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Superconductivity in the SUN) Anderson lattice at U=
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We present a mean-field study of superconductivity in a generahizebdannel cubic Anderson lattice at
U= taking into account the effect of a nearest-neighbor attractiorhe conditionU = is implemented
within the slave-boson formalism considering the slave bosons to be condensed. We consideve¢he
occupancy ranging from the mixed valence regime to the Kondo limit and study the dependence of the critical
temperature on the various model parameters for each of three possible Cooper pairing synenétresd
s, d-, andp-wave pairing and find interesting crossovers. It is found that th@ndp-wave order parameters
have, in general, very similar critical temperatures. The extesdeave pairing seems to be relatively more
stable for electronic densities per channel close to one and for large values of the superconducting interaction
J.

[. INTRODUCTION correlations between the electrons, these behave in many
cases as essentially “free,” with renormalized parameters, as
The superconducting behavior of heavy-fermion materialexplained by the Fermi-liquid theory. However, there has
has attracted much attention due to its nonconventionalecently been growing evidence that other materials have
properties- Despite the large amount of work trying to un- properties that do not fit the Fermi-liquid pictut&he rea-
derstand heavy-fermion superconductivity, the normal stateon could be either disord®ryicinity to a quantum phase
properties, the symmetry of the order parameter, the origin ofransition’ or unusual impuritylike behavior such as the one
superconductivity and the interplay between superconductivdescribed by generalized models, as thehannel Kondo
ity and magnetism are still interesting and open questions. model® The n-channel Kondo lattice shows interesting be-
Some of these materials, such as UAgCUWCuy,, havior and it has been shown to be an incoherent metal at
U,Zny,, order antiferromagnetically at low temperatureslow temperatures with a residual entropy that is usually lifted
while others(such as UBg, CeCySi,, UPt) order in a  via ordering at very low temperaturés.
superconducting state and others show no ordegisngh as A consistent description of the overall properties of the
CeAl;, UAUPY,, CeCy, UAI,).* There are materials which heavy-fermion behavior has been achieved assuming that a
order both antiferromagnetically and become superconducgeneralization of the impurity Anderson model to the lattice
ing as the temperature drofesg., URYSi,, Ug o7Thg gBe;3) case is valid:° In the Anderson lattice the energy of a
and it has recently been found that URH; shows single electron in aforbital (e.g., 41) is €y, and the energy
coexistence of superconductivity and local momentof two electrons in the sanfeorbital (4f2) is 2e,+ U, where
antiferromagnetism All these materials have very large spe- U is the on-site Coulomb repulsion. The energy of tHé 4
cific heat coefficientsy, indicating very large effective state is much larger than the energy of thé 4tate. More-
masses, hence the designation heavy fermions. over, these systems are often characterized by large angular
The superconducting properties of a system depend on theomentum, due to the spin-orbit couplifi§jin general, both
type of ground state that the system exhibits in the normathe large values of) and the large total angular momentum
phase. The large specific heatcoefficient can have two must be included in any model used to describe the proper-
very different origins: a Kondo-impurity behavidin which  ties of heavy-fermion materials.
casey behaves as the inverse of the Kondo temperalure The SUN) Anderson lattice Hamiltonian is believed to
or a Kondo-lattice behavior, in which casds controlled by  give a good description of the normal state of Kondo-lattice
a large density of states at the Fermi energy. The large demsystemd. The limit U= is considered in many calculations
sity of states arises from a hybridization mechanism betweesince the experimentdl values are large. The Anderson
the conduction band and localized electronic stafestdtes, lattice model predicts Fermi-liquid-like properties in the nor-
say.* mal nonmagnetic state. The theoretical results give a good
Even though the large effective masses indicate strongescription of many materials and explain the main features
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at low temperatures such as universality, large effective In this paper we carry out a mean field study of supercon-
masses, the Kondo resonance at the Fermi level. At thductivity in the U= Anderson lattice where an attractive
single-impurity level the picture is clear. In the Kondo limit interaction between neighboririgorbitals is explicitly intro-
thef level has an occupation close to one leading to a localduced in order to simulate an effective interactigvhich
ized spin that is shielded by a conduction electron spin cloudnight have various causeseading to superconductivity.
This compensation of the spin explains why some of thes@inceU =, we are restricted té-level occupancies in the
compounds do not order magnetically. The main point to béange 6<n¢<1. In the mixed valent regime, wherg is
explained in the lattice case is the competition between thBetween zero and one, charge movement is allowed among
Kondo compensation of the localized spins and the magnetithef orbitals, even whet) =. We study the dependence of
interactions between them. In these materials this interactiofte critical temperature anfllevel ocupancy on the various

