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Thermodynamic properties in the evolution from BCS to Bose-Einstein condensation
for a d-wave superconductor at low temperatures
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School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
~Received 29 November 1999; revised manuscript received 26 May 2000!

The low-temperature evolution from BCS to Bose-Einstein condensation~BEC! for a two-dimensional
d-wave superconductor is discussed at the saddle point~mean field! level. A systematic study of the changes of
low-temperature thermodynamic properties is presented as a function of the charge carrier density and fixed
interaction. It has been found that when the interaction strength is large enough, there is a critical density below
which the single quasiparticle excitation spectrum develops a gap. At higher density of carriers and lower
interaction strength~towards the BCS regime! the superconductor has gapless quasiparticle excitations, while
at lower densities and higher interactions~towards the BEC regime! quasiparticle excitations are fully gapped.
The appearence of a full gap in the quasiparticle excitation spectrum has dramatic consequences to the
compressibility, specific heat, and spin susceptibility at low temperatures, as the critical densitync is crossed.
The change in behavior of these quantities indicates a possible quantum phase transition between ad-wave
gapless phase and ad-wave fully gapped phase, asnc is crossed.
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I. INTRODUCTION

The problem of the evolution from BCS to BEC supe
conductivity is an old one1–3 but recently it has received
considerable attention in connection with high temperat
superconductors.4–13 Although high temperature superco
ductors are good candidates to test theories on the BC
BEC evolution ford-wave superconductors, it must be em
phasized that there is currently no experimental evidence
present a clear sign of this evolution as a function of part
density. However, the evolution from BCS to BEC superco
ductivity is by itself an interesting theoretical problem
study, specially ford-wave superconductors, as shall beco
clear in the next paragraph. As more experimental quant
are measured systematically as a function of density the
plicability of the BCS to BEC evolution to high-temperatu
superconductors can be tested. Thus, in this work, we
the pragmatic approach of studying some experiment
measureable quantities at low temperatures as a functio
density and we let experimentalists decide the applicab
of these ideas when systematic studies are performed.

Very recently, initial theoretical studies of the BCS
Bose-Einstein evolution as a function of density we
performed.14–16The nice works of den Hertog15 and Andren-
acci et al.16 discussed the BCS to BEC evolution for
d-wave superconductor as a function of density in the lat
case, where an extended Hubbard model with attrac
(2uVu) between nearest-neighbor sites was used. In
work of den Hertog15 a major rearrangement of the mome
tum distribution was found, when the chemical potent
crossed the bottom of the electronic band, while Andrena
et al.16 observed a peculiar behavior in the pair sizejpair for
a d-wave solution as a function ofuVu when the density
approached half filling, and constructed nice phase diagr
of density versus interaction strength. The behavior of
momentum distribution and pair size for thed-wave case are
quite different from thes-wave as emphasized in their wor
PRB 620163-1829/2000/62~14!/9675~13!/$15.00
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but the evolution from BCS to BEC is still regarded as
crossover. In the continuum case, it was first noticed
Borkowski and Sa´ de Melo14 that the appearance of a fu
gap in the BCS to BEC evolution for ad-wave supercon-
ductor lead to~a! a discontinuity in the momentum distribu
tion when the chemical potential crossed zero,~b! dramatic
changes in the density of states, and~c! qualitative changes
in the specific heat and spin susceptibility. These res
were argued to be evidence for a possible quantum ph
transition separating a gaplessd-wave superconductor from
fully gapped d-wave superconductor. A similar quantu
phase transition should be present in the lattice case f
d-wave superconductor, however, this was not reported
the recent literature.15,16

In this paper, we extend the results of Borkowski and´
de Melo14 and address in detail the evolution from a BCS
a BEC d-wave superconductor at low temperatures, with
the saddle point~mean field! approximation for a continuum
model. Corrections due to collective modes are also brie
discussed. For this purpose we study single quasipar
properties~excitation spectrum, and momentum distributio!
and thermodynamic quantities~compressibility, spin suscep
tibility, and specific heat! as a function of particle density a
fixed interaction strength. Based on our findings regard
the compressibility, spin susceptibility and specific heat,
argue that a quantum phase transition for ad-wave supercon-
ductor occurs when the chemical potential crosses zero f
fixed interaction strength and changing density.

Quite generally the evolution from BCS to BEC supe
conductivity can be characterized by two parameters:
chemical potentialm and the Cooper pair sizejpair. The
BCS limit is characterized by a positive chemical potent
m5eF and a large size of Cooper pairs (jpair@kF

21), while
the BEC regime is characterized by a large and nega
chemical potentialm52Eb

( l )/2, whereEb
( l ) is the binding

energy of the two-body problem in thel th angular momen-
tum channel, and by a small size of pairs (jpair!kF

21). Here
9675 ©2000 The American Physical Society



m

to
tl

r

ta
icl
e

-
r

ite
ly
th

pa

o
la

-

a

I
y
um
le
se
o

ed
o
ec
ity
. I
ow
z
s

i
e

ns,

ten-

te

he

on-
he
l

os-

e
t of
sin-
ha-

ur-

f

d
n.

um
et

lly

-
-

n
ches

he

nter
l

9676 PRB 62R. D. DUNCAN AND C. A. R. SÁde MELO
l 50 ~or s) indicates thes-wave channel, whilel 52 ~or d!
indicates the d-wave channel. The excitation spectru
at zero temperature has the formEl(k)5@(ek
2m)21uD l(k)u2#1/2, where ek5k2/2m and D l(k)
5D0lhl(k)cos(lf), with k5uku.

In the s-wave case the excitation spectrumEs(k) is
gapped for allk, and it increases smoothly from the BCS
the BEC limit. As a result the quantities that depend direc
on the excitation spectrumEs(k) also evolve smoothly. Fo
instance, the quasiparticle density of statesNs(v) at low
frequencies is always zero, since there are no available s
inside the gap. Thus, contributions from single quasipart
excitations to thermodynamic quantities are always expon
tially small at low temperatures. In thed-wave case the situ
ation is qualitatively different. Form.0 the superconducto
is gapless at the Dirac pointsk5km5A2mm, f56p/4,
63p/4, while for m,0 the superconductor acquires a fin
gap. The linem50 separates two regimes with qualitative
different behavior. This has important consequences for
momentum distribution, and density of states. The quasi
ticle density of statesNd(v) changes discontinuously at low
frequencies from linear inv for m.0 @whereEd(k) is linear
in momentum close to the Dirac points#, to a constant atm
50 @whereEd(k) is quadratic for small momenta#, to zero
for m,0 @where Ed(k).umu1O(k2) for small k#. Thus,
contributions from single quasiparticle excitations to therm
dynamic quantities at low temperatures also exhibit singu
behavior in the vicinity ofm50. In particular, the zero tem
perature compressibility diverges whenm50 at a critical
densitync for fixed interaction, indicating the possibility of
quantum phase transition.

