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Vortex structure of thin mesoscopic disks with enhanced surface superconductivity

S. V. Yampolskii* and F. M. Peeters†

Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium
~Received 14 December 1999; revised manuscript received 15 June 2000!

The vortex state in a thin mesoscopic disk surrounded by a medium which enhances surface superconduc-
tivity is investigated theoretically in the framework of the phenomenological Ginzburg-Landau theory. We
calculated the dependences of both the ground and metastable states on an external magnetic field perpendicu-
lar to the disk plane for different values of the order parameter angular moment, i.e., the vorticity. The
magnetic field-temperature phase diagram is obtained and the regions of existence of the multivortex state and
the giant vortex state are found. We analyzed the phase transitions between these states. Our results are also
applicable for the analysis of the vortex state in extreme type-II mesoscopic disks.
th
y
es
c

th
ul
c-

ct-
e
a

is
o

ul
um
r-
ia

es
ne
p
gu
t
i

th
d

ia

in
r t
er
co

d

ls
su
m

c

wn
a

an
-
. In

of
-
ted

or
een

e
ssi-
ch
su-

en-
ef-
ed
er-

able
er-

n-
the
s to
nd
be-

ors
he
the
-
ad-
the
ace
-
su-

ur-
uc-
ical
I. INTRODUCTION

The progress of nanofabrication technologies during
last years resulted in an increase of interest in the stud
superconducting properties of mesoscopic samples. A m
scopic sample is such that its size is comparable to the
herence length (j) and the magnetic-field penetration leng
(l). Mesoscopic disks have been one of the most pop
study objects1–11 in this respect. The behavior of such stru
tures in an external magnetic field~H! is strongly influenced
by the sample shape12 and may lead to various supercondu
ing states and different phase transitions between th
Jumps in magnetization were observed when varying an
plied magnetic field or temperature (T).2

Theoretical studies have shown that in mesoscopic d
surrounded by vacuum or an insulator medium two kinds
superconducting states can exist. First, there is a circ
symmetric state with a fixed value of the angular moment
~or the giant vortex!. The observed magnetization jumps co
respond to first-order phase transitions between the g
vortices with different angular momentum.3,5 Second, in
disks with a sufficiently large radius multivortex structur
can exist which are the analogue of the Abrikosov flux-li
lattice in a bulk superconductor. These states can be re
sented as a mixture of giant vortex ones with different an
lar momentum. For multivortex states it is also possible
introduce an effective total angular momentum, which
nothing else than the number of vortices in the disk, i.e.,
vorticity. With changing the magnetic field there is a secon
order phase transition between the multivortex and the g
vortex state.6

The size of the superconducting sample may strongly
fluence the magnetic field at which the superconducto
normal-state transition takes place. In an infinite cylind
surface superconductivity exists up to the surface super
ducting critical magnetic fieldHc351.69Hc2, but in mesos-
copic samples the nucleation field increases with the
crease of the sample size.4,5,12–15

The nucleation field and the critical temperature can a
be influenced by changing the conditions at the sample
face. Usually, the contact of a superconductor with a nor
metal~the proximity effect! is mentioned in this respect~see,
for example, Ref. 16!. This effect suppresses supercondu
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tivity and decreases both critical parameters. It was sho
that for a thin type-II superconducting cylinder it leads to
minimum cylinder radius below which superconductivity c
no longer exist.17 It is known that the opposite, namely en
hancement of surface superconductivity, is also possible
particular, it was found that a bulk superconductor aftercold
working of the sample surface revealed a surface region
enhanced transition temperature.18 For such a supercon
ductor the nucleation field was larger than those expec
from a uniform sample. Also both critical parameters~the
critical temperature and the nucleation field! can be increased
by the twinning planes inside a bulk sample~see, for ex-
ample, Ref. 19!. There have been two other possibilities f
enhancement of superconductivity at the sample surface b
described in the literature,20 which are due to contacting th
superconductor with a suitably chosen medium. One po
bility is to choose for the contacted layer a material whi
has a higher transition temperature in the bulk than the
perconductor under study. With other words, this is an
hancement of superconductivity caused by the proximity
fect. Another way of obtaining a surface with enhanc
superconductivity is by making a contact between the sup
conductor and a semiconductor, such that there is suit
overlap of the band gap of the semiconductor with the sup
conducting gap.

It was shown previously that the physics involved in co
tacts of a superconductor with a medium which enhances
superconducting properties of the surface are analogou
the wetting problem of a fluid in contact with a surface a
that the superconductor–normal-state phase diagram
comes substantially richer. For type-I bulk superconduct
it leads to a surface phase transition in which t
superconductor/vacuum interface delocalizes from
sample surface into the interior.21 These interface delocaliza
tion transitions are analogous to wetting transitions in
sorbed fluids. Further, using ideas from wetting theory,
shape of a superconducting ‘‘drop’’ near the sample surf
was calculated.22 Here we will investigate how this enhance
ment of superconductivity at the boundary influences the
perconducting state in mesoscopic disks.