is mediated by the conduction electrons Ruderman-Kittelnodel parameters for different Cooper pairing symmetries.
Kasuya-Yosida(RKKY) type. Actually, since the Kondo The paper i§ organized as follows. In Sec. Il we present the
temperature is very small it is difficult to explain why the Mmodel Hamiltonian we use in our study and derive the mean
RKKY does not always prevail. Related to this competitionfield equations. Particular attention is paid on the form of the
is the effectiveness of the compensating cloud around Bachsuperconducting pairing term. In Sec. Il we present our cal-
level. The size of this cloud has been subject of controversy?mations of the critical temperature as function of the several
Arguments show that it should be a large scale of the ordeparameters of the model and we summarize our findings in
of v /T (Ref. 1) but other arguments claim to bea (ais ~ Sec- V.

the lattice constant? This is a relevant issue in the lattice

case related to Nozies exhaustion problem which states that Il. THE MODEL HAMILTONIAN

there are not enough conduction electrons to screerf the . . .
levels. 9 We consider an extended version of the Anderson lattice

To increase the complexity the system may also order intfc’de" which includes a density-density attraction between

a superconducting state. Many questions have been rais 'Ef elegtrons occupying neighborilhg)rbitals. T_his form of .
starting from the result that the discontinuity of the specificm eraction enables us to consider three possible symmetries

heat atT, is large, of the order of the specific heat itself in fo_r electron pairing:s, d, andp wave. The Hamiltonian is

the normal phaséwhich originates in the heavy fermions given by

This indicates that pairing occurs between the hefaleyel _ 140, 140

electrons, which will then form the condensate. Within the H=HetHitHert HytH,, D
Anderson lattice model the strong correlations and the hywhere

bridization are responsible for the high effective masses and

it has been proposed that the mechanism for superconductiv- HO— 2 +

ity lies in the strong Coulomb interaction between thegec- & (eo— ) Fi mfim. 2
trons, not in a phonon mediated attraction.

Using Coleman’ slave boson formalism together with a
largeN approach, various attempts have been made to search
for the existence of superconducting instabilities in the
infinite-U Anderson-lattice model. It was proposédhat
slave bosons fluctuations can provide an effective attraction Her=VY (¢f ofi mt o Cim), (4)
between the electrons to leading order iNl1Later, a cal- im o
culation of the electron-electron scattering amplitude to order

T
oo

Il
M

(€= M)CE 1 Chms 3

kel
3

1/N? revealed an effective attractive interaction in thand
d channels, which was interpreted as a manifestation of the Hy=U > , MimMimr s ®)
RKKY interaction, showing that spin fluctuations are an im- Lm#m
portant mechanistr. and
Assuming that the normal state is a Fermi liquid, several
other studies of superconductivity have been carried out on 1
the Anderson lattice model and generalizations &fit? By HJ:§J<i j>2m . i, mNj,me » (6)

