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The low-temperature evolution from BCS to Bose-Einstein condenséB&C) for a two-dimensional
d-wave superconductor is discussed at the saddle froigan field level. A systematic study of the changes of
low-temperature thermodynamic properties is presented as a function of the charge carrier density and fixed
interaction. It has been found that when the interaction strength is large enough, there is a critical density below
which the single quasiparticle excitation spectrum develops a gap. At higher density of carriers and lower
interaction strengtlitowards the BCS regimehe superconductor has gapless quasiparticle excitations, while
at lower densities and higher interactigiswards the BEC regimejuasiparticle excitations are fully gapped.

The appearence of a full gap in the quasiparticle excitation spectrum has dramatic consequences to the
compressibility, specific heat, and spin susceptibility at low temperatures, as the critical aerisitrossed.

The change in behavior of these quantities indicates a possible quantum phase transition betwesmre a
gapless phase anddawave fully gapped phase, &s is crossed.

[. INTRODUCTION but the evolution from BCS to BEC is still regarded as a
crossover. In the continuum case, it was first noticed by
The problem of the evolution from BCS to BEC super- Borkowski and Sade Meld* that the appearance of a full
conductivity is an old one? but recently it has received gap in the BCS to BEC evolution for @wave supercon-
considerable attention in connection with high temperatureluctor lead toa) a discontinuity in the momentum distribu-
superconductors:® Although high temperature supercon- tion when the chemical potential crossed zeh),dramatic
ductors are good candidates to test theories on the BCS whanges in the density of states, diefl qualitative changes
BEC evolution ford-wave superconductors, it must be em-in the specific heat and spin susceptibility. These results
phasized that there is currently no experimental evidence thatere argued to be evidence for a possible quantum phase
present a clear sign of this evolution as a function of particld@ransition separating a gapledsvave superconductor from a
density. However, the evolution from BCS to BEC supercon<ully gapped d-wave superconductor. A similar quantum
ductivity is by itself an interesting theoretical problem to phase transition should be present in the lattice case for a
study, specially fod-wave superconductors, as shall becomed-wave superconductor, however, this was not reported in
clear in the next paragraph. As more experimental quantitiethe recent literatur&>1®
are measured systematically as a function of density the ap- In this paper, we extend the results of Borkowski and Sa
plicability of the BCS to BEC evolution to high-temperature de Meld* and address in detail the evolution from a BCS to
superconductors can be tested. Thus, in this work, we take BEC d-wave superconductor at low temperatures, within
the pragmatic approach of studying some experimentallyhe saddle pointmean field approximation for a continuum
measureable guantities at low temperatures as a function afiodel. Corrections due to collective modes are also briefly
density and we let experimentalists decide the applicabilitiscussed. For this purpose we study single quasiparticle
of these ideas when systematic studies are performed.  propertiegexcitation spectrum, and momentum distribujion
Very recently, initial theoretical studies of the BCS to and thermodynamic quantitiésompressibility, spin suscep-
Bose_Einstein evo'ution as a function Of density Weret|b|l|ty, and SpeCifiC heatas a function of particle density at
performed-*~1%The nice works of den Hertégand Andren- ~ fixed interaction strength. Based on our findings regarding
acci et al'® discussed the BCS to BEC evolution for a the compressibility, spin susceptibility and specific heat, we
d-wave superconductor as a function of density in the latticedrgue that a quantum phase transition for\save supercon-
case, where an extended Hubbard model with attractiofuctor occurs when the chemical potential crosses zero for a
(—|V]) between nearest-neighbor sites was used. In théxed interaction strength and changing density.
work of den Herto§® a major rearrangement of the momen- ~ Quite generally the evolution from BCS to BEC super-
tum distribution was found, when the chemical potentialconductivity can be characterized by two parameters: the
crossed the bottom of the electronic band, while Andrenaccghemical potentialu and the Cooper pair siz€;s. The
et a|_16 Observed a pecu"ar behavior in the pair S'f%%l’ for BCS I|m|t iS Characterized by a pOSitive Chemical pOtential
a d-wave solution as a function dv| when the density ~=er and a large size of Cooper pairg,§>kg "), while
approached half filling, and constructed nice phase diagrani§e BEC regime is characterized by a large and negative
of density versus interaction strength. The behavior of theehemical potentialu= —E{’/2, whereE{" is the binding
momentum distribution and pair size for tHavave case are energy of the two-body problem in tHéh angular momen-
quite different from thes-wave as emphasized in their work, tum channel, and by a small size of paig < k;l). Here
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=0 (or s) indicates theswave channel, whilé=2 (or d)  where ¢, =acosk-k’) is the angle betwen the vectoks

indicates the d-wave channel. The excitation spectrum andk’ andv(k'lz,=zqrfgdrrJ|(kr)J|(k’r)V(r). The indexl

at zero temperature has the formE(k)=[(ex labels angular momentum states in two spatial dimensions,

—w)?+|A((K)[?]Y%  where e=k?2m and A(k)  with I=0,+1,£2, ..., corresponding t,p,d, . .., chan-

= Ag hi(k)cos(¢), with k=|Kk]|. nels, respectively. A possible choice of the real space poten-
In the swave case the excitation spectruBy(k) is  tial is

gapped for alk, and it increases smoothly from the BCS to

the BEC limit. As a result the quantities that depend directly V(r)=Vi0(R;—=r)+Ve®(r—=R1)O(Ry—r), (3

on the excitation spectruma (k) also evolve smoothly. For

instance,. th? quasiparticle dpnsity of staéstw) "’.lt low termediate distanceR;<r<R,, and vanishes for>R,.

frequencies is always zero, since there are no available stateRis class of potentials includéa) the delta function poten-

inside the gap. Thus, contributions from single quasiparticIe[ial with zero range ¥, — — o, Vo=0, andR;=Ry=0): (b)

excitations to thermodynamic quantities are always exXponer . ~ractive otentifatl with,ra(r; ' (v <10 VO:O ,and

tially small at low temperatures. In tltewave case the situ- R,=R); and ?c) the short rango 1| R di
S e ) 1=Ro); ge repulsive, intermediate

gtlon is qualitatively (_j|fferen_t. For.>0 the superconductor range attractive potential with rang (V,>0, V<0, and

is gapless at the Dirac pointe=k, = v2mu, $== 77/4_’ .. R1#Rg). A d-wave type solution can be considered for the

