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Superconductivity in the SU„N… Anderson lattice at UÄ`
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Departamento de Fı´sica, Universidade de E´vora, Rua Roma˜o Ramalho, 59, P-7001 E´vora Codex, Portugal

N. M. R. Peres
Departamento de Fı´sica, Universidade de E´vora, Rua Roma˜o Ramalho, 59, P-7001 E´vora Codex, Portugal

P. D. Sacramento
Departamento de Fı´sica and CFIF, Instituto Superior Te´cnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

V. R. Vieira
Departamento de Fı´sica and CFIF, Instituto Superior Te´cnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

~Received 3 February 2000!

We present a mean-field study of superconductivity in a generalizedN-channel cubic Anderson lattice at
U5` taking into account the effect of a nearest-neighbor attractionJ. The conditionU5` is implemented
within the slave-boson formalism considering the slave bosons to be condensed. We consider thef-level
occupancy ranging from the mixed valence regime to the Kondo limit and study the dependence of the critical
temperature on the various model parameters for each of three possible Cooper pairing symmetries~extended
s-, d-, andp-wave pairing! and find interesting crossovers. It is found that thed- andp-wave order parameters
have, in general, very similar critical temperatures. The extendeds-wave pairing seems to be relatively more
stable for electronic densities per channel close to one and for large values of the superconducting interaction
J.
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I. INTRODUCTION

The superconducting behavior of heavy-fermion mater
has attracted much attention due to its nonconventio
properties.1 Despite the large amount of work trying to un
derstand heavy-fermion superconductivity, the normal s
properties, the symmetry of the order parameter, the origi
superconductivity and the interplay between superconduc
ity and magnetism are still interesting and open question

Some of these materials, such as UAgCu4 , UCu7 ,
U2Zn17, order antiferromagnetically at low temperatur
while others~such as UBe13, CeCu2Si2 , UPt3) order in a
superconducting state and others show no ordering~such as
CeAl3 , UAuPt4 , CeCu6 , UAl2).1 There are materials which
order both antiferromagnetically and become supercond
ing as the temperature drops~e.g., URu2Si2 , U0.97Th0.03Be13)
and it has recently been found that UPd2Al3 shows
coexistence of superconductivity and local mome
antiferromagnetism.2 All these materials have very large sp
cific heat coefficientsg, indicating very large effective
masses, hence the designation heavy fermions.

The superconducting properties of a system depend on
type of ground state that the system exhibits in the nor
phase. The large specific heatg coefficient can have two
very different origins: a Kondo-impurity behavior,3 in which
caseg behaves as the inverse of the Kondo temperatureTK ,
or a Kondo-lattice behavior, in which caseg is controlled by
a large density of states at the Fermi energy. The large d
sity of states arises from a hybridization mechanism betw
the conduction band and localized electronic states (f states,
say!.4

Even though the large effective masses indicate str
PRB 620163-1829/2000/62~14!/9800~8!/$15.00
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correlations between the electrons, these behave in m
cases as essentially ‘‘free,’’ with renormalized parameters
explained by the Fermi-liquid theory. However, there h
recently been growing evidence that other materials h
properties that do not fit the Fermi-liquid picture.5 The rea-
son could be either disorder,6 vicinity to a quantum phase
transition,7 or unusual impuritylike behavior such as the o
described by generalized models, as then-channel Kondo
model.8 The n-channel Kondo lattice shows interesting b
havior and it has been shown to be an incoherent meta
low temperatures with a residual entropy that is usually lift
via ordering at very low temperatures.9

A consistent description of the overall properties of t
heavy-fermion behavior has been achieved assuming th
generalization of the impurity Anderson model to the latti
case is valid.4,10 In the Anderson lattice the energy of
single electron in anf orbital ~e.g., 4f 1) is e0, and the energy
of two electrons in the samef orbital (4f 2) is 2e01U, where
U is the on-site Coulomb repulsion. The energy of the 4f 2

state is much larger than the energy of the 4f 1 state. More-
over, these systems are often characterized by large ang
momentum, due to the spin-orbit coupling.3,4 In general, both
the large values ofU and the large total angular momentu
must be included in any model used to describe the pro
ties of heavy-fermion materials.

