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Spin accumulation and Andreev reflection in a mesoscopic ferromagnetic wire
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The electron transport though ferromagnetic-metal–superconducting hybrid devices is considered in the
nonequilibrium Green’s function formalism in the quasiclassical approximation. Attention is focused on the
limit in which the exchange splitting in the ferromagnet is much larger than the superconducting energy gap.
Transport properties are then governed by an interplay between spin accumulation close to the interface and
Andreev reflection at the interface. We find that the resistance can be either enhanced or lowered in comparison
to the normal case and can have a nonmonotonic temperature and voltage dependence. In the nonlinear voltage
regime electron heating effects may govern the transport properties, leading to qualitative different behavior
than in the absence of heating effects. Recent experimental results on the effect of the superconductor on the
conductance of the ferromagnet can be understood by our results for the energy-dependent interface resistance
together with effects of spin accumulation without invoking long-range pairing correlations in the ferromagnet.
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I. INTRODUCTION

Much theoretical and experimental work has addres
the effect of a superconductor~S! in proximity to a normal
metal ~N! on the transport properties during the last yea
see Ref. 1 and references therein for an overview. Most
perimental results can be explained in the framework of
quasiclassical theory of superconductivity accounting fo
‘‘long-range’’ proximity effect with a coherence lengthj
5(\D/2kBT)1/2, whereD is the diffusion coefficient of the
normal metal andT is the temperature. On the other han
applications of the quasiclassical theory to transport in h
erostructures containing ferromagnets~F! are still scarce. In
contrast to normal metals the presence of a strong exch
field in the ferromagnet leads to a strong difference in
energy dispersions for the two spin bands. However, lo
range coherence in normal metals requires spin-degen
bands close to the Fermi energy, since singlet supercon
tivity couples quasiparticles of different spins by Andre
reflection. The consequence of the exchange field energyhxc
is a strong decoherence of quasiparticles belonging to
different spin bands. Typically the superconducting ene
scaleD is smaller thanhxc by several orders of magnitud
for ~Al,Nb! vs ~Fe, Ni, and Co!, respectively. Thus, the prox
imity effect in ferromagnetic metals is negligible and a fe
romagnet in contact with a superconductor may be con
ered as anincoherentmetal coupled to the superconducto
In this case all changes induced by the contact to a su
conductor depend on the properties of the interface its
This is accomplished by the effect of spin accumulation2,3

which does not require phase coherence in the ferroma
PRB 620163-1829/2000/62~14!/9726~14!/$15.00
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and can therefore have a much longer range than the p
imity effect. The main purpose of this paper is to study t
mutual influence of resistance changes by spin accumula
and interface properties.

Recently heterostructures of ferromagnets and super
ductors have been experimentally realized a
investigated.4–7 Several unusual phenomena have been
veiled. The experimental results in point contact geometr4

can be explained by the reduced, bias-dependent trans
ency of the interface due to spin-dependent band mism
between the normal metal and the ferromagnet.4,8 The ex-
perimental results in diffusive nanostructured samples5–7 are
more intriguing. The measured conductance changes on
ferromagnetic side can be positive and negative at the su
conducting transition with amplitudes much larger than a
ticipated. The sign and the amplitude of the changes app
to depend strongly on the ferromagnetic-superconductor
terface transparency. It has been conjectured that a st
mutual influence of the superconductors and ferromagn
conductors and a penetration of the superconducting o
parameter into the ferromagnet over distances many ti
longer than expected from the above estimates might exp
the observations.5–7

Some effects of the interplay between spin accumulat
and Andreev reflection in diffuse systems have been
cussed in Ref. 9. Since the spin current into a supercondu
vanishes at sufficiently low bias and temperature, a none
librium spin accumulation builds up on the ferromagne
side in order to conserve the spin currents. The spin accu
lation causes an additional boundary resistance which i
the order of the resistance of the ferromagnetic wire o
9726 ©2000 The American Physical Society
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length of the spin-flip diffusion length. Therefore the res
tance of the F-S system should be always larger than tha
the the F-N system, in contradiction with some of the expe
mental observations. The reason for this apparent failur
the assumption that the resistance of the FS interface is
ligible compared to other changes of the resistance. Prev
theories took into account only perfectly ballistic interfac
for which the resistance is determined purely by the mat
ing of the adjacent Fermi surfaces. The interface resista
and its modulation are then of the order of the Sharvin re
tance, which is negligible compared to the total one. Ho
ever, in sputtered samples with relatively large cont
areas5–7 the interface can contribute significantly, especia
when differences of resistances below and above the su
conducting transition temperatures are considered.

Other transport phenomena in ferromagn
superconductor systems have been studied in Refs. 10–1
the first two references the influence of the proximity effe
on the zero-temperature conductance was studied unde
assumption that the ferromagnet has only a small excha
splitting ~of the order of or smaller than the superconduct
gap!. In the ferromagnetic metals that we have in mind, t
is not the case and we can therefore neglect the proxim
effect. References 12 are generalizations of the well-kno
Blonder-Tinkham-Klapwijk~BTK! model13 of an interface
potential to the case of a ferromagnet–~un!conventional-
superconductor point contact. These results rely on ato
cally sharp interfaces without disorder, and cannot be use
describe the experiments5–7 that we have in mind.

It has been speculated that the triplet component of
order parameter induced by the fluctuations of the spin-o
scattering potentials is essential in mesoscopic junction14

Neglecting magnetic impurities and spin-orbit coupling t
superconducting order parameter is a spin singlet. Howe
magnetic impurities or spin-orbit coupling induce a fluctu
ing spin-triplet component with zero average. The trip
component is ‘‘long-range’’ coherent in the ferromagn
since it couples electrons and holes with the same spin
the exchange field in the ferromagnet does not play a r
However, the contribution to the conductivity from the tripl
fluctuations is only relevant when the fluctuations are re
tively large which is only the case when the conductanc
close to the quantum conductance. The experime
samples5–7 have a much larger conductance, and we do
expect that such mesoscopic fluctuations play an impor
role.

None of the above-mentioned theories can explain the
cent experimental results. This makes it necessary to s
the properties of the contact between the ferromagnet and
normal metal in more detail and to account for a possi
spin accumulation and heating effects in the ferromagnet
cluding different interface morphologies. In particular w
will go beyond the assumption of a perfect transparent m
tallic interface9 and discuss its influence on the observ
conductance changes below the superconducting trans
temperature and for bias voltages less than the supercon
ing gap. We will in this work radically disregard the prox
imity effect. Therefore our results only apply to ferromagn
with hxc@D, which is, e.g., the case for the magnetic tran
tion metals~Fe, Co, and Ni! in conjunction with supercon
ducting metals like Nb and Al. This assumption is suppor
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by the experimental fact that FS interferometers show
phase-periodic oscillations down to the level of 0.1e2/h in
strong ferromagnets.5–7 In contrast to the calculations pre
sented in this paper, the proximity effect could be importa
in weak ferromagnets. Below we will show that most of t
recent experimental results can be explained in terms of
energy dependence introduced by the interface and the
companying change in the spin accumulation. It is import
to note that these changes are small in comparison to
total resistance, which is dominated by the long ferrom
netic wire. Nevertheless, they play a dominant role in
resistance modulation.

The paper is organized in the following way: Section
gives a description of the diffusive ferromagnetic wire bo
in the limit of elastic and inelastic scattering between t
electrons. Section III treats the boundary condition betwe
the ferromagnet and the superconductor which is crucial
the understanding of the transport properties. The results
the conductance obtained from the description of the fe
magnetic wire with these boundary conditions are discus
in Sec. IV. Finally we compare our results with experimen
in Sec. V and give our conclusions in Sec. VI.

