necessary to clarify this issue.

MWNT’s can be treated as a solid block or a hollow single- This discrepancy is attributed to single atom-layer struc-
layer shell without any interior gap between adjacent graphture of SWNT’s. In fact, the classic formuld) is based on

ite sheets or nanotubes. Based on this concept, multiwallethe so-called “straight normal postulaté® of continuum
nanotubes have been treated as singlelayer cylindrical shelhell theory, in which elastic shells can be divided infinitesi-
whose thickness is equal to the difference of the outermognally into thinner layers without interlayer slips, and then
radius and the innermost radi(see, e.g., Refs. 5 and 7, and flexural strains at any point are proportional to the distance
Wong, Sheehan, and LieBgrand the equations of elastic between that point to the middle face. For a SWNT, how-
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ever, the single atom layer cannot be divided into thinnesside of Eq.(5) can be treated as a continuous quantity when
layers, and flexural stresses are actually concentrated ontle half wave numbers vary. Obviously, if the classic relation
narrow region around the central line of the atom layer,(1) holds, formulag5) and(6) reduce to their classic forms
rather than distributed linearly over the representative thickas
ness. This clearly explains why the actual bending stiffness

0
of SWNT's is much(about 25 timessmaller than that pre- _ &: h

dicted by Eq. (1) when the representative thickness Eh  3(1-1HR’

=0.34nm is used. This phenomenon is similar as elastic )

“lattice shell” characterized by an effective bending stiff- i 2, N2 o [AA L

ness different than that predicted by the classic fornwid? m (M B =23(1=v ). ©

Based on this explanation, and inspired by the theory of

elastic lattice shell¥ it is proposed here that the effective L€t us compare the formulag)—(6) with the results of

bending stiffness of SWNT’s should be regarded as an indgnolecular_dynamics simulation of Refs. 4 and 6-9 for

: C : WNT’s. The critical strain obtained in Ref. 4 for SWNT’s
pendent material parameter which is not necessarily relateﬁf diameter 1 nm is 0.05, while that obtained in Ref. 8 for

to the representative thickness through the classic formul

. WNT’s of the same diameter is 0.08, both of which are in
(1). In other words, a SWNT should be treated as a Smglegood agreement with the value 0.075 predicted by the

layer elastic shell with an effective bending stiffness differ- _ _
entrom that given by Eq1). Snce the lasic shelheory Preee's orm4a (WhereD <0852V, En 3600t see
does not essentially rely on the relatid, it can be verified g ain predicted by the classic formu® is about 0.4, which
(the detail is omitted hejahat almost all equations of elastic 5 five times larger than the above values of molecular dy-
shell theory remain valid, with or even without slight modi- ngmics simulation. Further, the results shown by Fig. 2 of
fication. Here, to demonstrate the efficiency of this conceptRef. 6 indicate that the critical strain is approximately in-
let us discuss axially compressed buckling of SWNT’s.  yersely proportional the radii of SWNT’s, as predicted by the
Consider a single layer cylindrical shell with length  formula (4). Thus, it is concluded that the concept of effec-
radiusR, thicknessh, the Young’'s moduluss, the Poisson tive bending stiffness of SWNT’s proposed here is in good
ratio v, and the effective bending stiffnefs Let NS be the agreement with known data for axially compressed buckling
uniform axial membrane force prior to buckling, wherés  of carbon SWNT's.
the axial coordinate of the shell. Assume the cylindrical shell Regarding the wavelength, on the other hand, it is known
be hinged at its ends. Thus, in a way similar as the standarithat what can be determined by linear buckling analysis un-
derivation given in the classic elastic shell theboryme can der the condition(3) is just a combination of the two half
verify that the critical condition for axially compressed in- wave numberd®*®In particular, it is easy to verify from Eq.

