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Vortex structure of thin mesoscopic disks with enhanced surface superconductivity
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The vortex state in a thin mesoscopic disk surrounded by a medium which enhances surface superconduc-
tivity is investigated theoretically in the framework of the phenomenological Ginzburg-Landau theory. We
calculated the dependences of both the ground and metastable states on an external magnetic field perpendicu-
lar to the disk plane for different values of the order parameter angular moment, i.e., the vorticity. The
magnetic field-temperature phase diagram is obtained and the regions of existence of the multivortex state and
the giant vortex state are found. We analyzed the phase transitions between these states. Our results are also
applicable for the analysis of the vortex state in extreme type-ll mesoscopic disks.

[. INTRODUCTION tivity and decreases both critical parameters. It was shown
that for a thin type-1l superconducting cylinder it leads to a
The progress of nanofabrication technologies during theminimum cylinder radius below which superconductivity can
last years resulted in an increase of interest in the study afo longer exist’ It is known that the opposite, namely en-
superconducting properties of mesoscopic samples. A mestancement of surface superconductivity, is also possible. In
scopic sample is such that its size is comparable to the carticular, it was found that a bulk superconductor afteld
herence length4) and the magnetic-field penetration length working of the sample surface revealed a surface region of
(\). Mesoscopic disks have been one of the most populagnhanced transition temperatdfeFor such a supercon-
study objects ™ in this respect. The behavior of such struc- ductor the nucleation field was larger than those expected
tures in an external magnetic fie(d) is strongly influenced from a uniform sample. Also both critical parametétise
by the sample shajpeand may lead to various superconduct- critical temperature and the nucleation fietdin be increased
ing states and different phase transitions between thenby the twinning planes inside a bulk samplee, for ex-
Jumps in magnetization were observed when varying an afample, Ref. 18 There have been two other possibilities for
plied magnetic field or temperatur@).? enhancement of superconductivity at the sample surface been
Theoretical studies have shown that in mesoscopic diskdescribed in the literatur@,which are due to contacting the
surrounded by vacuum or an insulator medium two kinds okuperconductor with a suitably chosen medium. One possi-
superconducting states can exist. First, there is a circulasility is to choose for the contacted layer a material which
symmetric state with a fixed value of the angular momentunhas a higher transition temperature in the bulk than the su-
(or the giant vortex The observed magnetization jumps cor- perconductor under study. With other words, this is an en-
respond to first-order phase transitions between the giatancement of superconductivity caused by the proximity ef-
vortices with different angular momentuti. Second, in  fect. Another way of obtaining a surface with enhanced
disks with a sufficiently large radius multivortex structures superconductivity is by making a contact between the super-
can exist which are the analogue of the Abrikosov flux-lineconductor and a semiconductor, such that there is suitable
lattice in a bulk superconductor. These states can be repreverlap of the band gap of the semiconductor with the super-
sented as a mixture of giant vortex ones with different angueonducting gap.
lar momentum. For multivortex states it is also possible to It was shown previously that the physics involved in con-
introduce an effective total angular momentum, which istacts of a superconductor with a medium which enhances the
nothing else than the number of vortices in the disk, i.e., thesuperconducting properties of the surface are analogous to
vorticity. With changing the magnetic field there is a second+the wetting problem of a fluid in contact with a surface and
order phase transition between the multivortex and the giarthat the superconductor—normal-state phase diagram be-
vortex staté. comes substantially richer. For type-l bulk superconductors
The size of the superconducting sample may strongly init leads to a surface phase transition in which the
fluence the magnetic field at which the superconductor tguperconductor/vacuum interface delocalizes from the
normal-state transition takes place. In an infinite cylindersample surface into the interiét These interface delocaliza-
surface superconductivity exists up to the surface superconion transitions are analogous to wetting transitions in ad-
ducting critical magnetic fieltH .3=1.6%H,, but in mesos- sorbed fluids. Further, using ideas from wetting theory, the
copic samples the nucleation field increases with the deshape of a superconducting “drop” near the sample surface
crease of the sample si2e12-1% was calculated? Here we will investigate how this enhance-
The nucleation field and the critical temperature can alsenent of superconductivity at the boundary influences the su-
be influenced by changing the conditions at the sample superconducting state in mesoscopic disks.
face. Usually, the contact of a superconductor with a normal In the present paper we investigated the influence of sur-
metal(the proximity effectis mentioned in this respetiee, face enhancement of superconductivity on the vortex struc-
for example, Ref. 16 This effect suppresses superconduc-ture of a thin mesoscopic disk. We use the phenomenological
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Ginzburg-LandayGL) theory. Although this theory has only tion depth of the order parameter into the surrounding
a firm mathematical derivation in a narrow range ofmedium!® For both the superconductor-vacuum and the
both temperature and magnetic field close to thesuperconductor-insulator boundary one bas«. The case
superconducting—normal-state phase bourlfaryurns out  b<0 corresponds to surface enhancement of superconduc-
that it gives also very good results inside the superconductivity. The opposite casé>0 corresponds to surface sup-
ing phase diagram. In particular, it was used successfully tpression of the superconducting order parameter. The bound-
describe mesoscopic samples in the whold-T  ary condition for the vector potential has to be taken far
region3-111423 away from the disk where the magnetic field becomes equal
The paper is organized as follows. In Sec. Il we presento the external applied fieldl
our theoretical model and indicate how the influence of the
boundary is included through a specific boundary condition.
In Sec. Il we discuss the giant vortex states. The stability of
multivortex states and transitions between them are investi-
gated in Sec. IV. In Sec. V we give thé-T phase diagram wheree, denotes the azimuthal direction.
for thin disks and investigate the influence of superconduc- Using dimensionless variables and the London gauge
tivity enhancement resulting from the specific boundary congiy A=0 we can rewrite the system of Eq4)—(3) and BC
ditions at top and bottom surface of the disk as compare t@4) in the following form:
those at the disk radial boundary. Our results are summarized