In the present paper we investigated the influence of s
face enhancement of superconductivity on the vortex str
ture of a thin mesoscopic disk. We use the phenomenolog
9663 ©2000 The American Physical Society
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Ginzburg-Landau~GL! theory. Although this theory has onl
a firm mathematical derivation in a narrow range
both temperature and magnetic field close to
superconducting–normal-state phase boundary16 it turns out
that it gives also very good results inside the supercond
ing phase diagram. In particular, it was used successfull
describe mesoscopic samples in the wholeH-T
region.3–11,14,23

The paper is organized as follows. In Sec. II we pres
our theoretical model and indicate how the influence of
boundary is included through a specific boundary conditi
In Sec. III we discuss the giant vortex states. The stability
multivortex states and transitions between them are inve
gated in Sec. IV. In Sec. V we give theH-T phase diagram
for thin disks and investigate the influence of supercond
tivity enhancement resulting from the specific boundary c
ditions at top and bottom surface of the disk as compare
those at the disk radial boundary. Our results are summar
in Sec. VI.

II. THEORETICAL MODEL

We consider a mesoscopic superconducting disk with
dius R and thicknessd surrounded by a medium which en
hances superconductivity at the sample surface. The exte
magnetic fieldHW 5(0,0,H) is uniform and directed normal to
the disk plane. We have to solve the system of two coup
nonlinear GL equations which determine the distribution
both the superconducting order parameter,C(rW), and the
magnetic field@or vector potentialAW (rW)# inside and outside
the superconductor,

1

2m
S 2 i\¹W 2

2eAW

c
D 2

C52aC2bCuCu2, ~1!

¹W 3¹W 3AW 5
4p

c
jW, ~2!

where the density of the superconducting currentjW is given
by

jW5
e\

im
~C* ¹W C2C¹W C* !2

4e2

mc
uCu2AW . ~3!

Here rW5(rW ,z) is the three-dimensional position in spac
Due to the circular symmetry of the disk we use cylindric
coordinates:r is the radial distance from the disk center,w is
the azimuthal angle and thez axis is taken perpendicular t
the disk plane, where the disk lies betweenz52d/2 andz
5d/2.

Equations~1!–~3! have to be supplemented by bounda
conditions~BC! for C(rW) and AW (rW). The condition for the
superconducting condensate on the sample surface ca
general be written as16,21,22,24

nW •S 2 i\¹W 2
2eAW

c
DCU

S

5
i

b
CU

S

, ~4!

wherenW is the unit vector normal to the disk surface andb is
a surface extrapolation length which is the effective pene
f
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tion depth of the order parameter into the surround
medium.16 For both the superconductor-vacuum and t
superconductor-insulator boundary one hasb→`. The case
b,0 corresponds to surface enhancement of supercon
tivity. The opposite caseb.0 corresponds to surface sup
pression of the superconducting order parameter. The bo
ary condition for the vector potential has to be taken
away from the disk where the magnetic field becomes eq
to the external applied fieldH

AW ur→`5
1

2
HreWw , ~5!

whereeWw denotes the azimuthal direction.
Using dimensionless variables and the London ga

div AW 50 we can rewrite the system of Eqs.~1!–~3! and BC
~4! in the following form:

~2 i¹W 2AW !2c5c2cucu2, ~6!

2k2DAW 5
1

2i
~c* ¹W c2c¹W c* !2ucu2AW , ~7!

nW •~2 i¹W 2AW !cU
S

5
i

b
cU

S

. ~8!

Here all distances are measured in units of the cohere
length j5\/A2muau, the order parameter inC05Auau/b,
the vector potential inc\/2ej, k5l/j is the GL parameter,
andl5cAm/p/4eC0 is the London penetration depth. W
measure the magnetic field inHc25c\/2ej25kA2Hc ,
whereHc5A4pa2/b is the thermodynamical critical field.

The free energy of the superconducting state, measure
F05Hc

2V/8p units, is determined by the expression

F5
2

V F E dVS 2ucu21
1

2
ucu41u2 i¹W c2AW cu2

1k2@hW ~rW !2HW #2D1
1

b R dSucu2G , ~9!

hW ~rW !5¹W 3AW ~rW !.

The last term in Eq.~9! is the surface contribution which i
due to the boundary condition~8! and it provides continuity
of the normal component of the superconducting curre
One can see that in theb,0 case this term reduces the fre
energy.

We restrict ourselves to sufficiently thin disks such th
d!j,l. In this case, to a first approximation, the magne
field is uniform inside the disk and equal to the external o
i.e., we are allowed to neglect the contribution of the sup
currents to the magnetic field. Within this approximation w
have to solve only the first GL Eq.~6! with AW 5AW 0
5(0,Hr/2,0).

First, we determine thez dependence ofc(rW). Expanding
it in a Fourier seriesc(rW)5(kck(rW )exp(ikz) and using the
same BC~8! on the top (z5d/2) and bottom (z52d/2) of
the disk surface we obtain a nonlinear equation for eachk:



t

e
pe

on

w

s

th
as

x

ne
e-

he

e

sk
-

d
-

Fig.

h

der

PRB 62 9665VORTEX STRUCTURE OF THIN MESOSCOPIC DISKS . . .
exp~ ikd!11

exp~ ikd!21
5 ikb. ~10!

In the d→0 limit the lowestk solution gives

k252
2

bd
. ~11!

After substitutingk→ ik we havec5c(rW )coshkz ~where
now k is real:k5A22/bd). Because2d/2,z,d/2 we have
2A22d/b,kz,A22d/b and consequently, forud/bu!1,
c(rW) varies very slowly along thez direction. Therefore we
are allowed to average the order parameterc(rW) over the
disk thickness as it was done in Ref. 5~this averaging cor-
responds also to the thin-film limit of the results of Ref. 25!:

^c~rW !&5
1

dE2d/2

d/2

c~rW !coshkz dz

5c~rW !•
sinhkd/2

kd/2
→

d→0
c~rW !. ~12!

