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Effective bending stiffness of carbon nanotubes
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~Received 7 April 2000!

Owing to their single atom-layer structure, actual bending stiffness of single-walled carbon nanotubes is
much lower than that given by the elastic shell model if the commonly defined representative thickness is used.
In this paper, it is proposed that the effective bending stiffness of single-walled nanotubes should be regarded
as an independent material parameter not related to the representative thickness by the classic bending stiffness
formula. Based on this concept, the modified formulas for the critical axial strain and the wavelength of axially
compressed buckling are found to agree well with known data of molecular-dynamic simulations. On the other
hand, in contrast to single-walled nanotubes, bending stiffness of multiwalled nanotubes is found to be well
estimated by the classic bending stiffness formula when adjacent nanotubes are squeezed severely so that the
induced high friction barrier prevents interlayer slips. In particular, these results offer a plausible interpretation
for the wavelength of large-strain local buckling of multiwalled carbon nanotubes under bending observed by
Falvo et al. @Nature~London! 389, 582 ~1997!#.
m
o

sit
o

all
tly

t
i
f
a
lc
m

r
az
te

ro
st
d

,
re
on

r

d
is

le
ph
ll

he
o
d
c

no-
that
tic

ss.
nd
h

f a

d

of
ler

l for
f in-
n,
on-
hite
las-
i-
t is

uc-

si-
n
ce

w-
The discovery of carbon nanotubes1 in 1991 has attracted
wide attention and stimulated extensive studies.2 Numerous
studies showed that carbon nanotubes exhibit superior
chanical properties over any other known materials and h
substantial promise as superstrong fibers for compo
Hence, one of the most important applications of carb
nanotubes is likely to take advantage of their exception
high stiffness combined with excellent resilience. Recen
mechanical deformation of carbon nanotubes has been
subject of many experimental and molecular-dynam
simulations.3 In particular, axially compressed buckling o
carbon nanotubes has been one of the topics of prim
interest.4,6–9 For example, Yakobson, Brabec, and Bernho4

compared the results of atomistic modeling for axially co
pressed buckling of~single-walled nanotubes! SWNT’s with
elastic shell model. Their results, together with many othe
showed that ‘‘the laws of continuum mechanics are am
ingly robust and allow one to treat even intrinsically discre
objects only a few atoms in diameter’’~Yakobson and
Smalley2!. Thus, because atomistic modeling remains p
hibitively expensive for large-sized atomic systems, ela
continuum shell models are particularly useful for the stu
of carbon nanotubes.

To apply the elastic shell model to carbon nanotubes
basic quantity that has to be defined appropriately is the
resentative thickness of SWNT’s. Consistent with the c
cept established for graphite sheet, almost all previous
searchers have used the equilibrium interlayer spacing
adjacent nanotubes, denoted byt ~about 0.34 nm!, as the
representative thickness of a SWNT~see, e.g., Refs. 5, 7 an
8, and Yuet al.3!. One of the advantages of this definition
that multilayer graphite and~multiwalled nanotubes!
MWNT’s can be treated as a solid block or a hollow sing
layer shell without any interior gap between adjacent gra
ite sheets or nanotubes. Based on this concept, multiwa
nanotubes have been treated as singlelayer cylindrical s
whose thickness is equal to the difference of the outerm
radius and the innermost radius~see, e.g., Refs. 5 and 7, an
Wong, Sheehan, and Lieber3!, and the equations of elasti
PRB 620163-1829/2000/62~15!/9973~4!/$15.00
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shell theory have been commonly applied to carbon na
tubes. In many applications, it has been tacitly assumed
the bending stiffness of a SWNT or MWNT, as an elas
shell, is given by the classic formula10

D5
Eh3

12~12n2!
, ~1!

