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Spin accumulation and Andreev reflection in a mesoscopic ferromagnetic wire
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The electron transport though ferromagnetic-metal—superconducting hybrid devices is considered in the
nonequilibrium Green'’s function formalism in the quasiclassical approximation. Attention is focused on the
limit in which the exchange splitting in the ferromagnet is much larger than the superconducting energy gap.
Transport properties are then governed by an interplay between spin accumulation close to the interface and
Andreev reflection at the interface. We find that the resistance can be either enhanced or lowered in comparison
to the normal case and can have a nonmonotonic temperature and voltage dependence. In the nonlinear voltage
regime electron heating effects may govern the transport properties, leading to qualitative different behavior
than in the absence of heating effects. Recent experimental results on the effect of the superconductor on the
conductance of the ferromagnet can be understood by our results for the energy-dependent interface resistance
together with effects of spin accumulation without invoking long-range pairing correlations in the ferromagnet.

[. INTRODUCTION and can therefore have a much longer range than the prox-
imity effect. The main purpose of this paper is to study the
Much theoretical and experimental work has addressecdhutual influence of resistance changes by spin accumulation
the effect of a superconduct¢®) in proximity to a normal and interface properties.
metal (N) on the transport properties during the last years; Recently heterostructures of ferromagnets and supercon-
see Ref. 1 and references therein for an overview. Most exductors have been experimentally realized and
perimental results can be explained in the framework of thénvestigated™’ Several unusual phenomena have been un-
quasiclassical theory of superconductivity accounting for aveiled. The experimental results in point contact geométries
“long-range” proximity effect with a coherence length  can be explained by the reduced, bias-dependent transpar-
=(hD/2kgT)*2 whereD is the diffusion coefficient of the ency of the interface due to spin-dependent band mismatch
normal metal andr is the temperature. On the other hand,between the normal metal and the ferromadifethe ex-
applications of the quasiclassical theory to transport in hetperimental results in diffusive nanostructured sampleare
erostructures containing ferromagnéfs are still scarce. In. more intriguing. The measured conductance changes on the
contrast to normal metals the presence of a strong exchangerromagnetic side can be positive and negative at the super-
field in the ferromagnet leads to a strong difference in theconducting transition with amplitudes much larger than an-
energy dispersions for the two spin bands. However, longticipated. The sign and the amplitude of the changes appear
range coherence in normal metals requires spin-degenerate@ depend strongly on the ferromagnetic-superconductor in-
bands close to the Fermi energy, since singlet superconduterface transparency. It has been conjectured that a strong
tivity couples quasiparticles of different spins by Andreevmutual influence of the superconductors and ferromagnetic
reflection. The consequence of the exchange field erfergy conductors and a penetration of the superconducting order
is a strong decoherence of quasiparticles belonging to thparameter into the ferromagnet over distances many times
different spin bands. Typically the superconducting energyonger than expected from the above estimates might explain
scaleA is smaller tharh,. by several orders of magnitude the observations:’
for (Al,Nb) vs (Fe, Ni, and Cg, respectively. Thus, the prox- Some effects of the interplay between spin accumulation
imity effect in ferromagnetic metals is negligible and a fer-and Andreev reflection in diffuse systems have been dis-
romagnet in contact with a superconductor may be consideussed in Ref. 9. Since the spin current into a superconductor
ered as arincoherentmetal coupled to the superconductor. vanishes at sufficiently low bias and temperature, a nonequi-
In this case all changes induced by the contact to a supelibrium spin accumulation builds up on the ferromagnetic
conductor depend on the properties of the interface itselfside in order to conserve the spin currents. The spin accumu-
This is accomplished by the effect of spin accumulatidn, lation causes an additional boundary resistance which is of
which does not require phase coherence in the ferromagnéte order of the resistance of the ferromagnetic wire of a
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length of the spin-flip diffusion length. Therefore the resis- L
tance of the F-S system should be always larger than that of F S
the the F-N system, in contradiction with some of the experi-
mental observations. The reason for this apparent failure is
the assumption that the resistance of the FS interface is neg- U=v F wire U=0
ligible compared to other changes of the resistance. Previous
theories took into account only perfectly ballistic interfaces

for which the resistance is determined purely by the match- FIG. 1. Schematic layout of the mesoscopic ferromagnetic wire.

ing of the adjacent Fermi surfaces. The interface resistandt!S Placed between a ferromagnetic reservoir held at voagad

and its modulation are then of the order of the Sharvin resiss groun.ded SUpe.rcond”Ct'ng reservoir. The contact to t.he supercon-
ductor is an arbitrary connector, characterized by spin-dependent

tance, _whlch is negligible compgred to Fhe total one. HOW_conductances in the normal state.
ever, in sputtered samples with relatively large contact
areas™’ the interface can contribute significantly, especially
when differences of resistances below and above the supdpy the experimental fact that FS interferometers show no
conducting transition temperatures are considered. phase-periodic oscillations down to the level ofd¥/h in
Other  transport phenomena in  ferromagnet-strong ferromagnets.’ In contrast to the calculations pre-
superconductor systems have been studied in Refs. 10—12. $ented in this paper, the proximity effect could be important
the first two references the influence of the proximity effectin weak ferromagnets. Below we will show that most of the
on the zero-temperature conductance was studied under thecent experimental results can be explained in terms of the
assumption that the ferromagnet has only a small exchangsnergy dependence introduced by the interface and the ac-
splitting (of the order of or smaller than the superconductingcompanying change in the spin accumulation. It is important
gap. In the ferromagnetic metals that we have in mind, thistg note that these changes are small in comparison to the
is not the case and we can therefore neglect the proximityota) resistance, which is dominated by the long ferromag-

effect. References 12 are generalizations of the well-knowp qic wire. Nevertheless, they play a dominant role in the
Blonder-Tinkham-Klapwijk(BTK) modet® of an interface | osistance modulation.

potential to the case of a ferromagn@iRconventional- . The paper is organized in the following way: Section I
superconductor point contact. These results rely on atomi-

. : . iV ription of the diffusive ferromagnetic wir h
cally sharp interfaces without disorder, and cannot be usedt% es a.de.:sc ptio 0 t eq UsIVe Terromag etic wire bot
describe the experimefit that we have in mind in the limit of elastic and inelastic scattering between the