The SU(N) Anderson lattice Hamiltonian is believed t
give a good description of the normal state of Kondo-latt
systems.4 The limit U5` is considered in many calculation
since the experimentalU values are large. The Anderso
lattice model predicts Fermi-liquid-like properties in the no
mal nonmagnetic state. The theoretical results give a g
description of many materials and explain the main featu
9800 ©2000 The American Physical Society
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at low temperatures such as universality, large effec
masses, the Kondo resonance at the Fermi level. At
single-impurity level the picture is clear. In the Kondo lim
the f level has an occupation close to one leading to a lo
ized spin that is shielded by a conduction electron spin clo
This compensation of the spin explains why some of th
compounds do not order magnetically. The main point to
explained in the lattice case is the competition between
Kondo compensation of the localized spins and the magn
interactions between them. In these materials this interac
is mediated by the conduction electrons Ruderman-Kit
Kasuya-Yosida~RKKY ! type. Actually, since the Kondo
temperature is very small it is difficult to explain why th
RKKY does not always prevail. Related to this competiti
is the effectiveness of the compensating cloud around eaf
level. The size of this cloud has been subject of controve
Arguments show that it should be a large scale of the or
of vF /TK ~Ref. 11! but other arguments claim to be;a (a is
the lattice constant!.12 This is a relevant issue in the lattic
case related to Nozie`res exhaustion problem which states th
there are not enough conduction electrons to screen tf
levels.

To increase the complexity the system may also order
a superconducting state. Many questions have been ra
starting from the result that the discontinuity of the spec
heat atTc is large, of the order of the specific heat itself
the normal phase~which originates in the heavy fermions!.
This indicates that pairing occurs between the heavyf-level
electrons, which will then form the condensate. Within t
Anderson lattice model the strong correlations and the
bridization are responsible for the high effective masses
it has been proposed that the mechanism for supercondu
ity lies in the strong Coulomb interaction between thef elec-
trons, not in a phonon mediated attraction.

Using Coleman’s13 slave boson formalism together with
large-N approach, various attempts have been made to se
for the existence of superconducting instabilities in t
infinite-U Anderson-lattice model. It was proposed14 that
slave bosons fluctuations can provide an effective attrac
between the electrons to leading order in 1/N. Later, a cal-
culation of the electron-electron scattering amplitude to or
1/N2 revealed an effective attractive interaction in thep and
d channels, which was interpreted as a manifestation of
RKKY interaction, showing that spin fluctuations are an im
portant mechanism.15

Assuming that the normal state is a Fermi liquid, seve
other studies of superconductivity have been carried ou
the Anderson lattice model and generalizations of it.16–19By
adding an attractive nearest-neighbor interaction between
f electrons, so as to explicitly provide an attractive chan
leading to superconductivity, a mean-field study has b
carried out as a function of the local repulsionU. Romano,
Noce, and Micnas19 have found a superconducting groun
state for finite values ofU, but no superconductivity wa
found for large values of onsite Coulomb repulsion, in t
Anderson lattice. This is so because the authors conside
Kondo regime~this is, e0!m wherem is the chemical po-
tential!, where the occupation number of anf orbital nf is
close to two for smallU. Therefore, upon increasing th
interactionU, this number is reduced to one, blocking char
transport in thef band.
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In this paper we carry out a mean field study of superc
ductivity in the U5` Anderson lattice where an attractiv
interaction between neighboringf orbitals is explicitly intro-
duced in order to simulate an effective interaction~which
might have various causes! leading to superconductivity
SinceU5`, we are restricted tof-level occupancies in the
range 0,nf,1. In the mixed valent regime, wherenf is
between zero and one, charge movement is allowed am
the f orbitals, even whenU5`. We study the dependence o
the critical temperature andf-level ocupancy on the variou
model parameters for different Cooper pairing symmetri
The paper is organized as follows. In Sec. II we present
model Hamiltonian we use in our study and derive the me
field equations. Particular attention is paid on the form of
superconducting pairing term. In Sec. III we present our c
culations of the critical temperature as function of the seve
parameters of the model and we summarize our finding
Sec. IV.