finitesimal buckling of the cylindrical shell is (5) that the numbeg is bounded by two limit casegg=0
andB=m, corresponding to axisymmetric mode and nonaxi-
NSLz 1 S, 12m?2z2 nL symmetric mode with equal axial and circumferential wave-
— S 2= (M B)+ 5, B= , lengths, respectively. For axisymmetric buckling moule
D m 7 (m°+ B%) 27R . .
=0 (and 8=0), formula(5) gives the axial wavelength as
Z=Eh/(12R°DL?, 2 2L D\
( @ EZZW\/ﬁ ﬁ) when n=0. (7)

where the negative sign on the left-hand side indicates the
Compressive axial force, and the integmsand n are the However, mOleCUlar-dynamiCS simulations of carbon nano-
axial and circumferential half wave numbers, respectivelyfubes have indicated that the actual buckling mode is not
Here, it should be kept in mind that is the effective bend- amsym_metnc‘f'e'g Hence, in accordance with the above
ing stiffness which may be different from that given by Eq analyS|S and known expe”mental data for elastic Sﬁéum

(1) For SWNT’s of moderate aspect rafmy’ not less than assume that the axial Wavelength is equal to the circumfer-

five (Refs. 4 and 6-)4, the following condition holds: ential wavelength and thusi=g. In doing so, it follows
from Eq. (5) that a factor of 2 has to be multiplied to the
L2 right side of Eq.(7), that is, the actual axial wavelength is

\/Eh/DRﬂ_2 >1. (3)  twice that predicted by Ed7). In this way, for example, the

wavelength of a carbon SWNT of radius 0.67 nm predicted
by the present model is about 1.2 nm, which is in excellent

Thus, the critical axial strain is : . .
agreement with the value 1.3 nm obtained in Ref. 9 by mo-

N lecular dynamics simulation.' .
B, — \/DI(Eh), (4) Now, let us turn to bending _st|ﬁness of MWNT’S. For
Eh R MWNT'’s, the friction energy barrier between adjacent nano-
] ) tubes has an essential effect on their effective bending stiff-
while the half wave numbers have to satisfy ness. On one hand, it is known that the friction barrier be-

tween undeformed adjacent nanotubésf equilibrium
interlayer spacing 0.34 nmis so low that the latter could
almost freely slide and rotate to each othkrlt is
anticipated that interlayer slips could substantially affect in-
where the conditior(3) implies that the inverse of the left finitesimal buckling behavior of MWNT’s. Despite this, al-
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is so high that interlayer slips between adjacent nanotubes
are prohibited.

This conclusion offers a plausible interpretation for the
wavelength of large-strain local buckling of MWNT’s under
bending, observed by Fahet al® It is known'® that bending
of an originally circular tube causes the ovalization of the
cross section, which eventually leads to as large as a 20%
change in the diameters when local buckling occfiras a

T result, the vertical diameter of each tube of the MWNT under
bending will decrease by 2048 Consequently, the interlayer

FIG. 1. Bending stiffness of a doublewalled carbon nanotube inspacing between adjacent nanotubes is reduced by 20% at
the absence of interlayer slips. the top and bottom of the cross section, where the maximum
tensile or compressive flexural stress occurs, respectively.

most all previous workers have overlooked interlayer slip such a substantial rgduction jn the. interlayer .Sp.aCi.”g will
Yead to a very high friction barrier which largely limits inter-

and treated M.WNT,S as single-layer shells With the thiCk_nesﬁayer slips between adjacent nanotubes. Thus, as explained
equal to the difference of the outermost radius and the iNNelspove, the bending stiffness of MWNT's in this circum-
most radius. Only recently, by assuming free interlayer slipstance can be calculated by the form(a This explains the
between the inner and outer nanotubes, a double-shell modghplicability of the classic elastic shell model to large-strain
has been suggested by the present atfttior axially com- bending buckling of MWNT's.

pressed infinitesimal buckling gdouble-walled nanotube Here, it is noted that, as stated by Fabtoal,® the wave-
DWNT's. The results of Ref. 15 showed that inserting anlength observed by these authors for an eight-layered
inner tube into a SWNT does not significantly change theMWNT is almost four times_the_ir theoreticz_il v_alue. Accord-
critical axial strain. This conclusion is in sharp contrast to theNd to the present model, this discrepancy is likely due to the
classic formula6) which predicts that the critical axial strain following two causes(1) The formula used by Falvet al.in
should double when its thickness doubles. Verification oiRef' 5 is exactly the formulé) with Eg. (1) shown above,