where h is the thickness of the nanotube~then h5t
50.34 nm for a SWNT, andh5Nt for an N-layered
MWNT!, E is the in-plane Young’s modulus, andn is the
Poisson ratio. In particular, formula~1! predicts that the
bending stiffness is proportional to the cube of the thickne
Unfortunately, as noted by Yakobson, Brabec, a
Bernhole,4 the actual bending stiffness of SWNT’s is muc
lower than given by Eq.~1! if the representative thicknesst
50.34 nm is used. In fact, the effective bending stiffness o
SWNT is 0.85 eV, while its in-plane stiffness isEt
5360 J/m2.4,11 As pointed out by Yakobson, Brabec, an
Bernhole,4 if the classic relationship~1! between the bending
stiffness and the thickness is retained, the thickness
SWNT’s would be 0.066 nm, which is even much smal
than the C-C bond length~about 0.14 nm!. If such a small
representative thickness is used in the elastic shell mode
each layer, interior gaps exist between adjacent shells o
terlayer spacingt50.34 nm. In the present author’s opinio
this causes not only an inconsistency with the common c
cept of the representative thickness established for grap
sheet, but also some inconvenience in application of the e
tic shell theory to MWNT’s. No doubt, to confirm the appl
cability of the elastic shell model to carbon nanotubes, i
necessary to clarify this issue.

This discrepancy is attributed to single atom-layer str
ture of SWNT’s. In fact, the classic formula~1! is based on
the so-called ‘‘straight normal postulate’’10 of continuum
shell theory, in which elastic shells can be divided infinite
mally into thinner layers without interlayer slips, and the
flexural strains at any point are proportional to the distan
between that point to the middle face. For a SWNT, ho
9973 ©2000 The American Physical Society
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ever, the single atom layer cannot be divided into thin
layers, and flexural stresses are actually concentrated
narrow region around the central line of the atom lay
rather than distributed linearly over the representative th
ness. This clearly explains why the actual bending stiffn
of SWNT’s is much~about 25 times! smaller than that pre
dicted by Eq. ~1! when the representative thicknesst
50.34 nm is used. This phenomenon is similar as ela
‘‘lattice shell’’ characterized by an effective bending stif
ness different than that predicted by the classic formula~1!.12

Based on this explanation, and inspired by the theory
elastic lattice shells,12 it is proposed here that the effectiv
bending stiffness of SWNT’s should be regarded as an in
pendent material parameter which is not necessarily rel
to the representative thickness through the classic form
~1!. In other words, a SWNT should be treated as a sing
layer elastic shell with an effective bending stiffness diffe
ent from that given by Eq.~1!. Since the elastic shell theor
does not essentially rely on the relation~1!, it can be verified
~the detail is omitted here! that almost all equations of elast
shell theory remain valid, with or even without slight mod
fication. Here, to demonstrate the efficiency of this conce
let us discuss axially compressed buckling of SWNT’s.

Consider a single layer cylindrical shell with lengthL,
radiusR, thicknessh, the Young’s modulusE, the Poisson
ratio n, and the effective bending stiffnessD. Let Nx

0 be the
uniform axial membrane force prior to buckling, wherex is
the axial coordinate of the shell. Assume the cylindrical sh
be hinged at its ends. Thus, in a way similar as the stand
derivation given in the classic elastic shell theory,10 one can
verify that the critical condition for axially compressed i
finitesimal buckling of the cylindrical shell is

2
Nx

0L2

Dp2 5
1

m2 ~m21b2!21
12m2Z2

p4~m21b2!2 , b5
nL

2pR
,

Z5AEh/~12R2DL2, ~2!

where the negative sign on the left-hand side indicates
compressive axial force, and the integersm and n are the
axial and circumferential half wave numbers, respective
Here, it should be kept in mind thatD is the effective bend-
ing stiffness which may be different from that given by E
~1!. For SWNT’s of moderate aspect ratio@say, not less than
five ~Refs. 4 and 6–9!#, the following condition holds:

AEh/D
L2

Rp2 @1. ~3!

Thus, the critical axial strain is

2
Nx

0

Eh
5

2

R
AD/~Eh!, ~4!

while the half wave numbers have to satisfy

1

m2 ~m21b2!25AEh/D
L2

Rp2 , ~5!

where the condition~3! implies that the inverse of the lef
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side of Eq.~5! can be treated as a continuous quantity wh
the half wave numbers vary. Obviously, if the classic relat
~1! holds, formulas~5! and ~6! reduce to their classic form
as

2
Nx

0

Eh
5

h

A3~12n2!R
,

1

m2 ~m21b2!252A3~12n2!
L2

Rhp2 . ~6!