The same averaging of Eq.~6! yields for c(rW )

^~2 i¹W 2AW !2&c~rW !5F2
1

r

]

]r
r

]

]r
2

1

r2

]2

]w2

1 iH
]

]w
1S Hr

2 D 2

2k2Gc~rW !

5c~rW !2c~rW !uc~rW !u2, ~13!

with the boundary condition

]c~rW !

]r
U

r5R

52
1

b
c~rW !U

r5R

. ~14!

After this averaging the problem forc(rW) is reduced to a
two-dimensional one forc(rW ) like in Refs. 5 and 6. But in
contrast to Refs. 5 and 6 there is still a dependence on
disk thickness which is determined by the parameterk in Eq.
~13!. Notice also that the boundary condition~14! introduces
a dependence on the phenomenological parameterb. It de-
termines the value of the derivative ofc at the surface. It is
obvious that for b,0 we have a positive derivativ
]c(rW )/]r at the surface, i.e., surface enhancement of su
conductivity.

III. GIANT VORTEX STATES

The giant vortex state has cylindrical symmetry and c
sequently the order parameter can be written asc(rW )
5 f (r)exp(iLw). The stable states are obtained in the follo
ing way. From thelinearizedGL Eq. ~13! with the BC ~14!
we find f (r) up to a multiplying constant. This function i
then inserted into the free-energy expression~9! which after
minimization determines the constant inf (r) and the energy
value corresponding to the stable state. It can be shown
the present approach and the one of Ref. 5, which was b
on a solution of the nonlinear GL Eq.~13!, result into the
he

r-

-

-

at
ed

same functionalF(H) dependence in case of giant vorte
states.

The linearized GL equation forf (r) takes the form

L̂ f 50, L̂52
1

r

]

]r
r

]

]r
1S L

r
2

Hr

2 D 2

212k2. ~15!

The L̂ operator differs by the last constant term from the o
studied previously.5,26 The superconducting state corr
sponds to the negative eigenvalues of theL̂ operator. The
nucleation fieldHnuc for the giant vortex state with fixedL is
reached when the minimal eigenvalue of theL̂ operator for
the same angular momentum becomes equal to zero.

The eigenvalues and eigenfunctions of theL̂ operator are
found from the equation

L̂ f L,n~r!5L f L,n~r!, ~16!

where f L,n(r) satisfiesr(] f /]r)ur5050 at the disk center.
The indexn51,2, . . . enumerates the different states for t
sameR andL values. The eigenfunctions of Eq.~16! are

f L,n~r!5S Hr2

2 D L/2

expS 2
Hr2

4 D M S 2nn ,L11,
Hr2

2 D ,

~17!

where M (a,c,y) is the Kummer function.27 The BC ~14!
results into a nonlinear equation fornn ,

S L2
F

2
1

R

b D M S 2nn ,L11,
F

2 D2
nnF

L11

3M S 2nn11,L12,
F

2 D50, ~18!

whereF5HR2 is the magnetic flux through the disk in th
absence of any flux expulsion. The eigenvalues ofL̂ are

L5H~112nn!212k2. ~19!

The magnetic-field dependences ofL for the lowest angular
momentaL are shown in Figs. 1~a!–~c! for three differentb
values. All numerical calculations were done for a di
thicknessd/j50.1 which is within the thin disk approxima
tion. The negativeL values~dotted curves in Fig. 1! corre-
spond to vortices with fluxF directed opposite to the appie
magnetic field~they are the analog to ‘‘antivortices’’ in con
ventional superconductors!. The dashed curve in Fig. 1~c! is
for the first radial excited state, i.e.,L50 and n51. The
dotted horizontal line corresponds to theL50 level. In Fig.
2 the radial dependence of the superconducting densityucu2

is shown for all the possibleL values atH5Hc2 in case of
j/b520.2. The same curve conventions are used as in
1. Notice that for the excited stateL50, n51 ~dashed curve
in Fig. 2! the order parameter vanishes inside the disk~at r
51.25j) and a ringlike vortex is formed.28 From Fig. 1 one
can see that with increasinguj/bu: ~i! the eigenvaluesL be-
come more negative;~ii ! the magnetic-field range over whic
solutions of Eq.~18! can be found increases; and~iii ! the
number of possible solutions increases substantially.

The eigenvaluesL determine the minimal free energyF
of the giant vortices. For the giant vortex state we consi
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FIG. 1. The magnetic-field dependence of the lowest eigenvalues of the linearized first GL equation for different angular momenL and
for ~a! j/b50, ~b! j/b520.1, and~c! j/b520.2.
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only states which lie below theF50 level. In this approxi-
mation the order parameter and minimal energy value ar

c~rW !5S 2L
I 2

I 1
D 1/2

f L,n~r!exp~ iLw! ~20!

FIG. 2. The Cooper pair density for the giant vortex states w
angular momentaL50,1,2 ~solid curves!, the antivortex statesL
521,22 ~dotted curves! and the ring vortex stateL50, n51
~dashed curve! at the magnetic fieldH5Hc2 for R/j52.0, j/b
520.2.
and

F52L2
2pd

V

I 2
2

I 1
, ~21!

respectively, where

I 15E
0

R

rdr f L,n
4 ~r!, I 25E

0

R

rdr f L,n
2 ~r!.