II. THE MODEL HAMILTONIAN

We consider an extended version of the Anderson lat
model, which includes a density-density attraction betwe
the electrons occupying neighboringf orbitals. This form of
interaction enables us to consider three possible symme
for electron pairing:s, d, and p wave. The Hamiltonian is
given by

H5Hc
01H f

01Hc f1HU1HJ , ~1!

where

H f
05(

i ,m
~e02m! f i ,m

† f i ,m , ~2!

Hc
05(

kW ,m
~ekW2m!ckW ,m

†
ckW ,m , ~3!

Hc f5V(
i ,m

~ci ,m
† f i ,m1 f i ,m

† ci ,m!, ~4!

HU5U (
i ,mÞm8

ni ,mni ,m8 , ~5!

and

HJ5
1

2
J (

^ i , j &,m,m8
ni ,mnj ,m8 , ~6!

where i and j are nearest neighbor sites andni ,m5 f i ,m
† f i ,m .

The c and f operators are fermionic and obey the usual an
commutation relations. The hybridization potentialV is as-
sumed to be momentum independent. The termHU repre-
sents the strong onsite repulsion between thef orbitals and in
the rest of this work we shall considerU5`. The termHJ
explicitly describes an effective attraction between neighb
ing f sites (J,0) which is responsible for superconductivit
The total angular momentum projectionm takes on N
values.10,13 We shall assume that the local angular mome
tum of thef sites is half-integer and, therefore, thatN is even.

The termHJ may be rewritten in momentum space as



in

in

t
c-
n
o
o

e
rt

n

l-

ies

l

an

of
ion
d to

unc-
ns,
to

cy
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HJ5 (
QW ,kW ,kW8

(
m,m8

JkW ,kW8
2

f †
QW /21kW8,mf †

QW /22kW8,m8

3 f QW /22kW ,m8 f QW /21kW ,m , ~7!

where the interactionJkW ,kW85J(dW expi(kW2kW8)•dW and the sum-
mation overdW runs over the nearest neighbors. Consider
the case of a cubic lattice, the interactionJkW ,kW8 may be sepa-
rated into terms withs-, p-, andd-wave symmetries as20

JkW ,kW85JS hkW
(s)hkW8

(s)
1 (

i 5x,y,z
hkW

(p,i )hkW8
(p,i )D

1J~h
kW
(dx22y2)

h
kW8

(dx22y2)
1h

kW
(dr 223z2)

h
kW8

(dr 223z2)
!,

where

hkW
(s)

5A2

3
@cos~kx!1cos~ky!1cos~kz!#,

hkW
(p,i )

5A2 sin~ki !,

h
kW
(dx22y2)

5cos~kx!2cos~ky!,

h
kW
(dr 223z2)

5
1

A3
@cos~kx!1cos~ky!22 cos~kz!#. ~8!

Electron pairing in the superconducting phase will occur
the state with total pair momentumQW 50.

We implement the conditionU5` within the slave-
boson formulation due to Coleman,13 in which the emptyf
site is represented by a slave bosonbi and the physical op-
erator f i in Eq. ~4! is replaced withb†

i f i . Condensation of
the slave-bosons can be described by the replacemenbi

→^bi&5^b†
i&5Az. The mean-field treatment of the intera

tion term HJ involves the usual decoupling of destructio
and annihilation operators but, in keeping with the spirit
Coleman’s slave boson formalism, we associate a boson
erator with everyf operator in Eq.~7! in order to prevent
double occupancy at thef sites. Taking also into account th
boson condensation, we obtain the superconducting pa
the mean-field Hamiltonian from the substitutionf †f †f f
→z f†f †^z f f&1H.c. Following these ideas we write dow
the effective Hamiltonian as21

He f f5(
kW ,m

@~ekW2m!ckW ,m
†

ckW ,m1~e f2m! f kW ,m
†

f kW ,m#

1AzV(
kW ,m

~ f kW ,m
†

ckW ,m1ckW ,m
†

f kW ,m!