It has been speculated that the triplet component of th lectrons. Section lll treats the boundary co_ndit_ion be'gween
order parameter induced by the fluctuations of the spin-orbi € ferromagne_t and the superconductor V.Vh'Ch Is crucial for
scattering potentials is essential in mesoscopic juncibns, € understanding of the transport properties. The results for
Neglecting magnetic impurities and spin-orbit coupling theth® conductance obtained from the description of the ferro-
superconducting order parameter is a spin singlet. Howeve_Pﬂagnet'C wire with these boundary condmorys are d|§cussed
magnetic impurities or spin-orbit coupling induce a fluctuat-in Sec. IV. Finally we compare our results with experiments
ing spin-triplet component with zero average. The tripletin Sec. V and give our conclusions in Sec. VI.
component is “long-range” coherent in the ferromagnet
since it couples electrons and holes with the same spin and
the exchange field in the ferromagnet does not play a role. Il. DESCRIPTION OF THE FERROMAGNET
However, the contribution to the conductivity from the triplet
fluctuations is only relevant when the fluctuations are rela- e consider a ferromagnetic diffusive wire connected to
tively large which is only the case when the conductance ign ideal (ferromagnetic or normal metateservoir on one
close fo_the quantum conductance. The experimentalige and to a superconducting reservoir on the other side as
sample$™’ have a much larger conductance, and we do NO{jenicted in Fig. 1. The wire is characterized by length
expect that such mesoscopic fluctuations play an important, )< sectiord, and spin-dependent conductivities and

ro'il' f the ab ioned theori lain the reZ. - In this section we discuss the kinetic equations describ-
one o .t ea ove-mentlon_e t €ories can exp ain the rﬁ‘ng the ferromagnetic wire in the absence of the proximity
cent experimental results. This makes it necessary to stu Verect. We consider collisi ith i ities t0 be the domi-
the properties of the contact between the ferromagnet and thé ' ons IStons with impurities o be the domi
normal metal in more detail and to account for a possibléqam scattering processes and use the diffusion approxima-

spin accumulation and heating effects in the ferromagnet inti°N- The electrons in the quasi-one-dimensional wire are de-
cluding different interface morphologies. In particular we Scribed by energye and spatialx dependent distribution
will go beyond the assumption of a perfect transparent mefunctions f(e,x) for the two spin directions= +,— for
tallic interfacé and discuss its influence on the observedsPin I and |, respectively. The distribution functions obey
conductance changes below the superconducting transitido coupled Boltzmann equations in the diffusive limit.
temperature and for bias voltages less than the supercondué¥ther scattering mechanisms will be specified in the follow-
ing gap. We will in this work radically disregard the prox- ing subsections.

imity effect. Therefore our results only apply to ferromagnets Instead of the spin-dependent conductivities, it is conve-
with h,.>A, which is, e.g., the case for the magnetic transi-nient to introduce the total conductivity= o+ o and the
tion metals(Fe, Co, and Niin conjunction with supercon- spin polarization of the conductivity,y=(o;—0c)/0o.
ducting metals like Nb and Al. This assumption is supportedThe spin-dependent conductivities are then expressex as

I—
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=(1+svy)a/2. We will also make use of the total conduc-  The spin-dependertelectrig current from Eq.(2) is
tance (resistancg of the ferromagnetic wire Gg

=Ac/L (Re=1/Gp). dus(x)

)= 5o (1+sy) ~ = = ®)

A. Elastic scattering Current conservation requires
In the elastic scattering case the energy is conserved in the
scattering processes. This makes it necessary to study the _
energy-dependent distribution functions in the ferromagnetic @[UT“T(X) top ()]=0. 6)
wire. In addition to elastic impurity scattering we consider
spin-flip scattering processes accounted for by the spin-flifpin relaxation occurs within the spin-diffusion lengtqt
lengthlg. Then, the kinetic equations read

d2

2

1
o 1 Sl 0= 001= Sl (0= w1 ()
—tex) =S f(ex)—f_y(eX)]. ) o
dx I'st The local spin-dependent chemical potentials in the ferro-

magnet are determined by Eq6) and(7) and the boundary
conditions to be discussed below.

A dfs(e,x) Additionally, we need equations describing energy trans-
l{(X)=—0s— | de————= | del(€,X). (2)  port in the system to account for heating of the electrons.
e dx .

The energy current is

The current for spirs is given by g=|e|)

This equation defines the spectral curryfi,x). Electrical
and spin currents aré haqe=1(X)+1(X) and Igyi(x)
=1,(x)—1,(x) and similar for the spectral currents. It is
convenient to introduce the conductivity-averaged distribu-
tion function ofe(e,x)=0;f(€,x)+0,f (ex) and the :[,LLT(XNT(X)+,LL1(X)|l(X)]/e'HQ(X), (8)
nonequilibrium spin distribution functiofhsy€,x) = f;(€,x)
—f,(e,x). The kinetic equations in terms of these functions

A dfs(e,x)
|€(X)=—gzs Og dEET

where the heat current is

decouple and have the form of spectral current conservation dTe(X)
and spatial relaxation of the nonequilibrium spin distribution, lo(X)= = k() A—g 9
respectively.

the heat conductivityko(X) =0 LyTe(X), and the Lorentz

B. Inelastic scattering number isCo= (72/3)(kg/€)?.

. . . . .. The conservation law for the energy dictates
The reason to investigate the role of inelastic scattering is

the convenient fact that the ferromagnet is an incoherent d Ap (X)
metal with rather strong correlations. Both phonon and ax (X)= ( ot ) ;
electron-electron scattering can mediate inelastic scattering. rel

In general it is not obvious which should dominate and bothyhere p (x) is the local energy density. The energy relax-

should be treated on equal footing. In order to achieve ination between the electronic system and the phonons at suf-
sight into the physics it is useful to consider limiting cases asjciently low temperatures 18

well.

In the limit of strong inelastic scattering we assume that
the electron-electron interaction is stronger than the electron-
phonon relaxation. When a bias voltage is applied, the local
electron temperature can therefore be different from the temwhere { parametrizes the strength of the electron-phonon
perature in the reservoirs. This transport regime is relevarihteraction, §=4877{(5)N(45F)7\*/(h3w2 , {(B)=1.04 is
when the typical inelastic scattering length is smaller thanrthe Riemann zeta functioN(eg) is the density of states of

(10

Ip(X)
ot

) ={{(kgT)°— [KeTei(¥)1°}, 11
rel

the spin-diffusion length. o both spins per unit celh* is of the same order of magnitude
The electrons relax to a local equilibrium as the electron-phonon coupling constaniand?wp is the
_ Debye energy.
fo(e.x)=1(& us(X), Tel(X)), 3 The conservation of energy, E¢L0), together with the
whereu(x) is the spin-dependent chemical potentigy(x) ~ €xpression for the energy relaxation, Egjl), give a differ-
is the local temperature, and ential equation for the local electron temperature which can
be solved together with the boundary conditions to be dis-
1 cussed below.
flen =17 X (e= m)/kgT] 4 When the electron-phonon interaction is weak there is no

exchange of energy between the electron and the phonon
is the Fermi-Dirac distribution function. This makes it pos- systems so that the right hand side of Ef)) can be set to
sible to integrate the kinetic equation and the currents ovezero and we have conservation of the energy current due to
energy and to obtain equations for the local chemical potenthe electron transport|®(x)/dx= 0. In the opposite limit of
tials and electron temperature. a strong electron-phonon interaction the electron temperature



PRB 62 SPIN ACCUMULATION AND ANDREEV REFLECTION IN . .. 9729

equals the lattice temperature. The differential equation foebsence of an anomalous component is a result of the ab-
the energy conservation with the boundary conditions giversence of the proximity effect. The Keldysh component ac-
above can in these two cases be solved exactly. In the intecounts for the spin-dependent nonequilibrium distribution:
mediate regime the equations will be solved numerically.

i 1-2f(e) 0

Gr(e)=2

, 15
Ill. BOUNDARY CONDITIONS 0 1—2le(— €) 9

The condition that the ferromagnet should be completelywhere f?(e) and f'f(e) are the quasiparticle distribution
incoherent leads to simplified boundary conditions for thefunctions close to the interface on the ferromagnetic side.
kinetic equations. These boundary conditions can be derive@ihe spectral electrical current is determined by the Keldysh
from the boundary conditions for the quasiclassical Green’somponent of the matrix current according to
function® A transparent form suitable for diffusive systems
has been presented by NazaléwVe will follow the spirit
and the notation of this paper. A circuit theory for
ferromagnetic—normal-metal systems has been presented in