+3/4, while for u<0 the superconductor acquires a finite real space potentiaV(r) in Eq. (3), whenV,>0 andV

gap. The linew=0 separates two regimes with qualitatively <0. This choice was made in a pr’evious pé\per for thg con-

different behavior. This has important consequences for thﬁnuum casé? and corresponds in the lattice case to the

tr_n(l)msntuT d'?trlbgtgn’ andhdenswdqf stattgs. Thel qutals'paréhoicesu>0 and V<0 in the extended Hubbard model
icle density of statedly(w) changes discontinuously at low studied by Andrenacat al1®

frequenC|cets fron|1 Ilnetar E[E’ f%r.'“>0 [YV?:I‘EEd(k) 15 Iltnear Under these circumstances, quite generally it is not pos-
Tomorr;]en uEm ﬁo_se 0 de " |r?c pOIfIIHO a consa?n aj sible to find a separable potential in momentum spége
=0 [whereEq(k) is quadratic for small momentato zero =—Aaw*(k)w(k"), nevertheless in the spirit of Ref. 3 we

~ 2
for p<0 [where Eq(k)=|u|+O(k") for small k]. Thus, choose to study a separable potential that contains most of

contnbgﬂons frpm single quasiparticle exutatlons.tq thermo—the general features described above. We consider only sin-
dynamic quantities at low temperatures also exhibit singula

S o - [:jlet superconductivity, and since we do not discuss a mecha-
behavior in the vicinity ofu=0. In particular, the zero tem-

ibility di h tical nism for swave ord-wave superconductivity, the-wave
perature compressibility diverges wi en=0 at a critical 54 thed-wave channels are studied separately. For this pur-
densityn, for fixed interaction, indicating the possibility of a

quantum phase transition pose, we use the separable potential

The rest of the paper is organized as follows. In Sec. I, Vi = — N, (K)w, (k). (4)
we discuss the Hamiltonian and the ground state energy of
the system. In Sec. IlI, we discuss the saddle point and numChe interaction ternw,(k) can be written as the product of
ber equations deduced from the ground state energy, while itwo functions,w, (k) =h,(k)g,(k), whereh, (k) = (k/k;)'/[1
Sec. IV the quasiparticle excitation spectrum is discussed-(k/ky)]' "Y' controls the range of the interaction and

and an interaction versus density phase diagram is cony,(k)=cos(¢) is the angular dependence of the interaction.
structed. In Sec. V, the momentum distribution is analyzedygre ko~ Ral where R, plays the role of the interaction

Section VI contains a description of the compressibility Ofrange and, sets the scale at low momenta. The momentum
the system as the BCS to BEC evolution takes place. In Sec§calesk0 andk, are not momentum cutoffs, they merely set

VIl and VIII, we discuss the opposite spin density-densityiha momentum scales in the short wavelength lithitge
correlations and the Cooper pair size, respectively. In Sec. Dﬁwomenta (ko), and the long wavelength limitsmall mo-

topological considerations are presented. In Sec. X the low- enta (k;). They are necessary to produce the physically

temperature spin susceptibility and specific heat are analyzelg . 0} :
within the BCS to BEC evolution. Finaly, Sec. XI contains 'correc't behavior oV j, for the real space potential(r),
the summary of our results. i.e., this form ofw,(k) generates the correbth-channel be-

havior ofV(k'yL, for both low and high momentd.
II. HAMILTONIAN Strictly at T=0 the choice of the variational wave func-
tion |“P>:Hk(uk+vk¢lﬁj¢ik,l)|o> leads to a good descrip-
In order to analyze the low-temperature thermodynamigion of the BCS to BEC evolutidhand coincides with the
properties from the BCS to BEC limit, we start with the fie|d theoretical description based on functional integrafion
two-dimensional Hamiltonian of the ground state properties. Either one of these approaches

lead to the ground state energy given by the expression

which is repulsive at short distances:R;, attractive at in-

H:kE (€ 1) Yoo ™ 2 Vi bigbirg. )

’ [
kk'q W|:22 (Ek_,u)l)i'f'z Vﬁy)k,ukvkukrvk, , (5)
whereby, = _ys g2 i+ qr21 - The interaction potential, K K,k
is expanded in its angular momentum components as whereu?+vZ=1. At this stage we have considered only the
Foo part of the general interaction involving—(k,k) electrons
| _ L .
Vi = 2 V(klzr explil di), 2) states, assumed that pfﬂrmg occurs with the same totgl center
) of mass momentumgq=0, and neglected any residual
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interactions'® This initial level of approximation corre-

sponds to a saddle point description in the functional integral

languagé’ and will be described next.

IIl. SADDLE POINT AND NUMBER EQUATIONS

To find the saddle point and number equations we need to

minimize the ground state energly, with respect tov,

=+/n;(k) and to fix the particle densitg=— oW, /du. Us-
ing the separable potential of E@), this minimization pro-
cess leads to the saddle point equation

15wk ©
N K O2E(K)
and to the number equation
n=22 ny(k), (7)
wheren, (k) is the momentum distribution given by
(k) =[1—(ex— w)/E(K)t]/2, (€S)
E,(k) is the quasiparticle excitation energy given by
Ei(K) =[(ec—m)?+|A(K)[7]"2, ©)
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FIG. 1. (a) The order parametekyq and (b) the chemical po-

and A, (k) =Aqw, (k) is the order parameter. For a given tential x as a function of density at fixed interactiag=38.2 and

interaction rang&,~k, *, the evolution from the BCS limit
(largely overlaping painsto the BEC limit of (weakly over-

lapping pairg may occur either by changing the attraction

strength\| or the densityn (n=k,2:/277). In either case, this

k,=ko=10 in thed-wave channel. Notice that the chemical poten-
tial x changes sign at=34.85.

and u, whenk;=Kky=10 are shown in Fig. 1, for fixed in-

evolution can be safely analyzed with the approximationgeraction strength\4=8.2, and changing densitp. We

used here provided that the systemdidute enough ((ﬁ
<k3),*%i.e., the square of the interparticle spacingk')

choose identical values &, andk; for simplicity only. For
ki=ko=10 and for\4<<8 the chemical potentigk never

is much larger than the square of the interaction rang&€hanges sign as afunction of density, remaining always posi-

(~ko1). This means that below a maximum density,
~ke2 .., the square of the interaction rand® is much
smaller than the square of the interparticle spadqigax,