1
1

2 (
kW ,m

~z fkW ,m
†

f
2kW ,m8
†

DkW ,m1z f2kW ,m8 f kW ,mD* kW ,m!

2
Ns

2J (
m

D* mDm1~e f2e0!~z21!Ns , ~9!

whereNs denotes the number of lattice sites ande f is the
renormalized energy of thef orbitals due to the on-site repu
sion. The angular momentum projectionm852m if electron
g

f
p-

of

pairing in a singlet state (s or d wave! is considered and
m85m in the case ofp wave pairing. The gap function
DkW ,m5hkWDm and the superconducting order parameterDm is
given by

Dm5
zJ

Ns
(

kW
hkW^ f 2kW ,mf kW ,m&, ~10!

where hkW denotes any of the possible pairing symmetr
considered in Eq.~8!.

The density of the boson condensatez minimizes the free
energy of the system ande f is obtained after imposing loca
particle ~boson1fermion! conservation at thef sites:

z512
1

Ns
(
kW ,m

^ f kW ,m
†

f kW ,m&, ~11!

e f2e052
V

2AzNs
(
kW ,m

~^ f kW ,m
†

ckW ,m&1^ckW ,m
†

f kW ,m&!

2
Ns

zJ (
m

Dm* Dm . ~12!

Equation~11! states that the mean number of electrons at
f site is 12z.

In order to derive the gap equation and the spectrum
elementary excitations we use the Gorkov Green’s funct
approach. The anomalous Green’s functions that we nee
consider are

Ff ,m
† ~kW ,t2t8!5^Tt f kW ,m

†
~t! f

2kW ,2m
†

~t8!&, ~13!

Fc f ,m
† ~kW ,t2t8!5^TtckW ,m

†
~t! f

2kW ,2m
†

~t8!&, ~14!

and we must also define three other Matsubara Green’s f
tions: one that is associated with the conduction electro
another one for thef electrons and the third one is related
the hybridization of thef andc bands:

Gc,m~kW ,t2t8!52^TtckW ,m~t!ckW ,m
†

~t8!&, ~15!

Gf ,m~kW ,t2t8!52^Tt f kW ,m~t! f kW ,m
†

~t8!&, ~16!

Gc f ,m~kW ,t2t8!52^TtckW ,m~t! f kW ,m
†

~t8!&. ~17!

After Fourier transforming these functions into frequen
space, we may write down their equations of motion~Gork-
ov’s equations! according to the Hamiltonian~9!:

~2 ivn1e f2m!Gf ,m~kW ,ivn!1VAzGc f ,m~kW ,ivn!

1Jz2Dm~kW !Ff ,m
† ~kW ,2 ivn!521, ~18!

~2 ivn1ekW2m!Gc f ,m~kW ,ivn!1VAzGf ,m~kW ,ivn!50,
~19!

~2 ivn2ekW1m!Fc f ,m
† ~kW ,ivn!2VAzFf ,m

† ~kW ,ivn!50,
~20!
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~2 ivn2e f1m!Ff ,m
† ~kW ,ivn!2VAzFc f ,m

† ~kW ,ivn!

1Jz2Dm
† ~kW !Gf ,m~2kW ,ivn!50. ~21!

Diagonalization of the above equations yields the energie
the poles of the Green’s functions~excitation energies! and
the corresponding residues~coherence factors!. The solutions
are of the form

G~kW ,iv!52 (
i 51,2

(
a56

ui
a

ivn1aEi
. ~22!