The rest of the paper is organized as follows. In Sec.
we discuss the Hamiltonian and the ground state energ
the system. In Sec. III, we discuss the saddle point and n
ber equations deduced from the ground state energy, whi
Sec. IV the quasiparticle excitation spectrum is discus
and an interaction versus density phase diagram is c
structed. In Sec. V, the momentum distribution is analyz
Section VI contains a description of the compressibility
the system as the BCS to BEC evolution takes place. In S
VII and VIII, we discuss the opposite spin density-dens
correlations and the Cooper pair size, respectively. In Sec
topological considerations are presented. In Sec. X the l
temperature spin susceptibility and specific heat are analy
within the BCS to BEC evolution. Finaly, Sec. XI contain
the summary of our results.

II. HAMILTONIAN

In order to analyze the low-temperature thermodynam
properties from the BCS to BEC limit, we start with th
two-dimensional Hamiltonian

H5(
ks

~ek2m!cks
† cks1 (

kk8q
Vkk8bkq

† bk8q , ~1!

wherebkq5c2k1q/2↓ck1q/2↑ . The interaction potentialVkk8
is expanded in its angular momentum components as

Vkk85 (
l 52`

1`

Vkk8
( l ) exp~ i l fkk8!, ~2!
y
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wherefkk85acos(k̂• k̂8) is the angle betwen the vectorsk
and k8 and Vkk8

( l )
52p*0

`drrJl(kr)Jl(k8r )V(r ). The indexl
labels angular momentum states in two spatial dimensio
with l 50,61,62, . . . , corresponding tos,p,d, . . . , chan-
nels, respectively. A possible choice of the real space po
tial is

V~r !5V1Q~R12r !1V0Q~r 2R1!Q~R02r !, ~3!

which is repulsive at short distancesr ,R1, attractive at in-
termediate distancesR1,r ,R0, and vanishes forr .R0.
This class of potentials includes~a! the delta function poten-
tial with zero range (V1→2`, V050, andR15R050); ~b!
the attractive potential with rangeR0 (V1,0, V050, and
R15R0); and ~c! the short range repulsive, intermedia
range attractive potential with rangeR0 (V1.0, V0,0, and
R1ÞR0). A d-wave type solution can be considered for t
real space potentialV(r ) in Eq. ~3!, when V1.0 and V0
,0. This choice was made in a previous paper for the c
tinuum case,14 and corresponds in the lattice case to t
choicesU.0 and V,0 in the extended Hubbard mode
studied by Andrenacciet al.16

Under these circumstances, quite generally it is not p
sible to find a separable potential in momentum spaceVkk8
52lw* (k)w(k8), nevertheless in the spirit of Ref. 3 w
choose to study a separable potential that contains mos
the general features described above. We consider only
glet superconductivity, and since we do not discuss a mec
nism for s-wave or d-wave superconductivity, thes-wave
and thed-wave channels are studied separately. For this p
pose, we use the separable potential

Vkk852l lwl~k!wl~k8!. ~4!

The interaction termwl(k) can be written as the product o
two functions,wl(k)5hl(k)gl( k̂), wherehl(k)5(k/k1) l /@1
1(k/k0)# l 11/2 controls the range of the interaction an
gl( k̂)5cos(lf) is the angular dependence of the interactio
Here k0;R0

21, where R0 plays the role of the interaction
range, andk1 sets the scale at low momenta. The moment
scalesk0 andk1 are not momentum cutoffs, they merely s
the momentum scales in the short wavelength limit~large
momenta! (k0), and the long wavelength limit~small mo-
menta! (k1). They are necessary to produce the physica
correct behavior ofVk,k8

( l ) for the real space potentialV(r ),
i.e., this form ofwl(k) generates the correctl th-channel be-
havior of Vk,k8

( l ) for both low and high momenta.17

Strictly at T50 the choice of the variational wave func
tion uC&5)k(uk1vkck,↑

† c2k,↓
† )u0& leads to a good descrip

tion of the BCS to BEC evolution2 and coincides with the
field theoretical description based on functional integratio12

of the ground state properties. Either one of these approa
lead to the ground state energy given by the expression

Wl52(
k

~ek2m!vk
21(

k,k8
Vk,k8

( l ) ukvkuk8vk8 , ~5!

whereuk
21vk

251. At this stage we have considered only t
part of the general interaction involving (2k,k) electrons
states, assumed that pairing occurs with the same total ce
of mass momentumq50, and neglected any residua
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interactions.18 This initial level of approximation corre
sponds to a saddle point description in the functional integ
language12 and will be described next.

III. SADDLE POINT AND NUMBER EQUATIONS

To find the saddle point and number equations we nee
minimize the ground state energyWl with respect tovk

5Anl(k) and to fix the particle densityn52]Wl /]m. Us-
ing the separable potential of Eq.~4!, this minimization pro-
cess leads to the saddle point equation

1

l l
5(

k

uwl~k!u2

2El~k!
, ~6!

and to the number equation

n52(
k

nl~k!, ~7!

wherenl(k) is the momentum distribution given by

nl~k!5@12~ek2m!/El~k!t#/2, ~8!

El(k) is the quasiparticle excitation energy given by

El~k!5@~ek2m!21uD l~k!u2#1/2, ~9!

and D l(k)5D0lwl(k) is the order parameter. For a give
interaction rangeR0;k0

21, the evolution from the BCS limit
~largely overlaping pairs! to the BEC limit of ~weakly over-
lapping pairs! may occur either by changing the attractio
strengthl l or the densityn (n5kF

2/2p). In either case, this
evolution can be safely analyzed with the approximatio
used here provided that the system isdilute enough (kF

2

!k0
2),19 i.e., the square of the interparticle spacing (;kF

21)
is much larger than the square of the interaction ra
(;k0

21). This means that below a maximum densitynmax

;kFmax
2 , the square of the interaction rangeR0 is much

smaller than the square of the interparticle spacingkFmax

21 ,

R0
2!kFmax

22 , or equivalently (k0 /kFmax
)2@1. Thus,kFmax

is the

largest value ofkF allowed that still satisfies the dilutenes
condition above. We choose to scale all energies with res
to the maximal Fermi energyeFmax

5kFmax

2 /2m, which fixes

the maximum densityn5nmax52r2DeFmax
, and to scale all

momenta with respect tokFmax
5A2meFmax

. The coupling

constantl l is scaled with respect to the two-dimension
density of statesr2D . From now on we use this scaling. Th
parameterkFmax

can be defined, for instance, as~a! kFmax

5k0/10 or~b! kFmax
5k0 /A10, provided that (k0 /kFmax

)2@1. If

we choosek051 Å21 ~an interaction rangeR0'1 Å!, then
in case~a! kFmax

50.1 Å21 or nmax51.5931013 cm22, and in

case~b! kFmax
50.32 Å21 or nmax51.5931014 cm22. Or if

we choosek0510 Å21 ~an interaction rangeR0'0.1 Å!,
then in case~a! kFmax

51 Å21 or nmax51.5931015 cm22, and

in case~b! kFmax
53.16 Å21 or nmax51.5931016 cm22.