Ref. 18. A contact is described by a set of transmission eiEduations15) and(16) suggest a representation of the diag-

genvalues{T,} or, equivalently, by a distribution of the onal components of the Keldysh component of the matrix

transmission eigenvalugs(T). The boundary condition at current in the form
the contact is expressed through a conservation law for the (IT( €)

1 ..
lei(€)= 75Tl 73l “(e)]. (16)

matrix current in the Keldysh formulation. In the framework K(e)= ) (17)

of superconductivity it is a A4 matrix comprising X2 I (—e€)

Keldysh space and 22 particle-hole (Namby space. Now we are in the position to calculate the spin-resolved
Boundary conditions for any type of contact can be presentegrrents through the contact. Performing the calculations

by means of this conservation Iaw.for_ the matrix current. Foralong the lines of Ref. 17 we find the spectral spin-dependent
a contact characterized by transmission eigenvglligsthe . rrent

matrix current has been derived in Ref. 17 and takes the form

Gor €)
o 2 (GeGs— GG ()=o)~ TE(e)]
l==—2 T = . 12
mh S 44T (GGt GG 2) (12 Gale)
+ 1-f5(e)—f (- o)l. 18
This matrix current has to be equated to the diffusive matrix 4e [ s(€) s(—e] (18)

current entering the contact from either side. The two sidesrhe quasiparticle conductanG,«(€) and the Andreev con-

of the, conta(_:t are charvactenz_ed by the Keld_ysh matr')%uctanchA(e) are determined by the properties of the con-
Green’s functions5s and Gg, which we will specify to be  tact and the spectral properties of the two metals connected
the superconducting reservoir and the ferromagnetic wirepy the contact. The distribution of transmission eigenvalues
respectively. The Keldysh-Nambu matrix Green's functioncan pe incorporated in a single characteristic complex func-

of the superconductor in equilibrium is tion
. G&e) GY(e) e’ Tn
Co(e)= A _ 13 Z(x)= — (19
s(e) 0 &e (13 mh 5 2+ T, (x—1)

—_TUAR ) AR
A similar structure holds for any matrix in Keldysh space. lnwherex(e) =Tr{Gs(e), GF(€)}/4. The conductances are

local equilibrium the Keldysh(1,2) component in Nambu

Im Z(x
space is GK(e)=[GE(e)—GA(e)][1-2f%(e)], where Gopl €)=ReZ(x)Rex+ Im(x )Imzvl—xz. (20)
fS(e)=[1+ exp(e/ksT)] ! is the quasiparticle distribution
function in the superconductor and we have set the chemical Im Z(x)
potential in the superconductor to ze®2(e) and G5(e) Gale)=——— |1-x7]. (21

are retarded and advanced Nambu Green'’s functions deter-

mining the spectral properties of the superconductor. In the The contact is characterized by a transmission distribu-

BCS case with a real order parameter they are given by  tion, which leads to contact-specific energy dependences of
the conductances. The normal-state conductanc&dg

~R AA, Ak (e+i0)T3—iAT, =(€%27wh)2,T,. For a ballistic model contact all transmis-
Gs(e)=—[Gs(e)] :(eT)—A' (14 sjon eigenvalues are equal to 1 for the propagating channels

and 0 otherwise an&,T,=N, whereN is the number of
The diagonal component represents the normal retarde@fopagating channels. The distribution function in the case of
Green’s function whereas the off-diagonal component is con@ dirty interface is’
ventionally called the anomalous Green’s function. On the
ferromagnetic side we completely neglect the proximity ef- h 1 22)

P « T)=—=Ggn——=
fect leading to the spectral functio®f=r;=—GF. The p(T) e VTR 1T
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TABLE |. Spectral conductances of different generic contacts defined by the transmission distributions in the second column. The
characteristic functioiZ of the contact was defined in E(L9). As an example we present electrical and spin conductance for a contact
between a ferromagnetic metal and a BCS superconductor in the last two columns. For energies below the supercondicting gap
quasiparticle conductand@qpe vanishes for all contacts. Note that the energy argument of all quartitesnderstood to be the absolute
value of the energy.

Contact p(T)IGy Z(€)IGy F-S contact
Ga Ga+tGop Gop
G_N (e<A) G—N (e>A) G_N (e>A)
Tunnel T,<1 1 0 € €
& &
Ballistic T.=1 2 2 2 2
1+x et§ eté
Diffusive h_ﬂ- 1 arccosx) Aln A+e iln e+A) 1
2 TVI-T N 2¢ "\a—e 28 ea
Dirty interface A1 A /i A A [eté i
eT31-T 1+x VE(E+A) 2§ Vé(e+ &)
Abbreviations x=3Tr{GR G} é=le"— A7

and in the case of a diffusive contact the distributic is the critical temperature is higher than the normal-state value
and saturates at low temperaturey@Rgy, .*° The result for
1 the dirty interface resembles that of Ref. 22, where this be-
p(T)= ;GBN—- (23 havior was found with a different method for the resistance
e TV1-T . ,
of a thin double barrier between a normal metal and a super-
Finally, for a tunnel conductance a perturbation expansion itonductor.
terms of the small transmission eigenvalues can be per- Additionally, we introduce mixed contacts as a model for
formed. We list the characteristic functi@gx) for anumber an inhomogeneous interface with distributed regions with
of generic contacts in Table I: tunnel junction, ballistic con-low and high transparency. The relative admixtgref a
tact, diffusive contact, and dirty interface. In the case of an

incoherent metal on one sidie., GR=73), the argument of 3

the characteristic function reducesxe: Tr 73G5/2. The re-
sult in this case is demonstrated explicitly in Table | for a
contact of a BCS superconductor with spectral functions S
(14). The energy dependence of these spectral conductances
is depicted in Fig 2. Below the superconducting gap only the
Andreev conductance is nonzero, gradually decreasing from Lr
the value of Zgy for the metallic junction to zero in the
tunnel junction. Above the gap the Andreev conductance
vanishes rather quickly-1/e€2. Also quasiparticle transport 0
becomes possible and, thus, spin transport into the supercon- 3
ductor. .
The properties of these contacts are demonstrated by the dirty
temperature dependence of the linear conductance following 2+
from

metallic diffusive

e ST S s

tunnel

9f(€,0T)