II. DESCRIPTION OF THE FERROMAGNET

We consider a ferromagnetic diffusive wire connected
an ideal ~ferromagnetic or normal metal! reservoir on one
side and to a superconducting reservoir on the other sid
depicted in Fig. 1. The wire is characterized by lengthL,
cross sectionA, and spin-dependent conductivitiess↑ and
s↓ . In this section we discuss the kinetic equations desc
ing the ferromagnetic wire in the absence of the proxim
effect. We consider collisions with impurities to be the dom
nant scattering processes and use the diffusion approx
tion. The electrons in the quasi-one-dimensional wire are
scribed by energye and spatialx dependent distribution
functions f s(e,x) for the two spin directionss51,2 for
spin ↑ and ↓, respectively. The distribution functions obe
two coupled Boltzmann equations in the diffusive lim
Other scattering mechanisms will be specified in the follo
ing subsections.

Instead of the spin-dependent conductivities, it is con
nient to introduce the total conductivitys5s↑1s↓ and the
spin polarization of the conductivity,g5(s↑2s↓)/s.
The spin-dependent conductivities are then expressed ass

FIG. 1. Schematic layout of the mesoscopic ferromagnetic w
It is placed between a ferromagnetic reservoir held at voltageV and
a grounded superconducting reservoir. The contact to the super
ductor is an arbitrary connector, characterized by spin-depen
conductances in the normal state.
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5(11sg)s/2. We will also make use of the total condu
tance ~resistance! of the ferromagnetic wire GF
5As/L (RF51/GF).

A. Elastic scattering

In the elastic scattering case the energy is conserved in
scattering processes. This makes it necessary to study
energy-dependent distribution functions in the ferromagn
wire. In addition to elastic impurity scattering we consid
spin-flip scattering processes accounted for by the spin
length l sf . Then, the kinetic equations read

d2

dx2
f s~e,x!5

1

l sf
2 @ f s~e,x!2 f 2s~e,x!#. ~1!

The current for spins is given by (e5ueu)

I s~x!52ss

A

eE de
d fs~e,x!

dx
5E deI s~e,x!. ~2!

This equation defines the spectral currentI s(e,x). Electrical
and spin currents areI charge5I ↑(x)1I ↓(x) and I spin(x)
5I ↑(x)2I ↓(x) and similar for the spectral currents. It
convenient to introduce the conductivity-averaged distri
tion function s f el(e,x)5s↑ f ↑(e,x)1s↓ f ↓(e,x) and the
nonequilibrium spin distribution functionf sp(e,x)5 f ↑(e,x)
2 f ↓(e,x). The kinetic equations in terms of these functio
decouple and have the form of spectral current conserva
and spatial relaxation of the nonequilibrium spin distributio
respectively.

B. Inelastic scattering

The reason to investigate the role of inelastic scatterin
the convenient fact that the ferromagnet is an incohe
metal with rather strong correlations. Both phonon a
electron-electron scattering can mediate inelastic scatte
In general it is not obvious which should dominate and b
should be treated on equal footing. In order to achieve
sight into the physics it is useful to consider limiting cases
well.

In the limit of strong inelastic scattering we assume t
the electron-electron interaction is stronger than the elect
phonon relaxation. When a bias voltage is applied, the lo
electron temperature can therefore be different from the t
perature in the reservoirs. This transport regime is relev
when the typical inelastic scattering length is smaller th
the spin-diffusion length.

The electrons relax to a local equilibrium

f s~e,x!5 f „e;ms~x!,Tel~x!…, ~3!

wherems(x) is the spin-dependent chemical potential,Tel(x)
is the local temperature, and

f ~e;m,T!5
1

11 exp@~e2m!/kBT#
~4!

is the Fermi-Dirac distribution function. This makes it po
sible to integrate the kinetic equation and the currents o
energy and to obtain equations for the local chemical po
tials and electron temperature.
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The spin-dependent~electric! current from Eq.~2! is

I s~x!52
s

2e
~11sg!

dms~x!

dx
. ~5!

Current conservation requires

d2

dx2
@s↑m↑~x!1s↓m↓~x!#50. ~6!

Spin relaxation occurs within the spin-diffusion lengthl sf :

d2

dx2
@m↑~x!2m↓~x!#5

1

l sf
2 @m↑~x!2m↓~x!#. ~7!

The local spin-dependent chemical potentials in the fer
magnet are determined by Eqs.~6! and~7! and the boundary
conditions to be discussed below.

Additionally, we need equations describing energy tra
port in the system to account for heating of the electro
The energy current is

I e~x!52
A

e2 (
s

ssE dee
d fs~e,x!

dx

5@m↑~x!I ↑~x!1m↓~x!I ↓~x!#/e1I Q~x!, ~8!

where the heat current is

I Q~x!52kQ~x!A
dTel~x!

dx
, ~9!

the heat conductivitykQ(x)5sL0Tel(x), and the Lorentz
number isL05(p2/3)(kB /e)2.

The conservation law for the energy dictates

d

dx
I e~x!5AS ]re~x!

]t D
rel

, ~10!

wherere(x) is the local energy density. The energy rela
ation between the electronic system and the phonons at
ficiently low temperatures is15

S ]re~x!

]t D
rel

5z$~kBT!52@kBTel~x!#5%, ~11!

where z parametrizes the strength of the electron-phon
interaction, z548pz(5)N(eF)l* /(\3vD

2 ), z(5)'1.04 is
the Riemann zeta function,N(eF) is the density of states o
both spins per unit cell,l* is of the same order of magnitud
as the electron-phonon coupling constantl, and\vD is the
Debye energy.

The conservation of energy, Eq.~10!, together with the
expression for the energy relaxation, Eq.~11!, give a differ-
ential equation for the local electron temperature which c
be solved together with the boundary conditions to be d
cussed below.

When the electron-phonon interaction is weak there is
exchange of energy between the electron and the pho
systems so that the right hand side of Eq.~10! can be set to
zero and we have conservation of the energy current du
the electron transportdIe(x)/dx50. In the opposite limit of
a strong electron-phonon interaction the electron tempera
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equals the lattice temperature. The differential equation
the energy conservation with the boundary conditions gi
above can in these two cases be solved exactly. In the in
mediate regime the equations will be solved numerically

III. BOUNDARY CONDITIONS

The condition that the ferromagnet should be complet
incoherent leads to simplified boundary conditions for
kinetic equations. These boundary conditions can be der
from the boundary conditions for the quasiclassical Gree
function.16 A transparent form suitable for diffusive system
has been presented by Nazarov.17 We will follow the spirit
and the notation of this paper. A circuit theory fo
ferromagnetic–normal-metal systems has been presente
Ref. 18. A contact is described by a set of transmission
genvalues$Tn% or, equivalently, by a distribution of the
transmission eigenvaluesr(T). The boundary condition a
the contact is expressed through a conservation law for
matrix current in the Keldysh formulation. In the framewo
of superconductivity it is a 434 matrix comprising 232
Keldysh space and 232 particle-hole ~Nambu! space.
Boundary conditions for any type of contact can be presen
by means of this conservation law for the matrix current. F
a contact characterized by transmission eigenvalues$Tn% the
matrix current has been derived in Ref. 17 and takes the f

Ǐ 52
2e

p\ (
n

Tn

~ǦFǦS2ǦSǦF!