R3< k;riax, or equivalently ko/ke_)?>1. Thus,ke __is the

tive. However, forA4>8 the chemical potential changes
signs at some critical value of the density. Since we are
mostly interested in the case where the chemical potential
changes sign, we choose for definitenkgs-8.2. This sign
change will have important consequences throughout the pa-

largest value ok allowed that still satisfies the diluteness per in thed-wave case.
condition above. We choose to scale all energies with respect WhenAy=8.2 the BCS regime is reached for extremely

to the maximal Fermi energy,:mafkﬁmaX/Zm, which fixes
the maximum densitmznmaX=2p2DeFmax, and to scale all
momenta with respect t& _=./2mer . The coupling

constant\, is scaled with respect to the two-dimensional
density of stateg,. From now on we use this scaling. The

parameterkaax can be defined, for instance, & kaaX
=ky/10 or(b) kaaxsz/\/E, provided thatI(O/kaa)2>1. If
we choosek,=1 A~ (an interaction rang®,~1 A), then
in case(a) kg =0.1 A™* or np,,=1.59x 10" cm™?, and in
case(b) ke =0.32 A% or ng,,=1.59x 10" cm™2. Or if
we choosek,=10 A1 (an interaction rang&,~0.1 A),
then in caséa) ke =1 A~! ornp,,,=1.59< 10" cm~?, and
in case(b) kg =3.16 A™* or n,,,=1.59x 10" cm ™2,

In these dimensionless units, the paramétei | /n char-

high densities only. In the BCS limitZ1) the amplitude of
the order parameter{(=0) can be calculated analytically at

K,=2mu:
Ay(k,) ~exp(2[ g (k) — N 117hE(k )}

With  our choice of hi(k), Nog(k,)=8+ u/24e;
+O([ ! €11?), valid for u/e;<1, wheree; =k3. The ratios
betweenA(k,) and the critical temperatur€,, satisfy the
usual relationsAg(k,)/Tcs=1.76 and Ay(k,)/Teq=2.14.
Similar plots can also be made for varying interactigrand
fixed densityn. These plots are shown in Fig. 2.

In the d-wave case it is not very difficult to show that for
fixed interaction\ 4, Agq(n), andw(n) have continuous first
derivatives and discontinous second derivatives as a function
of natn=n., whereu=0 (see Fig. 1L The critical density

acterizes the BCS to BEC evolution. The BCS limit is for Fig. 1 is n.=34.85. Furthermore, for fixed density,
reached only wheg<1 and the BEC limit is reached only Agq(Ag), and w(Ny) have continuous first derivatives and

when {>1. The numerical solutions fakyy (d-wave casg

discontinuous second derivatives as a function\ gfat A 4
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0t FIG. 3. The excitation spectrumy(k) along ¢= /4, for A4

10 =8.2, ky=k;=10. Notice that there is no gap fer>0, but a full

20 + gap develops fou<0. The curve with no gap in the excitation
= 230 spectrum(squareg corresponds ta=+1.0 (n=39.77), while the

-40 curve with a gap in the excitation spectryoircles corresponds to

-50 pn=-—1.0 (n=30.83).

-60

70 ¢ . . . E4(k,)=|A4(k,)| is a nonmonotonic function ok, for

80 7 75 3 85 9 fixed density, and thus a nonmonotonic function\g@f The

Ag maximum Egy(k,) is reached at intermediate values pof
>0. At ©=0, the minimal gap i€4(0)=[A4(0)[=0, and
FIG. 2. (a) The order parametek,y and (b) the chemical po- occurs at the single poirk=0. In this case the excitation
tential u as a function of coupling 4 at fixed densityn=34.85and  spectrum is
k,=ky= 10 for thed-wave channel. Notice that the chemical poten-

tial u changes sign aty=8.2. Ed(k)=[Eﬁ+ |Ad(k)|2]1/2, (10)

=Ny, Whereu=0 (see Fig. 2 The critical interaction for which behaves quadratically for small momenta at any given
Fig. 2 is Ag,=8.2. In theswave case, the parametekg,  angle ¢, since A4(k)~k?cos(2p) and e,=k?/2m. The
and » have continuous first and second derivatives for aliShrinking of the energy gap to zerokat 0 is a consequence
values of\g andn, thus atu=0 nothing special happens. ©f the diminishing pairing interactiohy(k,,) for ©—0. As
However, for ad-wave system the ling.=0 is very special S00N asu<0, including the BEC limit, a full gap in the

as it will be seen in Secs. IV and V, where the quasiparticleEXcitation spectrum appears, but the minimal gap remains at

excitation spectrum and momentum distribution are disk=0 with value E4(0)=|u| sinceA4(0)=0. Thus, theu
cussed, respectively. =0 line separates a gapledsvave superconductomu(>0)

from a fully gappedd-wave superconductoru(<0). The
excitation spectrumEgy(k) is shown in Fig. 3 along¢

IV. QUASIPARTICLE EXCITATION SPECTRUM =/4. Notice the appearance of a full gap as the critical
AND PHASE DIAGRAM density n, (where »=0) is approached from>n, (u

The first important spectroscopic quantity to be analyzed™ 0)- This generic behavior allows us to construct phase dia-
is the single quasiparticle excitation spectr&ntk), defined ~ 9rams in Figs. &) and 4c). The solid line corresponds to
in Eq. (9). Let us discuss first the-wave case in the zero #=0 on the graph oh vs A4. Notice in Figs. 4b) and 4c)
range interaction limiko— . For x>0 the excitation spec- that a change irk, just rescales the value afy by ki, i.e,
trum has a gap ak=Kk,, Eg(k#):|As(k,,L)|- This gap is only renormalizes the magnitude of th.e interaction in the
completely isotropic in the vicinity ok, . At the intermedi- ~d-wave channel. So, from now on, we fix the valugsand
ate regime, whernu=0, the gap takes the valugy(0)  Ki 10 ko=k,=10, since the dependence of physical proper-
=|A4(0)|, when the chemical potential becomes negativelies onk; can be retrieved by the scaling—\q/Kj.
towards the BEC limit, the minimum of the energy gap re- Notice in Fig. 4a) that, at very low densities, aswave
mains atk=0, Eg(0)=[,u2+|As(0)|2]1/2. Whenk, is finite ~ System can have negative chemical potential for arbitrarily
the position of the minimum gap changes, but the excitatiorsmall interactions\s, which can be interpreted as indicative
spectrum is always gapped for all valuesof The line u of the appearance of a two-body bound state at arbitrarily
=0 for thes-wave case is shown in Fig(a. small Ag. On the other hand, the low density limit of a

In the d-wave case the situation is qualitatively different. d-wave system is qualitatively differefisee Figs &) and
For x>0, including the BCS limit, the excitation spectrum 4(c)]: the chemical potential does not become negative until
is gapless atk, along the special directiongp=+m/4, @ critical couplinghdC is reached. This indicates that the
+3m/4, near which the excitation spectrum disperses lin-appearance of a two-body bound state in theave state
early with momentum. The energy gaplkatk, and$=0,  requires finite\ .
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FIG. 4. Phase diagram fga) an swave superconductor with
ko= 10, the solid line corresponds to=0; (b) a d-wave supercon-
ductor withky=10 andk;= J10; and(c) a d-wave superconductor
with ko=Kk;=10. In thed-wave case, the solid lineu(=0) sepa-
rates two different regimes: gapless for-0 and fully gapped for

n<0.