- ) 29 |-

Ggs(T)= J df[GQP(E)+GA(€)]( -

G(e)/Gpy

This is the conductance that would be measured if the con- 0 4 T J
tact were placed between a normal reservoir and a supercon- 0 1 20 1 2

ducting reservoir. The temperature dependence of the contact e/A e/A
conductancé24) is shown in Fig. 3. The dashed and dotted G, 2. spectral conductances for different types of contacts.
lines show the conductance of the diffusive contact and thene solid curves denote the quasiparticle conduct@igg e) and

dirty interface, respectively. The resistance of th_e dif_fusiv_e[he dashed curves the Andreev conductaBgge). The contact
contact shows the well-known reentrant behavior; i.e., ittypes as indicated in the figure are metallic junctiaii T,=1),

reaches the normal-state conductance at zero tempefaturediffusive contac{transmission distribution as defined in E83)],
The resistance of the dirty interface after a small drop belowdirty interface[Eq. (22)], and tunnel junctioriall T,<1).
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In general the spin-dependent quasiparticle conductances
G, (€) andG (e) entering the first term are of different mag-
nitude and have different energy dependences. Similarly as
for the ferromagnetic wire we introduce the total conduc-
tance of the boundarg(€) =G;(€)+G,(e) and a dimen-
sionless factoryg(e)=[G;(€) — G (€)1/Gg(e€), which we

call polarization of the boundary conductance. Since the
definitions(20) of quasiparticle an¢21) of Andreev conduc-
tance have been derived for a spin-degenerate interface these
definitions are not valid anymore for spin-dependent inter-
05 face scattering. It is, however, reasonable to assume that the
TIT, energy dependence of all conductances is well approximated
) . by thesametransmission ensemble, bdifferentnumbers of

FIG. 3. Resistance change of different types of contacts betweeghannels. We can motivate this choice by the fact that in the
a normal metal reservoir and a superconducting reservoir. Thgypariments that we have in mind the interfaces are strongly
mixed contact(solid line) varies from ballls_tlc @=0) to tunnel disordered regions, with a possible formation of an alloy
(q=1) from bottom to top. Intermediate values arey ( |4yer extending over several monolayers. In such contacts
_0'25‘0'.5'0'75)' The_ diffusive contact is shown b.y the Short'the number of channels is more or less controlled by the
dashed line and the dirty contact by the long-dashed(ire Table diff fth i fthe E . f But
| for a definition of these contaots ifferences of the cross sections of the Fermi surface. But, on

the other hand, the transmission ensemble and, hence, the
energy dependence of the conductance are not expected to
vary much in typical disordered contacts on the scale of the
superconductor gap.

We will in the following only take into account the dif-
ferences in magnitude, but not in energy dependence. In the
language of transmission distributions this means that the
distributions are the same, but the number of channels differ.

Gq(€)=AGunnel €) + (1~ Q) Goaisiic €) @9 this approximation the spin polarization of the boundary
for quasiparticle and Andreev conductance, respectively. Theonductanceyg is energy independent. The energy depen-
energy dependence of the individual conductances can ti#ence of the Andreev conductance follows from the same
found in Table I. A common feature of the temperature deiransmission ensemble, but its magnitude will be reduced in
pendence of all these contacts except the tunnel junction igomparison to the unpolarized case. It is important to notice
that right belowT, the resistance drops. At lower tempera- that the boundary polarization and the polarization of the
tures the resistance increases again except in the case of figromagnetic wire need not have the same sign, since they
purely ballistic contact. The drop of resistance of these conare parametrically independent. The possibility of this is
tacts close toT,, can be traced back to the temperature dedemonstrated by microscopic numerical calculatiths.
pendence of the superconducting order paramk(éi). The
resistance drop is caused by the leading order contribution of IV. RESULTS AND DISCUSSIONS
the change in the superconducting g&@T)«(1—T/Ty)Y?
to the Andreev contribution and the conductafitA.similar three casestA) purely elastic scatteringB) inelastic scat-
behavior is well known from Ref. 13, in which the transition terind in Iinéar r?as oﬁse an@) inelastic scattering in non-
from a ballistic to a tunneling contact is modeled by increas—"nea? reSDONSE 'Phe bc;undar condition on thg SUDErcon-
ing a -potential barrier at the interface. ductin sigle of -the wire has byeen derived in Sec IIFI) The

The boundary conditions presented so far imply that th 9 . . oo
transmission ensembles and the number of channels are t gundary conditions at the ferromagnetic reservoir are
same for the t_wo spin spgcies. In reality the trar)smission fi(e,—L)=f (e,—L)=F(e:eV,T), (27)
matrices for spin-up and spin-down states can be different. A
microscopic calculation of the transmission eigenvalues isvhere f(e;eV,T)={exd(e—eW/ksT]+1} ' is the Fermi-
beyond the scope of the present paper. We will therefor®irac equilibrium distribution at a constant voltayeand
heuristically generalize the boundary conditions to spiniemperaturer.
dependent interfaces by taking different transmission en- In the case of inelastic scattering E@7) also implies
sembles for the two spin directions. These ensembles cdhat the electron temperature equals the lattice temperature in
differ in the total number of channels and/or in the transmisthe ferromagnetic reservoi(x=—L)=T. The other
sion distribution. Thus, we replace the spin-dependent curboundary condition for the electron temperature comes from
rent through the interfac€l8) by the conservation of energy current in the ferromagnet and
into the superconductor.

tunnel and (+q) of a ballistic contact allows switching
continuously from one limit to the other, covering approxi-
mately the universal cases of a diffusive contagi=(Q.5)
and a dirty interface d~1/y2) with a single parametay.
Mathematically the contact is defined by

We solve the kinetic equations presented in Sec. Il in the

Gde) o F As a reference we calculate the resistance of the system in
l(e)=— ()~ f(e0)] the normal state:
Ga(e) . (y— 73)2
+ 4—6[1—f§(e,0)+f55(—e,0)]. (26) Ren=Re+ Ren+ Rsfm- (28)
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The third term is due to the spin accumulation in the ferro- 1 1 1

magnetic wire determined by the “spin-flip resistancly; Gide) G Gd+Gale)

=1/Gy=Rel 4/L tanh(/L)(1— ?). In the limit of a weak Fs(€)  Gr Gorle)+Gale)

ferromagnety?<1 and a short spin-flip relaxation length Gorl€) 2

I<L the spin-flip resistance reduces Ry~Rd /L, i.e., Y YB—GQP(€)+GA(€)

the resistance of a piece of the ferromagnetic wire of length + G ) .

lss. We see that the excess resistance due to the spin accu- G+ Gopl€)| 1— 93 __ Gode
. . . . . sf QP(G VB G G

mulation increases with increasing asymmetry between the qrl€) +Gale)

polarization of the bulk conductivity and the polarization of (34)

the interface conductance. The expresdi@8) will be used )

in the following to calculate resistance changes below thdn the general case the full expression has to be used to

transition to the superconducting state: calculate the resistance change in the superconducting state.
When the ferromagnetic wire dominates the resistance of
ARe(T,V)=RedT,V) — Rey. (29) the whole structure a simplified expression for the linear re-

sistance change may be obtained. We first limit the discus-
sion to the case of a weak ferromagnet and vanishing bound-

The differential resistance is defined by - .
ary polarization to obtain

Re(T,V) (al(T’V))l (30) 1
FL V)= : ARfs={ =————=+)—R
N FS <GQP(E)+GA(E)> BN
In the linear response regime we will omit the arguments of 5 1 1
the differential resistancBes=Reg(T,V—0). . tr Gert Gorl€) " Gyt Gy’ (35)
In the following analysis it will be useful to define the
following temperature-dependent average: We see that the resistance change consists of two contribu-
tions. The first is the resistance change due to the change of
" f (:0.T) the boundary resistance, which would also be present in the
(- '>=f (— +)de (31)  absence of spin polarization. Note, however, that this term

can be qualitatively different from the case of a normal metal

) _ wire in contact with a superconductor since in this case the
This average occurs, e.g., in the temperature-dependent COBrqyimity effect would not be negligible. The second term

ductances of a contact between an incoherent metal and a.ounts for the difference in spin accumulation between

superconducto(24). normal and superconducting state.
First we discuss the influence of spin accumulation on the
A. Elastic scattering FS resistance for a spin-degenerate interface. In Fig. 4 resis-
fance changes for two types of contacts are shown for differ-
ent polarizations of the ferromagnet. Solid curves are for a
relatively good contactd=0.75) and dashed curves for a
less transparent contaaf€ 0.25). In this plot the total re-