Let us compare the formulas~4!–~6! with the results of
molecular dynamics simulation of Refs. 4 and 6–9 f
SWNT’s. The critical strain obtained in Ref. 4 for SWNT
of diameter 1 nm is 0.05, while that obtained in Ref. 8 f
SWNT’s of the same diameter is 0.08, both of which are
good agreement with the value 0.075 predicted by
present formula~4! ~whereD50.85 eV, Eh5360 J/m2, see
Refs. 4 and 11!. In contrast to this agreement, the critic
strain predicted by the classic formula~6! is about 0.4, which
is five times larger than the above values of molecular
namics simulation. Further, the results shown by Fig. 2
Ref. 6 indicate that the critical strain is approximately i
versely proportional the radii of SWNT’s, as predicted by t
formula ~4!. Thus, it is concluded that the concept of effe
tive bending stiffness of SWNT’s proposed here is in go
agreement with known data for axially compressed buckl
of carbon SWNT’s.

Regarding the wavelength, on the other hand, it is kno
that what can be determined by linear buckling analysis
der the condition~3! is just a combination of the two hal
wave numbers.10,13 In particular, it is easy to verify from Eq
~5! that the numberb is bounded by two limit cases:b50
andb5m, corresponding to axisymmetric mode and nona
symmetric mode with equal axial and circumferential wav
lengths, respectively. For axisymmetric buckling moden
50 ~andb50!, formula ~5! gives the axial wavelength as

2L

m
52pARS D

EhD 1/4

when n50. ~7!

However, molecular-dynamics simulations of carbon na
tubes have indicated that the actual buckling mode is
axisymmetric.4,6,9 Hence, in accordance with the abov
analysis and known experimental data for elastic shells,13 we
assume that the axial wavelength is equal to the circum
ential wavelength and thusm5b. In doing so, it follows
from Eq. ~5! that a factor of 2 has to be multiplied to th
right side of Eq.~7!, that is, the actual axial wavelength
twice that predicted by Eq.~7!. In this way, for example, the
wavelength of a carbon SWNT of radius 0.67 nm predic
by the present model is about 1.2 nm, which is in excell
agreement with the value 1.3 nm obtained in Ref. 9 by m
lecular dynamics simulation.

Now, let us turn to bending stiffness of MWNT’s. Fo
MWNT’s, the friction energy barrier between adjacent nan
tubes has an essential effect on their effective bending s
ness. On one hand, it is known that the friction barrier b
tween undeformed adjacent nanotubes~of equilibrium
interlayer spacing 0.34 nm! is so low that the latter could
almost freely slide and rotate to each other.14 It is
anticipated4 that interlayer slips could substantially affect in
finitesimal buckling behavior of MWNT’s. Despite this, a
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most all previous workers have overlooked interlayer sl
and treated MWNT’s as single-layer shells with the thickn
equal to the difference of the outermost radius and the in
most radius. Only recently, by assuming free interlayer s
between the inner and outer nanotubes, a double-shell m
has been suggested by the present author15 for axially com-
pressed infinitesimal buckling of~double-walled nanotube!
DWNT’s. The results of Ref. 15 showed that inserting
inner tube into a SWNT does not significantly change
critical axial strain. This conclusion is in sharp contrast to
classic formula~6! which predicts that the critical axial strai
should double when its thickness doubles. Verification
this theoretical prediction poses an interesting research t
for further work.

On the other hand, interlayer slips are largely prohibi
in some circumstances~see below!. If it is the case, bending
deformation of MWNT’s obeys the ‘‘straight norma
postulate’’10,16and then flexural strains at any point are pr
portional to its distance to the middle line. To estimate
bending stiffness of MWNT’s, let us consider a small pie
of a DWNT without any interlayer slip, as shown in Fig.
Assume that both the depth of the small piece and the be
ing curvature are in unity, then the flexural strain at any po
is equal to its distance to the neutral middle line, and
bending stiffness is equal to the bending moment. It is s
from Fig. 1 that the bending stiffness is 2Et(t/2)2

5Eh3/(16), whereh52t. Similarly, the bending stiffness i
calculated for several MWNT’s and the results are shown
Table I.