In these dimensionless units, the parameterz5l l /n char-
acterizes the BCS to BEC evolution. The BCS limit
reached only whenz!1 and the BEC limit is reached onl
when z@1. The numerical solutions forD0d ~d-wave case!
al

to

s

e

ct

l

and m, whenk15k0510 are shown in Fig. 1, for fixed in
teraction strengthld58.2, and changing densityn. We
choose identical values ofk0 andk1 for simplicity only. For
k15k0510 and forld,8 the chemical potentialm never
changes sign as a function of density, remaining always p
tive. However, forld.8 the chemical potential change
signs at some critical value of the density. Since we
mostly interested in the case where the chemical poten
changes sign, we choose for definitenessld58.2. This sign
change will have important consequences throughout the
per in thed-wave case.

When ld58.2 the BCS regime is reached for extreme
high densities only. In the BCS limit (z!1) the amplitude of
the order parameter (f50) can be calculated analytically a
km5A2mm:

D l~km!;exp$2@l0l
21~km!2l l

21#/hl
2~km!%.

With our choice of hl(k), l0d(km).81m/24e1

1O(@m/e1#2), valid for m/e1!1, wheree15k1
2. The ratios

betweenD l(km) and the critical temperatureTcl satisfy the
usual relationsDs(km)/Tcs51.76 and Dd(km)/Tcd52.14.
Similar plots can also be made for varying interactionld and
fixed densityn. These plots are shown in Fig. 2.

In thed-wave case it is not very difficult to show that fo
fixed interactionld , D0d(n), andm(n) have continuous first
derivatives and discontinous second derivatives as a func
of n at n5nc , wherem50 ~see Fig. 1!. The critical density
for Fig. 1 is nc534.85. Furthermore, for fixed densityn,
D0d(ld), and m(ld) have continuous first derivatives an
discontinuous second derivatives as a function ofld at ld

FIG. 1. ~a! The order parameterD0d and ~b! the chemical po-
tential m as a function of density at fixed interactionld58.2 and
k15k0510 in thed-wave channel. Notice that the chemical pote
tial m changes sign atn534.85.
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5ldc
, wherem50 ~see Fig. 2!. The critical interaction for

Fig. 2 is ldc
58.2. In thes-wave case, the parametersD0s

and m have continuous first and second derivatives for
values ofls and n, thus atm50 nothing special happens
However, for ad-wave system the linem50 is very special
as it will be seen in Secs. IV and V, where the quasipart
excitation spectrum and momentum distribution are d
cussed, respectively.

IV. QUASIPARTICLE EXCITATION SPECTRUM
AND PHASE DIAGRAM

The first important spectroscopic quantity to be analyz
is the single quasiparticle excitation spectrumEl(k), defined
in Eq. ~9!. Let us discuss first thes-wave case in the zero
range interaction limitk0→`. For m.0 the excitation spec
trum has a gap atk5km , Eg(km)5uDs(km)u. This gap is
completely isotropic in the vicinity ofkm . At the intermedi-
ate regime, whenm50, the gap takes the valueEg(0)
5uDs(0)u, when the chemical potential becomes negat
towards the BEC limit, the minimum of the energy gap r
mains atk50, Eg(0)5@m21uDs(0)u2#1/2. Whenk0 is finite
the position of the minimum gap changes, but the excitat
spectrum is always gapped for all values ofm. The linem
50 for thes-wave case is shown in Fig. 4~a!.

In the d-wave case the situation is qualitatively differen
For m.0, including the BCS limit, the excitation spectru
is gapless atkm along the special directionsf56p/4,
63p/4, near which the excitation spectrum disperses
early with momentum. The energy gap atk5km andf50,

FIG. 2. ~a! The order parameterD0d and ~b! the chemical po-
tentialm as a function of couplingld at fixed densityn534.85 and
k15k0510 for thed-wave channel. Notice that the chemical pote
tial m changes sign atld58.2.
ll

e
-

d

e
-

n

-

Eg(km)5uDd(km)u is a nonmonotonic function ofkm for
fixed density, and thus a nonmonotonic function ofld . The
maximum Eg(km) is reached at intermediate values ofm
.0. At m50, the minimal gap isEg(0)5uDd(0)u50, and
occurs at the single pointk50. In this case the excitation
spectrum is

Ed~k!5@ek
21uDd~k!u2#1/2, ~10!

which behaves quadratically for small momenta at any giv
angle f, since Dd(k);k2 cos(2f) and ek5k2/2m. The
shrinking of the energy gap to zero atk50 is a consequence
of the diminishing pairing interactionhd(km) for m→0. As
soon asm,0, including the BEC limit, a full gap in the
excitation spectrum appears, but the minimal gap remain
k50 with valueEg(0)5umu sinceDd(0)50. Thus, them
50 line separates a gaplessd-wave superconductor (m.0)
from a fully gappedd-wave superconductor (m,0). The
excitation spectrumEd(k) is shown in Fig. 3 alongf
5p/4. Notice the appearance of a full gap as the criti
density nc ~where m50) is approached fromn.nc (m
.0). This generic behavior allows us to construct phase d
grams in Figs. 4~b! and 4~c!. The solid line corresponds to
m50 on the graph ofn vs ld . Notice in Figs. 4~b! and 4~c!
that a change ink1 just rescales the value ofld by k1

4, i.e,
only renormalizes the magnitude of the interaction in t
d-wave channel. So, from now on, we fix the valuesk0 and
k1 to k05k1510, since the dependence of physical prop
ties onk1 can be retrieved by the scalingld→ld /k1

4.
Notice in Fig. 4~a! that, at very low densities, ans-wave

system can have negative chemical potential for arbitra
small interactionsls , which can be interpreted as indicativ
of the appearance of a two-body bound state at arbitra
small ls . On the other hand, the low density limit of
d-wave system is qualitatively different@see Figs 4~b! and
4~c!#: the chemical potential does not become negative u
a critical couplingldc

is reached. This indicates that th
appearance of a two-body bound state in thed-wave state
requires finiteld .