- 1 .
Al m=3Hpé,, (5)

in sec. Vi (¥ =R)2y=y—ylyl? ®)
Il. THEORETICAL MODEL 1
2NN KT e T LK) 2A
We consider a mesoscopic superconducting disk with ra- KCAA 2i WV VIt~ YA, @)
dius R and thicknessl surrounded by a medium which en-
hances superconductivity at the sample surface. The external . L i
magnetic fieldd = (0,0H) is uniform and directed normal to n-(=iV-~A)y S=5¢ . ®

the disk plane. We have to solve the system of two coupled
nonlinear GL equations which determine the distribution ofHere all distances are measured in units of the coherence
both the superconducting order parame®i(r), and the length é=#/\2m[a|, the order parameter it o= \[a|/B,
magnetic fieldor vector potentialA(r)] inside and outside the vector potential it/i/2e¢, k=N\/¢ is the GL parameter,
the superconductor, and\=cym/w/4eWV, is the London penetration depth. We
o, measure the magnetic field ikl ,=ch/2e&?=x\2H,,

1 . 2eA whereH .= J4ma? B is the thermodynamical critical field.

—( —ihV— T) V=—aV¥-pY|V? ) The free energy[g)f the supercond){Jcting state, measured in
F0:H§V/87r units, is determined by the expression

- - - Am.
VXVXA= T, @ F= 2] [ av{ 1ot g1t 19 - g
where the density of the superconducting Currjém given
by +K2[ﬁ(r*)—ﬁ]2)+% 3@ dSwF}, 9
j= .e—ﬁ(w*v*qf—qfv*\y*)—4—e2|qf|2A”. 3 e e
im mc h(r)=VXxA(r).

Here F=(ﬁ,z) is the three-dimensional position in space. The last term in Eq(9) is the surface contribution which is

Due to the circular symmetry of the disk we use cylindricaldue to the boundary conditiof8) and it provides continuity

coordinatesp is the radial distance from the disk centeris  of the normal component of the superconducting current.

the azimuthal angle and theaxis is taken perpendicular to One can see that in tHe<0 case this term reduces the free

the disk plane, where the disk lies betwesn—d/2 andz energy.