41Tn~ǦFǦS1ǦSǦF22!
. ~12!

This matrix current has to be equated to the diffusive ma
current entering the contact from either side. The two si
of the contact are characterized by the Keldysh ma
Green’s functionsǦS and ǦF , which we will specify to be
the superconducting reservoir and the ferromagnetic w
respectively. The Keldysh-Nambu matrix Green’s functi
of the superconductor in equilibrium is

ǦS~e!5S ĜS
R~e! ĜS

K~e!

0 ĜS
A~e!

D . ~13!

A similar structure holds for any matrix in Keldysh space.
local equilibrium the Keldysh~1,2! component in Nambu
space is ĜS

K(e)5@ĜS
R(e)2ĜS

A(e)#@122 f S(e)#, where
f S(e)5@11 exp(e/kBT)#21 is the quasiparticle distribution
function in the superconductor and we have set the chem
potential in the superconductor to zero.ĜS

R(e) and ĜS
A(e)

are retarded and advanced Nambu Green’s functions d
mining the spectral properties of the superconductor. In
BCS case with a real order parameter they are given by

ĜS
R~e!52@ĜS

A~e!#* 5
~e1 i0!t̂32 iDt̂1

A~e1 i0!22D2
. ~14!

The diagonal component represents the normal reta
Green’s function whereas the off-diagonal component is c
ventionally called the anomalous Green’s function. On
ferromagnetic side we completely neglect the proximity
fect leading to the spectral functionsĜF

R5 t̂352ĜF
A . The
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absence of an anomalous component is a result of the
sence of the proximity effect. The Keldysh component a
counts for the spin-dependent nonequilibrium distribution

ĜF
K~e!52S 122 f ↑

F~e! 0

0 122 f ↓
F~2e!

D , ~15!

where f ↑
F(e) and f ↓

F(e) are the quasiparticle distributio
functions close to the interface on the ferromagnetic si
The spectral electrical current is determined by the Keld
component of the matrix current according to

I el~e!5
1

4e
Tr@ t̂3Î K~e!#. ~16!

Equations~15! and~16! suggest a representation of the dia
onal components of the Keldysh component of the ma
current in the form

Î K~e!5S I ↑~e! •••

••• I ↓~2e!
D . ~17!

Now we are in the position to calculate the spin-resolv
currents through the contact. Performing the calculatio
along the lines of Ref. 17 we find the spectral spin-depend
current

I s~e!5
GQP~e!

2e
@ f S~e!2 f s

F~e!#

1
GA~e!

4e
@12 f s

F~e!2 f 2s
F ~2e!#. ~18!

The quasiparticle conductanceGQP(e) and the Andreev con-
ductanceGA(e) are determined by the properties of the co
tact and the spectral properties of the two metals conne
by the contact. The distribution of transmission eigenvalu
can be incorporated in a single characteristic complex fu
tion

Z~x!5
e2

p\ (
n

Tn

21Tn~x21!
, ~19!

wherex(e)5Tr$ĜS
R(e),ĜF

R(e)%/4. The conductances are

GQP~e!5ReZ~x!Rex1
Im Z~x!

Im x
Im2A12x2, ~20!

GA~e!52
Im Z~x!

Im x
u12x2u. ~21!

The contact is characterized by a transmission distri
tion, which leads to contact-specific energy dependence
the conductances. The normal-state conductance isGBN
5(e2/2p\)(nTn . For a ballistic model contact all transmis
sion eigenvalues are equal to 1 for the propagating chan
and 0 otherwise and(nTn5N, whereN is the number of
propagating channels. The distribution function in the case
a dirty interface is19

r~T!5
\

e2
GBN

1

T3/2A12T
~22!
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TABLE I. Spectral conductances of different generic contacts defined by the transmission distributions in the second colu
characteristic functionZ of the contact was defined in Eq.~19!. As an example we present electrical and spin conductance for a co
between a ferromagnetic metal and a BCS superconductor in the last two columns. For energies below the superconductingD the
quasiparticle conductanceGQP vanishes for all contacts. Note that the energy argument of all quantitiese is understood to be the absolu
value of the energy.

Contact r(T)/GN Z(e)/GN F-S contact

GA

GN
~e,D!

GA1GQP

GN
~e.D!

GQP

GN
~e.D!

Tunnel Tn!1 1 0
e

j

e

j

Ballistic Tn51
2

11x
2

2e

e1j

2j

e1j

Diffusive
\p

2e2

1

TA12T

arccos~x!

A12x2

D

2e
lnSD1e

D2eD e

2D
lnSe1D

e2DD 1

Dirty interface
\

e2

1

T 3/2A12T
A 2

11x

D

Aj~j1D!
Ae1j

2j

A2e

Aj~e1j!

Abbreviations x5
1
4 Tr$ĜS

R ,ĜF
R% j5Aue22D2u
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and in the case of a diffusive contact the distribution is20

r~T!5
\

2e2
GBN

1

TA12T
. ~23!

Finally, for a tunnel conductance a perturbation expansio
terms of the small transmission eigenvalues can be
formed. We list the characteristic functionZ(x) for a number
of generic contacts in Table I: tunnel junction, ballistic co
tact, diffusive contact, and dirty interface. In the case of
incoherent metal on one side~i.e., ĜF

R5 t̂3), the argument of

the characteristic function reduces tox5Tr t̂3ĜS
R/2. The re-

sult in this case is demonstrated explicitly in Table I for
contact of a BCS superconductor with spectral functio
~14!. The energy dependence of these spectral conducta
is depicted in Fig 2. Below the superconducting gap only
Andreev conductance is nonzero, gradually decreasing f
the value of 2GBN for the metallic junction to zero in the
tunnel junction. Above the gap the Andreev conductan
vanishes rather quickly;1/e2. Also quasiparticle transpor
becomes possible and, thus, spin transport into the super
ductor.

The properties of these contacts are demonstrated by
temperature dependence of the linear conductance follow
from

GBS~T!5E de@GQP~e!1GA~e!#S 2
] f ~e,0,T!

]e D . ~24!

This is the conductance that would be measured if the c
tact were placed between a normal reservoir and a super
ducting reservoir. The temperature dependence of the con
conductance~24! is shown in Fig. 3. The dashed and dott
lines show the conductance of the diffusive contact and
dirty interface, respectively. The resistance of the diffus
contact shows the well-known reentrant behavior; i.e.
reaches the normal-state conductance at zero temperat21

The resistance of the dirty interface after a small drop be
in
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the critical temperature is higher than the normal-state va
and saturates at low temperature atA2RBN .19 The result for
the dirty interface resembles that of Ref. 22, where this
havior was found with a different method for the resistan
of a thin double barrier between a normal metal and a su
conductor.

Additionally, we introduce mixed contacts as a model f
an inhomogeneous interface with distributed regions w
low and high transparency. The relative admixtureq of a

FIG. 2. Spectral conductances for different types of conta
The solid curves denote the quasiparticle conductanceGQP(e) and
the dashed curves the Andreev conductanceGA(e). The contact
types as indicated in the figure are metallic junction~all Tn51),
diffusive contact@transmission distribution as defined in Eq.~23!#,
dirty interface@Eq. ~22!#, and tunnel junction~all Tn!1).
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tunnel and (12q) of a ballistic contact allows switching
continuously from one limit to the other, covering approx
mately the universal cases of a diffusive contact (q'0.5)
and a dirty interface (q'1/A2) with a single parameterq.
Mathematically the contact is defined by

Gq~e!5qGtunnel~e!1~12q!Gballistic~e! ~25!

for quasiparticle and Andreev conductance, respectively.
energy dependence of the individual conductances can
found in Table I. A common feature of the temperature d
pendence of all these contacts except the tunnel junctio
that right belowTc the resistance drops. At lower temper
tures the resistance increases again except in the case o
purely ballistic contact. The drop of resistance of these c
tacts close toTc can be traced back to the temperature
pendence of the superconducting order parameterD(T). The
resistance drop is caused by the leading order contributio
the change in the superconducting gapD(T)}(12T/Tc)

1/2

to the Andreev contribution and the conductance.23 A similar
behavior is well known from Ref. 13, in which the transitio
from a ballistic to a tunneling contact is modeled by incre
ing a d-potential barrier at the interface.