The dependence ofF on the magnetic fieldH are shown
in Fig. 3 for the same angular momentaL shown in Fig. 1,
with the exception of Fig. 3~c! where theF(H) curves with
L.11 are not plotted. The highest value of vorticity in th
disk is L516 @see Fig. 1~c!#. The dotted horizontal line in
Fig. 3 ~and in the following figures! corresponds to the zer
energy level. From a comparison of the magnetic-field
pendence ofF(H) for j/b50 and the one withj/bÞ0 we
clearly observe an enhancement of superconductivity~with
increase ofuj/bu) and the number of possible giant vorte
states increases. Also a significant increase of the sur
nucleation fieldHnuc is found. The envelope of the lowes
parts of the curves in Fig. 3 represents the field depende
of the ground-state energy.

In Fig. 4 the ground-state energies are shown for differ
values ofj/b. Notice that the enhancement of supercond
tivity at the surface leads to a decrease of the energy of
ground state. With increasing applied field theL→L11
phase transitions take place at the field where the co

h
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FIG. 3. The free energy of the giant vortex states with different angular momentaL as a function of the external magnetic field for~a!
j/b50, ~b! j/b520.1, and~c! j/b520.2. For the last case only the states withL<11 are shown. The maximal vorticity value isL
516 in this case@see Fig. 1~c!#.
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sponding curves cross~for example, the 0→1 transition oc-
curs atH51.098Hc2 for j/b520.1). The crossing points
are practically independent of the value ofj/b. In the inset
of Fig. 4 theuc(r )u2 dependence is shown forj/b520.2 at
fields corresponding to theL50 and L51 ground states
(H50.5Hc2 and H51.5Hc2, respectively!. The L→L11
transitions are of first order and lead to jumps in the mag

FIG. 4. The ground-state energy of the giant vortex state
different values of thej/b parameter. The inset depicts the rad
Cooper pair density for two magnetic fields, corresponding to
L50 andL51 state, where the same curve conventions are use
in the main figure.
-

tization M52(]F/]H). The correspondingM (H) curves
are shown in Fig. 5. The phase transition from the superc
ducting to the normal state is of second order@all curves
F(H) reach theF50 line with zero derivative#. The curves
F(H) in Fig. 3 which are situated above the ground-st
energy correspond to metastable giant vortex states. W

r

e
as

FIG. 5. The magnetic-field dependence of the disk magnet
tion for the ground giant vortex state corresponding to the state
Fig. 4. For comparison with the calculations from Sec. V the m
netization of a disk with enhancement of superconductivity only
the top and bottom surfaces is shown by the thin solid curve for
casej/b520.2.
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increasing applied field the transition from the Meissner s
(L50) to the normal state goes through a set of consecu
first-order transitions between theL andL11 giant vortices
which is finished by a second-order transition to the norm
state. Notice that in thej/b520.1 case@inset in Fig. 3~b!# a
metastable state withL59 occurs which does not become
ground state. This state is separated from theL58 state be-
cause the crossing point of the corresponding eigenv
curves of Fig. 1~b! lies higher than theL50 level. With
increasinguj/bu value this crossing point moves below th
L50 level and a transition from theL58 state to theL
59 state becomes possible.

The free energy is strongly influenced by the enhan
ment of superconductivity at the disk surface. The bound
condition ~4!: ~i! gives b terms which leads to ak2 shift in
the energyL towards lower energy@Eq. ~19!# due to the
boundary condition on the top and bottom of the disk, a
~ii ! modifies the equation for the boundary condition~18!
giving nn a b dependence which is due to the radial bound
condition, i.e., the side boundary of the disk.

IV. MULTIVORTEX STATES

For sufficiently large disks the giant vortex state c
break up into multivortices.6–8 In order to investigate such
structures in our case we use the method proposed by
weigertet al.6 and Palacios7,8 and extend it here to determin
also the stability of the different multivortex configuration
Following Refs. 7 and 23 the order parameter of the mu
vortex state is written as a linear combination of the eig
functions of the linearized GL Eq.~15!,

c~rW !5 (
L j 50

L

(
n

CL j ,nf L j ,n~r!exp~ iL jw!, ~22!

whereL is now the value of the effective total angular m
mentum which is equal to the number of vortices in the di
andn enumerates the different radial states for the sameL j .
We restricted ourselves to the lowest state eigenfunct
and took onlyn50. The indexn will therefore be omitted
from now on.

Substituting Eq.~22! in the free-energy expression~9! we
obtain F as a function of the complex parameters$CL j

%.
Minimization of F with respect to these parameters allows
to find the equilibrium vortex configurations and to dete
mine their stability. The extremal points are determined
the solutions$CL j

(0)% of the set of equations

]F

]CL j

50, L j50, . . . ,L. ~23!

The stable vortex states are determined by the usual c
rium for a multivariable function: the matrix of second d
rivative ~also called the Hessian matrix!,

]2F

]CL j
]CLk

U
CL j

5C
L j

~0!,CLk
5C

Lk

~0!

, ~24!

must be positive definite. The giant vortices are also
scribed by Eq.~22!: they correspond toCL j

(0) except for
te
e

l

e

-
ry

d

y

h-

i-
-

,

s

s
-
y

e-

-

one nonzero coefficientCL j 5L
(0) . This allows us to check the

stability of a giant vortex with respect to transitions into
multivortex state.