=d/2. We restrict ourselves to sufficiently thin disks such that
Equations(1)—(3) have to be supplemented by boundaryd<é,\. In this case, to a first approximation, the magnetic

conditions(BC) for W(r) and A(r). The condition for the field is uniform inside the disk and equal to the external one,
superconducting condensate on the sample surface can ii§-» We are allowed to neglect the contribution of the super-

general be written d&212224 currents to the magnetic field. Within this approxirrjatiEm we
have to solve only the first GL Eq(6) with A=A,
[ . 2eA i =(0Hp/2,0).
n ( _'ﬁv_T)qf SZB‘P . (4) First, we determine the dependence of/(r). Expanding

. it in a Fourier seriesy(r)= 3, (p)explkz) and using the
wheren is the unit vector normal to the disk surface dnid ~ same BC(8) on the top ¢=d/2) and bottom £= —d/2) of
a surface extrapolation length which is the effective penetrathe disk surface we obtain a nonlinear equation for dach



PRB 62

exp(ikd)+1__kb 10
explikd)—1 > (10

In the d— 0 limit the lowestk solution gives
k2= 2 11

After substitutingk—ik we have = ¢(5)coshkz (where
nowk is real:k=+—2/bd). Because- d/2<z<d/2 we have
—+\—2d/b<kz<+—2d/b and consequently, fgd/b|<1,
z/r(F) varies very slowly along the direction. Therefore we

are allowed to average the order paramet€r) over the
disk thickness as it was done in Ref(this averaging cor-

responds also to the thin-film limit of the results of Ref):25

L dfd2
(g(r))= af_dlztp(p)coshkz dz

- sinhkd/2 N

— ¥(p).

=i(p)- ka2 (12)

The same averaging of E¢p) yields for ¢(p)

pap”ap p? <9<p

2
E —K?
2

¥(p)

. d (
+1iH % +
=4(p) = d(p)|(p)?, (13)
with the boundary condition
W(p)
ap

(14)

=— Blﬂ(P)

p=R

After this averaging the problem fcw(F) is reduced to a
two-dimensional one fod/(ﬁ) like in Refs. 5 and 6. But in

contrast to Refs. 5 and 6 there is still a dependence on the

disk thickness which is determined by the paramkierEqg.
(13). Notice also that the boundary conditi@t¥) introduces
a dependence on the phenomenological parantettrde-
termines the value of the derivative gfat the surface. It is

obvious that for b<O we have a positive derivative
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same functionaF(H) dependence in case of giant vortex
states.
The linearized GL equation fdi(p) takes the form

Hp\?

[ f— f—_ - __ 1 L2
Lf=0, L p— p > 1-k°. (15

19 4 (L
pdp” dp

Thel operator differs by the last constant term from the one
studied previously:?® The superconducting state corre-

sponds to the negative eigenvalues of theperator. The
nucleation fieldH,, . for the giant vortex state with fixeld is

reached when the minimal eigenvalue of theperator for
the same angular momentum becomes equal to zero.

The eigenvalues and eigenfunctions of fheperator are
found from the equation

LfLn(p)=AfLn(p),

wheref| ,(p) satisfieSp(af/ap)|p:0=O at the disk center.
The indexn=1,2, . .. enumerates the different states for the
sameR andL values. The eigenfunctions of E(L6) are

Hp2 L/2 Hp2 Hp2
fL,n(P):<T) exg — 7~ |M{ —wn,L+1——],

(17)

where M(a,c,y) is the Kummer functiod! The BC (14)
results into a nonlinear equation foy,,

(16)

. d RM . 1q> v ®
T2 /M T T
XM| —vy+1L+25 =0, (18

where® =HR? is the magnetic flux through the disk in the
absence of any flux expulsion. The eigenvalues afre

A=H(1+2v,)—1-K2. (19

The magnetic-field dependences/offor the lowest angular
omental. are shown in Figs. (B)—(c) for three differentb
values. All numerical calculations were done for a disk
thicknessd/ &= 0.1 which is within the thin disk approxima-
tion. The negative. values(dotted curves in Fig.)lcorre-
spond to vortices with fluxb directed opposite to the appied
magnetic fieldthey are the analog to “antivortices” in con-

dy(p)ldp at the surface, i.e., surface enhancement of supekentional superconductarsThe dashed curve in Fig(d) is

conductivity.