When the scattering in the wire is elastic, the general
solution of Eq.(1) satisfying Eq.(27) may be written as

G € X . . . .
fol€X)= Fsl )[f(e;O,T)—f(e;eV,T)] 1+ = sistance of t_he system_ls dominated by the resistance of the
Ge L ferromagnetic wireR=100Rgy and the spin-relaxation
L HeeV.T). (32) length isl4=0.03, resulting in a spin-accumulation resis-

tanceR~ 3Rgy - Accordingly, the resistance change is nor-

. . Goe( _ malized toRgy to show the relevant scale of the effect pro-
The spatially independent spectral conducta €) de duced by the superconducting transition. For both contacts

termines the current through the structures and remains to bge . S .
calculated. The solution of the kinetic equatidn is found Spin accumulation(increasing from the bottom to the top

from the continuity of the spin currents into the supercon-cuwes leads to an enhancement of the resistance. Specifi-

ductor(26) and ferromagnetic wir€). We find the electrical cally thellow—ter.nperature' resistance is well accounted for by
current Eq. (35) in the limit T—0:

Rsf

= = —_— 2>
ARps(T O) GA(O) RBN+ Y 1+RBN/RSf.

1 (36)
I(T,V)= %f deGed €)[1—f(€;eV,T)—f(—€eV,T)].
(33)  The third term of this equation shows that the spin accumu-
lation always enhances the resistance, maximally by an
This expression shows that the spectral conductance deteamounty’Rg. The enhancement for tlie=0.25 contact has
mines the transport in each energy slice depending on the uniform temperature dependence and does not change
difference in occupation of states at this energy in the resemualitatively. This is different for theg=0.75 contact. Here
voirs. This form is analogous to the classical definition of athe resistance decreases monotonically in the unpolarized
conductance as the proportionality factor between currentase as a result of the Andreev-enhanced conductance. A
and voltage difference. small polarizationy~0.2—-0.4 results in a nonmonotonic
The spectral conductance is given by temperature dependence, i.e., an increase of resistance at
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FIG. 4. Temperature dependence of the resistance change of the T/TC
F wire attached to a superconducting reservoir. Results are pre- ) o )
sented for two mixed contacts with=0.75 (solid line9 and q FIG. 5. Effect of the relative polarizations on the resistance

=0.25(dashed lines The conductivity polarizatiory of the wire is ~ change. The contact is a mixed contact vqth 0.75; other param-
changed from 0 to 0.6 in steps of 0.2 from the bottommost curve téters arey=0.3,14=0.03, andRe=100Rgy . The polarization of
the topmost curve for both contacts. Other parameters|gre the boundary conductance is varied between a symmetric con-
=0.03, andRg=100Rgy . Clearly spin accumulation leads to an figuration yg=0.5 and an antisymmetric configuratioryg
enhanced resistance in both cases. The resistance af=tle25 = —0.5. At the same time the Andreev conductance is rescaled by a
contact is more or less uniformly increased. The effect of spin acfactor 1— 3 to account for the smaller number and transmission of
cumulation is much more dramatic for tle=0.75 contact. The Andreev channels. For large antisymmetric polarization the resis-
monotonic resistance decrease in the unpolarized case is first turn&1ce decrease exceeds the decrease of the corresponding normal-
into an reentrant behavior for small polarization overshooting theMetal—superconductor contact.
normal-state resistance slightly at low temperatures. Increaging
further leads to an increased resistance for all temperatures. Notghile noting that for the largest negative interface polariza-
that this behavior resembles that ofja 0.25 contact, if properly  tion shown (yg=—0.5) the total resistance drop larger
rescaled. than the resistance drop which would result from the pure
Andreev reflection in the absence of spin polarization of the
lower temperatures. This can leddr specific parametey$o  interface and the F wire. This apparent contradiction to the
a reentrant behavior of the resistance change, even ovejftuition that any spin accumulation should decrease the
shooting the normal-state value for larger spin accumulationandreev-caused resistance drop stems from the fact that we
At even higher spin polarizationg’=Rgy/Rs the Andreev  piot the resistancehangebelow the superconducting transi-
contribution is completely masked and the resistance intion. The contradiction is resolved by noting that tin¢al
creases monotonically. This behavior resembles that of a leggsistancdRro( T) = Rey+ ARg(T) is always higher than for
transparent contact if the absolute scale is properly chosenthe unpolarized case. However, in a real experinfarith
Let us now discuss the effect of the interface polarizatiorfixed polarizationsthe Andreev conductance in the absence
ye on the resistance change. In Fig. 5 the temperatureof a polarization cannot be measured separately. It may
dependent resistance ofga=0.75 contact is shown for dif-  therefore appear that the measured resistance drop is larger
ferent interface polarizations. Other parameters &g  than one would expect from a simple estimate of the reduc-
=100Rgy, 1¢=0.03., and y=0.3. The interface polariza- tion of the interface resistance due to Andreev reflection.
tion yg changes from the symmetric valde0.5 to the anti-
symmetric value—0.5, as indicated in the plot. The reduc-
tion of the Andreev conductance by the spin-dependent
interface resistance is taken into account by a phenomeno- We will now proceed to study the case of inelastic scat-
logical renormalization factor (% yé). To gain some insight tering in the ferromagnetic wire. It is assumed that the cur-
it is useful to look at the low-temperature limit of the resis- rent in the ferromagnet is weakly polarizeg<1. In order to
tance change in the limRgy<<Rg. From Eq.(34) it follows  simplify the discussions we disregard the possible asymme-
that try in the interface transparency in the following discussions
and setyg=0. An extension is straightforward.
5 An analytical expression for the total conductance of the
ARr(T=0)= W_RBNJFR“MYYB_ ve)- (3D system can be found in the linear response regime. In this
regime the effects of electron heating vanish since they will
The spin-dependent contribution depends on the relative sigonly contribute to the current in higher orders of the source-
of the two polarizationsy and yg and can also be negative drain bias. The coupled equations for the spin-dependent
(if 4 yyg< yé). This effect is seen in the lower two curves in chemical potential distributions and the electron temperature
Fig. 5 with an antisymmetric interface polarization. An in- are simplified by lettingl¢(x) — T. By solving Eqs.(6) and
creasing interface polarization leads to a lowering of the re{7) together with the boundary conditioi$8) and (27) we
sistance change, despite the increase of the resistance dudfit the linear response resistance. Assuming a weak ferro-
the renormalization of the Andreev conductance. It is worth-magnet,y?><1, and a small interface resistance compared to

B. Inelastic scattering—linear response
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the resistance of the ferromagnetic wiRgy<Rr the resis-
tance change can be written as

1 0.0
AR =Gl + Galery 1o
, 1
T Gsrt(Gorl€)) Gt Gy’ 39 Z o1l

The first two terms in Eq(38) are due to the effective inter- E

face resistance between the ferromagnet and the supercor~
ductor and the third term is due to the spin accumulation. "
The latter term vanishes when—0 orlg/L—0. This equa- !