adding an attractive nearest-neighbor interaction between the
f electrons, so as to explicitly provide an attractive channeWherei andj are nearest neighbor sites an@ln=fifmfi,m.
leading to superconductivity, a mean-field study has beeithec andf operators are fermionic and obey the usual anti-
carried out as a function of the local repulsign Romano, commutation relations. The hybridization potentiais as-
Noce, and Micna$ have found a superconducting ground sumed to be momentum independent. The tétm repre-
state for finite values ofJ, but no superconductivity was sents the strong onsite repulsion betweerf thibitals and in
found for large values of onsite Coulomb repulsion, in thethe rest of this work we shall consider=«~. The termH
Anderson lattice. This is so because the authors consider trexplicitly describes an effective attraction between neighbor-
Kondo regime(this is, eg<<u where w is the chemical po- ingf sites J<<0) which is responsible for superconductivity.
tentia), where the occupation number of &rorbital n; is ~ The total angular momentum projectiom takes onN
close to two for smallU. Therefore, upon increasing the valuest®!3We shall assume that the local angular momen-
interactionU, this number is reduced to one, blocking chargetum of thef sites is half-integer and, therefore, tihais even.
transport in thed band. The termH; may be rewritten in momentum space as
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B 2 E Nh? b et . pairing in a singlet states(or d wave is considered and
HJ_QH, “~ 2 Gk mf G2k me m’=m in the case ofp wave pairing. The gap function
T A¢ m=nxA, and the superconducting order parametgris
XFG2—km f G2+ km: (7)  given by
where the interactiod; i =J= ; expi(k—k’)- 6 and the sum- 23
mation overd runs over the nearest neighbors. Considering Am=C 2 i kmfim (10)
the case of a cubic lattice, the interactidyy, may be sepa- S K
rated into terms witfs-, p-, andd-wave symmetries 4% where 7; denotes any of the possible pairing symmetries
_ _ considered in Eq(8).
Jiio=1J 77(5) ﬂf;s/)f n(lzpv')n(ﬁrj»') The density of the boson condensateinimizes the free
i=xyz energy of the system ang is obtained after imposing local
+J(77(;X27y2) ﬁ(,;(?XLyz)Jr 77(,;er7322) (Srz—Szz)), particle (bosont-fermion conservation at thé sites:
1
— Toe.
where z=1- N % (Fe mfm)s 11
©_ (2
¢ =\ glcodke +cogky) +codk,)], v . .
€— €= — ——=— (f: cemy+Hice fim)
f 0 Z\ENS gn < k,m k,m> < k,m k,m>

g =2 sirtk),

g _Ns > A*A (12)
2 2 .
n&x*y)zcoikx)_cogky)' zJ ™ m=m
. Equation(11) states that the mean number of electrons at an
(dr2_352) f site is 1—z.
L =— + = . ; :
K J3 [costky) +cosky) =2 cogky)] ® In order to derive the gap equation and the spectrum of
o . ) _ elementary excitations we use the Gorkov Green’s function
Electron pairing in the superconducting phase will occur ingpproach. The anomalous Green's functions that we need to

the state with total pair momentufﬁzo. consider are
We implement the conditiolJ=c within the slave-
. . . - ’ T T ’
boson formulation due to Colemahjn which the emptyf j:;f'm(k,f_q- ):<Trf|2,m( T)f—lz,—m(T )Y, (13

site is represented by a slave bodprand the physical op-
eratorf; in Eq. (4) is replaced withb™,f;. Condensation of o N T 1 ,
the slave-bosons can be described by the replaceiment FermKr=1)=(Tcp (Df_ (7)), (14

ity : -
—(bj)=(b")= Vz. The mean-field treatment of the interac- 5,4 \we must also define three other Matsubara Green'’s func-
tion term H, involves the usual decoupling of destruction yjons- one that is associated with the conduction electrons,

and annihilation operators but, in keeping with the spirit of ynother one for théelectrons and the third one is related to
Coleman’s slave boson formalism, we associate a boson ORRe hybridization of thé andc bands:

erator with everyf operator in Eq.7) in order to prevent
double occupancy at tHesites. Taking also into account the
boson condensation, we obtain the superconducting part of
the mean-field Hamiltonian from the substitutidif'ff A
—zf'f1(zff)+H.c. Following these ideas we write down Grm(K 7= 7 )= —(T A m( DL (7)), (16)
the effective Hamiltonian &5 '

Gom(K 7= )= —(T,Cim(TICL (7)), (19)

Gorm(K 7= 1) =—(T.Cim(DfL (7). (D)

After Fourier transforming these functions into frequency
space, we may write down their equations of moti{@ork-

+VzV (fE,mCK,m+ CE,me,m) ov's equationgaccording to the Hamiltoniaf®):
k,m

Herr= 2 [(ek—1)Ck o Cimt (er— )L 1 F ]
k,m

(—lwp+ Ef_,“)gf,m(lzai wn)"_v\/zgcf,m(lzri wp)
+I2AN(K)F (K, —Twn)=—1, (18

1 ot
+5 2 (2 e ARt 2 TR mA )
k,m

Z

S

~ 53 2 At (e €) (2= DN, (9) (—i0n+ &= 1) Gorm(K i wn) +VNZGr (K| on =0,

19
where Ng denotes the number of lattice sites andis the R .
renormalized energy of theorbitals due to the on-site repul- (=i w,— eg+ ) Fig m(K,i wn) —VVZF] 1 (K,iw,) =0,
sion. The angular momentum projectiori = —m if electron (20
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(—iwy— e+ w) Fi m(Kiwn) —VVZFL (K wp) 0.03 '
+I2AL(K) Gt m( —K,iwy) =0, (22) S —— p-wave
A N s-wave
---- d-wave