The coherence factors,ui
a and the excitation energies,Ei are

given in the Appendix.
The Green’s functions have to be determined s

consistently using the mean field equations~10!–~12!. These
equations can be rewritten in terms of Green’s functions

z512
T

Ns
(
kW ,m

(
ivn

Gf ,m~kW ,ivn!, ~23!

e f2e052
VT

AzNs
(
kW ,m

(
ivn

Gc f ,m~kW ,ivn!2
Ns

zJ (
m

Dm* Dm ,

~24!

Dm5
zJT

Ns
(

kW
(
ivn

hkWFf ,m~kW ,ivn!. ~25!

For a given number of particles per siten these equations
must be supplemented with the particle conservation co
tion which yields the chemical potentialm for any tempera-
ture:

n512z1
T

Ns
(
kW ,m

(
ivn

Gc,m~kW ,ivn!. ~26!

III. RESULTS

In what follows we consider a cubic lattice in which th
conduction band dispersion has the simple tight-bind
form

ekW522t (
i 5x,y,z

cos~ki !,

so thatD56t is half the bandwidth. We have used the su
routine HYBRD.F from MINPACK in order to solve the four
coupled equations~23!–~26!.

The possible pairing symmetries expressed in Eq.~8!
have been studied separately. The twohkW functions corre-
sponding to thed-wave symmetry in Eq.~8! describe differ-
ent spatial orientations of the angular momentum of the C
per pairs and give degenerate solutions. This same rem
also applies to the threep-wavehkW functions in Eq.~8!.

The critical temperaturesTc are obtained solving the
mean-field equations using the normal state Green’s fu
tions. On the other hand, the study ofD(T), z(T), e f(T),
and the specific heat requires solving the mean-field eq
tions with the full Green’s functions. In the normal phas
the slave boson condensation temperature,Tz , above which
z50, is given byTz5(e f2m)/ ln(N21). If N52, z is al-
of

-

s

i-

g

-

-
rk

c-

a-
,

ways finite. For larger values ofN, and in particular in the
limit N→`, z→0 as the temperature increases. Correspo
ingly, nf→1 and thef-electron superconductivity is inhib
ited. Therefore, for large values ofN it is expected that the
mean-field theory will not yield superconductivity. One the
has to take into account the boson fluctuations. We will foc
our attention in the caseN52, relevant for instance for Ce
and Yb materials, but we will return to this point later.

Figure 1 shows the behavior of the superconducting c
cal temperaturesTc as function of the particle density pe
channeln/N, for each of the three pairing symmetries. It
readily seen that the critical temperatures associated witd-
andp-wave pairing follow similar trends and that thed-wave
symmetry exhibits the highestTc up to densities of abou
n/N'0.6. At higher densities, a crossover occurs into a
gime where the extendeds-wave pairing becomes the mo
stable, for the parameters considered.

The value ofTc vanishes at low densities because t
f-level occupancy also becomes small in that limit (z→1)
and Cooper pairing occurs only between thef electrons in the
model under consideration. In the high density limit,Tc van-
ishes because eachf level is almost fully occupied with one
electron (z→0), and freezing of the charge fluctuation
@arising from the termf †f † in Eq. ~9!# occurs because of th
infinite on-site repulsion.

Heavy-fermion behavior in the normal phase occurs wh
the chemical potentialm lies close to the peak of the densi
of states~hence the strong effective mass!. This peak is the
equivalent of the Kondo resonance peak which appears in
single-impurity problem. For the lattice problem, two stro
peaks appear due to hybridization between the conduc
electron band and the dispersionless band of localizef
states, leading to the large electron’s effective mass. For d
sities aboven/N'0.7 the chemical potential becomes clo
to the density of states peak in the lower band.

In the superconducting phase the full solution of Eq
~23!–~26! yields a renormalized excitation energy spectru
In Fig. 2 we show the band structure forn/N50.7 in the

FIG. 1. The critical temperature as function of the total dens
of electrons per channel, for theU5` Anderson lattice. The pa-
rameters areN52, e f520.25D, V50.2D, and J520.5D. The
hopping integralt51 andD56t.



th
te

s

th
r
i
-
e
s

pa
t
y

e
diz

ve
of
t
on
e

e
e
p
ha

the
how

in

g
ing

er
.
er

e

zed
nd

te

sy

-
g. 1.