Let us consider states which are built up by only tw
components in Eq.~22!. This restricts our analysis quantita
tively but, nevertheless, will give the correct qualitative b
havior and facilitates the physical insight into the proble
The free energy of a two-component state is

F5CL1

4 AL1
1CL2

4 AL2
14CL1

2 CL2

2 AL1 ,L2
12LL1

CL1

2 BL1

12LL2
CL2

2 BL2
, ~25!

where

ALi
5

2pd

V E
0

R

rdr f Li

4 ~r!,

AL1 ,L2
5

2pd

V E
0

R

rdr f L1

2 ~r! f L2

2 ~r!,

BLi
5

2pd

V E
0

R

rdr f Li

2 ~r!,

andLLi
is determined by Eq.~19!. Although, in generalCLi

is a complex number, for our two-component stateCLi
is a

real number. Minimization of Eq.~25! with respect toCL1

andCL2
gives the possible equilibrium states:

~i! the normal state,

CL1

(0)5CL2

(0)50; ~26!

~ii ! the giant vortex states,

CL1

(0)50, CL2

(0)5~2LL2
BL2

/AL2
!1/2,

CL1

(0)5~2LL1
BL1

/AL1
!1/2, CL2

(0)50; ~27!

~iii ! the multivortex states

CL1

(0)56S 2LL1
AL2

BL1
12LL2

AL1 ,L2
BL2

AL1
AL2

24AL1 ,L2

2 D 1/2

,

CL2

(0)56S 2LL2
AL1

BL2
12LL1

AL1 ,L2
BL1

AL1
AL2

24AL1 ,L2

2 D 1/2

. ~28!

The components of the matrix~24! are

]2F

]CL1

2
512CL1

2 AL1
18CL2

2 AL1 ,L2
14LL1

BL1
,

]2F

]CL2

2
512CL2

2 AL2
18CL1

2 AL1 ,L2
14LL2

BL2
,

]2F

]CL1
]CL2

516CL1
CL2

AL1 ,L2
. ~29!
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Substituting the solutions~26!–~28! into Eq. ~25! we obtain
the energies of the different equilibrium states and@from Eq.
~29!# the corresponding conditions of their stability.

For the normal statewe obtainF50. Notice from Eq.
~29! that for negativeLL1(L2) this state is always unstable
The energies of thegiant vortex statesare

FLi
52LLi

2 BLi

2 /ALi
, i 51,2. ~30!

They coincide with theF of Eq. ~21!. The conditions for
stability are

]2F

]CL1

2
5

4

AL2

~LL1
AL2

BL1
22LL2

AL1 ,L2
BL2

!.0,

]2F

]CL2

2
528LL2

BL2
.0, ~31!
te

m
ia
rg

ha

ot
and

]2F

]CL1

2
528LL1

BL1
.0,

]2F

]CL2

2
5

4

AL1

~LL2
AL1

BL2
22LL1

AL1 ,L2
BL1

!.0, ~32!

for the giant vortex states withL1 andL2 vorticity, respec-
tively.

The superconducting current density has only an a
muthal component and is given by

j Li
~r!52

LLi
BLi

ALi

S Li

r
2

Hr

2 D f Li

2 ~r!, i 51,2. ~33!

The energy of themultivortex statebecomes
FL1 ,L2
5

2LL1

2 AL2
BL1

2 2LL2

2 AL1
BL2

2 14LL1
LL2

AL1 ,L2
BL1

BL2

AL1
AL2

24AL1 ,L2

2
, ~34!

and the corresponding conditions for its stability are

]2F

]CL1

2
5

8AL1
~2LL1

AL2
BL1

12LL2
AL1 ,L2

BL2
!

AL1
AL2

24AL1 ,L2

2
.0,

]2F

]CL2

2
5

8AL2
~2LL2

AL1
BL2

12LL1
AL1 ,L2

BL1
!

AL1
AL2

24AL1 ,L2

2
.0, ~35!

]2F

]CL1

2
•

]2F

]CL2

2
2S ]2F

]CL1
]CL2

D 2

5
64~2LL1

AL2
BL1

12LL2
AL1 ,L2

BL2
!~2LL2

AL1
BL2

12LL1
AL1 ,L2

BL1
!

AL1
AL2

24AL1 ,L2

2
.0.

The superconducting current density in the multivortex state is

j L1 ,L2
~r,w!5~CL1

(0)!2f L1

2 ~r!S L1

r
2

Hr

2 D1~CL2

(0)!2f L2

2 ~r!S L2

r
2

Hr

2 D1CL1

(0)CL2

(0)f L1
~r! f L2

~r!S L11L2

r
2Hr D cos~L22L1!w

~36!
s
the

s
the
gi-

or-
y of
tates
to
with CL1

(0) andCL2

(0) from Eq. ~28!.

The energies of the equilibrium vortex states are plot
in Figs. 6~a!–~c! for different values ofj/b and disk radius
R/j52.0 and in Fig. 6~d! also for a larger radiusR/j53.0.
The correspondingM (H) curves are shown in Figs. 7~a!–
~d!. The giant vortex states~solid curves! are given by theirL
value and the multivortex states~dashed curves! by (L1 :L2),
i.e., the angular momentum values of which they are co
posed. There exist regions of magnetic field where the g
vortex states become unstable which result in free-ene
curves which extend over a smaller magnetic field range t
in Figs. 3~a!–~c!. For example, the separatedL59 state of
Fig. 3~b! for j/b520.1 is no longer stable and thus n
d

-
nt
y
n

present in Fig. 6~b!. Notice, that the ringlike vortex (L
50, n51) for j/b520.2 became unstable too.