We note, in passing, that the effect discussed Hhepe
pearance of a full gap in d-wave superconductpis quite
different from the effect discussed by Volotkin the con-
text of superfluid®He (a tripletp-wave system In superfluid
3He the appearance of the gap in th@hase to thé phase
transition seems to be associated with the disappearance afsuspicion further confirmed by analyzing the more interest-
nodes at the Fermi surface, as the interaction parameténg direction ¢=0 and its equivalents¢==n/2,m.
changes. Ir'He there is always a well defined Fermi surfaceNear k, the momentum distribution is1y(k,+ ok)=[1
in the normal state, the Fermi system is highly degenerates 2k, 6k/Ay(k,)]/2. On the other hand, the momentum dis-
and pairing occurs in momentum space. The structure of thEnbqun behaves agy(k)=1-(A d/,u?)(k“/4k ) for very

order parameter changes as ftiée goes from the\ to theB
phase. However, during the BCS to BEC evolution for a
d-wave superconductor, the structure of the order parameter
does not change, and the appearance of the gap is strongly
connected with the degeneracy of the Fermi system, i.e.,
pairing is becoming more local as the particle density is re-
duced for fixed interaction strength, or as the interaction
strength is increased for fixed density of particles.

The behavior ofg (k) as function ofu determines the
absence or presence of a gap in the quasiparticle excitation
spectrum, which in turn allows us to construct the density
versus interaction phase diagram presented in Fig. 4. At this
point it is important to mention the work of den Hertdgnd
Andrenacciet all® where a density versus interaction phase
diagram was constructed for the lattice case using an ex-
tended Hubbard model with attraction between nearest
neighbor sites. Their phase diagram contains lines that sepa-
rate the qualitative behavior between BCS and BEC indicat-
ing only a crossover between the two regimes even in the
d-wave case. Our saddle point phase diagram, however, in-
dicates the existence of a quantum phase transition separat-
ing a gaplessl-wave phas¢BCS-like) from a fully gapped
d-wave phas€gBEC-like), as supported by the calculations
presented in Secs. V through X. So, we expect a similar
behavior to occur in the lattice case, since a full gap also
appears when the chemical potential goes below a critical
value u.. This possible quantum phase transition in the lat-
tice case has not been reported in the recent literattfe.
The change in behavior of the excitation spectrfinom
gapless to fully gappedas also important consequences on
the momentum distributiom,(k) at zero temperature to be
discussed next.

V. MOMENTUM DISTRIBUTION

We are interested in the momentum distribution for a
d-wave superconductor, but we also briefly discuss the
s-wave case for comparison. The momentum distribution at
low momenta can be analyzed in three different regimes
>0, u=0, andu<0.

In the swave case, foju>0, the momentum distribution
is ng(k,+ ok)=[1—-2k,ok/A4(k,)]/2 neark,. At low k,
however it is ng(k)= [1+ yp(1+ ak/2k0)]/2 where y,

=ulJu?+ A%, anda=A%/(u?+A2).

When u=0, the momentum distribution at small mo-
menta isns(k)z(l—kZ/AOS)/Z. For negativeu, ng(k)=[1
— yn(1+ aki2ko)]/2 for smallk, with y,=|u|/Ju?+AZ,.
Notice thaing(0) is a continuous function gf. In factng(k)
is a smooth function ofx for all momenta. However, this is
not the case for al-wave system, which we shall discuss
next.

The momentum distribution in thé-wave case is aniso-
tropic, beingng(k) =[1—sgnk?— «)]/2 along the direction
of the nodes ¢==*w/4,+3m/4). This behavior already
signals discontinuity ohy(k) as a function ofu at k=0,
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small moment&k. When the chemical potential vanishes the
momentum distribution &t=0 becomes

Ng(0)=(1—v)/2, (12)

wherev=(1+A3,/k}) Y2 Finally, whenu becomes nega-
tive nd(k)z(A%d/MZ)(k“Mk‘l‘) for small k. Notice the dis-
continuity of the momentum distribution at loky when the
chemical potential crosses zero. This discontinuity, which is
illustrated in Fig. 6 and proven analytically in EG.1), co-
incides with the collapse of the four Dirac points to a single
point atk,,= 0, and with the appearance of a full gap as soon
as ©<0. In Fig. 5 we show three-dimensional plots of the
momentum distribution and corresponding contour plots,
which indicate first the collapse of the four Dirac pointsas
crosses zero and second a major rearrangement of the mo-
mentum distribution as soon asbecomes negative.

This major rearrangement of the momentum distribution

a)

next.

< continti . Y A R
and the discontinuity at zero morrle_ntum has been noted be Wl’iﬂ}!‘\\y;,g\éﬁw
fore by Borkowski and Sae Meld“ in the continuum case ","'l"'l"",/"',:‘\\\\u ,Ih,’;;‘:;\\\‘\“‘\:‘
and by den Hertd in the lattice case. This particular be- b) "“',’"‘%ﬁ‘\\\\\ /I’l,l;:";,o:?g{‘g‘\
havior of the momentum distribution in thlewave case has Jo I‘:".é}:‘{%?\\\\// RS
a dramatic effect in the compressibility, which is discussed Qi "oz“‘\\\\ s\(/,’f :'i

I\
NN\

VI. COMPRESSIBILITY

In the sswave case, the ground state energy is a smooth

function of «, and does not present any anomalous behavior 7 Tt PR 2
in the vicinity of x=0. Furthermore, the ground state energy 2
is a smooth function of both and densityn. The first and
second derivatives of the ground state energy with respect to
the chemical potentiak are well behaved, and so is the
compressibility of theswave system. This is expected since o /;;;z‘;i‘s;\;‘\‘\s\
the evolution of the ground state from the BCS limit to the ,’,;;l'i,"oz?;\ ,”/,‘0‘0;0‘\“‘\&
BEC limit is smooth for theswave casé® On the other l‘"l”.”’g‘k\@zﬁ/ﬁll%’y&y‘s‘
hand, for thed-wave case the ground state energy changes :“l””’!ﬁ&\\%%%’”’%ﬁﬁ’%gx
dramatically aroundu=0. The ground state energy is al- c) '0’0”552‘}?3\‘\@\{’/////’"’/4%%‘ :
ways continuous, and has continuous first derivatives, but its 7 "'“(ﬂ‘
second derivative with respect {@ is proportional to the e S\ 'v,/’/ ”I )
isothermal compressibility N\
1 dn
K= n2 d,LL . (12)
2