It is seen from Table I@a factor of 1/(12n2) will be
added if the two-dimensional effect of the Poisson ratio
considered# that the relative error is just 25% even for
DWNT, and further reduced to about 10% when the num
of layers increases to three. In particular, the error tend
zero rapidly with the increasing layers. Hence, it is co
cluded that the bending stiffness of carbon MWNT’s is w
evaluated by the formula~1! provided that the friction barrie

FIG. 1. Bending stiffness of a doublewalled carbon nanotube
the absence of interlayer slips.

TABLE I. Bending stiffnessD of N-layered carbon nanotubes i
the absence of interlayer slips~where the thicknessh5Nt, andt is
the representative thickness of single-walled carbon nanotubes!.

h52t h53t h54t h55t h58t

D Eh3/(16) Eh3/(13.5) Eh3/(12.8) Eh3/(12.5) Eh3/(12.2)
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is so high that interlayer slips between adjacent nanotu
are prohibited.

This conclusion offers a plausible interpretation for t
wavelength of large-strain local buckling of MWNT’s unde
bending, observed by Falvoet al.5 It is known16 that bending
of an originally circular tube causes the ovalization of t
cross section, which eventually leads to as large as a 2
change in the diameters when local buckling occurs.16 As a
result, the vertical diameter of each tube of the MWNT und
bending will decrease by 20%.16 Consequently, the interlaye
spacing between adjacent nanotubes is reduced by 20
the top and bottom of the cross section, where the maxim
tensile or compressive flexural stress occurs, respectiv
Such a substantial reduction in the interlayer spacing w
lead to a very high friction barrier which largely limits inte
layer slips between adjacent nanotubes. Thus, as expla
above, the bending stiffness of MWNT’s in this circum
stance can be calculated by the formula~1!. This explains the
applicability of the classic elastic shell model to large-stra
bending buckling of MWNT’s.

Here, it is noted that, as stated by Falvoet al.,5 the wave-
length observed by these authors for an eight-laye
MWNT is almost four times their theoretical value. Accor
ing to the present model, this discrepancy is likely due to
following two causes:~1! The formula used by Falvoet al. in
Ref. 5 is exactly the formula~7! with Eq. ~1! shown above,
which is valid only for axisymmetric mode (n50). As men-
tioned before, molecular dynamics simulations of carb
nanotubes have indicated that the actual buckling mod
not axisymmetric4,6,9 ~this fact becomes even more obviou
when both the ovalization of the cross section and the lo
ized character of bending buckling destroy the geometr
axisymmetry of MWNT’s!. In particular, our discussion ha
shown that the predicted axial wavelength based on the r
tion m5b is in good agreement with the result of Ref. 9 b
molecular-dynamics simulation. Thus, by takingm5b
~called ‘‘square mode’’16!, the axial wavelength will be
twice that given by Eq.~7!. ~2! On the other hand, as stresse
by Calladine~see p. 609 in Ref. 16!, the curvature radius
appearing in the formulas for bending buckling should
understood as the deformed local curvature radius, ra
than the original one. According to bending bucklin
theory,16 the deformed local curvature radius is about twi
the initial one when local buckling occurs. Thus, becau
the axial wavelength is proportional to the square root
the radius, this modification contributes an extra factor
1.4 to the axial wavelength. In conclusion, the actual ax
wavelength should be three times that predicted by
formula ~7!. This almost explains the paradox raised
Ref. 5.

In summary, the concept of effective bending stiffness
suggested for SWNT’s as an independent material param
not necessarily related to the representative thickness by
classic formula~1!. The merit of this concept is that it high
lights the noncontinuum character of carbon nanotubes. W
the aid of this concept, the elastic shell equations can
modified easily and then applied to singlewalled carb
nanotubes. A comparison with known data indicates that
derived formulas for the critical axial strain and bucklin
wavelength are in good agreement with the results of m
lecular dynamics simulations. On the other hand,
MWNT’s, the bending stiffness is found to be well estimat
by the classic formula~1! provided that the friction barrier
between adjacent nanotubes is sufficiently high that in

n
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layer slips are actually prohibited. In particular, it is th
case when large-strain local buckling of MWNT’s und
bending is considered.
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