In case ofj/b50 a disk with radiusR/j52.0 does not
exhibit anystablemultivortex states. The multivortex state
are unstable and correspond to the saddle points of
F(CL1

,CL2
) function. Their energies~which are shown by

dotted curves in Fig. 6! are slightly larger than the energie
of the corresponding giant vortices. The saddle points are
lowest energy barriers which separate the different stable
ant vortex states. At the magnetic field where the giant v
tex loses stability its energy becomes equal to the energ
the saddle-point state. For the considered radius the s
with smallL50,1,2 transit through a first-order transition
states having a differentL value. For example, forj/b50
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FIG. 6. The free energy of the ground state and some of the metastable and saddle-point states as a function of the external ma
for: ~a! j/b50,R/j52.0; ~b! j/b520.1,R/j52.0,~c! j/b520.2,R/j52.0, and~d! j/b50,R/j53.0. The solid and dashed curves are t
stable giant vortex and multivortex states, respectively. The saddle-point states are shown in~a!, ~b!, and~d! by the dotted curves where in
~b! only those saddle-point states are shown which lead to transitions between differentL states.
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the energies of theL50 and L51 states are equal atH
5Hc2, while the 0→1 transition takes place atH
51.25Hc2 when increasing the field.

With increasing uj/bu the multivortices become mor
stable and they can even become the minimum of
F(CL1

,CL2
) function. For example, in Fig. 8 the contou

plots of this function for two different multivortex states in
disk with radiusR/j52.0 andj/b520.2 are shown. AtH
51.4Hc2 the (0:2) state is unstable@cross in Fig. 8~a!#
whereas the Meissner state and theL52 giant vortex state
correspond to minima of the energy~the L52 state is the
local minimum and theL50 state is the global one!. At H
52.3Hc2 the (0:4) multivortex state corresponds to th
minimum of energy@solid dot in Fig. 8~b!# and both the
Meissner state and theL54 giant vortex state became th
saddle points of theF(CL1

,CL2
) function.

For j/b520.1 multivortices exist only as metastab
states. The transitions between the giant and multivo
with the samevorticity are of second order~they are indi-
cated by open circles in Figs. 6 and 7!. With increasing mag-
netic field the single vortices in the multivortex state beco
broader, they move towards each other and merge in a
tinuous way into a giant vortex.6 For j/b520.2 @Fig. 6~c!#
the multivortices exist in the ground state for 3<L<6. At
H54.825Hc2 this multivortex ground state becomes the
ant vortex one and forL>7 only giant vortex states ar
found as ground state.
e

x

e
n-

With increasinguj/bu the phase transitions between sta
with different L values become more complicated and tra
sitions withDL.1 are possible. For example, for a disk wi
j/b520.1,R/j52.0 @see Fig. 6~b!# the barrier between the
L50 and L52 states has the lowest value. In Fig. 9 t
contourplot of theucu2 distribution for the(0:2) saddle point
is shown for different magnetic fields. With increasing ma
netic field we clearly see that two vortices move away fro
the center towards the edge of the sample. It allows us
interpret the transition betweenL50 andL52 states with
increasing field as the simultaneous penetration of two v
tices into the disk. From Fig. 6~b! we find that in this disk
with increasing field the following transitions occur: 0→2
→4→6→7→8→ ‘ ‘ normal state’’ while with decreasing
field we have ‘‘normal state’’ →8→7→5→(0:5)→3→0.
These transitions are shown in Fig. 7~b! by the arrows. In the
present approach we find that penetration~or expulsion! of
more than one vortex into~from! the disk is possible. A
similar situation is possible forj/b50 when the radius of
the disk is sufficiently large. For example, for a disk wi
R/j53.0 @Fig. 6~d!# we obtain the transitions: 0→2→3
→4→5→ ‘‘ normal state’’ with increasing magnetic field,
and ‘‘normal state’’ →5→4→2→0 with decreasing mag
netic field @see also the corresponding arrows in Fig. 7~d!#.

This picture of many vortex penetration~or expulsion!
differs from Ref. 29 where it was claimed that the barrie
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FIG. 7. The magnetic-field dependence of the disk magnetization for the stable states corresponding to the states of Fig. 6. Th
dotted lines give the ground-state transition fields. Solid~dashed! curves correspond to the giant~multi-!vortex states.
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between theL and L61 states have the lowest value. W
found that theL→L61 transitions take place in disks for
small maximum value of vorticity or at magnetic fields clo
to the ‘‘superconducting–normal-state’’ transition point. B
tween these two limiting regimesL→L6N transitions are
possible withN.1. Our results are also in agreement w
Ref. 30 where it was found numerically that several vortic
can enter at once for disks with sufficiently large radius.