—

tion has to compared with Eq29) for the case of purely &
elastic scattering. Only the quasiparticle conductance enter @
the spin-accumulation contribution since spins cannot be in-&
jected into the superconductor by means of the Andreev pro:
cess. The temperature-averaged conductances directly dete
mine the temperature dependence of the total resistance i

the case of dominant inelastic scattering processes. The qué -0.3 |
siparticle conductance vanishes at zero temperature sinc

then no spin current can propagate into the superconductol

N
I

At zero temperatur¢Gop(€) + Ga(€)) =GA(0) and the re- 0.0 ' 0.2 0.4 0.6 0.8 1.0
sistance of the FS system in the case of inelastic scattering /7
Eqg. (38), equals the result in the case of elastic scattering, e

Eq. (36). If the first two terms in Eq(38) are neglected and FIG. 6. The ratio of th ist T to the interf .
the contact is assumed to be ballistic, the results of Ref. 9 are - 0. The ratio ot the resis an&s_( ) to the interface resis-
reproduced. tanceRgy as a function of the reservoir temperatlreThe ferro-

The results with inelastic scattering in general differ frommsgdr;fefﬂgi(\;vr:rfeﬁg?s :rarjgtr;ei:g ::2 ?;ﬁ?;?gﬁgé;‘;?gn-
those with purely elastic scattering when the temperature is:0 OR-. The spin-fslgp résis:tance B.—0 R N
nonzero or when the current is measured in the nonlinear st
source-drain response regime. The remarkable difference be-
tween Eq.(29) and Eq.(38) is the way the thermal averaging KT ——————
is carried out. E.g., in the first term we have to average the In(Ren/Rsf)
inverse contact conductance in the case of elastic scattering, grder to prevent a thermally assisted spin current into the
whereas wdirst have to average the conductance and the%uperconductor.

invert the result in the case of inelastic scattering. A similar  \ye show in Fig. 6 the ratio of the linear response resis-
consideration holds for the spin-accumulation term. The orizgnce changd Res to the interface resistand®sy, as a func-

gin of this difference can be understood in the following (o of the temperaturd for a metallic interface wittRgy,
way: we may visualize our wiréor any systemas mapped _ g osr_, polarizationy=0.3, and spin-flip diffusion length
onto an electric circuit which contains energy-dependent /L=0.2. For these parameters we have a “spin-flip” re-
conductors. In the case of purely elastic scattering we firsgsiStance corresponding Ry=0.2R.. The change in resis-

have to calculate the total conductance of the system for eagh e pelow the superconducting transition temperature is

energy. The current is then found by averaging this spectray, e 1o 4 competition between the excess resistance caused by
conductance with the difference of distribution functions Ofthe spin-flip relaxation and the reduced interface resistance

the adjac_ent reservqirs. This procedure yiglds(Ea} for the _caused by Andreev reflection. At=0 we find from the
cha_n_ge in the re5|stance_. In contrast, mela_stlc Scatte”ngpproximate result(38) that Res— Ren=0.5Rgy— ¥2Rys
equmbrate_zs the Ioca_l d|_str|but|on of electrons_ in a way that_ —0.14R., roughly corresponding to the numerical value
the phemlcal_ pofcentlal is equal to the potenpal found_ fro.mwhich has been obtained without making the approximation
so!vmg the circuit problem qf the c9rrespond|ng electric cir- ¥2<1 andRg> Rgy. Using the condition(39) we find that
cuit. Thus, Eq(38) follows Kirchhoff's laws for our system. the spin accumulation is strongly reduced arodi@,=0.7

A? we tWI" demonstratef bilr?wtth's dlff?ren((:je can dhave S'fgt' nd consequently the resistance of the sysieareasedbe-
nificant consequences for the temperature dependence o e increasing again arount/T.=1 where the boundary

resistance. resistance is increased. This explains the nonmonotonic be-

_ Let us now lllustrate the temperature dependenge of thﬁ vior of the linear response resistance as a function of the
linear response conductance in the case of a metallic cont mperature

with an interface conductance much larger than the conduc-
tance of the ferromagnetic wire. The total conductance at
sufficiently low temperatures is theRGgp(€)+Ga(e))
~Ga(0)=2Ggy and the quasiparticle conductance is At a finite bias voltage the electron heating effects have to
(GoH(€))~(8mkgT/A)2exp(-AlkgT). The temperature be taken into account and the coupled equations for the elec-
must then be so low that tron temperature, the spin-dependent chemical poteriégls

(39

C. Inelastic scattering—nonlinear response
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caused by the competition between spin accumulation which
enhances the resistance and the effective interface resistance
0.0} which reduces the resistance. At higher voltages the resis-
tance is only caused by the effective interface resistance and
the reduction of the resistance charRe(T=0,V) —Rgy as

a function of the bias voltage is small.

In the limit of a strong electron-phonon interaction the
electron temperature equals the lattice temperature. The spin
current into the superconductor is then not enhanced due to
thermal activation and consequently the spin accumulation
on the ferromagnetic side is only reduced when the potential
on the ferromagnetic side of the interface is higher than the
superconducting gap. This occurs when

eV=A

142 RF) (41)
I:QBN ,

and thus at a potential that is much larger than the supercon-
ducting gap, in contrast to the case of a weak electron-
phonon interaction.

In the intermediate regime the electron-phonon interaction
L " L L L " L . I should be included. In order to illustrate the main physics we
0 1 2 3 4 5 consider the case of a weak polarization andgetd and

V/A consequently there are no effects due to spin accumulation

and the resistance change of the wire is only due to the
change of the effective boundary resistance. The chemical
potential in the ferromagnetic wire is thus spin independent.
Furthermore, we consider the case that the lattice tempera-
ture is zero,T=0, so that the electron temperature arises
solely due to electron heating. Solving the diffusion equation
(6) on the ferromagnetic side of the interface giveéx)

FIG. 7. The ratio of the resistanég-f T=0,V) to the interface
resistanceRgy as a function of the bias voltagé The ferromag-
netic wire is parametrized by the polarizatigr=0.3, the spin-flip
diffusion length I4=0.2L, and the interface resistance Rgy
=0.03R¢. The spin-flip resistance By=0.2R¢.

g\’/ ést)c') %Ted&?\)/égnr?umr?c%ﬁ;daw condition$8) and(27) - _"_ o\ /1 1 4 (0)[1+x/L], whereeV is the applied bias

First let us discuss the transport properties when thélnd #(0) is th? potential drop across thg ferromagnet-
electron-phonon interaction is weak so that we have perfe&uperconductor interface. The superconducting energigap

conservation of energy current and the left hand side of E resents a natural energy scale for the problem. We will
(10) can be set to zero. From the discussions in the previou 'a/acterize the strength of the electron-phonon energy ex-

H H 2A3 . H
section we understand that there will be a reduction in th&hqnge by a dlmenslonless constan:tALge A. [G: £ IS
excess resistance due to the spin accumulation when t)fFEf'nEd by the relatiori11). The energy diffusion equation

electron temperature on the ferromagnetic side reaches co en simplifies to

dition (39) so that there is a significant spin current entering 72

the superconductor. Roughly speaking, the electron tempera-  — (L14,)%(kgTe/A)%= (kgTe/A)®
ture on the ferromagnetic side is proportional to the applied 6

source drain bias. Thus, as a crude approx?mation, we expect —{[eV—u(0)/A} K, (42)
that the excess resistance due to the spin accumulation is
lowered when where we introduce a typical length scale for the energy
exchange.;=L/ k. If k<1,L<Lt and the exchange is not
eV= A (40) effective. For longer wiresi becomes larger than unity. In
T In(Ren/Rgp) this case, the electron temperature develops a constant pla-