FIG. 3. The excitation spectrumEd(k) along f5p/4, for ld

58.2, k05k1510. Notice that there is no gap form.0, but a full
gap develops form,0. The curve with no gap in the excitatio
spectrum~squares! corresponds tom511.0 (n539.77), while the
curve with a gap in the excitation spectrum~circles! corresponds to
m521.0 (n530.83).
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We note, in passing, that the effect discussed here~ap-
pearance of a full gap in ad-wave superconductor! is quite
different from the effect discussed by Volovik20 in the con-
text of superfluid3He ~a tripletp-wave system!. In superfluid
3He the appearance of the gap in theA phase to theB phase
transition seems to be associated with the disappearanc
nodes at the Fermi surface, as the interaction param
changes. In3He there is always a well defined Fermi surfa
in the normal state, the Fermi system is highly degener
and pairing occurs in momentum space. The structure of

FIG. 4. Phase diagram for~a! an s-wave superconductor with
k0510, the solid line corresponds tom50; ~b! a d-wave supercon-
ductor withk0510 andk15A10; and~c! a d-wave superconducto
with k05k1510. In thed-wave case, the solid line (m50) sepa-
rates two different regimes: gapless form.0 and fully gapped for
m,0.
of
ter

e,
e

order parameter changes as the3He goes from theA to theB
phase. However, during the BCS to BEC evolution for
d-wave superconductor, the structure of the order param
does not change, and the appearance of the gap is stro
connected with the degeneracy of the Fermi system,
pairing is becoming more local as the particle density is
duced for fixed interaction strength, or as the interact
strength is increased for fixed density of particles.

The behavior ofEl(k) as function ofm determines the
absence or presence of a gap in the quasiparticle excita
spectrum, which in turn allows us to construct the dens
versus interaction phase diagram presented in Fig. 4. At
point it is important to mention the work of den Hertog15 and
Andrenacciet al.16 where a density versus interaction pha
diagram was constructed for the lattice case using an
tended Hubbard model with attraction between nea
neighbor sites. Their phase diagram contains lines that s
rate the qualitative behavior between BCS and BEC indic
ing only a crossover between the two regimes even in
d-wave case. Our saddle point phase diagram, however
dicates the existence of a quantum phase transition sep
ing a gaplessd-wave phase~BCS-like! from a fully gapped
d-wave phase~BEC-like!, as supported by the calculation
presented in Secs. V through X. So, we expect a sim
behavior to occur in the lattice case, since a full gap a
appears when the chemical potential goes below a crit
valuemc . This possible quantum phase transition in the l
tice case has not been reported in the recent literature15,16

The change in behavior of the excitation spectrum~from
gapless to fully gapped! has also important consequences
the momentum distributionnl(k) at zero temperature to b
discussed next.

V. MOMENTUM DISTRIBUTION

We are interested in the momentum distribution for
d-wave superconductor, but we also briefly discuss
s-wave case for comparison. The momentum distribution
low momenta can be analyzed in three different regimesm
.0, m50, andm,0.

In the s-wave case, form.0, the momentum distribution
is ns(km1dk).@122kmdk/Ds(km)#/2 nearkm . At low k,
however, it is ns(k).@11gp(11ak/2k0)#/2, where gp

5m/Am21D0s
2 , anda5Ds

2/(m21D0s
2 ).

When m50, the momentum distribution at small mo
menta isns(k).(12k2/D0s)/2. For negativem, ns(k)5@1
2gn(11ak/2k0)#/2 for small k, with gn5umu/Am21D0s

2 .
Notice thatns(0) is a continuous function ofm. In factns(k)
is a smooth function ofm for all momenta. However, this is
not the case for ad-wave system, which we shall discus
next.

The momentum distribution in thed-wave case is aniso
tropic, beingnd(k)5@12sgn(k22m)#/2 along the direction
of the nodes (f56p/4,63p/4). This behavior already
signals discontinuity ofnd(k) as a function ofm at k50,
a suspicion further confirmed by analyzing the more intere
ing direction f50 and its equivalentsf56p/2,p.
Near km the momentum distribution isnd(km1dk).@1
22kmdk/Dd(km)#/2. On the other hand, the momentum d
tribution behaves asnd(k).12(D0d

2 /m2)(k4/4k1
4) for very
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small momentak. When the chemical potential vanishes t
momentum distribution atk50 becomes

nd~0!.~12n!/2, ~11!

wheren5(11D0d
2 /k1

4)21/2. Finally, whenm becomes nega
tive nd(k).(D0d

2 /m2)(k4/4k1
4) for small k. Notice the dis-

continuity of the momentum distribution at lowk, when the
chemical potential crosses zero. This discontinuity, which
illustrated in Fig. 6 and proven analytically in Eq.~11!, co-
incides with the collapse of the four Dirac points to a sing
point atkm50, and with the appearance of a full gap as so
as m,0. In Fig. 5 we show three-dimensional plots of t
momentum distribution and corresponding contour plo
which indicate first the collapse of the four Dirac points asm
crosses zero and second a major rearrangement of the
mentum distribution as soon asm becomes negative.

This major rearrangement of the momentum distribut
and the discontinuity at zero momentum has been noted
fore by Borkowski and Sa´ de Melo14 in the continuum case
and by den Hertog15 in the lattice case. This particular be
havior of the momentum distribution in thed-wave case has
a dramatic effect in the compressibility, which is discuss
next.

VI. COMPRESSIBILITY

In the s-wave case, the ground state energy is a smo
function ofm, and does not present any anomalous beha
in the vicinity of m50. Furthermore, the ground state ener
is a smooth function of bothls and densityn. The first and
second derivatives of the ground state energy with respe
the chemical potentialm are well behaved, and so is th
compressibility of thes-wave system. This is expected sin
the evolution of the ground state from the BCS limit to t
BEC limit is smooth for thes-wave case.11 On the other
hand, for thed-wave case the ground state energy chan
dramatically aroundm50. The ground state energy is a
ways continuous, and has continuous first derivatives, bu
second derivative with respect tom is proportional to the
isothermal compressibility

k5
1

n2

dn

dm
. ~12!

The previous expression can be rewritten in a more eleg
form

k54n22(
k

w l* ~k!El
21~k!w l~k!, ~13!

wherew l(k)5D l(k)/2El(k) is the bound state wave functio
for the l th angular momentum state.