. ) - : . which is valid only for axisymmetric moden&0). As men-
this theoretical prediction poses an interesting research toPl[‘i:oned before, molecular dynamics simulations of carbon
for further work. ’

) . . nanotubes have indicated that the actual buckling mode is
On the other hand, interlayer slips are largely prohibited,ot axisymmetrit®? (this fact becomes even more obvious
in some circumstancesee below. If it is the case, bending when both the ovalization of the cross section and the local-
deformation of MWNT's obeys the *“straight normal ized character of bending buckling destroy the geometrical

postulate™%!®and then flexural strains at any point are pro-axisymmetry of MWNT'S. In particular, our discussion has
portional to its distance to the middle line. To estimate theshown that the predicted axial wavelength based on the rela-
bending stiffness of MWNT’s, let us consider a small piecetion m= g is in good agreement with the result of Ref. 9 by
of a DWNT without any interlayer slip, as shown in Fig. 1. molecular-dynamics simulation. Thus, by taking=4
Assume that both the depth of the small piece and the bendc@lled “square mode™), the axial wavelength will be

ing curvature are in unity, then the flexural strain at any pointWice that given by Eg(7). (2) On the other hand, as stressed

; ) . . : y Calladine(see p. 609 in Ref. 16 the curvature radius
is equal to its distance to the neutral middle line, and theappearing in the formulas for bending buckling should be

bending stiffness is equal to the bending moment. It '° 5€€lnderstood as the deformed local curvature radius, rather
from Fig. 1 that the bending stiffness ISEX1/2)°  than the original one. According to bending buckling
=Eh%/(16), whereh=2t. Similarly, the bending stiffness is theory® the deformed local curvature radius is about twice
calculated for several MWNT’s and the results are shown irthe initial one when local buckling occurs. Thus, because
Table I. the axial wavelength is proportional to the square root of
It is seen from Table [a factor of 1/(+ »?) will be  the radius, this modification contributes an extra factor of
added if the two-dimensional effect of the Poisson ratio isl-4 to the axial wavelength. In conclusion, the actual axial
considered that the relative error is just 25% even for a Wavelength should be three times that predicted by the

DWNT, and further reduced to about 10% when the numbeg(’rmUIa (7). This almost explains the paradox raised in

of layers increases to three. In particular, the error tends to' =" =" . . . .
zero rapidly with the increasing layers. Hence, it is con- In summary, the concept o_f effective bendlng_ stiffness is

. . ' L suggested for SWNT's as an independent material parameter
cluded that the bending stiffness of carbon MWNT's is well ¢ hecessarily related to the representative thickness by the
evaluated by the formulél) provided that the friction barrier ¢jassic formula1). The merit of this concept is that it high-
lights the noncontinuum character of carbon nanotubes. With
the aid of this concept, the elastic shell equations can be
modified easily and then applied to singlewalled carbon
nanotubes. A comparison with known data indicates that the
derived formulas for the critical axial strain and buckling
wavelength are in good agreement with the results of mo-
lecular dynamics simulations. On the other hand, for
MWNT’s, the bending stiffness is found to be well estimated
D Eh%(16) Eh%(13.5) Eh%(12.8) Eh%(12.5) Eh%(12.2) by the classic formuldl) provided that the friction barrier
between adjacent nanotubes is sufficiently high that inter-

TABLE I. Bending stiffnes® of N-layered carbon nanotubes in
the absence of interlayer slig@here the thicknesks=Nt, andt is
the representative thickness of single-walled carbon nangtubes

h=2t h=3t h=4t h=>5t h=8t
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layer slips are actually prohibited. In particular, it is the  The financial support of the Natural Science and Engi-
case when large-strain local buckling of MWNT’s under neering Research Council of Canada is gratefully acknowl-

bending is considered. edged.
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