In Fig. 6~c! we notice that forL53 vorticity there is a
re-entrant~‘‘ giant → multi → giant’’ ! transition. At the

FIG. 8. Contour plot of theF(CL1
,CL2

) function for two differ-
ent magnetic-field values. The black circles correspond to
minima and the saddle points are shown by crosses. In~a! the
Meissner state~with L50) has the lowest energy while in~b! the
(0:4) multivortex state is the ground state.
-

s

magnetic fieldH52.37Hc2 the giant vortex separates int
single vortices and at the fieldH53.36Hc2 becomes a gian
vortex state again. This remarkable phenomenon is ill
trated in Fig. 10 where we show a contour plot of theucu2

distribution for this multivortex state for different magnet
field values. ForL>6 two kinds of stable multivortex
configurations30 are possible:~i! single vortices on a single
ring, and~ii ! a ring structure with one vortex situated in th
center of the disk. The energy of such states forL56,7 vor-

e

FIG. 9. Contour plot of the superconducting density for t
(0:2) saddle-point state@see Fig. 6~c!# for different magnetic fields.
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ticity is plotted in the inset of Fig. 6~c! and the corresponding
contour plots of the density distributionucu2 are given in Fig.
11 at the magnetic fieldH53.3Hc2 for L56 vorticity and at
the field H53.6Hc2 for L57 vorticity. The difference in
vortex configurations is clearly visible from these conto
plots.

It should be noted that in order to find the region of s
bility of the multivortex states in the above analysis we h
to take the order parameter as a linear combination ofthree
components in Eq.~22! and to minimize the free energy wit
respect to three variational parametersCLi

. The giant and
multivortex states considered before correspond to the ex
mum points of theF(CL1

,CL2
,CL3

) function. The contour

plots of theF(CLi
,CL j

) function for different (Li :L j ) states

can be represented as a projection of theF(CL1
,CL2

,CL3
)

function on the corresponding (CLi
,CL j

) plane. Now the

Hessian matrix ofF(CL1
,CL2

,CL3
) is 333 dimensional and

has three eigenvalues. Consequently, we can have two
ferent kinds of saddle points:~i! the Hessian matrix has onl
onenegative eigenvalue@for example, forL52 the unstable

FIG. 10. Contour plot of the superconducting density for t
(0:3) stable multivortex state@see Fig. 6~c!# for different magnetic
fields.

FIG. 11. Contour plot of the superconducting density for tw
stable multivortex states withL56 and L57 vorticity @see Fig.
6~c!# for different multivortex configurations.
r

-
d

e-

-

state in Fig. 6~d! at the magnetic field region 0.31<H/Hc2
<0.46#; ~ii ! the Hessian matrix hastwo negative eigenvalues
@for example, the(1:2) state in Fig. 6~d! at the same field
region#. As a result in Figs. 6~b! and ~d! there are connec
tions between curves corresponding to two different unsta
states. These unstable states differ by the number of
negative eigenvalues in the Hessian matrix. Moreover, by
same reason there are unstable (L:L11:L12) states corre-
sponding to barriers between the (L:L11) and (L11:L
12) unstable states@for example, in Fig. 6~d! the energy of
the (0:1:2) state is shown#. Due to the presence of suc
states there is the possibility to realize the aboveL→L62
transitions between stable giant vortex states through thL
→L61→L62 transition sequence via the intermediate u
stableL61 state.

The above transiton in a disk withj/b520.1,R/j52.0
from the (0:5) multivortex state toL53 giant vortex state
with decreasing magnetic field also is realized through
intermediate saddle-point state. The first step is the transi
from the(0:5) stable multivortex to the(3:5) unstable state
@via the (0:3:5)saddle-point one#. After that the transition
to theL53 state takes place which corresponds to expuls
of two vortices from the disk.

Notice that for the disk parameters which we used,
increase of the number of components in Eq.~22! does not
lead to different vortex states in the ground state. In gene
for larger disks more complicate configurations with a larg
number of components are possible~see, for example, Refs
7 and 8!.

V. H -T PHASE DIAGRAM

Up to now all our calculations were done for fixed tem
peratureT. The temperature is indirectly included in the un
we used, namely, intoj,l,Hc ,Hc2 whose temperature de
pendence is as follows:

j5j~0!U12
T

Tc0
U21/2

, l5l~0!U12
T

Tc0
U21/2

,

Hc5Hc~0!U12
T

Tc0
U, Hc25Hc2~0!U12

T

Tc0
U. ~37!

Now we will insert temperature explicitly and usej(0) and
Hc2(0) as the basis for our units. Temperature will be e
pressed in units of the zero magnetic-field critical tempe
ture Tc0 for the casej(0)/b50. After the corresponding
rescaling of distances, magnetic field, and energy we can
our previous results with the only exception that for tempe
tures larger thanTc0 the eigenvalues of Eq.~16! are L
5H(112n)112k2 instead of Eq.~19!.

The H-T phase diagram is shown in Figs. 12 and 13
different values ofj(0)/b. The regions inside the differen
curves for fixedL correspond to the stability region of thatL
state. Notice, that the stability regions of theL states are
much smaller than the regions of existence of these st
following only from the solutions of Eq.~23!. For example,
in Fig. 12 the boundary of the region of existence of t
equilibrium L51 state is shown by a thin dashed line. O
can see that the low-field boundary between the neigh
states differs strongly while the high-field one chang
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slightly. Notice that the critical temperatureTc is very sen-
sitive to the value ofj(0)/b. A change ofj(0)/b from 0 to
20.01 results in an increase ofTc from Tc0 to 1.21Tc0 ~see
Fig. 12!. This increase is mainly due to the effect of th
boundary condition on the top and bottom surface of
disk. If we includej(0)/b only for the side surface and tak
b5` at the top and bottom surfacesTc practically does not
change.