The boundary conditions presented so far imply that
transmission ensembles and the number of channels ar
same for the two spin species. In reality the transmiss
matrices for spin-up and spin-down states can be differen
microscopic calculation of the transmission eigenvalues
beyond the scope of the present paper. We will theref
heuristically generalize the boundary conditions to sp
dependent interfaces by taking different transmission
sembles for the two spin directions. These ensembles
differ in the total number of channels and/or in the transm
sion distribution. Thus, we replace the spin-dependent
rent through the interface~18! by

I s~e!5
Gs~e!

2e
@ f S~e!2 f s

F~e,0!#

1
GA~e!

4e
@12 f s

F~e,0!1 f 2s
F ~2e,0!#. ~26!

FIG. 3. Resistance change of different types of contacts betw
a normal metal reservoir and a superconducting reservoir.
mixed contact~solid line! varies from ballistic (q50) to tunnel
(q51) from bottom to top. Intermediate values areq
50.25,0.5,0.75). The diffusive contact is shown by the sho
dashed line and the dirty contact by the long-dashed line~see Table
I for a definition of these contacts!.
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In general the spin-dependent quasiparticle conductan
G↑(e) andG↓(e) entering the first term are of different mag
nitude and have different energy dependences. Similarly
for the ferromagnetic wire we introduce the total condu
tance of the boundaryGB(e)5G↑(e)1G↓(e) and a dimen-
sionless factorgB(e)5@G↑(e)2G↓(e)#/GB(e), which we
call polarization of the boundary conductance. Since
definitions~20! of quasiparticle and~21! of Andreev conduc-
tance have been derived for a spin-degenerate interface t
definitions are not valid anymore for spin-dependent int
face scattering. It is, however, reasonable to assume tha
energy dependence of all conductances is well approxim
by thesametransmission ensemble, butdifferentnumbers of
channels. We can motivate this choice by the fact that in
experiments that we have in mind the interfaces are stron
disordered regions, with a possible formation of an all
layer extending over several monolayers. In such conta
the number of channels is more or less controlled by
differences of the cross sections of the Fermi surface. But
the other hand, the transmission ensemble and, hence
energy dependence of the conductance are not expecte
vary much in typical disordered contacts on the scale of
superconductor gap.

We will in the following only take into account the dif
ferences in magnitude, but not in energy dependence. In
language of transmission distributions this means that
distributions are the same, but the number of channels di
In this approximation the spin polarization of the bounda
conductancegB is energy independent. The energy depe
dence of the Andreev conductance follows from the sa
transmission ensemble, but its magnitude will be reduced
comparison to the unpolarized case. It is important to no
that the boundary polarization and the polarization of
ferromagnetic wire need not have the same sign, since
are parametrically independent. The possibility of this
demonstrated by microscopic numerical calculations.24

IV. RESULTS AND DISCUSSIONS

We solve the kinetic equations presented in Sec. II in
three cases:~A! purely elastic scattering,~B! inelastic scat-
tering in linear response, and~C! inelastic scattering in non
linear response. The boundary condition on the superc
ducting side of the wire has been derived in Sec. III. T
boundary conditions at the ferromagnetic reservoir are

f ↑~e,2L !5 f ↓~e,2L !5 f ~e;eV,T!, ~27!

where f (e;eV,T)5$exp@(e2eV)/kBT#11%21 is the Fermi-
Dirac equilibrium distribution at a constant voltageV and
temperatureT.

In the case of inelastic scattering Eq.~27! also implies
that the electron temperature equals the lattice temperatu
the ferromagnetic reservoirTel(x52L)5T. The other
boundary condition for the electron temperature comes fr
the conservation of energy current in the ferromagnet
into the superconductor.

As a reference we calculate the resistance of the syste
the normal state:

RFN5RF1RBN1Rsf

~g2gB!2

11Rsf /RBN
. ~28!
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The third term is due to the spin accumulation in the fer
magnetic wire determined by the ‘‘spin-flip resistance’’Rsf
51/Gsf5RFl sf /L tanh(lsf /L)(12g2). In the limit of a weak
ferromagnetg2!1 and a short spin-flip relaxation lengt
l sf!L the spin-flip resistance reduces toRsf'RFl sf /L, i.e.,
the resistance of a piece of the ferromagnetic wire of len
l sf . We see that the excess resistance due to the spin a
mulation increases with increasing asymmetry between
polarization of the bulk conductivity and the polarization
the interface conductance. The expression~28! will be used
in the following to calculate resistance changes below
transition to the superconducting state:

DRFS~T,V!5RFS~T,V!2RFN. ~29!

The differential resistance is defined by

RFS~T,V!5S ]I ~T,V!

]V D 21

. ~30!

In the linear response regime we will omit the arguments
the differential resistanceRFS[RFS(T,V→0).

In the following analysis it will be useful to define th
following temperature-dependent average:

^•••&5E
2`

`

•••S 2
] f ~e;0,T!

]e Dde. ~31!

This average occurs, e.g., in the temperature-dependent
ductances of a contact between an incoherent metal a
superconductor~24!.

A. Elastic scattering

When the scattering in the wire is elastic, the gene
solution of Eq.~1! satisfying Eq.~27! may be written as

f el~e,x!5
GFS~e!

GF
@ f ~e;0,T!2 f ~e;eV,T!#S 11

x

L D
1 f ~e;eV,T!. ~32!

The spatially independent spectral conductanceGFS(e) de-
termines the current through the structures and remains t
calculated. The solution of the kinetic equation~1! is found
from the continuity of the spin currents into the superco
ductor~26! and ferromagnetic wire~2!. We find the electrical
current

I ~T,V!5
1

2eE deGFS~e!@12 f ~e;eV,T!2 f ~2e;eV,T!# .

~33!

This expression shows that the spectral conductance d
mines the transport in each energy slice depending on
difference in occupation of states at this energy in the re
voirs. This form is analogous to the classical definition o
conductance as the proportionality factor between cur
and voltage difference.

The spectral conductance is given by
-

h
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e

f
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l
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1

GFS~e!
5

1

GF
1

1

GQP~e!1GA~e!

1

S g2gB

GQP~e!

GQP~e!1GA~e! D
2

Gsf1GQP~e!S 12gB
2 GQP~e!

GQP~e!1GA~e! D
.

~34!

In the general case the full expression has to be use
calculate the resistance change in the superconducting s

When the ferromagnetic wire dominates the resistance
the whole structure a simplified expression for the linear
sistance change may be obtained. We first limit the disc
sion to the case of a weak ferromagnet and vanishing bou
ary polarization to obtain

DRFS5 K 1

GQP~e!1GA~e!L 2RBN

1g2F K 1

Gsf1GQP~e!L 2
1

Gsf1GBN
G . ~35!