. ' ' teau in the ferromagnetic wire and only changes rapidly
We show in Fig. 7 the resistance chan@eg(T=0V)  within the length scald.; near the end points=—L and
—Rgy, Eq.(29), normalized by the interface resistarRgy  x=0. It follows from Eq.(42) that in this case the tempera-

as a function of the bias voltagé As before, the interface tyre in the middle of the ferromagnetic wire becomes
resistance iRgy=0.05R¢, the polarizatiorny=0.3, and the

spin-flip diffusion lengthly/L=0.2. For these parameters keTe o €V—pu(0)|?®
we have a “spin-flip” resistance corresponding ®; A K (T)
=0.2Re. The change in resistance below the superconduct-

ing gap is due to a competition between the excess resistantée will now present numerical results of the temperature
caused by the spin-flip relaxation and the reduced interfacprofile in the ferromagnetic wire and the resulting resistance
resistance caused by the Andreev reflection. A dip in thehange usingy=0, a metallic interfaceRgy/Rg=0.05 for
resistance is seen arount=0.7A which is correctly de- various values of the electron-phonon coupling constant. We
scribed by Eq(40). Below this bias voltage the resistance is show in Fig. 8 the spatially dependent electron temperature

(43
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. . FIG. 9. Resistance chan§®:-{T=0,V) — Ren]/Rey as a func-
FIG. 8t.' Th_e srgraglally dependen_t eflectr%n templfratLZrOeAlnt:]he ferfion of the bias voltagd/. The ferromagnetic wire is described by
ro_rg;gne Ic W|fre. b‘? uppeltr curzezl(')sAor ad ;ﬁs \llo age ’f € the polarization y=0, and the interface resistance RBgy
middle curve for a bias vo age= ~UA, and the Jower curve for a =0.05R¢. Curve(a) corresponds to no electron-phonon interaction
bias voltageV=10A. The metallic interface resistance Rgy

—00R. th it Wie=0_ and the elect h x=0. Curves(b), (c), (d), and (e) correspond to an intermediate
= V.03, hereservorr lemperatu » and the electron-phonon electron-phonon interactior=10?, k=10%, k=10, andx=1C?,
interaction strengthc=10°.

respectively. Curvef) is for the case of a strong electron-phonon

in the ferromagnetic wire fok=10° at a bias voltageey ~ interactionx=co.

=40A (upper curvg eV=20A (middle curve, and eV

=10A (lower curve. The electron temperature in the middle will turn out that most of the experimental results can be

of the wire follows from Eq(43). There are rapid changes of understood on the basis of our calculations. Both experimen-

the electron temperature close to the ferromagnetic and sual arrangements we will discuss below contain F-S junctions

perconducting reservoirs and the temperature in the middighere the superconductor and the ferromagnet overlap in a

of the wire is lower than the electron temperature close to theertain region. The current redistribution in these junctions

superconductor. The latter temperature is important for theyill play an important role in the following. Let us therefore

effective interface resistance. _ introduce parameters characterizing these junctions: the re-
We show in Fig. 9 the resistance change as a function ofjstance of the interface is call&y in accordance with our

the bias voltage. The different solid lines show the current, e ious consideration. AdditionalliRs, will be the resis-

for different ratios of the electron-phonon coupling starting;, e of the superconducting part of the overlap junction in

{L?Qggd?;?gtggéﬁgﬂo%Egenrai?,ttlgr?c;;)o gglggzth(ré))ugh the normal state anBg; the resistance of the ferromagnetic
P oo K part of the overlap junction.

=10°, and(d) «= 10’ to strong electron-phonon interaction In the experiment by Girouét al® a nonmonotonic be-

(f) x=c when the electron temperature equals the Iattlcenavior of the resistance below the superconducting critical

temperature, e.g., when there is no energy transfgr betwe‘?gmperature was observed. The sample consisted of a ferro-
the electron and phonon system. The crossover bias voltagﬁ-agnetic wire the resistance of which was measured in a

for the excess resistance is sensitive to the strength of mf%ur-point arrangement. At some point a superconducting
electron-phonon interaction and occurs from arong) to strip was on top of the.wire. In a second sample two such

around 4@ (f) [accordmg to _Eq(41)]. The _dependence on strips were present and the resulting resistance change was
the electron-phonon interaction parameters rather weak twice as big as in the case of one strip. Since our formulation
as can b? underst_ood from Ed3). The IOC"’TI elgctrpn M- is based on a single interface and no coherent coupling be-
perature '”_}[J.,e middle of the ferromagnetic wire is PropOryeen the two superconducting strips was found experimen-
tional to x and thus only has a very weak dependence[a"y’ we concentrate here on the sample with one strip. The
on k. resistance change in the two-strip sample is then simply
twice that for the single-strip sample. The experimental ar-
rangement is such that in the region of the strip the current is
In this section we discuss the connection of our resultgedistributed among the ferromagnet and the superconductor.
with experiments of Petrashast al® and Giroudet al® It In Appendix A we introduce a simple quasi-one-dimensional

V. DISCUSSION OF EXPERIMENTS
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FIG. 11. Schematic picture of current redistribution in an over-
lap junction. The geometrya) corresponds to the experiment by
-1 ‘ ‘ Giroudet al. (Ref. 6. If the resistance of the ferromagnet below the
0 0.5 1 overlap region is the highest, a considerable part of the current