The previous expression can be rewritten in a more elegant
form 2

K:4n*2; e (KE 1K) ¢y(k), (13

. . FIG. 5. Three-dimensional and contour plots of the momentum
whereg, (k) =4, (k)/2E,(k) is the bound state wave function gistripytion foray=8.2, k;=ky=10 and ad-wave order parameter

for thelth angula_r momentum state. _ (@ u=+1.0n=39.77, (b) u=0n=n.=34.85, (c) u=-1.0n
The compressibility« diverges logarithmically in the vi-  —30.83. Notice in(a) the presence of the four Dirac points in the

cinity of u=pu.=0 for the d-wave case. This result is not contour plots ohgy(k), and how these points collapse(l leading

surprising given that when the chemical potential crosses a major redistribution ohy(k) in (c).

zero a full gap to addition of quasiparticles suddenly appears.

Thus, the compressibility of the system divergesuat=0,  Where the constam, depends only on the sign gf (or sign

whenn=n,, suggesting the existence of a quantum criticalof n—nc). See this asymmetry in Fig. 7.

point. In the vicinity of =0, the density n—n.~ The singular behavior of the compressibility indicated in

— By In|u|+ Bou, and the compressibility is Fig. 7 combined with the appearance of a full gap in the

excitation spectrum indicates a possible quantum phase tran-

k~[—B1 In|n—n.|+ B,]/n?, (14 sition. The fact that the compressibility diverges is intimately
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FIG. 6. The momentum distribution of quasiparticles for

=0, \gq=8.2, k;=k,=10, and several values @f=+1.0,0—1.0 FIG. 7. The compressibilitx for d-wave order parameters as a
for a d-wave order parameter. The dotted line indicates the caséunction of densityn, but fixed interaction parameters=8.2, k;
wheren>n. and the chemical potential>0 (u=+1.0). Notice = =Ko=10. Notice the divergence af whenn=n.=34.85, and the

that the momentum distributiong(0)=1. The dashed line indi- asymmetry ofx in the immediate vicinity oh=n.

cates the case where<n;, ©<0 (u=—1.0), andny(0)=0. The

solid line indicates the case whare=n., x=0. Notice the discon-  ¢@ on the directiond. This indicates that the correlation

tinuity of ny(0), confirming the analytical result of Eq11). length diverges alsu — | ~V4 whereu.=0. Thus, opposite
spin density-density correlations get strongly enhanced near

associated with divergences in the spatiotemporal correlag =, . Exactly atu= u.=0, the correlation function is

tions, which are discussed next.
) Z[ Ag
V] |k
Diverging correlation lengths are a characteristic feature
of classical critical points, but quantum critical points in- WhereBd(g) is some function o#. From this expression we
volve divergences in correlation lengths and times. A meacan extract the critical exponent=1/4.
sure of correlations in the ground state can be obtained by To determine the divergent time scale it is necessary to
analyzing the zero timer(=0) opposite spin density-density |ook at the time dependent opposite spin density-density cor-
correlation function relation functionF{)(r,r’,7), wheren,(r) is replaced by
| | n,(r,7)=exp(=H7n,(r)expH7) in Eqg. (15. Near u=0,
()(r r,7=0)=(Gin(Nn (r"IG)— /\/()(r ) the( Ft))urierpgransz‘orin) otr;‘(':l()r r' r)q i; pzroportiolrL\al to
exp(—|u|7) (A=1) in the long wavelength I|m|k—>0 This

2B4(6)
‘,’34 , (19)

VII. DENSITY-DENSITY CORRELATIONS (d)(p 0)=

where n(r)= ! (r),(r) is the particle density at position indicates that the correlation timé,=|u| 2, i.e., the dy-
r, and NV (r,r')=(G||n;(r)|G;){(G||n,(r")|G)). The corre-  namical scaling exponeat=4. We reserve a detailed analy-
Iation functlon above can expressed as sis of the critical phenomena of this new quantum phase

transition, beyond the saddle point approximation discussed
here, for a later opportuniff?. Possible low-temperature
phase diagrams are schematically drawn in Fig. 8.
. . We would like to mention, however, that this
in terms of the bound state wave functign(k) for thelth  gherconductor-superconduciguantumphase transition is
angular momentum state. _ _ similar to the classical liquid-gas phase transition in the
This correlation function can be easily calculated in thegense that it occurs without a change in symm&tyyt the
long wavelength limit. In the-wave case?‘?(p)|p| *for  coexistence region is completely suppressed in the present
all values of u, wherep=|r—r'|. Nothmg special occurs  case, since the critical poinu(,T.) is pushed all the way
when ©=0, as can read off from the-wave correlation down to the origin of thew vs T phase diagram. So the
length 5(5)(9)=[A5A§/(M2+ A2)]Y4 ie., the correlation transition should be continuous, and the energy Bawor
length is finite for allx, and independent of the angle  quasiparticle excitations is playing the role of thegler pa-
HereAq is a constant. The situation is different in tttevave  rameter E4=0 for n>n¢, while E;>0 for n<n, as can
case where%‘(d)(p,e)ocAd(a)/ps, and thed-wave density- be seen indicated in Fig. 9. Thus strictly in two spatial di-
density correlatlon length is mensions, one should expect a finite temperature phase dia-
gram of the type indicated in Fig.(®, since the Mermin-
1/8 . .. .
9 g)= Ay(6) 17 ngner—Berezmsku theorem would.pred|ct .the apsence of
ki‘/vtz d ' finite temperature long-range order in two-dimensional sys-
tems with a continuous symmetfy.2° For higher spatial
where Ay(6) =ag, cos(26)+ay,SiM(26). Hereay's are nu-  dimensions, phase diagrams indicated in Figb) &nd &c)
merical constants, which reflect the strong dependence are additional possibilities.