Diagonalization of the above equations yields the energies o
the poles of the Green'’s functioriexcitation energigsand 0.02 |
the corresponding residuésoherence factoysThe solutions
are of the form

T/D

[e3
Ui

G(K,iw)=— (22)

i=12 a==* iwn+aEi' 0.01
The coherence factorg;" and the excitation energie; are
given in the Appendix.

The Green’s functions have to be determined self-

consistently using the mean field equati¢h6)—(12). These 0 LN -
equations can be rewritten in terms of Green’s functions as 0 0.2 0.4 N 0.6 0.8 1
n
7=1— l E E G (|Z iw,) (23) FIG. 1. The critical temperature as function of the total density
Ns i fon 0 of electrons per channel, for tHé=o Anderson lattice. The pa-

rameters ardN=2, ¢;=—0.2D, V=0.2D, andJ=—-0.5D. The
hopping integrat=1 andD = 6t.

VT - N
2 2 Gorm(Kion) = —= 2 ARAn,
\/ENS K,m fop zJ “m .. . . .
(24) Wways finite. For larger values @i, and in particular in the
limit N—o, z—0 as the temperature increases. Correspond-
zJT . ingly, n;—1 and thef-electron superconductivity is inhib-
An=7 2 2 neFrmKio). (25)  ited. Therefore, for large values of it is expected that the
sk f@n mean-field theory will not yield superconductivity. One then
For a given number of particles per sitethese equations has to take into account the boson fluctuations. We will focus
must be supplemented with the particle conservation condiour attention in the cas®=2, relevant for instance for Ce
tion which yields the chemical potential for any tempera- and Yb materials, but we will return to this point later.
ture: Figure 1 shows the behavior of the superconducting criti-
cal temperatured . as function of the particle density per
. channeln/N, for each of the three pairing symmetries. It is
n=1-z+ N_s kZ %: Ge.m(K,i @n). (26) readily seen that the critical temperatures associated dwith
me andp-wave pairing follow similar trends and that tdevave
symmetry exhibits the highe§t, up to densities of about
n/N~0.6. At higher densities, a crossover occurs into a re-
In what follows we consider a cubic lattice in which the gime where the extendesiwave pairing becomes the most

conduction band dispersion has the simple tight-bindingtable, for the parameters considered.
form The value of T, vanishes at low densities because the

f-level occupancy also becomes small in that linst{1)
and Cooper pairing occurs only between tieéectrons in the
k= —2ti7§ cogki), model under consideration. In the high density lirfiig,van-
=xy.z . . d :

ishes because eaclevel is almost fully occupied with one
so thatD =6t is half the bandwidth. We have used the sub-electron ¢—0), and freezing of the charge fluctuations
routine HYBRD.F from MINPACK in order to solve the four [arising from the ternf'f" in Eq. (9)] occurs because of the
coupled equation&23)—(26). infinite on-site repulsion.

The possible pairing symmetries expressed in EBj. Heavy-fermion behavior in the normal phase occurs when
have been studied separately. The twp functions corre- the chemical potentigk lies close to the peak of the density
sponding to thel-wave symmetry in Eq(8) describe differ-  of states(hence the strong effective mas$his peak is the
ent spatial orientations of the angular momentum of the Cooequivalent of the Kondo resonance peak which appears in the
per pairs and give degenerate solutions. This same remasingle-impurity problem. For the lattice problem, two strong
also applies to the thrgg@wave 7 functions in Eq.(8). peaks appear due to hybridization between the conduction