We see that the resistance change consists of two cont
tions. The first is the resistance change due to the chang
the boundary resistance, which would also be present in
absence of spin polarization. Note, however, that this te
can be qualitatively different from the case of a normal me
wire in contact with a superconductor since in this case
proximity effect would not be negligible. The second ter
accounts for the difference in spin accumulation betwe
normal and superconducting state.

First we discuss the influence of spin accumulation on
FS resistance for a spin-degenerate interface. In Fig. 4 re
tance changes for two types of contacts are shown for dif
ent polarizations of the ferromagnet. Solid curves are fo
relatively good contact (q50.75) and dashed curves for
less transparent contact (q50.25). In this plot the total re-
sistance of the system is dominated by the resistance of
ferromagnetic wireRF5100RBN and the spin-relaxation
length is l sf50.03L, resulting in a spin-accumulation resis
tanceRsf'3RBN . Accordingly, the resistance change is no
malized toRBN to show the relevant scale of the effect pr
duced by the superconducting transition. For both conta
spin accumulation~increasing from the bottom to the to
curves! leads to an enhancement of the resistance. Spe
cally the low-temperature resistance is well accounted for
Eq. ~35! in the limit T→0:

DRFS~T50!5
1

GA~0!
2RBN1g2

Rsf

11RBN /Rsf
. ~36!

The third term of this equation shows that the spin accum
lation always enhances the resistance, maximally by
amountg2Rsf . The enhancement for theq50.25 contact has
a uniform temperature dependence and does not cha
qualitatively. This is different for theq50.75 contact. Here
the resistance decreases monotonically in the unpolar
case as a result of the Andreev-enhanced conductanc
small polarizationg'0.2–0.4 results in a nonmonoton
temperature dependence, i.e., an increase of resistanc
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lower temperatures. This can lead~for specific parameters! to
a reentrant behavior of the resistance change, even o
shooting the normal-state value for larger spin accumulat
At even higher spin polarizationsg2*RBN /Rsf the Andreev
contribution is completely masked and the resistance
creases monotonically. This behavior resembles that of a
transparent contact if the absolute scale is properly chos

Let us now discuss the effect of the interface polarizat
gB on the resistance change. In Fig. 5 the temperat
dependent resistance of aq50.75 contact is shown for dif-
ferent interface polarizations. Other parameters areRF
5100RBN , l sf50.03L, and g50.3. The interface polariza
tion gB changes from the symmetric value10.5 to the anti-
symmetric value20.5, as indicated in the plot. The redu
tion of the Andreev conductance by the spin-depend
interface resistance is taken into account by a phenom
logical renormalization factor (12gB

2). To gain some insight
it is useful to look at the low-temperature limit of the res
tance change in the limitRBN!Rsf . From Eq.~34! it follows
that

DRFS~T50!5
1

GA~0!
2RBN1Rsf~4ggB2gB

2 !. ~37!

The spin-dependent contribution depends on the relative
of the two polarizationsg andgB and can also be negativ
~if 4ggB,gB

2). This effect is seen in the lower two curves
Fig. 5 with an antisymmetric interface polarization. An i
creasing interface polarization leads to a lowering of the
sistance change, despite the increase of the resistance d
the renormalization of the Andreev conductance. It is wor

FIG. 4. Temperature dependence of the resistance change o
F wire attached to a superconducting reservoir. Results are
sented for two mixed contacts withq50.75 ~solid lines! and q
50.25~dashed lines!. The conductivity polarizationg of the wire is
changed from 0 to 0.6 in steps of 0.2 from the bottommost curv
the topmost curve for both contacts. Other parameters arel sf

50.03L, andRF5100RBN . Clearly spin accumulation leads to a
enhanced resistance in both cases. The resistance of theq50.25
contact is more or less uniformly increased. The effect of spin
cumulation is much more dramatic for theq50.75 contact. The
monotonic resistance decrease in the unpolarized case is first tu
into an reentrant behavior for small polarization overshooting
normal-state resistance slightly at low temperatures. Increasing
further leads to an increased resistance for all temperatures.
that this behavior resembles that of aq50.25 contact, if properly
rescaled.
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while noting that for the largest negative interface polariz
tion shown (gB520.5) the total resistance drop islarger
than the resistance drop which would result from the p
Andreev reflection in the absence of spin polarization of
interface and the F wire. This apparent contradiction to
intuition that any spin accumulation should decrease
Andreev-caused resistance drop stems from the fact tha
plot the resistancechangebelow the superconducting trans
tion. The contradiction is resolved by noting that thetotal
resistanceRFS(T)5RFN1DRFS(T) is always higher than for
the unpolarized case. However, in a real experiment~with
fixed polarizations! the Andreev conductance in the absen
of a polarization cannot be measured separately. It m
therefore appear that the measured resistance drop is la
than one would expect from a simple estimate of the red
tion of the interface resistance due to Andreev reflection

B. Inelastic scattering—linear response

We will now proceed to study the case of inelastic sc
tering in the ferromagnetic wire. It is assumed that the c
rent in the ferromagnet is weakly polarized,g!1. In order to
simplify the discussions we disregard the possible asym
try in the interface transparency in the following discussio
and setgB50. An extension is straightforward.

An analytical expression for the total conductance of
system can be found in the linear response regime. In
regime the effects of electron heating vanish since they
only contribute to the current in higher orders of the sour
drain bias. The coupled equations for the spin-depend
chemical potential distributions and the electron tempera
are simplified by lettingTel(x)→T. By solving Eqs.~6! and
~7! together with the boundary conditions~18! and ~27! we
find the linear response resistance. Assuming a weak fe
magnet,g2!1, and a small interface resistance compared

the
e-

to

-

ed
e

te

FIG. 5. Effect of the relative polarizations on the resistan
change. The contact is a mixed contact withq50.75; other param-
eters areg50.3, l sf50.03L, andRF5100RBN . The polarization of
the boundary conductancegB is varied between a symmetric con
figuration gB50.5 and an antisymmetric configurationgB

520.5. At the same time the Andreev conductance is rescaled
factor 12gB

2 to account for the smaller number and transmission
Andreev channels. For large antisymmetric polarization the re
tance decrease exceeds the decrease of the corresponding no
metal–superconductor contact.
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the resistance of the ferromagnetic wireRBN!RF the resis-
tance change can be written as

DRFS~T!5
1

^GQP~e!1GA~e!&
2RBN

1g2F 1

Gsf1^GQP~e!&
2

1

Gsf1GBN
G . ~38!

The first two terms in Eq.~38! are due to the effective inter
face resistance between the ferromagnet and the supe
ductor and the third term is due to the spin accumulati
The latter term vanishes wheng→0 or l sf /L→0. This equa-
tion has to compared with Eq.~29! for the case of purely
elastic scattering. Only the quasiparticle conductance en
the spin-accumulation contribution since spins cannot be
jected into the superconductor by means of the Andreev
cess. The temperature-averaged conductances directly d
mine the temperature dependence of the total resistanc
the case of dominant inelastic scattering processes. The
siparticle conductance vanishes at zero temperature s
then no spin current can propagate into the supercondu
At zero temperaturêGQP(e)1GA(e)&5GA(0) and the re-
sistance of the FS system in the case of inelastic scatte
Eq. ~38!, equals the result in the case of elastic scatter
Eq. ~36!. If the first two terms in Eq.~38! are neglected and
the contact is assumed to be ballistic, the results of Ref. 9
reproduced.