2

Fhr—r)= g ei(k)exd —ik-(r=r")]| , (16)

2
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FIG. 9. The energy gap as a function of density fod-wave
superconductor withy=8.2 andk,;=ky=10. The gap disappears
for n=n,=34.85.

fully gapped
d-wave

gapless
d-wave

ne n Notice that in thes-wave case the pair size is a monotoni-
cally increasing function of density for fixed interaction
©) strength[Fig. 11(a)], and a monotonically decreasing func-
non-superconducting tion of interaction strength for fixed densifyFig. 11(b)].
However, in thed-wave case the pair size first increases as a
function of density[Fig. 10@@)] for n<n., diverges atn
=n. when the chemical potential crosses zero, and decreases
gapless for n>n.. This divergence of the pair size occurs always
d-wave when the linew=0 is crossed in the density versus interac-
tion phase diagranjsee phase diagram in Figs(b4 and
Re n 4(c)]. A similar divergence occurs also for fixed density and
changing interaction strength as seen in FigtbLOPrima
facie divergences ing(%) seem to suggest unbinding of the

fully gapped
d-wave

FIG. 8. (a) Shows a phase diagram where a fully gapgedave

phase is present at lower densities and a gaplesave phase is - a = S .
present at higher densities and the critical point occurs only at Cooper pairs a;, which (in two spatial dimensiosvould

=n. andT=0. At finite temperatures there is only a crossovby. favpr a _fm't,e tempergturg phase dllag(]g)ar.n of the type de-
Indicates that there can be a finite temperature phase boundary b%gr'bed in Fig. §a). This d'_Vergence IrEp_air 1S pre;ent Only.
tween the fully gapped and the gapleswave phases, terminating when the chemical potentiad changes sign. For instance, if
at the quantum critical poimt, . (c) Shows a schematic phase dia- the interaction strength is too smalj<\4_[see phase dia-
gram where at finite temperatures the fully gappeslave phase at gram in Figs. 4b) and 4c)], « does not change sign as
higher densities becomes first nonsuperconducting and then gaplegshction of density, and thus no divergencef{;i)i, occurs.
d-wave as the density is increased further. In the lattice case Andrenacei al. have noticed that their
. o _ &pair for ad-wave solution had a peculiar behavior as a func-

The Changes in the momentum distribution and in the €Xtion of the nearest-neighbor interactidw| when n ap-
citation spectrum not only affect the compressibility of the proached half filling. They found thaj,,; does not show a
system and the opposite spin density-density correlatioponotonic decrease for increasing and converges asymp-
function as discussed above, but also affect the Cooper paﬂbtically (when|V|—c andn<1) to a finite value which is

size to be discussed next. larger than the lattice spacing. They argue that the diver-
gence inép,;; is due to the establishment of quasi-long-range-
VIIl. COOPER PAIR SIZE order correlations among the composite bosons, which reside

o ) ~__individually on nearest neighbors sites. We suspect, in addi-
. The Cooper pair size in the saddle point approximation isjon to the results of Andrenacat al,’® that a quantum
given by phase transition should occur also in lattice models when
=pu., i.e., for interaction strength and varying density or
vice versa. Having considered several signatures of this pos-
sible phase transition, we now turn our attention to its topo-
logical nature.

szk oF (K)VEe (k)

[£012=— : (19
f d%k ¢ (k) ¢,(K)
IX. A TOPOLOGICAL TRANSITION

In Figs. 10 and 11 we see plots of the Cooper pair size for We have already established that the transition from the
both d- and sswave cases for fixed interaction strength andBCS-like state to the BEC-like state occurs without changing
changing density or fixed density and changing interactiorthe symmetry of the order paramet@ec. VI) in d-wave
strength. systems. If the symmetry is not changing at the transition
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FIG. 10. The pair sizeggé)ir for a d-wave superconductor with
k,=ko=10: (8 €9 as a function of density for Aq=8.2; (b) &9

pair pair
as a function of interaction strengify for n=34.85.

pair

function of interaction strengtkg for n=20.
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FIG. 11. The pair siz&S, for an swave superconductor with

as a

point =0, then what is? We will argue in the following Where the functionsi, andv are determined up to a global
lines that the internal topology of the ground state is changPhase for each momentuky and thus can be chosen as real

ing in momentum space. The following topological con-having the usual form
siderations are inspired in the work of Volo%kon exotic
properties of*He, ap-wave superfluid. The topological con-
siderations presented here include only the saddle point ap-
proximation used throughout the manuscfft. and

uZ=[1+sin6,]/2

A. Ground state topological correlations vﬁ= [1-sing]/2,

As the chemical potential passes through zere-Q) the
symmetry of the ground state does not change both in th
swave case and-wave case, however in thetwave case
gapless ft>0) excitations disappear leading to fully gapped
(n<0) excitations. The compressibility of thikwave sys-
tem divergences at.=0 indicating that a quantum phase
transition takes place when the Dirac points collapsd at
=0. The disappearance of these gapless pdDitgc points
is intimately connected with the momentum space topology,
so that we can give a finer classification to thevave sys-
tem, and characterize the quantum phase transitign=ad
as topological in nature.

Further insight is gained by rewriting the ground state
wave function| W) =TT, (u+ vy 4", )|0) as

COSGk: A|(k)/E|(k),

sin 6k=(ek—u)/E|(k).

define the usual quasiparticle operators

T ot
Yk = Uk — V¥ -k

and

1
|‘If>=1;[ |uk|1/2€'XF{§zk gkwl,T‘ﬂtk,L 0), (20

_ 1
Y-ko=Uk¥—x| Tk

(21)

(22

where ug+vi=1 to guarantee the normalization of the
ground state wave functioW). The angled, is defined by

(23

(24)

In the Bogoliubov formulation the parametarg andv,

(29

(26)
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which diagonalize the Bogoliubov matrix defined in Eg. strates that in this case there is only a crossover between the
(32). Notice that the momentum space loci whege=0 con- BCS and BEC limitg. After analyzing the ground state to-
tains nonpaired electrons in the ground state as can be ipology, it is useful to investigate topological properties of
ferred from the form of the variation wave functi¢¥f), and  the fermionic excitations, which will be important for the
contains single quasiparticle excitations which do not mixcalculation of thermodynamic properties in Sec. X.

spin up and spin down electrons. The parametgrandv

also define aS' space(unit circle) with unit vectora(k) B. Internal topology of excited states
=(uy,vy), thus the mapping of closed curves containing
Dirac points from the two-dimensional momentum space
into the unit circle defined by, andv, belongs to the ho-
motopy group(S*)=Z. For x>0 the topological map
wraps around the unit circle twice and leads to a topological
class with indexd=2. However, foru<0, the topological
map does not wrap around the unit circle at all, and belongs
to a topological class with inded=0. Since it is not pos- — Yir
sible to pass from one topological class to another in a con- Hredzzk: (’/’ET’/’ki)H( ‘//—kU), (3D
tinuous manner, a topological phase transition must occur. In
the swave case, however, such a transition does not ocCujyhere the Bogoliubov matrix is
since the topological map is trivial, i.ed=0 for all values
of u.