The critical temperatured . are obtained solving the electron band and the dispersionless band of localized
mean-field equations using the normal state Green’s funcstates, leading to the large electron’s effective mass. For den-
tions. On the other hand, the study &{T), z(T), (T), sities aboven/N~0.7 the chemical potential becomes close
and the specific heat requires solving the mean-field equde the density of states peak in the lower band.
tions with the full Green’s functions. In the normal phase, In the superconducting phase the full solution of Egs.
the slave boson condensation temperattize,above which  (23)—(26) yields a renormalized excitation energy spectrum.
z=0, is given byT,=(e;—u)/IN(N-1). If N=2, zis al- In Fig. 2 we show the band structure fofN=0.7 in the

Ill. RESULTS



9804 ARAUJO, PERES, SACRAMENTO, AND VIEIRA PRB 62

10 T T 0.008 T T T T /: 0.01
/
[/

—— p-wave
e §-WEVE

T | 0008

0.006 -

0.006 -

> [m] L
g | ':u 0.004
q:’ 0.004 |
; .
0.002 | 4
5 _ 0.002 |
A=0 /
g
N N
10 0 01 02 03 04 05 0 01 02 03 04 05
L L
- J|/D V/D
0 2 4 6 Wl

k FIG. 3. Left panel: The critical temperatufg as function of the

FIG. 2. Band structure of the normal and superconducting state§0uplingJ. Right panel: The critical temperatufle as function of
along the directiork,=k, =k, in momentum spacek& J3k,), at the hybridization paramet&f. The total electronic density per_cha_n-
zero temperature. The total electronic density per channelNs ~ nel isn/N=0.7 and the other parameters are the same as in Fig. 1.
=0.7 and the other parameters are the same as in Fig. 1. The sym-
metry of the superconducting order parameter is extersdedve. The temperature dependence of the gap function in the
The excitation energieS; andE, are given by Eqs(A2) and(A3). superconducting phase is the standard one. In Fig. 4 we show

a typical case. The crossing of theandp-order parameters

norm.al arjd'superconduc.ting phases. It.is clear that for thiElose toT, is related with the same crossing observed in
densityw is in the flat region of the band in the normal state.z(.l.) Singe close taT., z(T) for the superconductingl
: X ; . o
Itis seen from Fig. 1 that as the density per chamél phase becomes slightly higher than for the supercondupting
approaches 1, the value df is strongly reduced until it ggase thed-wave phase has an effective superconducting

eventually vanishes. From the same figure one can also sCou ling that is sliahtly higher than thewave coulin
that the critical temperature of thewave state atn/N piing > Slightly hig e piing,
leading to an highef .

~0.7, for instance, is higher than that of tbeor p-wave In Fia. 5 how the d d 5 the f-level
states. For the model parameters considered in Fig. 1 this N Fg. > we show e dependence § on the eve
means that as the temperature of a normal system is lowere! 93|t|on. Itis seen that thé-wave state has always a higher
the system would first enter a superconducting state with.¢ than thep wave over the range af _va_llues considered.
ut thes-wave critical temperature exhibits a much stronger

extendeds-wave symmetry. On lowering further the tem- d q . ficul - b
perature, the nature of the superconducting state becomes gpendence og,. In particular,swave pairing seems to be
dnore strongly depressed for logy.

mixture of different symmetries. This sequence of phas :
transitions would be different had we chosen different pa- In a normal system at zero temperaturg the renor.mahzed
rameters: our calculations show thadiD is less than about f-level energye; is located above the chemical potential and
0.4, then the critical superconducting temperature of a sys-
tem withn/N~0.7 would correspond to dwave order pa-
rameter(see left panel of Fig.)3

The dependence of; on the parameter¥, ¢, and J
shows interesting crossovers.df is well below the chemi- 0.4
cal potentialu then thef level is highly populated and the
system cannot become superconducting unless the hybridize
tion parameteWV is large enough. On the other handgifis 0.3
not too low a superconducting ground-state is obtained ever_,
for small values ol. As can be seen from the right panel of
Fig. 3, T, first increases with/ up to a maximum value, but 0.2
asV is further increased, large charge quantum fluctuations
at thef orbitals are induced and superconductivity is de-
stroyed. Moreover, thel- and p-wave superconductivity 0.1
seem to be more stable than theave for large values of.
That this result is consistent with Fig. 1 can be easily under-
stood as follows: upon increasing the hybridization between o
the f orbitals and the conduction band, the electron occupa-
tion in thef sites is reduced and Fig. 1 already showed that
depletion of thef band has the effect of reducinf. and FIG. 4. Superconducting gal(T) as functions of the tempera-
increasing the stability ofl-wave pairing relative t@- and  ture for the three symmetries considered. The parameters are the
s-wave pairing. same as in Fig. 1.