The compressibilityk diverges logarithmically in the vi-
cinity of m5mc50 for the d-wave case. This result is no
surprising given that when the chemical potential cros
zero a full gap to addition of quasiparticles suddenly appe
Thus, the compressibility of the system diverges atmc50,
whenn5nc , suggesting the existence of a quantum criti
point. In the vicinity of m50, the density n2nc'
2b1m lnumu1b2m, and the compressibility is

k'@2b1 lnun2ncu1b2#/n2, ~14!
s
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where the constantb2 depends only on the sign ofm ~or sign
of n2nc). See this asymmetry in Fig. 7.

The singular behavior of the compressibility indicated
Fig. 7 combined with the appearance of a full gap in t
excitation spectrum indicates a possible quantum phase
sition. The fact that the compressibility diverges is intimate

FIG. 5. Three-dimensional and contour plots of the moment
distribution forld58.2, k15k0510 and ad-wave order paramete
~a! m511.0,n539.77, ~b! m50,n5nc534.85, ~c! m521.0,n
530.83. Notice in~a! the presence of the four Dirac points in th
contour plots ofnd(k), and how these points collapse in~b! leading
to a major redistribution ofnd(k) in ~c!.
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associated with divergences in the spatiotemporal corr
tions, which are discussed next.

VII. DENSITY-DENSITY CORRELATIONS

Diverging correlation lengths are a characteristic feat
of classical critical points, but quantum critical points i
volve divergences in correlation lengths and times. A m
sure of correlations in the ground state can be obtained
analyzing the zero time (t50) opposite spin density-densit
correlation function

F ↑↓
( l )~r ,r 8,t50!5^Gl un↑~r !n↓~r 8!uGl&2N ↑↓

( l )~r ,r 8!
~15!

where ns(r )5cs
†(r )cs(r ) is the particle density at positio

r , andN ↑↓
( l )(r ,r 8)5^Gl un↑(r )uGl&^Gl un↓(r 8)uGl&. The corre-

lation function above can expressed as

F ↑↓
( l )~r2r 8!5U1V (

k
w l~k!exp@2 ik•~r2r 8!#U2

, ~16!

in terms of the bound state wave functionw l(k) for the l th
angular momentum state.

This correlation function can be easily calculated in t
long wavelength limit. In thes-wave caseF ↑↓

(s)(r)}uru24 for
all values ofm, wherer5ur2r 8u. Nothing special occurs
when m50, as can read off from thes-wave correlation
length j (s)(u)5@AsDs

2/(m21Ds
2)#1/4, i.e., the correlation

length is finite for allm, and independent of the angleu.
HereAs is a constant. The situation is different in thed-wave
case whereF ↑↓

(d)(r,u)}Ad(u)/r8, and thed-wave density-
density correlation length is

j (d)~u!5F Dd
2

k1
4m2 Ad~u!G1/8

, ~17!

whereAd(u)5ad1
cos2(2u)1ad2

sin2(2u). Here ad’s are nu-
merical constants, which reflect the strong dependenc

FIG. 6. The momentum distribution of quasiparticles forf
50, ld58.2, k15k0510, and several values ofm511.0,0,21.0
for a d-wave order parameter. The dotted line indicates the c
wheren.nc and the chemical potentialm.0 (m511.0). Notice
that the momentum distributionnd(0)51. The dashed line indi-
cates the case wheren,nc , m,0 (m521.0), andnd(0)50. The
solid line indicates the case wheren5nc , m50. Notice the discon-
tinuity of nd(0), confirming the analytical result of Eq.~11!.
a-

e

-
y

of

j (d) on the directionu. This indicates that the correlatio
length diverges asum2mcu21/4, wheremc50. Thus, opposite
spin density-density correlations get strongly enhanced n
m5mc . Exactly atm5mc50, the correlation function is

F ↑↓
(d)~r,u!5S kFmax

2V D 2FDd

k1
2 G2 Bd~u!

r4 , ~18!

whereBd(u) is some function ofu. From this expression we
can extract the critical exponenth51/4.

To determine the divergent time scale it is necessary
look at the time dependent opposite spin density-density
relation functionF ↑↓

( l )(r ,r 8,t), wherens(r ) is replaced by
ns(r ,t)5exp(2Ht)ns(r )exp(Ht) in Eq. ~15!. Near m50,
the Fourier transform ofF ↑↓

( l )(r ,r 8,t) is proportional to
exp(2umut) (\51) in the long wavelength limitk→0. This
indicates that the correlation timejt5umu21, i.e., the dy-
namical scaling exponentz54. We reserve a detailed analy
sis of the critical phenomena of this new quantum ph
transition, beyond the saddle point approximation discus
here, for a later opportunity.21 Possible low-temperature
phase diagrams are schematically drawn in Fig. 8.

We would like to mention, however, that thi
superconductor-superconductorquantumphase transition is
similar to the classical liquid-gas phase transition in th
sense that it occurs without a change in symmetry,22 but the
coexistence region is completely suppressed in the pre
case, since the critical point (mc ,Tc) is pushed all the way
down to the origin of them vs T phase diagram. So th
transition should be continuous, and the energy gapEg for
quasiparticle excitations is playing the role of theorder pa-
rameter: Eg50 for n.nc , while Eg.0 for n,nc , as can
be seen indicated in Fig. 9. Thus strictly in two spatial
mensions, one should expect a finite temperature phase
gram of the type indicated in Fig. 8~a!, since the Mermin-
Wagner-Berezinskii theorem would predict the absence
finite temperature long-range order in two-dimensional s
tems with a continuous symmetry.23–25 For higher spatial
dimensions, phase diagrams indicated in Figs. 8~b! and 8~c!
are additional possibilities.

FIG. 7. The compressibilityk for d-wave order parameters as
function of densityn, but fixed interaction parametersl58.2, k1

5k0510. Notice the divergence ofk whenn5nc534.85, and the
asymmetry ofk in the immediate vicinity ofn5nc .

e
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The changes in the momentum distribution and in the
citation spectrum not only affect the compressibility of t
system and the opposite spin density-density correla
function as discussed above, but also affect the Cooper
size to be discussed next.

VIII. COOPER PAIR SIZE

The Cooper pair size in the saddle point approximation
given by

@jpair
( l ) #252

E d2k w l* ~k!¹k
2w l~k!

E d2k w l* ~k!w l~k!

, ~19!

In Figs. 10 and 11 we see plots of the Cooper pair size
both d- and s-wave cases for fixed interaction strength a
changing density or fixed density and changing interact
strength.