In addition, the function =

To elucidate the nature of the proposed transition it is
essential to analyze further the fermionic excitations during
the evolution from BCS to BEC superconductivity in a
fiwave system. Therefore, it is convenient to write the re-
duced Hamiltonian

(€xk— ) Ai(k)
Ai(k) —(e—p) '

This matrix can be written in a pseudospin form as
is a direct measure of the electron-electron correlations in the

ground state and contains information about the topology of
the ground state. Therefore, we analyze the Fourier transform H=E,(kym(k)- o, (33
of gy [which we callF 4(p,6)] to extract the real space con-

sequences of such a topological transition in momentuny . - the unit vectom(k) = (cosé ,0,sin6,) plays the role

space. We analyze fjrst thiwave case. In the BCS-_Iike of a two-component spinor, parametrized by a single angle
region of the phase diagranu0) the correlation function 6, as defined in Eqs23) and (24)

2 The vectorg= ok, + o,ky+ak,, whereo,, o,, and
’“k (28) o, are just the usual Pauli matrices, aBdk) is the quasi-

Folp.0)= Agqg F+(0), particle excitation energy defined in E¢9). Since, the

(32

gx=vg/u=tanf,—sechy (27

d-wave state considered here does not break time reversal
symmetry, the mapping of closed curves containing Dirac
points from the two dimensionak(,k,) into the St spinor

which is independent of the particle separatioNotice that
the prefactor vanishes as—0. However, at the transition

line u=0, ' - 2 Lo
space defined bym(k)|“=1 (unit circle) belongs to the ho-
B 2 > motopy groupm;(St)=Z, whereZ is an integer. Any non-
Fq(p,0)=To(m,ki/Agq, 0)/ p. (29 trivial map from momentum space to spinor space is labeled
And finally, in the BEC-like region of the phase diagram by an integer
(1<0),
am(k) am(k)
Folp,O)=| ——F1-(0)+ —T12-(0) || p®. y
od 2k1

(30)  which plays the role of the topological charge and defines

Notice that the prefactor diverges at—0. Thus, the corre- equivalence classes. The domé&lncontains the neighboor-

lation functionF4(p, 6) has clearly three distinct behaviors: hood of the Dirac points, whetg; (k) vanishes.

(a) it is a constant when the Dirac pomts exist in momentum I the case wherg.>0 the mapping is nontrivial and has
space f>0): (b) it is proportional top~2 when the Dirac topological chargen=2, while whenx <0 the topological
points collapse £=0); (c) it is proportional top~* when  charge vanishem=0. However, it is not possible to pass
the Dirac points do not existi{<0). These different re- from one class to another in a continuous manner, therefore
gimes strengthen the point of view that the ground state evahere must be a “transition” of topological nature occurring
lution from BCS to BEC ind-wave superconductors is not at x=0. This topological feature in the fermionic excited
smooth, i.e., there is a phase transition separating the twstates parallels the topological phase transition in the ground
regimes.[In the swave case the form of the correlations in state. And since the Dirac points correspond to lthe of

the ground state remain the same for all valuesuofi.e.,  zero quasiparticle energl, (k) it is possible to view this
Fg(p,ﬁ)ocp‘2 and independent o, which further demon- phenomenon as a Lifshitz transition to be discussed next.
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C. Lifshitz transition thermore, even at low temperatures the collective modes

This topological “transition” reminds us of the Lifshitz contribute to the thermodynamm po_tentlal as pointed out in
transition in metals at high pressures, where the Fermi suiRef. 12. The thermodynamic potential then becomes
face e(k,P)=Eg changes its topology as pressureis
changed, the simplest example being when a single simply Q=Qp+ Q¢ (38)
connected F_?‘”"' surface breal_<s Into two swn_ply ConneCte%here the contribution from collective modes is
parts at a critical pressul®, . This type of transition affects
singularly the energy dependence of the density of states of
the metal, and leads to anomalies in thermodynamic and Q. =TS Inf1-ex T 39
transport properties, because of the dramatic change in the col % { Ho(@/T]} 39

electronic dispersiore(k,P) in the vicinity of the critical For a neutral superfluid at low temperaturés<(T,), the

pressureP..2” The topological transition discussed here islow-ener collective modes dominate. They correspond to
analogous to the Lifshitz transition in the sense that the sur; gy ' y P

face in momentum space corresponding Eq(k,u)=0 the Goldstone modes with frequenczy(q)=c,(0)|q| at

changes from four Dirac pointsu(>0) to a single point small wave vectorg for all values of u. However, in the

(1=0) to a null set {z<0), whereE, (k, 12) plays the role of case of a charged superfluid residual Coulomb interactions
- ] | ]

¢(k,P) and = u,=0 plays the role of the critical pressure are important and these modes are plasmonized, i.e., a gap

P (We note in passing that in the lattice case such a tra appears in their excitation spectra. These collective excita-
c P 9 . L ion corrections change the number equation to

sition should also be present, since similar momentum space

topological changes are also presght.addition, the domi-

nant contribution to the dispersion of low lying quasiparti- N=nNo+Ncol, (40)

cles changes from linearu(>0) to quadratic =0) to &  \heren,,=—dQ.,/du. The effects of these corrections are

constant £<0), as seen in Sec. IV. This in turn produces giscussed next in the cases of the spin susceptibility and
dramatic changes in thermodynamic properties just like irgpecific heat.

the usual Lifshitz transition. Thus, next we turn out attention
to the changes in the spin susceptibility and specific heat at A. Spin susceptibility
low temperatures.
The main contribution to the spin susceptibility comes
X. THERMODYNAMIC QUANTITIES fron_1 guasiparticle e_xcitations since they carry spin. The_ col-
lective modes arspinless(neutral or chargedbosonic exci-