0.5 T T

\

1\

]
0 0.0025 0.005 0.0075 0.01
T/D
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FIG. 5. The critical temperatur&, as function of thef-level FIG. 7. Specific heaE(T) as function of the temperature for the
bare energyey,. The total electronic density per channelrigN three symmetries considered. The parameters are the same as in Fig.
=0.7 and the other parameters are the same as in Fig. 1. 1.

ei—m is of the order of the Kondo temperature for the This is consistent with the picture that the pairing is devel-
equivalent single-imputity problem. Keeping the particleoped by the excitations of the system resulting from the
density fixed, bothe; and n increase with temperature but Kondo compensated lattice.
the differencee;— u decreases. Our calculations show that Finally we calculate the specific heat for the various sym-
T, is smaller tharg; — u by a factor of about 1@see Fig. §  metries. The nonconventional pairing symmetry leads to a
over almost the entire range of densities considered in Fig. Jnower law behavior at low in the superconducting phase.
In Fig. 6 we presenT., €, andu for the extended-wave In Fig. 7 we show the specific heat for the various symme-
order parametefthe curves for the other symmetries aretries as a function of temperature. The specific heat jump at
qualitatively the same The susceptibilitydn;/de;, in the  the transition isAC/C~1.6,1.3,0.8 for thep, d, s symme-
region of densities characterized byN=0.7 or larger, is tries, respectively. We have found that the specific heat at
very small since thd-level density of states is much larger low T has aT? dependence for the, d symmetries, and has
than thec-level one, leading to a negative feedback changingan exponential behavior for trewave case.
the chemical potential in such a way as to kegplose tow. Considering now the effect of increasing the number of
This is very clear from Fig. 6, wherg is indeed close tq, channelsN, we find thatT. decreases by one order of mag-
for electronic densities where the density of states is largenitude or more, atN changes fronN=2 to N=4. For the
parameters considered in the figures, the effect is most dra-
0.1 . . . matic for s, p-wave symmetries, where superconductivity is
absent forN=4. Furthermore, we found that the critical
i temperature of a system with cawave order parameter is
or o less sensitive to the number of channilsas compared to
st the other symmetries.

-
o

P o ] IV. SUMMARY

g ] Heavy-fermions show a rich and complex behavior at low
e temperatures. In particular, the interplay between magnetic
- correlations, the Kondo effect, and superconducting correla-
. — T/D tions is a difficult problem to solve. This is further compli-
o0 e/D cated since neither the mechanism nor the pairing symmetry
0.3 e ~---uD 1 are fully established. In this paper we have focused on the
- superconducting order assuming that the superconducting
L | correlations are the dominant ones. Using a generalized
0.4 v : . : - : . Anderson lattice model with nearest-neighbor attraction be-
02 04 06 08 T tween thef electrons and with infinité local Coulomb re-
wN pulsion, we studied the various pairing symmetries using a
FIG. 6. Critical temperaturd@,, renormalized energy levey, ~ mean-field approach. In this way it is possible to compare the
and chemical potencial as function oft/N. The value ofe;—w is ~ Various solutions in contrast to an approach where, starting
much Iarger tharTC_ The symmetry of the superconducting order from the normal phase, the Ieading instabilities are identified.
parameter is extendexiwave, and the other symmetries follow the ~ The results show that there are several crossovers between
same trends. The parameters are the same as in Fig. 1. the s, d-, andp-wave pairing symmetries as the parameters
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of the model are varied. In contrast to a previous mean-field . u®
approach we find superconducting order, even tholigh GK,iw,)=— —_— (A1)
=, The reason is that we focus on a regime wheren i“12d=+ logtak,
<1, while the previous work concentrated on a regimeang the coherence factan§ and the excitations energies
where 1<n;<2 (for finite U). Since we consider only the ., given below.
caseU=0, n¢ has to be smaller than one due to the Cou- 1o energie€; have the form
lomb repulsion. In the previous work &kgrows the density !
ni—1 thef electrons become more localized inhibiting su- \/—2
perconductivity. We find the same qualitative behavior as we E1= Vyl2= Ny /4= B, (A2)
approach the Kondo regime from the mixed valent regime.
For small values o0&, we tend to a regime wherg— 1 and E,= \ y/2+ \y?2/4— B, (A3)
superconductivity is suppressed.