The results with inelastic scattering in general differ fro
those with purely elastic scattering when the temperatur
nonzero or when the current is measured in the nonlin
source-drain response regime. The remarkable difference
tween Eq.~29! and Eq.~38! is the way the thermal averagin
is carried out. E.g., in the first term we have to average
inverse contact conductance in the case of elastic scatte
whereas wefirst have to average the conductance and th
invert the result in the case of inelastic scattering. A sim
consideration holds for the spin-accumulation term. The
gin of this difference can be understood in the followi
way: we may visualize our wire~or any system! as mapped
onto an electric circuit which contains energy-depend
conductors. In the case of purely elastic scattering we
have to calculate the total conductance of the system for e
energy. The current is then found by averaging this spec
conductance with the difference of distribution functions
the adjacent reservoirs. This procedure yields Eq.~29! for the
change in the resistance. In contrast, inelastic scatte
equilibrates the local distribution of electrons in a way th
the chemical potential is equal to the potential found fro
solving the circuit problem of the corresponding electric c
cuit. Thus, Eq.~38! follows Kirchhoff’s laws for our system.
As we will demonstrate below this difference can have s
nificant consequences for the temperature dependence o
resistance.

Let us now illustrate the temperature dependence of
linear response conductance in the case of a metallic con
with an interface conductance much larger than the cond
tance of the ferromagnetic wire. The total conductance
sufficiently low temperatures is then̂GQP(e)1GA(e)&
'GA(0)52GBN and the quasiparticle conductance
^GQP(e)&'(8pkBT/D)1/2exp(2D/kBT). The temperature
must then be so low that
on-
.
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kBT&
D

ln~RBN /Rsf!
~39!

in order to prevent a thermally assisted spin current into
superconductor.

We show in Fig. 6 the ratio of the linear response res
tance changeDRFS to the interface resistanceRBN as a func-
tion of the temperatureT for a metallic interface withRBN
50.05RF , polarizationg50.3, and spin-flip diffusion length
l sf /L50.2. For these parameters we have a ‘‘spin-flip’’ r
sistance corresponding toRsf50.2RF . The change in resis
tance below the superconducting transition temperatur
due to a competition between the excess resistance caus
the spin-flip relaxation and the reduced interface resista
caused by Andreev reflection. AtT50 we find from the
approximate result~38! that RFS2RFN50.5RBN2g2Rsf
520.14RFN, roughly corresponding to the numerical valu
which has been obtained without making the approximat
g2!1 andRF@RBN . Using the condition~39! we find that
the spin accumulation is strongly reduced aroundT/Tc50.7
and consequently the resistance of the systemdecreasesbe-
fore increasing again aroundT/Tc51 where the boundary
resistance is increased. This explains the nonmonotonic
havior of the linear response resistance as a function of
temperature.

C. Inelastic scattering—nonlinear response

At a finite bias voltage the electron heating effects have
be taken into account and the coupled equations for the e
tron temperature, the spin-dependent chemical potentials~6!,

FIG. 6. The ratio of the resistanceRFS(T) to the interface resis-
tanceRBN as a function of the reservoir temperatureT. The ferro-
magnetic wire is parametrized by the polarizationg50.3, the spin-
flip diffusion length l sf50.2L, and the interface resistance isRBN

50.05RF . The spin-flip resistance isRsf50.2RF .
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PRB 62 9735SPIN ACCUMULATION AND ANDREEV REFLECTION IN . . .
~7!, ~8!, and~10!, and the boundary conditions~18! and~27!
have to be solved numerically.

First let us discuss the transport properties when
electron-phonon interaction is weak so that we have per
conservation of energy current and the left hand side of
~10! can be set to zero. From the discussions in the prev
section we understand that there will be a reduction in
excess resistance due to the spin accumulation when
electron temperature on the ferromagnetic side reaches
dition ~39! so that there is a significant spin current enter
the superconductor. Roughly speaking, the electron temp
ture on the ferromagnetic side is proportional to the app
source drain bias. Thus, as a crude approximation, we ex
that the excess resistance due to the spin accumulatio
lowered when

eV&
D

ln~RBN /Rsf!
. ~40!

We show in Fig. 7 the resistance changeRFS(T50,V)
2RBN , Eq. ~29!, normalized by the interface resistanceRBN
as a function of the bias voltageV. As before, the interface
resistance isRBN50.05RF , the polarizationg50.3, and the
spin-flip diffusion lengthl sf /L50.2. For these paramete
we have a ‘‘spin-flip’’ resistance corresponding toRsf
50.2RF . The change in resistance below the supercond
ing gap is due to a competition between the excess resist
caused by the spin-flip relaxation and the reduced interf
resistance caused by the Andreev reflection. A dip in
resistance is seen aroundV50.7D which is correctly de-
scribed by Eq.~40!. Below this bias voltage the resistance

FIG. 7. The ratio of the resistanceRFS(T50,V) to the interface
resistanceRBN as a function of the bias voltageV. The ferromag-
netic wire is parametrized by the polarizationg50.3, the spin-flip
diffusion length l sf50.2L, and the interface resistance isRBN

50.05RF . The spin-flip resistance isRsf50.2RF .
e
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caused by the competition between spin accumulation wh
enhances the resistance and the effective interface resis
which reduces the resistance. At higher voltages the re
tance is only caused by the effective interface resistance
the reduction of the resistance changeRFS(T50,V)2RBN as
a function of the bias voltage is small.

In the limit of a strong electron-phonon interaction th
electron temperature equals the lattice temperature. The
current into the superconductor is then not enhanced du
thermal activation and consequently the spin accumula
on the ferromagnetic side is only reduced when the poten
on the ferromagnetic side of the interface is higher than
superconducting gap. This occurs when

eV5DS 112
RF

RBN
D , ~41!

and thus at a potential that is much larger than the super
ducting gap, in contrast to the case of a weak electr
phonon interaction.

In the intermediate regime the electron-phonon interact
should be included. In order to illustrate the main physics
consider the case of a weak polarization and setg50 and
consequently there are no effects due to spin accumula
and the resistance change of the wire is only due to
change of the effective boundary resistance. The chem
potential in the ferromagnetic wire is thus spin independe
Furthermore, we consider the case that the lattice temp
ture is zero,T50, so that the electron temperature aris
solely due to electron heating. Solving the diffusion equat
~6! on the ferromagnetic side of the interface givesm(x)
52eVx/L1m(0)@11x/L#, where eV is the applied bias
and m(0) is the potential drop across the ferromagn
superconductor interface. The superconducting energy gaD
presents a natural energy scale for the problem. We
characterize the strength of the electron-phonon energy
change by a dimensionless constantk5ALze2D3/GF ; z is
defined by the relation~11!. The energy diffusion equation
then simplifies to

p2

6
~LT]x!

2~kBTel /D!25~kBTel /D!5

2$@eV2m~0!#/D%2/k, ~42!

where we introduce a typical length scale for the ene
exchangeLT5L/Ak. If k!1,L!LT and the exchange is no
effective. For longer wires,k becomes larger than unity. In
this case, the electron temperature develops a constant
teau in the ferromagnetic wire and only changes rapi
within the length scaleLT near the end pointsx52L and
x50. It follows from Eq.~42! that in this case the tempera
ture in the middle of the ferromagnetic wire becomes

kBTel

D
5k21/5S eV2m~0!

D D 2/5

. ~43!