To have a full picture of the evolution from BCS to Bose- tations, and do not affect substantially the spin dependent
Einstein condensation superconductivity at low temperaresponse. As a consequence the spin susceptibility takes the
tures, it is also important to analyze thermodynamic properform
ties such as the spin susceptibility and the specific heat. For
any quantities to be calculated at finite temperatures, one If[E (K)]
needs to generalize the saddle point and number equation X|(T)=—2M§2 —_—, (41
obtained at zero temperature. We generalize the saddle point K IB(k)
equation and number equations at low temperatures as digshich can be rewritten as
cussed in Engelbrecht, Randeria, anddgaMeld? for the
case of independent angular momentum channels and obtain
a BCS-like thermodynamic potenti&ly, which upon mini- X|(T):2M§J —
mization with respect to leads to the gap equation o T

OCdwN exp w/T) 42
|(MW, (42
whereN,(w)=3,8(w—E,(k)) is an auxiliary density func-
ay Ak tion not to be confused with the real density of states of the
Ay(k)= _Z Vi 2E,(K') Lo (T). (39 system. A simple redefinition of variables= /T indicates
k ! that x4(T) is controlled by the low frequency behavior of
The particle density is fixed byo=—3dQq/du and corre- N4(w), which quite generally has the form
sponds to the expression

aw, when x>0,

no=2§k) ni(k,T), (36) Ng(@)=pop B, when u—07,
¥9(0)O(w—|u|), when un<O0.

where the temperature dependent momentum distribution is (43)

The coefficientsy, 8, andy depend onu andAOd, thus for
a given coupling strengthy, they depend on the interaction
The set of equations discussed above is valid only for temrangek, and densityn. This behavior ofNy4(w) leads to the
peraturesT <T, since the thermodynamic potentf@l, does following behavior of the susceptibility for the-wave
not include collective modes of the system, which have beegystem

shown to be very important in the vicinity &f, .2 Fur-

(K, T)=vic+ (Ug— v fFE (K)]. (37)
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aTIn(2), when >0,
B2, when u—0%,
y9(|ul, T)exp—[|u|/T], when un<O0.

xa(T)=2u2psp (44)

The result foru<0 above is valid only fofu|/T>1. Notice ~ from quasiparticles and collective modes. The contribution
the qualitative change in the spin susceptibility at low tem-from quasiparticles is

peratures ag aproaches zero. For instance, the fact that the
susceptibility is finite whenu—0 and T—0 is indicative
that there exist unpaired spins in the ground state that can
respond to an external magnetic field. This observation is
consistent with the divergence agr found in Sec. VIII, and
with gapless quasiparticle excitations with a quadratic dis- | . .
persion relation as found in Sec. IV. Furthermore, notice é’Vh'Ch can be rewritten as
discontinuity in the slope of4(T) whenT—0 andu—0.

All these observations support the idea that a quantum phase -
transition occurs ap=0 andT=0. Similar qualitative be- CI(T):ZTJ (w)<
havior occurs also in the specific heat to be discussed next.

If[E (k
C(M)=23 E(k)— 1 [ '( i) (45)

2 expwl/T)
[1+expw/T)]?"

(46)

B. Specific heat The behavior ofN4(w) at low frequencies translates into the

There are several contributions to the low temperaturdollowing low temperature dependence of the quasiparticle
specific heat. We will discuss here only the contributionspecific heat for thel-wave superconductor

9aT?(3)/2, when u>0,
2 N =+

Co(T)=2p5p1 ™ P16 when =07, (47
yh(|u|, T)exp—[|u[/T], when w<O0.

The expression fop <0 is valid only when u|>T. Notice  excitation spectrum of quasiparticles as a functiopofrhe

the qualitative change in behavior at low temperatures in thgame is true in the case of charged superconductors, where
vicinity of u=0. The T? behavior foru>0 is consistent the collective mode contributions to the specific heat are ex-
with nodes of the gap functiofzeros in the excitation spec- ponentially suppressed at low temperatures due to the pres-

trum), and the exponential behavior far<0 is consistent ence of a gap in the collective mode excitation spectrum for
with a full gap in the excitation spectrum. The linear tem-a|| values ofu.

perature dependence at=0 arises from the quadratic dis-
persion found in Sec. IV. The paramejgican be interpreted
as measuring the correlations between electrons since it es- C. Brief discussion

sentially renormalizes the two dimensional electronic density .
of statesp,p . For completeness, we compare briefly theand d-wave

The inclusion of collective modes adds a contribution toC@S€S: In theswave case the quasiparticle excitation spec-

the specific heat of the form trum is always gapped for ajk (densitie$ with no qualita-
tive change in the temperature dependence. This leads to an

) exponential suppression of the quasiparticle contributions to
9" Lol (48) the spin susceptibility and specific heat for all(densitie$.

PT As a consequence the line wheee=0 in thes-wave case is

not special. In thel-wave case, however, gapless quasiparti-

In the case of the neutral superconductdised interaction cle excitations become fully gapped whanbecomes nega-
and changing densitythe low-energy collective modes have tive, thus qualitatively changing the low-temperature thermo-
linear dispersion and give B contribution to the total spe- dynamics of the superconductor. Notice, for instance, that
cific heat in the two-dimensional situation described here fothe slopes ofC, and x4 with respect to temperature are dis-
all values of u. Only the coefficient(prefactoj of the T? continuous aff =0 whenu =0, thus indicating the possibil-
terms changes as a functipn Thus, the qualitative changes ity of a quantum phase transition as the density of carriers is
in the total specific heat are captured by the change in theeduced below the critical density=n; where n vanishes.

ciNmy=-T
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Xl. SUMMARY 4(c)]. We can not compare the results of these theoretical

In summary, using a saddle point approximation, we hav considerations to high—temp_erature superconductors uqtil
' . v esystemanc experimental studies are conducted as a function

i density of carriers in the low-temperature superconducting

: . . . I i phase, where the evolution from BCS to BEC can be cleanly
density and interaction strength in bastwave andd-wave tested. However, it is theoretically important to continue

channels. In theswave case the excitation spectrum is al- studying the regime wherg=0, as the line ofu=0 (n
ways gapped, and the momentum distribution is a continuous ying 9 p=" '“

function of . However, in thed-wave case the excitation =Nc) In the n versusiq plane seems to correspond to a
L ' . quantum critical line separating a gapless/ave supercon-
spectrum is gapless fqe>0 and acquires a full gap fqu

<0. Furthermore, the momentum distribution is dlscontlnu-leCtor (+>0) from a fully gappecthwave superconductor

ous at lowk, asu crosses zero. As a result, the changes in('“<0)’ as supported from the preliminary calculations of

spectroscopic and thermodynamic properties neai are compressibility, specific heat, and spin susceptibfity.
dramatic at low temperatures, suggesting the existence of a
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