A change ofj(0)/b from 0 to 20.2 gives a significant
increase ofTc from Tc0 to 5.21Tc0 ~see Fig. 13!. In the latter
case the phase diagram becomes richer. It has regions
inside the superconducting state where various multivo
states are stable~see inset in Fig. 13!. With decreasing field
the system starts as a giant vortex~GV! state, it transits to a
multivortex ~MV ! state and than back to a giant vortex~GV!
state. Within a multivortex state ofL56 andL57 different

FIG. 12. TheH-T phase diagram for a thin disk complete
surrounded by material which enhances the surface supercondu
ity. For j/b520.01 the giant vortex states are the sole stable sta
For comparison the region of existence of the equilibrium~not nec-
essarily stable! L51 state is shown by the thin dashed curve.

FIG. 13. TheH-T phase diagram for a thin disk with both gia
and multivortex states forj/b520.2. Only the regions of stability
of states withL<7 vorticity are shown. The thick solid curves a
the boundaries of the stabilty regions for increasing magnetic fi
Thin solid curves are the boundaries for decreasing magnetic fi
where the dashed curves are those in which the state is in the
tivortex state. The inset is an enlargement of the region deep in
the superconducting state. The dashed curves delimit the sta
regions of the (0:L) multivortex states. The dash-dotted curv
delimit the region of the metastable(1:6) multivortex state.
e

eep
x

configurations are possible. The boundaries of such state
shown by the dash-dotted curves for the case ofL56. For
very low temperature there is also a small region where
(0:3) multivortex state is stable. Notice also that near t
‘‘superconductor–normal-state’’ boundary only the gia
vortex states exist.

Now we will investigate the influence of the supercondu
tivity enhancement by the disk top and bottom surfaces w
respect to the radial side surface contribution. The ratio
the surface area of the disk ‘‘top-bottom’’ versus the one
the radial wall isSt2b /Srad5R/d@1. As a consequence th
contribution from the ‘‘top-bottom’’ surface to the enhanc
ment of superconductivity is the dominant one. To discrim
nate both effects we separate the BC~8! and consider two
cases:

~i! the enhancement of superconductivity on the rad
side boundary only. The corresponding boundary conditi
are

nW •~2 i¹W 2AW !cuz56d/250,
]c

]r U
r5R

52
1

b
cU

r5R

.

~38!

In this case we can make the averaging procedure on the
thickness from the beginning and use the results of Sec
with k50.

~ii ! the enhancement of superconductivity on the to
bottom surface only. The boundary conditions are

nW •~2 i¹W 2AW !cuz56d/25
i

b
cU

z56d/2

,
]c

]rU
r5R

50.

~39!

Here the calculations are similar as in Sec. III but instead
Eq. ~18! we have to solve the equation

S L2
F

2 D M S 2n,L11,
F

2 D2
nF

L11
M S 2n11,L12,

F

2 D50.

~40!

The H-T phase diagram forj(0)/b50 and 20.2 is
shown in Fig. 14 for a disk with enhanced superconductiv
only on the side walls. The correspondingH-T diagram for
the boundary conditions of Eq.~39! is practically the same a

tiv-
s.

d.
ld,
ul-
de
ity

FIG. 14. TheH-T phase diagram for a thin disk with enhanc
ment of superconductivity only at the radial disk side. The regio
of stability of possible states are shown.
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the one with the boundary conditions of Eq.~4! ~see Fig. 13!
which was already discussed in detail. Notice that the ef
of the j/bÞ0 boundary condition on our result is indee
predominantly a result of the disk top and bottom surfac
The enhancement of superconductivity on the disk ra
side boundary influences the results to a much lesser ex
as compared to thej/b50 results. Nevertheless, this sma
effect promotes the penetration of a larger number of vo
ces at magnetic fields close to the nucleation field for
case of large2j/b. For example, when we compare in Fi
5 the two magnetization curves for a disk withj/b520.2
one sees that enhancement of superconductivity on the
wall of the disk increases the maximum value of the vortic
from L514 to L516.

VI. CONCLUSIONS

We studied theoretically how surface enhancement of
perconductivity influences the structure of the vortex state
a thin mesoscopic disk. We found that both giant vor
states and multivortex states can exist in such disks if t
are sufficiently large. Numerous phase transitions are fou
both first order~between states with different angular m
mentum values! and second order~between the giant and
multivortex states with the same angular momentum!. Both
the giant vortex states and the multivortex states can occu
metastable states. Surface enhancement of superconduc
is found to stabilize the multivortex state as the ground s
~i.e., with minimal energy!. We obtained theH-T phase dia-
ct

s.
ial
ent
l
ti-
e

.

ide
y

u-
in
x
ey
d,

-

as
ivity
te

gram and found that surface enhancement significantly
creases the region of existence of the superconducting
~both the critical temperature and the nucleation field!. The
main contribution for this surface enhancement is due to
boundary conditions at the disk top and bottom surfaces.
saddle points between the different vortex states were ca
lated which gives us the energy barrier for flux entrance a
flux expulsion. For intermediate magnetic fields we fou
situations in which more than one flux can enter or exit at
same time.

Finally, it must be noted that our results are only valid
the limit of very thin disks. It allowed us to separate the tw
GL equations because of the fact that the magnetic field m
be taken uniform inside the disk. Notice also that in the lim
k@1 @see Eq.~7!# the same separation of equations is po
sible. Therefore our results can also be applied to desc
vortex structures in extreme type-II superconducting di
shaped samples.
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