T/T flows through the interface and the superconductor. The geometry
in (b) corresponds to the geometry of Petrashkowal. (Ref. 5. Here
FIG. 10. Comparison of the experiment of Giroetdal. (Ref. §  the current is forced to leave the contact region through the super-
and theoretical calculations. The two experimental data sets are f@onductor.
the sample with one superconducting st(gguares and for the
sample with two superconducting strigsircles. The theoretical the formation of a ticker tunnel barrier such that the trans-
curves are obtained from E¢34) with the following parameters: mission eigenvalues are shifted towards zero. Our model
Rr=100Rgy, spin relaxation lengthy=0.0124, conductivity po-  does predict a resistance decrease for a fairly transparent
larization y=0.3, and a double-interface contact. All curves areinterface and changes to an increase for a more tunnel-like
normalized to the respective maximal negative value. interface. This is shown, e.g., in Fig. 4. However, quantita-
tively one would expect that the resistance changes below
model to calculate the effective resistance, these results bgne superconducting transition temperature aveaysof the
ing used for comparison with experiment. The resistance ofrder of the boundary resistance itself.
the superconducting Al strip is 0.4, the resistance of the This is obviously not the case in the experiment with
ferromagnetic part below the strip is 10, and the resis- Ry =41 Q, where the measured resistance change is about
tance of the interface is estimated to be @) Since the 40 times smaller. The first idea is that the resistance drop of
measured resistance change of the F wire shows no signatugige samples with better interface may possibly be accounted
of the vanishing of the resistance of the superconductingor by combining the effect of the current redistribution and
part, we believe that the real interface resistance is highehe apparent enhancement of the Andreev reflection dis-
than estimated in Ref. 6, in particular higher tgy. This  cussed in Sec. IV. Again we calculate the effective interface
yields a total resistance ®er=2(ReRgn) ™% Which is ap-  resistance in a quasi-one-dimensional mosgee Appendix
proximately of the order of a feMd. A resistance change of A). In the limit of a small interface resistancBq,
the interface resistanagRg will then lead to a change of the =(RqjRgy)¥2 A change of the interface resistance again
effective resistanceSReq= (Re)/Ran) ¥?6Rg, which in the  results in an apparently larger change of the effective resis-
caseRer>Rgy is larger than the resistance change of thetancesR.q= (Rrj/Rgn) Y26Rg/2. We may speculate that the
interface resistance itself. For the experimental values wearge resistance drop observed in the experiment by Pe-
have Rry/Rey)?~10 and thus a resistance change oftrashovet al. can possibly be explained by this effect to-
~0.2 (), as observed in the experiment may result from agether with the observation made in Sec. IV that a spin-
change of the interface resistarRgy~0.1 Q by 20%. dependent interface may cause another apparent
The results of Petrashat al® are more intriguing, since enhancement of the Andreev reflection.
the magnitude of the measured resistance drop in some of the There may be a more radical explanation for a small rela-
samples seems to be far too large to be explained without @ive resistance change. In fact, the morphology of the metal-
“long-range” proximity effect in the ferromagnet. We will ferromagnet interfaces has not been yet sufficiently studied.
concentrate here on three of the four samples discussed Fhe actual structure of the interface may be complic&ted.
Ref. 5. In these samples the transport through a long ferrofo illustrate how this can affect the results let us consider a
magnetic wire with one ferromagnetic and one superconduciimplistic model of a double interface. We speculate that a
ing contact is studied; this is in contrast to the experiments ofhin layer of magneticalloy separates the ferromagnet and
Ref. 6. The geometry is such that the superconducting corthe superconductor. The boundary scattering then occurs in
tact overlaps the ferromagnetic wire at one end and the cutwo stages: at the “inner” interface between the ferromagnet
rent has to pass through a tiny piece of the superconductoand the alloy and at the “outer” interface between the su-
The three samples differ in the interface resistance. Tw@erconductor and the alloy. Since the proximity effect is
samples with a low interface resistance show large drops ajuenched in magnets, the resistance of the “inner” interface
the resistance of the order of 8 and @Q6respectively, below s not affected by the superconducting transition whereas the
the superconducting critical temperature. The third sampleesistance of the “outer” interface acquires a change de-
has a higher interface resistandgz((=41 (1) and shows a scribed above. This leads to a smaller relative resistance
small resistance increase of the order of 1)5 change.
This agrees qualitatively with the results of our model. In Fig. 10 we show a comparison between the experimen-
Indeed, the bigger resistance of the boundary usually meanal results of Giroucet al. and our calculation for a contact
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APPENDIX A: CURRENT REDISTRIBUTION
IN AN OVERLAP JUNCTION

Here we introduce a quasi-one-dimensional model to ac-
count for the redistribution of the current under an overlap
junction as used in the experiments. The two geometries we
have in mind are depicted in Fig. 11.

To estimate the measured resistance we use the following
quasi-one-dimensional model for the current redistribution in

- the overlap region of lengtd. The currentd -(x) in F and
= I(x) in S in direction of the ferromagnetic wire follow from
- Ohm’s law
d dUgx) d dUg(x)
HOTR Tax 0 TR Tax 0 A

whereRg;sy is the resistance of the ferromagnetic part un-
der (superconducting part abovéhe contact andJg s the
respective voltage. Current conservation dictates that

dic) I Ug(x)~Up(x)
dx ~ dx ~ Red (A2)

FIG. 12. Transmission eigenvalue distribution for the doubleis the current per unit length through the contact resistance
interface. The ratiow=G/2Gqpc is varied between the different Rgy. Boundary conditions are obviously that the total volt-
curves. age drop isvV and no current leaves the system through the

boundary to vacuum.
with a transmission eigenvalue distribution of the model just ~Solving these equations for the geometry of Giretichl °
describedsee Appendix B The maximal relative resistance We find the effective resistance of this part to be
change of the contact is 16% in our calculation. According

to above considerations this may be enhanced to a measured_ Ry 4Rgy Re;+ Rs;
resistance change of the order of(Rr/Rgy) Y216%5Rg Rett= Rest Ry Rsst \/ Ryt RFJtan N "aRgy ||’

~160%05Rg in agreement with measurements.
(A3)

VI. CONCLUSIONS Of speci_fic interest is the fgse tHt > Rgn> Rgj, in which
we obtainRgs~ 2 (ReRen) <
To summarize, we have calculated the resistance of a dif- A calculation similar to the previous for the geometry of
fusive ferromagnetic wire in contact with a superconductingPetrashowet al® leads to an effective measured resistance of
reservoir in the linear and nonlinear regime with purely elas-

tic and inelastic scattering. It has been demonstrated that VREREN (Ad)
most of the recent experimental results can be understood in Refo= ———=—— A4
P ofz tanhyRg;/Rgn

the absence of a superconducting proximity effect in the fer-

romagnet. Spin accumulation leads to an enhanced resistangeie |imit of vanishing resistance of the superconductor on

below the superconducting transition temperature wheregg,, of the ferromagnet. The difference with the previous cal-
Andreev reflection can lead to a decreased resistance belowWation s that here the current enters the junction through

the superconducting transition temperature. The competitiog,o ferromagnet, but has to leave the junction through the
between these two mechanisms determines the sign of t@‘;bperconductor.

resistance change. The magnitude of the resistance change is

of the order of the interface resistance or the spin-relaxation

resistance. Electron heating can dramatically modify the  APPENDIX B: TRANSMISSION EIGENVALUES

nonlinear response resistance and change the bias depen- OF A DOUBLE INTERFACE

dence by orders of a magnitude. The distribution of transmission eigenvalues of a double
interface as described in the text can be found with the tech-
nique described in Ref. 26. For details we refer to these
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Fundamenteel Onderzoek der MaterigzOM) and a Feodor the band structure mismatch, whereas the region close to that
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(A.B). transmissions can be found from the solution of
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=G1/2Ggpc. The transmission eigenvalue distribution then
. (B1) only depends ow. It is plotted in Fig. 12 for several values

of a. For small values ofr the contact is dominated by the
The distribution of transmission eigenvalue€T) is found  tynnel barrier, resulting in a shift of the transmission eigen-
by analytic continuation into the complex plane: values to lower values and a gap above a ceffailligher

1 1 1 a’s shift the distribution to larger transmission eigenvalues

p(T)= — —Re{l 7+ 2i acosh—=||. (B2) and a gap opens up for low transmission eigenvalues. For a

e Tyl-T VT range 0.Ea=<0.5 the distribution is restricted to a finite
The dependence on the two separate conductances may ipéerval of transmission eigenvalues. At even higher values
eliminated in favor of the total conductance of the contactof « the upper gap closes and the distribution becomes more
Gen=G1Gopc/(G1+Ggpd and the ratio of the twoe  and more peaked at=1.

0
|(c1>)=GTsin(c1>—¢9)=2GQF,Ctar<E
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