We will now present numerical results of the temperatu
profile in the ferromagnetic wire and the resulting resistan
change usingg50, a metallic interfaceRBN /RF50.05 for
various values of the electron-phonon coupling constant.
show in Fig. 8 the spatially dependent electron tempera
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9736 PRB 62BELZIG, BRATAAS, NAZAROV, AND BAUER
in the ferromagnetic wire fork5106 at a bias voltageeV
540D ~upper curve!, eV520D ~middle curve!, and eV
510D ~lower curve!. The electron temperature in the midd
of the wire follows from Eq.~43!. There are rapid changes o
the electron temperature close to the ferromagnetic and
perconducting reservoirs and the temperature in the mid
of the wire is lower than the electron temperature close to
superconductor. The latter temperature is important for
effective interface resistance.

We show in Fig. 9 the resistance change as a function
the bias voltage. The different solid lines show the curr
for different ratios of the electron-phonon coupling starti
from no electron-phonon interaction~a! k50 going through
intermediate electron-phonon interaction~b! k5102, ~c! k
5106, and~d! k5108 to strong electron-phonon interactio
~f! k5` when the electron temperature equals the lat
temperature, e.g., when there is no energy transfer betw
the electron and phonon system. The crossover bias vol
for the excess resistance is sensitive to the strength of
electron-phonon interaction and occurs from aroundD ~a! to
around 40D ~f! @according to Eq.~41!#. The dependence o
the electron-phonon interaction parameterk is rather weak
as can be understood from Eq.~43!. The local electron tem-
perature in the middle of the ferromagnetic wire is prop
tional to k21/5 and thus only has a very weak dependen
on k.

V. DISCUSSION OF EXPERIMENTS

In this section we discuss the connection of our res
with experiments of Petrashovet al.5 and Giroudet al.6 It

FIG. 8. The spatially dependent electron temperature in the
romagnetic wire. The upper curve is for a bias voltageV540D, the
middle curve for a bias voltageV520D, and the lower curve for a
bias voltageV510D. The metallic interface resistance isRBN

50.05RF , the reservoir temperatureT50, and the electron-phono
interaction strengthk5106.
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will turn out that most of the experimental results can
understood on the basis of our calculations. Both experim
tal arrangements we will discuss below contain F-S junctio
where the superconductor and the ferromagnet overlap
certain region. The current redistribution in these junctio
will play an important role in the following. Let us therefor
introduce parameters characterizing these junctions: the
sistance of the interface is calledRBN in accordance with our
previous consideration. AdditionallyRSJ will be the resis-
tance of the superconducting part of the overlap junction
the normal state andRFJ the resistance of the ferromagnet
part of the overlap junction.

In the experiment by Giroudet al.6 a nonmonotonic be-
havior of the resistance below the superconducting crit
temperature was observed. The sample consisted of a fe
magnetic wire, the resistance of which was measured
four-point arrangement. At some point a superconduct
strip was on top of the wire. In a second sample two su
strips were present and the resulting resistance change
twice as big as in the case of one strip. Since our formulat
is based on a single interface and no coherent coupling
tween the two superconducting strips was found experim
tally, we concentrate here on the sample with one strip. T
resistance change in the two-strip sample is then sim
twice that for the single-strip sample. The experimental
rangement is such that in the region of the strip the curren
redistributed among the ferromagnet and the supercondu
In Appendix A we introduce a simple quasi-one-dimensio

r-
FIG. 9. Resistance change@RFS(T50,V)2RFN#/RFN as a func-

tion of the bias voltageV. The ferromagnetic wire is described b
the polarization g50, and the interface resistance isRBN

50.05RF . Curve~a! corresponds to no electron-phonon interacti
k50. Curves~b!, ~c!, ~d!, and ~e! correspond to an intermediat
electron-phonon interactionk5102, k5104, k5106, andk5108,
respectively. Curve~f! is for the case of a strong electron-phono
interactionk5`.
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model to calculate the effective resistance, these results
ing used for comparison with experiment. The resistance
the superconducting Al strip is 0.4V, the resistance of the
ferromagnetic part below the strip is 10V, and the resis-
tance of the interface is estimated to be 0.1V. Since the
measured resistance change of the F wire shows no sign
of the vanishing of the resistance of the superconduc
part, we believe that the real interface resistance is hig
than estimated in Ref. 6, in particular higher thanRSJ. This
yields a total resistance ofReff52(RFJRBN)1/2, which is ap-
proximately of the order of a fewV. A resistance change o
the interface resistancedRB will then lead to a change of th
effective resistancedReff5(RFJ/RBN)1/2dRB , which in the
caseRFJ.RBN is larger than the resistance change of
interface resistance itself. For the experimental values
have (RFJ/RBN)1/2'10 and thus a resistance change
'0.2 V, as observed in the experiment may result from
change of the interface resistanceRBN'0.1 V by 20%.

The results of Petrashovet al.5 are more intriguing, since
the magnitude of the measured resistance drop in some o
samples seems to be far too large to be explained witho
‘‘long-range’’ proximity effect in the ferromagnet. We wil
concentrate here on three of the four samples discusse
Ref. 5. In these samples the transport through a long fe
magnetic wire with one ferromagnetic and one supercond
ing contact is studied; this is in contrast to the experiment
Ref. 6. The geometry is such that the superconducting c
tact overlaps the ferromagnetic wire at one end and the
rent has to pass through a tiny piece of the supercondu
The three samples differ in the interface resistance. T
samples with a low interface resistance show large drop
the resistance of the order of 8 and 16V, respectively, below
the superconducting critical temperature. The third sam
has a higher interface resistance (RBN541 V) and shows a
small resistance increase of the order of 1.5V.

This agrees qualitatively with the results of our mod
Indeed, the bigger resistance of the boundary usually me

FIG. 10. Comparison of the experiment of Giroudet al. ~Ref. 6!
and theoretical calculations. The two experimental data sets ar
the sample with one superconducting strip~squares! and for the
sample with two superconducting strips~circles!. The theoretical
curves are obtained from Eq.~34! with the following parameters
RF5100RBN , spin relaxation lengthl sf50.012L, conductivity po-
larization g50.3, and a double-interface contact. All curves a
normalized to the respective maximal negative value.
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the formation of a ticker tunnel barrier such that the tra
mission eigenvalues are shifted towards zero. Our mo
does predict a resistance decrease for a fairly transpa
interface and changes to an increase for a more tunnel
interface. This is shown, e.g., in Fig. 4. However, quanti
tively one would expect that the resistance changes be
the superconducting transition temperature arealwaysof the
order of the boundary resistance itself.

This is obviously not the case in the experiment w
RBN541 V, where the measured resistance change is ab
40 times smaller. The first idea is that the resistance dro
the samples with better interface may possibly be accoun
for by combining the effect of the current redistribution a
the apparent enhancement of the Andreev reflection
cussed in Sec. IV. Again we calculate the effective interfa
resistance in a quasi-one-dimensional model~see Appendix
A!. In the limit of a small interface resistanceReff2
5(RFJRBN)1/2. A change of the interface resistance aga
results in an apparently larger change of the effective re
tancedReff25(RFJ/RBN)1/2dRB/2. We may speculate that th
large resistance drop observed in the experiment by
trashovet al. can possibly be explained by this effect t
gether with the observation made in Sec. IV that a sp
dependent interface may cause another appa
enhancement of the Andreev reflection.

There may be a more radical explanation for a small re
tive resistance change. In fact, the morphology of the me
ferromagnet interfaces has not been yet sufficiently stud
The actual structure of the interface may be complicate25

To illustrate how this can affect the results let us conside
simplistic model of a double interface. We speculate tha
thin layer of magneticalloy separates the ferromagnet a
the superconductor. The boundary scattering then occur
two stages: at the ‘‘inner’’ interface between the ferromag
and the alloy and at the ‘‘outer’’ interface between the s
perconductor and the alloy. Since the proximity effect
quenched in magnets, the resistance of the ‘‘inner’’ interfa
is not affected by the superconducting transition whereas
resistance of the ‘‘outer’’ interface acquires a change
scribed above. This leads to a smaller relative resista
change.