-
the
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normal and superconducting phases. It is clear that for
densitym is in the flat region of the band in the normal sta

It is seen from Fig. 1 that as the density per channeln/N
approaches 1, the value ofTc is strongly reduced until it
eventually vanishes. From the same figure one can also
that the critical temperature of thes-wave state atn/N
'0.7, for instance, is higher than that of thed- or p-wave
states. For the model parameters considered in Fig. 1
means that as the temperature of a normal system is lowe
the system would first enter a superconducting state w
extendeds-wave symmetry. On lowering further the tem
perature, the nature of the superconducting state becom
mixture of different symmetries. This sequence of pha
transitions would be different had we chosen different
rameters: our calculations show that ifJ/D is less than abou
0.4, then the critical superconducting temperature of a s
tem with n/N'0.7 would correspond to ad-wave order pa-
rameter~see left panel of Fig. 3!.

The dependence ofTc on the parametersV, e0 and J
shows interesting crossovers. Ife0 is well below the chemi-
cal potentialm then thef level is highly populated and th
system cannot become superconducting unless the hybri
tion parameterV is large enough. On the other hand, ife0 is
not too low a superconducting ground-state is obtained e
for small values ofV. As can be seen from the right panel
Fig. 3, Tc first increases withV up to a maximum value, bu
as V is further increased, large charge quantum fluctuati
at the f orbitals are induced and superconductivity is d
stroyed. Moreover, thed- and p-wave superconductivity
seem to be more stable than thes wave for large values ofV.
That this result is consistent with Fig. 1 can be easily und
stood as follows: upon increasing the hybridization betwe
the f orbitals and the conduction band, the electron occu
tion in the f sites is reduced and Fig. 1 already showed t
depletion of thef band has the effect of reducingTc and
increasing the stability ofd-wave pairing relative top- and
s-wave pairing.

FIG. 2. Band structure of the normal and superconducting sta
along the directionkx5ky5kz in momentum space (k5A3kx), at
zero temperature. The total electronic density per channel isn/N
50.7 and the other parameters are the same as in Fig. 1. The
metry of the superconducting order parameter is extendeds wave.
The excitation energiesE1 andE2 are given by Eqs.~A2! and~A3!.
is
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ee
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ed,
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The temperature dependence of the gap function in
superconducting phase is the standard one. In Fig. 4 we s
a typical case. The crossing of thed- andp-order parameters
close toTc is related with the same crossing observed
z(T). Since close toTc , z(T) for the superconductingd
phase becomes slightly higher than for the superconductinp
phase, thed-wave phase has an effective superconduct
coupling that is slightly higher than thep-wave coupling,
leading to an higherTc .

In Fig. 5 we show the dependence ofTc on the f-level
position. It is seen that thed-wave state has always a high
Tc than thep wave over the range ofe0 values considered
But thes-wave critical temperature exhibits a much strong
dependence one0. In particular,s-wave pairing seems to b
more strongly depressed for lowe0.

In a normal system at zero temperature the renormali
f-level energye f is located above the chemical potential a

s,

m-

FIG. 3. Left panel: The critical temperatureTc as function of the
couplingJ. Right panel: The critical temperatureTc as function of
the hybridization parameterV. The total electronic density per chan
nel is n/N50.7 and the other parameters are the same as in Fi

FIG. 4. Superconducting gapD(T) as functions of the tempera
ture for the three symmetries considered. The parameters are
same as in Fig. 1.
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e f2m is of the order of the Kondo temperature for th
equivalent single-imputity problem. Keeping the partic
density fixed, bothe f and m increase with temperature bu
the differencee f2m decreases. Our calculations show th
Tc is smaller thane f2m by a factor of about 10~see Fig. 6!
over almost the entire range of densities considered in Fig
In Fig. 6 we presentTc , e f , andm for the extendeds-wave
order parameter~the curves for the other symmetries a
qualitatively the same!. The susceptibilitydnf /de f , in the
region of densities characterized byn/N.0.7 or larger, is
very small since thef-level density of states is much large
than thec-level one, leading to a negative feedback chang
the chemical potential in such a way as to keepe f close tom.
This is very clear from Fig. 6, wheree f is indeed close tom,
for electronic densities where the density of states is la