FIG. 8. ~a! Shows a phase diagram where a fully gappedd-wave
phase is present at lower densities and a gaplessd-wave phase is
present at higher densities and the critical point occurs only an
5nc andT50. At finite temperatures there is only a crossover.~b!
Indicates that there can be a finite temperature phase boundar
tween the fully gapped and the gaplessd-wave phases, terminatin
at the quantum critical pointnc . ~c! Shows a schematic phase di
gram where at finite temperatures the fully gappedd-wave phase at
higher densities becomes first nonsuperconducting and then ga
d-wave as the density is increased further.
-

n
air

s

r

n

Notice that in thes-wave case the pair size is a monoton
cally increasing function of density for fixed interactio
strength@Fig. 11~a!#, and a monotonically decreasing fun
tion of interaction strength for fixed density@Fig. 11~b!#.
However, in thed-wave case the pair size first increases a
function of density@Fig. 10~a!# for n,nc , diverges atn
5nc when the chemical potential crosses zero, and decre
for n.nc . This divergence of the pair size occurs alwa
when the linem50 is crossed in the density versus intera
tion phase diagram@see phase diagram in Figs. 4~b! and
4~c!#. A similar divergence occurs also for fixed density a
changing interaction strength as seen in Fig. 10~b!. Prima
facie divergences injpair

(d) seem to suggest unbinding of th
Cooper pairs atnc , which ~in two spatial dimensions! would
favor a finite temperature phase diagram of the type
scribed in Fig. 8~a!. This divergence injpair

(d) is present only
when the chemical potentialm changes sign. For instance,
the interaction strength is too smallld,ldc

@see phase dia

gram in Figs. 4~b! and 4~c!#, m does not change sign a
function of density, and thus no divergence injpair

(d) occurs.
In the lattice case Andrenacciet al.have noticed that their

jpair for a d-wave solution had a peculiar behavior as a fun
tion of the nearest-neighbor interactionuVu when n ap-
proached half filling. They found thatjpair does not show a
monotonic decrease for increasinguVu and converges asymp
totically ~when uVu→` andn,1) to a finite value which is
larger than the lattice spacing. They argue that the div
gence injpair is due to the establishment of quasi-long-rang
order correlations among the composite bosons, which re
individually on nearest neighbors sites. We suspect, in a
tion to the results of Andrenacciet al.,16 that a quantum
phase transition should occur also in lattice models whenm
5mc , i.e., for interaction strength and varying density
vice versa. Having considered several signatures of this p
sible phase transition, we now turn our attention to its top
logical nature.

IX. A TOPOLOGICAL TRANSITION

We have already established that the transition from
BCS-like state to the BEC-like state occurs without chang
the symmetry of the order parameter~Sec. VII! in d-wave
systems. If the symmetry is not changing at the transit

FIG. 9. The energy gap as a function of density for ad-wave
superconductor withld58.2 andk15k0510. The gap disappear
for n>nc534.85.
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point m50, then what is? We will argue in the followin
lines that the internal topology of the ground state is cha
ing in momentum space. The following topological co
siderations are inspired in the work of Volovik20 on exotic
properties of3He, ap-wave superfluid. The topological con
siderations presented here include only the saddle point
proximation used throughout the manuscript.26

A. Ground state topological correlations

As the chemical potential passes through zero (m50) the
symmetry of the ground state does not change both in
s-wave case andd-wave case, however in thed-wave case
gapless (m.0) excitations disappear leading to fully gapp
(m,0) excitations. The compressibility of thed-wave sys-
tem divergences atm50 indicating that a quantum phas
transition takes place when the Dirac points collapse ak
50. The disappearance of these gapless points~Dirac points!
is intimately connected with the momentum space topolo
so that we can give a finer classification to thed-wave sys-
tem, and characterize the quantum phase transition atm50
as topological in nature.

Further insight is gained by rewriting the ground sta
wave functionuC&5)k(uk1vkck,↑

† c2k,↓
† )u0& as

uC&5)
k

uuku1/2expF1

2 (
k

gkck,↑
† c2k,↓

† G u0&, ~20!

FIG. 10. The pair sizejpair
(d) for a d-wave superconductor with

k15k0510: ~a! jpair
(d) as a function of densityn for ld58.2; ~b! jpair

(d)

as a function of interaction strengthld for n534.85.
-

p-

e

y,

where the functionsuk andvk are determined up to a globa
phase for each momentumk, and thus can be chosen as re
having the usual form

uk
25@11sinuk#/2 ~21!

and

vk
25@12sinuk#/2, ~22!

where uk
21vk

251 to guarantee the normalization of th
ground state wave functionuC&. The angleuk is defined by

cosuk5D l~k!/El~k!, ~23!

sinuk5~ek2m!/El~k!. ~24!

In the Bogoliubov formulation the parametersuk and vk
define the usual quasiparticle operators

gk %

† 5ukck↑
† 2vkc2k↓ ~25!

and

g2k*5ukc2k↓1vkck↑
† , ~26!

FIG. 11. The pair sizejpair
(s) for an s-wave superconductor with

k0510: ~a! jpair
(s) as a function of densityn for ls50.7; ~b! jpair

(s) as a
function of interaction strengthls for n520.
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which diagonalize the Bogoliubov matrix defined in E
~32!. Notice that the momentum space loci wherevk50 con-
tains nonpaired electrons in the ground state as can be
ferred from the form of the variation wave functionuC&, and
contains single quasiparticle excitations which do not m
spin up and spin down electrons. The parametersuk andvk

also define aS1 space~unit circle! with unit vector d̂(k)
5(uk ,vk), thus the mapping of closed curves containi
Dirac points from the two-dimensional momentum spa
into the unit circle defined byuk andvk belongs to the ho-
motopy groupp1(S1)5Z. For m.0 the topological map
wraps around the unit circle twice and leads to a topolog
class with indexd̃52. However, form,0, the topological
map does not wrap around the unit circle at all, and belo
to a topological class with indexd̃50. Since it is not pos-
sible to pass from one topological class to another in a c
tinuous manner, a topological phase transition must occu
the s-wave case, however, such a transition does not oc
since the topological map is trivial, i.e.,d̃50 for all values
of m.

In addition, the function

gk5vk /uk5tanuk2secuk ~27!

is a direct measure of the electron-electron correlations in
ground state and contains information about the topology
the ground state. Therefore, we analyze the Fourier transf
of gk @which we callFg(r,u)# to extract the real space con
sequences of such a topological transition in momen
space. We analyze first thed-wave case. In the BCS-like
region of the phase diagram (m.0) the correlation function

Fg~r,u!5
mk1

2

D0d
f 1~u!, ~28!

which is independent of the particle separationr. Notice that
the prefactor vanishes asm→0. However, at the transition
line m50,

Fg~r,u!5 f 0~m,k1
2/D0d ,u!/r2. ~29!