In Fig. 10 we show a comparison between the experim
tal results of Giroudet al. and our calculation for a contac

for

FIG. 11. Schematic picture of current redistribution in an ov
lap junction. The geometry~a! corresponds to the experiment b
Giroudet al. ~Ref. 6!. If the resistance of the ferromagnet below th
overlap region is the highest, a considerable part of the cur
flows through the interface and the superconductor. The geom
in ~b! corresponds to the geometry of Petrashovet al. ~Ref. 5!. Here
the current is forced to leave the contact region through the su
conductor.
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with a transmission eigenvalue distribution of the model j
described~see Appendix B!. The maximal relative resistanc
change of the contact is'16% in our calculation. According
to above considerations this may be enhanced to a meas
resistance change of the order of'(RFJ/RBN)1/216%dRB
'160%dRB in agreement with measurements.

VI. CONCLUSIONS

To summarize, we have calculated the resistance of a
fusive ferromagnetic wire in contact with a superconduct
reservoir in the linear and nonlinear regime with purely el
tic and inelastic scattering. It has been demonstrated
most of the recent experimental results can be understoo
the absence of a superconducting proximity effect in the
romagnet. Spin accumulation leads to an enhanced resist
below the superconducting transition temperature whe
Andreev reflection can lead to a decreased resistance b
the superconducting transition temperature. The competi
between these two mechanisms determines the sign o
resistance change. The magnitude of the resistance chan
of the order of the interface resistance or the spin-relaxa
resistance. Electron heating can dramatically modify
nonlinear response resistance and change the bias de
dence by orders of a magnitude.
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FIG. 12. Transmission eigenvalue distribution for the dou
interface. The ratioa5GT/2GQPC is varied between the differen
curves.
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APPENDIX A: CURRENT REDISTRIBUTION
IN AN OVERLAP JUNCTION

Here we introduce a quasi-one-dimensional model to
count for the redistribution of the current under an over
junction as used in the experiments. The two geometries
have in mind are depicted in Fig. 11.

To estimate the measured resistance we use the follow
quasi-one-dimensional model for the current redistribution
the overlap region of lengthd. The currentsI F(x) in F and
I S(x) in S in direction of the ferromagnetic wire follow from
Ohm’s law

I F~x!5
d

RFJ

dUF~x!

dx
, I S~x!5

d

RSJ

dUS~x!

dx
, ~A1!

whereRFJ(SJ) is the resistance of the ferromagnetic part u
der ~superconducting part above! the contact andUF(S) the
respective voltage. Current conservation dictates that

dIF~x!

dx
52

dIS~x!

dx
5

US~x!2UF~x!

RBNd
~A2!

is the current per unit length through the contact resista
RBN . Boundary conditions are obviously that the total vo
age drop isV and no current leaves the system through
boundary to vacuum.

Solving these equations for the geometry of Giroudet al.6

we find the effective resistance of this part to be

Reff5
RFJ

RFJ1RSJ
FRSJ1A 4RBN

RSJ1RFJ
tanhSARFJ1RSJ

4RBN
D G .
~A3!

Of specific interest is the case thatRFJ@RBN@RSJ, in which
we obtainReff'2(RFJRBN)1/2.

A calculation similar to the previous for the geometry
Petrashovet al.5 leads to an effective measured resistance

Reff25
ARFJRBN

tanhARFJ/RBN

~A4!

in the limit of vanishing resistance of the superconductor
top of the ferromagnet. The difference with the previous c
culation is that here the current enters the junction throu
the ferromagnet, but has to leave the junction through
superconductor.

APPENDIX B: TRANSMISSION EIGENVALUES
OF A DOUBLE INTERFACE

The distribution of transmission eigenvalues of a dou
interface as described in the text can be found with the te
nique described in Ref. 26. For details we refer to the
articles. We model the double interface by a ballistic cont
and a tunneling barrier in series. The tunneling barrier
conductanceGT models the sharp drop in the potential due
the band structure mismatch, whereas the region close to
interface is treated as a collection of unit transmission ch
nels with a total conductanceGQPC. The distribution of
transmissions can be found from the solution of



y
ac

en
s
e
n-

es
or a
e
es
ore

PRB 62 9739SPIN ACCUMULATION AND ANDREEV REFLECTION IN . . .
I ~F!5GT sin~F2u!52GQPCtanS u

2D . ~B1!

The distribution of transmission eigenvaluesr(T) is found
by analytic continuation into the complex plane:

r~T!5
1

e2

1

TA12T
ReF I S p12i acosh

1

AT
D G . ~B2!

The dependence on the two separate conductances ma
eliminated in favor of the total conductance of the cont
GBN5GTGQPC/(GT1GQPC) and the ratio of the twoa
y

er

n
,
R

rry

e

n-

r

M.

v

be
t

5GT/2GQPC. The transmission eigenvalue distribution th
only depends ona. It is plotted in Fig. 12 for several value
of a. For small values ofa the contact is dominated by th
tunnel barrier, resulting in a shift of the transmission eige
values to lower values and a gap above a certainT. Higher
a ’s shift the distribution to larger transmission eigenvalu
and a gap opens up for low transmission eigenvalues. F
range 0.1&a&0.5 the distribution is restricted to a finit
interval of transmission eigenvalues. At even higher valu
of a the upper gap closes and the distribution becomes m
and more peaked atT51.
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16A. V. Zaitsev, Zh. Éksp. Teor. Fiz.86, 1742~1984! @Sov. Phys.

JETP59, 1015~1984!#.
17Yu. V. Nazarov, Superlattices Microstruct.25, 1221~1999!.
18A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, Phys. Rev. L

84, 2481~2000!.
19K. M. Schep and G. E. W. Bauer, Phys. Rev. Lett.78, 3015

~1997!.
20O. N. Dorokhov, Pis’ma Zh. E´ksp. Teor. Fiz.36, 259 ~1982!

@JETP Lett.36, 318 ~1982!#; A. D. Stone, P. A. Mello, K. A.
Muttalib, and J. L. Pichard, inMesoscopic Phenomena in Solid,
edited by B. L. Altshuler, P. A. Lee, and R. A. Webb~North-
Holland, Amsterdam, 1991!.

21S. N. Artemenko, A. F. Volkov, and A. V. Zaitsev, Solid Sta
Commun.30, 771 ~1979!.

22A. V. Zaitsev, Pis’ma Zh. E´ksp. Teor. Fiz.51, 35 ~1990! @JETP
Lett. 51, 41 ~1990!#.

23In the actual calculation we have approximated the tempera
dependence of the superconducting gap byD(T)
51.76Tc tanh@1.74(Tc /T21)1/2#.

24K. M. Schep, P. J. Kelly, and G. E. W. Bauer, Phys. Rev. Lett.74,
586 ~1995!; K. Xia et al. ~unpublished!.

25V. V. Petrashov~private communication!.
26Yu. V. Nazarov, Phys. Rev. Lett.73, 134~1994!; see also Yu. V.

Nazarov, inQuantum Dynamics of Submicron Structures, edited
by H. A. Cerdeira, B. Kramer, and G. Scho¨n ~Kluwer, Amster-
dam, 1995!.