Ill. GIANT VORTEX STATES

for the first radial excited state, i.e,=0 andn=1. The
dotted horizontal line corresponds to the=0 level. In Fig.
2 the radial dependence of the superconducting dehgjty
is shown for all the possible values atH=H_, in case of

The giant vortex state has cylindrical symmetry and con¢/b=—0.2. The same curve conventions are used as in Fig.

sequently the order parameter can be written yg%)

1. Notice that for the excited state=0, n=1 (dashed curve

=f(p)exp(iL¢). The stable states are obtained in the follow-in Fig. 2) the order parameter vanishes inside the délp

ing way. From thdinearizedGL Eq. (13) with the BC(14)

=1.25) and a ringlike vortex is formetf From Fig. 1 one

we find f(p) up to a multiplying constant. This function is can see that with increasing/b|: (i) the eigenvalues\ be-

then inserted into the free-energy expressi@nwhich after
minimization determines the constantfifp) and the energy

come more negativéii ) the magnetic-field range over which
solutions of Eq.(18) can be found increases; afii) the

value corresponding to the stable state. It can be shown thaumber of possible solutions increases substantially.
the present approach and the one of Ref. 5, which was based The eigenvalueg\ determine the minimal free enerdy

on a solution of the nonlinear GL E@13), result into the

of the giant vortices. For the giant vortex state we consider
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FIG. 1. The magnetic-field dependence of the lowest eigenvalues of the linearized first GL equation for different angular mantenta

for (a) é/b=0, (b) ¢/b=—0.1, and(c) ¢&/b=—0.2.

only states which lie below thE=0 level. In this approxi-
mation the order parameter and minimal energy value are

R |2 1/2
W(p)= —All) fLn(p)expil @)

NS T S,

FIG. 2. The Cooper pair density for the giant vortex states with
angular momentd =0,1,2 (solid curve$, the antivortex statek
=—1,—2 (dotted curves and the ring vortex statt =0,n=1
(dashed curveat the magnetic fielH=H, for R/¢=2.0, &/b

=-0.2.

and

2md 15
F=—A2——-— (21
(20) Vol

respectively, where

R R
l1= fo pdp i (), 1= fo pdp 7 1(p).

The dependence d&f on the magnetic fieldH are shown
in Fig. 3 for the same angular momeritsshown in Fig. 1,
with the exception of Fig. @) where theF(H) curves with
L>11 are not plotted. The highest value of vorticity in this
disk is L=16 [see Fig. 1c)]. The dotted horizontal line in
Fig. 3 (and in the following figurescorresponds to the zero
energy level. From a comparison of the magnetic-field de-
pendence of-(H) for £/b=0 and the one witht/b+0 we
clearly observe an enhancement of superconductiviith
increase ofl£é/b|) and the number of possible giant vortex
states increases. Also a significant increase of the surface
nucleation fieldH . is found. The envelope of the lowest
parts of the curves in Fig. 3 represents the field dependence
of the ground-state energy.

In Fig. 4 the ground-state energies are shown for different
values ofé/b. Notice that the enhancement of superconduc-
tivity at the surface leads to a decrease of the energy of the
ground state. With increasing applied field the-L+1
phase transitions take place at the field where the corre-
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FIG. 3. The free energy of the giant vortex states with different angular morhessaa function of the external magnetic field fay
&/b=0, (b) £&/b=-0.1, and(c) ¢/b=—0.2. For the last case only the states wlitke 11 are shown. The maximal vorticity value lis
=16 in this casédsee Fig. 1c)].