FIG. 5. The critical temperatureTc as function of thef-level
bare energye0. The total electronic density per channel isn/N
50.7 and the other parameters are the same as in Fig. 1.

FIG. 6. Critical temperatureTc , renormalized energy levele f ,
and chemical potencialm as function ofn/N. The value ofe f2m is
much larger thanTc . The symmetry of the superconducting ord
parameter is extendeds wave, and the other symmetries follow th
same trends. The parameters are the same as in Fig. 1.
t

1.

g

e.

This is consistent with the picture that the pairing is dev
oped by the excitations of the system resulting from
Kondo compensated lattice.

Finally we calculate the specific heat for the various sy
metries. The nonconventional pairing symmetry leads t
power law behavior at lowT in the superconducting phase
In Fig. 7 we show the specific heat for the various symm
tries as a function of temperature. The specific heat jump
the transition isDC/C;1.6,1.3,0.8 for thep, d, s symme-
tries, respectively. We have found that the specific hea
low T has aT2 dependence for thep, d symmetries, and has
an exponential behavior for thes-wave case.

Considering now the effect of increasing the number
channelsN, we find thatTc decreases by one order of ma
nitude or more, asN changes fromN52 to N54. For the
parameters considered in the figures, the effect is most
matic for s, p-wave symmetries, where superconductivity
absent forN>4. Furthermore, we found that the critica
temperature of a system with ad-wave order parameter i
less sensitive to the number of channelsN, as compared to
the other symmetries.

IV. SUMMARY

Heavy-fermions show a rich and complex behavior at l
temperatures. In particular, the interplay between magn
correlations, the Kondo effect, and superconducting corr
tions is a difficult problem to solve. This is further compl
cated since neither the mechanism nor the pairing symm
are fully established. In this paper we have focused on
superconducting order assuming that the superconduc
correlations are the dominant ones. Using a generali
Anderson lattice model with nearest-neighbor attraction
tween thef electrons and with infinite-U local Coulomb re-
pulsion, we studied the various pairing symmetries usin
mean-field approach. In this way it is possible to compare
various solutions in contrast to an approach where, star
from the normal phase, the leading instabilities are identifi

The results show that there are several crossovers betw
the s-, d-, andp-wave pairing symmetries as the paramet

FIG. 7. Specific heatC(T) as function of the temperature for th
three symmetries considered. The parameters are the same as i
1.
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of the model are varied. In contrast to a previous mean-fi
approach we find superconducting order, even thoughU
5`. The reason is that we focus on a regime where 0,nf
,1, while the previous work concentrated on a regim
where 1,nf,2 ~for finite U). Since we consider only the
caseU5`, nf has to be smaller than one due to the Co
lomb repulsion. In the previous work asU grows the density
nf→1 the f electrons become more localized inhibiting s
perconductivity. We find the same qualitative behavior as
approach the Kondo regime from the mixed valent regim
For small values ofe0 we tend to a regime wherenf→1 and
superconductivity is suppressed.

In the mean-field approach ifz→0(nf→1) the gap func-
tion Dm→0. This happens for large densitiesn/N→1. For
nf→0 superconductivy is supressed, since the supercond
ing coupling is among thef electrons. Also, ifN is largez
→0 at lower temperatures. In particular,p-wave and ex-
tendeds-wave symmetries are strongly suppressed. FoN
52 z is always finite. For larger values ofN in general it will
be necessary to consider the boson fluctuations and a t
ment beyond mean-field will be required. For systems wh
the spin degeneracy is low we expect the results to be qu
tatively correct.