In the mean-field approach #—0(n;— 1) the gap func- With y and 8 given by
tion A,,—0. This happens for large densitiasbN—1. For

n;— 0 superconductivy is supressed, since the superconduct- y=(e— )%+ (eg— )2+ 2V2z+[IZA(K)|?,  (A4)
ing coupling is among thé electrons. Also, ifN is largez

—0 at lower temperatures. In particulgiswave and ex- B=[(ec— ) (&~ ) —V22]>+|IPA(K) |2 (€~ w)>.
tendeds-wave symmetries are strongly suppressed. Ror (A5)

=2 zis always finite. For larger values dfin general it will Y . _
be necessary to consider the boson fluctuations and a tredthe u® factors forG; (k,iw,) are given by
ment beyond mean-field will be required. For systems where

the spin degeneracy is low we expect the results to be quali- uy =F(Ey+eg— p)Xq, (A6)
tatively correct.

We have found that thd-wave andp-wave symmetries U, =F(E;—egt )Yy, (A7)
yield similar transition temperatures. For large nearest-
neighbor attraction the extendeeavave pairing is preferred. Uy = — G(Ep+ eg— 1) Xy, (A8)
Otherwise, thal-wave symmetry seems to be more robust, in
particular as\ grows. Clearly, we are not considering mag- U, = —G(E,— et u) Yy, (A9)

netic correlations in our mean-field study and therefore the
description applies to systems where there are no local movhere the function¥; andY;(i=1,2) are given by
ments(and thereforel ;< Tx) and whereT ;> Tggky - ) )

We found that superconductivity is preferred in a mixed Xi=(€x— ) (& —u) —(ei— & —2u)Ei+Ef —zV5,  (A10)
valent regimegdue to the infinite Coulomb repulsiarThere
are materials that are mixed valent and superconduttofs. Yi=(eg—m)(€s— )+ (eg—es—2u)E; + Eiz—zvz, (A11)
In the framework of weak coupling BCS theory one would
expect that the local magnetic character offtstates should
be pair breaking. However, the heavy fermion superconduc-
tivity in the Kondo limit (integer valent cageeveals that the F= 1 G= 1
pairing is of another nature that compensates the pair break- 2E,(E3—E?) ' 2E,(E3—E?) '
ing effects of the local magnetic character. For materials
such as CeRyS$i, there is a considerable mixed valent char-The u® factors for 7} m(IZ,iwn) are given by
acter and accordingly the effective masses are not high. Also, '
the Wilson ratio is close to one indicating a conventional y=—JZ2A(K)F[E2—(ei—u)?], ui=-u;, (Al13)
weak-coupling BCS superconductor. Other mixed valent su-
perconductors are not conventional superconductors. It  +_ . o, 2, . \2
would be interesting to identify systems that by changing the Uz = —JZA(K) G B~ (&= )7,
mixed-valent character could change the superconductin @ TR ;
temperatureT,. In the framework of our model this would ¥he u? factors forGl . (k,iw,) are given by
require f states with largeJ values. The nearest-neighbor t_ -_
attraction could be due to several mechanisms like spin fluc- . V\/ZFXl’ Uy =FYa, (A15)
tuations or slave boson fluctuatioftSoulombic naturg

and the function$ and G are given by

(A12)

U, =—u,. (Al4)

u; =VyzGX%, u,=-GY,. (A16)
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u,=—GQ,, U, =GRy, (A18)
APPENDIX: POLES AND COHERENCE FUNCTIONS FOR
THE GREEN’S FUNCTIONS where
The algebraic solutions of Eqel8)—(21) for the Green'’s Qi=(ei—u—ED|IZAK)|2+ (e +E)X;, (A19)

functions G; m(K,iwn), Germ(Kiwn), Fin(Kiw,), and
Gem(K,iwp) have the form Ri=(ei— u+Ep|IZAK)|2—(—+E)DY;. (A20)
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