sponding curves crog$or example, the 6-1 transition oc- tization M= —(dF/dH). The correspondindvl (H) curves
curs atH=1.09&8., for ¢/b=—0.1). The crossing points are shown in Fig. 5. The phase transition from the supercon-
are practically independent of the value &b. In the inset ducting to the normal state is of second ordlall curves

of Fig. 4 the|4(r)|? dependence is shown fétb=—0.2 at  F(H) reach theF=0 line with zero derivativg The curves
fields corresponding to the=0 andL=1 ground states F(H) in Fig. 3 which are situated above the ground-state
(H=0.5H., and H=1.5H,, respectively. The L—L+1 energy correspond to metastable giant vortex states. With
transitions are of first order and lead to jumps in the magne-

T T T T T
T T T T T - E_,/b =0 y
0 i L e -——— ﬁ/b:-O 1 =}
Eb=0 _.—" e :
L T 7 h S =-02 1
4 e e RE=2.0 i/b_ 02 &b <
oF ol - 1 — &/b=-0.2 (top & bottom)
L~ ./'/ ] .
12| - ]
- J/ Jamos o Tamsis ]
SN L= A |
/7 ~ | K | 1
s S 3pmmmme - / - ] |
20F / -0.2 - 9 } l/‘ e } -
7 | ;7 | 1
2F 7 (1\ ! /;/ . . 2 _
F7 0 1 20 1 2 ] L ; L L ; 1 L
. L. 0 2 4 6 8 10
0 2 4 6 8 10 H/H,,

FIG. 5. The magnetic-field dependence of the disk magnetiza-
FIG. 4. The ground-state energy of the giant vortex state fortion for the ground giant vortex state corresponding to the states of
different values of the&/b parameter. The inset depicts the radial Fig. 4. For comparison with the calculations from Sec. V the mag-
Cooper pair density for two magnetic fields, corresponding to thenetization of a disk with enhancement of superconductivity only on
L=0 andL =1 state, where the same curve conventions are used ake top and bottom surfaces is shown by the thin solid curve for the
in the main figure. case¢/b=-0.2.
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increasing applied field the transition from the Meissner statene nonzero coefficier(t(L?):L. This allows us to check the
(L=0) to the normal state goes through a set of consecutivgiapility of a giant vortex with respect to transitions into a
first-order transitions between theandL + 1 giant vortices  itivortex state.

which is finished by a second-order transition to the normal | ot us consider states which are built up by only two
state. Notice that in thé/b=—0.1 casdinsetin Fig. 3b)]a  components in Eq(22). This restricts our analysis quantita-
metastable state with=9 occurs which does not become a tjyely but, nevertheless, will give the correct qualitative be-
ground state. This state is separated fromltkeB state be- nayior and facilitates the physical insight into the problem.

cause the crossing point of the corresponding eigenvalugne free energy of a two-component state is
curves of Fig. 1) lies higher than theA =0 level. With

increasing| £/b| value this crossing point moves below the ~ F=C} A, +C{ A__+4C? C? A, | +2A, CZ B,

A =0 level and a transition from the=8 state to theL v 2 voE o e

=9 state becomes possible. +2AL2CEZBL2, (25
The free energy is strongly influenced by the enhance-

ment of superconductivity at the disk surface. The boundaryvhere

condition (4): (i) givesb terms which leads to & shift in

the energyA tquards lower energyEg. (19)] due to the A= @ depfﬁ(p),

boundary condition on the top and bottom of the disk, and Vo Jo i

(i) modifies the equation for the boundary conditici8)

giving v, ab dependence which is due to the radial boundary 7d (R 2 2

condition, i.e., the side boundary of the disk. ALy L= Tfo pdp TL,(P)TL (p),
IV. MULTIVORTEX STATES 27d (R

BL=—| pdpff(p),
For sufficiently large disks the giant vortex state can Voo :

break up into multivortice$-8 In order to investigate such - ; ;
. ndA, is determined by Eq19). Although, in generaC,
structures in our case we use the method proposed by Scﬁ- L y Eq19) g g L

weigertet al® and Palacio® and extend it here to determine 'S @ Complex number, for our two-component staig is a
also the stability of the different multivortex configurations. real number. Minimization of Eq(25) with respect toC,
Following Refs. 7 and 23 the order parameter of the multi-and Cy., gives the possible equilibrium states:

vortex state is written as a linear combination of the eigen- (i) the normal state,