And finally, in the BEC-like region of the phase diagra
(m,0),

Fg~r,u!5F k1
2

4m2D0d

f 12~u!1
D0d

2k1
2

f 22~u!G Y umur4.

~30!

Notice that the prefactor diverges atm→0. Thus, the corre-
lation functionFg(r,u) has clearly three distinct behavior
~a! it is a constant when the Dirac points exist in moment
space (m.0); ~b! it is proportional tor22 when the Dirac
points collapse (m50); ~c! it is proportional tor24 when
the Dirac points do not exist (m,0). These different re-
gimes strengthen the point of view that the ground state e
lution from BCS to BEC ind-wave superconductors is no
smooth, i.e., there is a phase transition separating the
regimes.@In the s-wave case the form of the correlations
the ground state remain the same for all values ofm, i.e.,
Fg(r,u)}r22 and independent ofu, which further demon-
in-
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strates that in this case there is only a crossover between
BCS and BEC limits.# After analyzing the ground state to
pology, it is useful to investigate topological properties
the fermionic excitations, which will be important for th
calculation of thermodynamic properties in Sec. X.

B. Internal topology of excited states

To elucidate the nature of the proposed transition it
essential to analyze further the fermionic excitations dur
the evolution from BCS to BEC superconductivity in
d-wave system. Therefore, it is convenient to write the
duced Hamiltonian

H red5(
k

~ck↑
† c2k↓!H̄S ck↑

c2k†↓
D , ~31!

where the Bogoliubov matrix is

H̄5F ~ek2m! D l~k!

D l~k! 2~ek2m!
G . ~32!

This matrix can be written in a pseudospin form as

H̄5El~k!m̂~k!•sW , ~33!

where the unit vectorm̂(k)5(cosuk ,0,sinuk) plays the role
of a two-component spinor, parametrized by a single an
uk as defined in Eqs.~23! and ~24!.

The vectorsW 5sxk̂x1syk̂y1szk̂z , wheresx , sy , and
sz are just the usual Pauli matrices, andEl(k) is the quasi-
particle excitation energy defined in Eq.~9!. Since, the
d-wave state considered here does not break time reve
symmetry, the mapping of closed curves containing Di
points from the two dimensional (kx ,ky) into theS1 spinor
space defined byum̂(k)u251 ~unit circle! belongs to the ho-
motopy groupp1(S1)5Z, whereZ is an integer. Any non-
trivial map from momentum space to spinor space is labe
by an integer

m̃5
1

4pEV
dkx dky m̂~k!•

]m̂~k!

]kx
`

]m̂~k!

]ky
, ~34!

which plays the role of the topological charge and defin
equivalence classes. The domainV contains the neighboor
hood of the Dirac points, whereEl(k) vanishes.

In the case wherem.0 the mapping is nontrivial and ha
topological chargem̃52, while whenm,0 the topological
charge vanishesm̃50. However, it is not possible to pas
from one class to another in a continuous manner, there
there must be a ‘‘transition’’ of topological nature occurrin
at m50. This topological feature in the fermionic excite
states parallels the topological phase transition in the gro
state. And since the Dirac points correspond to theloci of
zero quasiparticle energyEl(k) it is possible to view this
phenomenon as a Lifshitz transition to be discussed nex
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C. Lifshitz transition

This topological ‘‘transition’’ reminds us of the Lifshitz
transition in metals at high pressures, where the Fermi
face e(k,P)5EF changes its topology as pressureP is
changed, the simplest example being when a single sim
connected Fermi surface breaks into two simply connec
parts at a critical pressurePc . This type of transition affects
singularly the energy dependence of the density of state
the metal, and leads to anomalies in thermodynamic
transport properties, because of the dramatic change in
electronic dispersione(k,P) in the vicinity of the critical
pressurePc .27 The topological transition discussed here
analogous to the Lifshitz transition in the sense that the
face in momentum space corresponding toEl(k,m)50
changes from four Dirac points (m.0) to a single point
(m50) to a null set (m,0), whereEl(k,m) plays the role of
e(k,P) andm5mc50 plays the role of the critical pressur
Pc . ~We note in passing that in the lattice case such a tr
sition should also be present, since similar momentum sp
topological changes are also present.! In addition, the domi-
nant contribution to the dispersion of low lying quasipar
cles changes from linear (m.0) to quadratic (m50) to a
constant (m,0), as seen in Sec. IV. This in turn produc
dramatic changes in thermodynamic properties just like
the usual Lifshitz transition. Thus, next we turn out attent
to the changes in the spin susceptibility and specific hea
low temperatures.

X. THERMODYNAMIC QUANTITIES

To have a full picture of the evolution from BCS to Bos
Einstein condensation superconductivity at low tempe
tures, it is also important to analyze thermodynamic prop
ties such as the spin susceptibility and the specific heat.
any quantities to be calculated at finite temperatures,
needs to generalize the saddle point and number equa
obtained at zero temperature. We generalize the saddle p
equation and number equations at low temperatures as
cussed in Engelbrecht, Randeria, and Sa´ de Melo12 for the
case of independent angular momentum channels and o
a BCS-like thermodynamic potentialV0, which upon mini-
mization with respect tovk leads to the gap equation

D l~k!52(
k8

Vk,k8
( l ) D l~k8!

2El~k8!
Gk8~T!. ~35!

The particle density is fixed byn052]V0 /]m and corre-
sponds to the expression

n052(
k

nl~k,T!, ~36!

where the temperature dependent momentum distributio

nl~k,T!5vk
21~uk

22vk
2! f @El~k!#. ~37!

The set of equations discussed above is valid only for te
peraturesT!Tc since the thermodynamic potentialV0 does
not include collective modes of the system, which have b
shown to be very important in the vicinity ofTc .11,12 Fur-
r-

ly
d
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thermore, even at low temperatures the collective mo
contribute to the thermodynamic potential as pointed ou
Ref. 12. The thermodynamic potential then becomes

V5V01Vcol , ~38!

where the contribution from collective modes is

Vcol5T(
q

ln$12exp@v~q!/T#%. ~39!

For a neutral superfluid at low temperatures (T!Tc), the
low-energy collective modes dominate. They correspond
the Goldstone modes with frequencyv(q)5cl(u)uqu at
small wave vectorsq for all values ofm. However, in the
case of a charged superfluid residual Coulomb interacti
are important and these modes are plasmonized, i.e., a
appears in their excitation spectra. These collective exc
tion corrections change the number equation to

n5n01ncol , ~40!

wherencol52]Vcol /]m. The effects of these corrections a
discussed next in the cases of the spin susceptibility
specific heat.