We have found that thed-wave andp-wave symmetries
yield similar transition temperatures. For large neare
neighbor attraction the extendeds-wave pairing is preferred
Otherwise, thed-wave symmetry seems to be more robust
particular asN grows. Clearly, we are not considering ma
netic correlations in our mean-field study and therefore
description applies to systems where there are no local
ments~and thereforeTc,TK) and whereTc.TRKKY .

We found that superconductivity is preferred in a mix
valent regime~due to the infinite Coulomb repulsion!. There
are materials that are mixed valent and superconductors.22–27

In the framework of weak coupling BCS theory one wou
expect that the local magnetic character of thef states should
be pair breaking. However, the heavy fermion supercond
tivity in the Kondo limit ~integer valent case! reveals that the
pairing is of another nature that compensates the pair br
ing effects of the local magnetic character. For mater
such as CeRu3Si2 there is a considerable mixed valent cha
acter and accordingly the effective masses are not high. A
the Wilson ratio is close to one indicating a convention
weak-coupling BCS superconductor. Other mixed valent
perconductors are not conventional superconductors
would be interesting to identify systems that by changing
mixed-valent character could change the superconduc
temperature,Tc . In the framework of our model this would
require f states with largeU values. The nearest-neighbo
attraction could be due to several mechanisms like spin fl
tuations or slave boson fluctuations~Coulombic nature!.
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APPENDIX: POLES AND COHERENCE FUNCTIONS FOR
THE GREEN’S FUNCTIONS

The algebraic solutions of Eqs.~18!–~21! for the Green’s
functions Gf ,m(kW ,ivn), Gc f ,m(kW ,ivn), Ff ,m

† (kW ,ivn), and

Gc,m(kW ,ivn) have the form
ld
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G~kW ,ivn!52 (
i 51,2

(
a56

ui
a

ivn1aEi
, ~A1!

and the coherence factorsui
a and the excitations energiesEi

are given below.
The energiesEi have the form

E15Ag/22Ag2/42b, ~A2!

E25Ag/21Ag2/42b, ~A3!

with g andb given by

g5~e f2m!21~ekW2m!212V2z1uJz2D~kW !u2, ~A4!

b5@~ekW2m!~e f2m!2V2z#21uJz2D~kW !u2~ekW2m!2.
~A5!

The ui
a factors forGf ,m(kW ,ivn) are given by

u1
15F~E11ekW2m!X1 , ~A6!

u1
25F~E12ekW1m!Y1 , ~A7!

u2
152G~E21ekW2m!X2 , ~A8!

u2
252G~E22ekW1m!Y2 , ~A9!

where the functionsXi andYi( i 51,2) are given by

Xi5~ekW2m!~e f2m!2~ekW2e f22m!Ei1Ei
22zV2, ~A10!

Yi5~ekW2m!~e f2m!1~ekW2e f22m!Ei1Ei
22zV2, ~A11!

and the functionsF andG are given by

F5
1

2E1~E2
22E1

2!
, G5

1

2E2~E2
22E1

2!
. ~A12!

The ui
a factors forFf ,m

† (kW ,ivn) are given by

u1
152Jz2D~kW !F@E1

22~ekW2m!2#, u1
152u1

2 , ~A13!

u2
152Jz2D~kW !G@E2

22~ekW2m!2#, u2
152u2

2 . ~A14!

The ui
a factors forGc f ,m

† (kW ,ivn) are given by

u1
152VAzFX1 , u1

25FY1 , ~A15!

u2
15VAzGX2 , u2

252GY2 . ~A16!

The ui
a factors forGc,m(kW ,ivn) are given by

u1
15FQ1 , u1

252FR1 , ~A17!

u2
152GQ2 , u2

25GR2 , ~A18!

where

Qi5~ekW2m2Ei !uJz2D~kW !u21~e f1Ei !Xi , ~A19!

Ri5~ekW2m1Ei !uJz2D~kW !u22~2e f1Ei !Yi . ~A20!
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