A. Spin susceptibility

The main contribution to the spin susceptibility com
from quasiparticle excitations since they carry spin. The c
lective modes arespinless~neutral or charged! bosonic exci-
tations, and do not affect substantially the spin depend
response. As a consequence the spin susceptibility take
form

x l~T!522me
2(

k

] f @El~k!#

]El~k!
, ~41!

which can be rewritten as

x l~T!52me
2E

0

`dv

T
Ñl~v!

exp~v/T!

@11exp~v/T!#2 , ~42!

whereÑl(v)5(kd„v2El(k)… is an auxiliary density func-
tion not to be confused with the real density of states of
system. A simple redefinition of variablesx5v/T indicates
that xd(T) is controlled by the low frequency behavior o
Ñd(v), which quite generally has the form

Ñd~v!5r2DH av, when m.0,

b, when m→06,

gg~v!Q~v2umu!, when m,0.

~43!

The coefficientsa, b, andg depend onm andD0d
, thus for

a given coupling strengthld , they depend on the interactio
rangek0 and densityn. This behavior ofÑd(v) leads to the
following behavior of the susceptibility for thed-wave
system
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xd~T!52me
2r2DH aT ln~2!, when m.0,

b/2, when m→06,

gg~ umu,T!exp2@ umu/T#, when m,0.
~44!
m
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The result form,0 above is valid only forumu/T@1. Notice
the qualitative change in the spin susceptibility at low te
peratures asm aproaches zero. For instance, the fact that
susceptibility is finite whenm→0 and T→0 is indicative
that there exist unpaired spins in the ground state that
respond to an external magnetic field. This observation
consistent with the divergence ofjpair

(d) found in Sec. VIII, and
with gapless quasiparticle excitations with a quadratic d
persion relation as found in Sec. IV. Furthermore, notic
discontinuity in the slope ofxd(T) when T→0 andm→0.
All these observations support the idea that a quantum p
transition occurs atm50 andT50. Similar qualitative be-
havior occurs also in the specific heat to be discussed n

B. Specific heat

There are several contributions to the low temperat
specific heat. We will discuss here only the contributi
th
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from quasiparticles and collective modes. The contribut
from quasiparticles is

Cl~T!52(
k

El~k!
] f @El~k!#

]T
, ~45!

which can be rewritten as

Cl~T!52TE
0

`dv

T
Ñl~v!S v

T D 2 exp~v/T!

@11exp~v/T!#2 . ~46!

The behavior ofÑd(v) at low frequencies translates into th
following low temperature dependence of the quasipart
specific heat for thed-wave superconductor
Cd~T!52r2DH 9aT2z~3!/2, when m.0,

p2bT/6, when m→06,

gh~ umu,T!exp2@ umu/T#, when m,0.
~47!
here
ex-
res-
for

c-

o an
s to

rti-
-
o-

hat
s-
-
s is
The expression form,0 is valid only whenumu@T. Notice
the qualitative change in behavior at low temperatures in
vicinity of m50. The T2 behavior form.0 is consistent
with nodes of the gap function~zeros in the excitation spec
trum!, and the exponential behavior form,0 is consistent
with a full gap in the excitation spectrum. The linear tem
perature dependence atm50 arises from the quadratic dis
persion found in Sec. IV. The parameterb can be interpreted
as measuring the correlations between electrons since i
sentially renormalizes the two dimensional electronic den
of statesr2D .

The inclusion of collective modes adds a contribution
the specific heat of the form

Cd
(col)~T!52T

]2Vcol

]2T
. ~48!

In the case of the neutral superconductors~fixed interaction
and changing density!, the low-energy collective modes hav
linear dispersion and give aT2 contribution to the total spe
cific heat in the two-dimensional situation described here
all values ofm. Only the coefficient~prefactor! of the T2

terms changes as a functionm. Thus, the qualitative change
in the total specific heat are captured by the change in
e

-

s-
y

r

e

excitation spectrum of quasiparticles as a function ofm. The
same is true in the case of charged superconductors, w
the collective mode contributions to the specific heat are
ponentially suppressed at low temperatures due to the p
ence of a gap in the collective mode excitation spectrum
all values ofm.

C. Brief discussion

For completeness, we compare briefly thes- andd-wave
cases. In thes-wave case the quasiparticle excitation spe
trum is always gapped for allm ~densities! with no qualita-
tive change in the temperature dependence. This leads t
exponential suppression of the quasiparticle contribution
the spin susceptibility and specific heat for allm ~densities!.
As a consequence the line wherem50 in thes-wave case is
not special. In thed-wave case, however, gapless quasipa
cle excitations become fully gapped whenm becomes nega
tive, thus qualitatively changing the low-temperature therm
dynamics of the superconductor. Notice, for instance, t
the slopes ofCd andxd with respect to temperature are di
continuous atT50 whenm50, thus indicating the possibil
ity of a quantum phase transition as the density of carrier
reduced below the critical densityn5nc wherem vanishes.
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XI. SUMMARY

In summary, using a saddle point approximation, we h
studied the low temperature thermodynamic properties in
evolution from BCS to BEC superconductivity for varyin
density and interaction strength in boths-wave andd-wave
channels. In thes-wave case the excitation spectrum is
ways gapped, and the momentum distribution is a continu
function of m. However, in thed-wave case the excitatio
spectrum is gapless form.0 and acquires a full gap form
,0. Furthermore, the momentum distribution is discontin
ous at lowk, asm crosses zero. As a result, the changes
spectroscopic and thermodynamic properties nearm50 are
dramatic at low temperatures, suggesting the existence
zero temperature phase transition. In addition, we have n
that the quantum phase transition occurs without a symm
change and identified it as being topological in nature.
though it is tempting to make a connection to high tempe
ture superconductors, it is not clear that these materials c
them50 (n5nc) line atT50 as the density of carriersn is
changed, i.e., the attractive interaction may not be la
enough (ld,lcd) in these materials@see Figs. 4~b! and
at

hy

ys

nt.

. B

l

-

e
e

us

-
n

f a
ed
ry
-
-
ss

e

4~c!#. We can not compare the results of these theoret
considerations to high-temperature superconductors u
systematic experimental studies are conducted as a func
of density of carriers in the low-temperature superconduct
phase, where the evolution from BCS to BEC can be clea
tested. However, it is theoretically important to contin
studying the regime wherem.0, as the line ofm50 (n
5nc) in the n versusld plane seems to correspond to
quantum critical line separating a gaplessd-wave supercon-
ductor (m.0) from a fully gappedd-wave superconducto
(m,0), as supported from the preliminary calculations
compressibility, specific heat, and spin susceptibility.21
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