functions of the linearized GL Eq15),

0 0 .
) ci¥=c{9=0; (26)
lﬂ(P):LJZ:O ; Cuy nfLy n(p)expliLje), (22 (i) the giant vortex states,
whereL is now the value of the effective total angular mo- CiV=0, C{O=(-A_B,/A )"
mentum which is equal to the number of vortices in the disk,
andn enumerates the different radial states for the same CO=(-A_ B /A ) c@=0; 27
We restricted ourselves to the lowest state eigenfunctions ! o 2
and took onlyn=0. The indexn will therefore be omitted (iil ) the multivortex states
from now on.
Sl_Jbstituting Eq(2_2) in the free-energy expressi@8) we —A_A_B_ +2A_ A, B, 12
obtain F as a function of the complex parametdS, }. cO= =+ r 2 22 S
Minimization of F with respect to these parameters allows us ' ALAL—4AL L,

to find the equilibrium vortex configurations and to deter-

mine their stability. The extremal points are determined by —A_A B +2A A B vz
. (0) . (0) _ 2 1 2 1 1'=2 1
the solutiongC;™’} of the set of equations CclV==+ . (289
j 2 AL AL —4A?
17k Lilo
%:o, L;=0,...L. (23)  The components of the matr{®4) are
L.
J : , 9°F
The stable vortex states are determined by the usual crite- :12CE AL +8Cf AL L.T4A_ B,
rium for a multivariable function: the matrix of second de- z?CEl v 2 T2 r
rivative (also called the Hessian matyjx
&ZF aZF 2 2
- (24) (9C2 = 1ZCL2A|_2+ 8CL1A|_1’|_2+ 4ALZBL2'
9CLICL, c —cO ¢ —cO L2
LJ- Lj' Ly Ly
L - . . 9°F
must be positive definite. The giant vortices are also de- W:16(:L1CL2AL1’L2, (29
scribed by Eq.(22): they correspond t(ﬁ(L?) except for 9C, 90,
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Substituting the solution&6)—(28) into Eqg. (25) we obtain  and
the energies of the different equilibrium states &indm Eq.
(29)] the corresponding conditions of their stability. &°F

For the normal statewe obtainF=0. Notice from Eg. 9C2 :_SAL18L1>0’
(29 that for negativeALl(Lz) this state is always unstable. L
The energies of thgiant vortex stateare 2F
FL=—A2B?/A., i=12 (30) P, :A_Ll(ALzAtlBLz‘ZALlAtl,LzBL1)>Ov (32)
I 1 1 2
They coincide with theF of Eq. (21). The conditions for ¢4 the giant vortex states with, and L, vorticity, respec-
stability are tively.
P2F 4 The superconducting current density has only an azi-
- _ muthal component and is given b
o ALZ(A,_lA,_ZB,_l 2AL AL, L,BL)>0, P g y
1 ) ( ) ALiBLi<Li Hp)fz( ) . 12 (33)
(p)=———"|———5|f(p), =12
°F O N PR AL
> = —8A_B,>0, (31
[?C'-z The energy of thenultivortex statebecomes

- AElALZBfl_ AEZALlBEZ_l— 4AL1AL2AL1 'LZBLlBLZ

FL L= , (39
12 ALAL—4AT |
and the corresponding conditions for its stability are

?F  8AL(—AL A B +2A AL (,BL) 0
= > ,

iCt | ALAL—4AY

PF  BAL(—ALALBL+2AL AL BL)
_ 2 2 1 2 1 1'=2 1 >O, (35)

acfz ALlAL2—4AflyL2

PF  9*F ( 9°F )2 64— ALALBL F2AL AL LB (ZALAL B H2AL AL (,BL) 0
= >0.

oct, act, 1 9CLIC, ALAL—4AT L,

The superconducting current density in the multivortex state is

. Ll Hp L2 Hp Ll+ Lz
JLl,L2<p,qo>=(C£°1>)2fﬁl<p>(;—7 +(C£‘;>>2fﬁz<p>(7—7 +COcOfL ()L, (p) ~Hp|cogL,—Ly)e
(36)
|
with C(,_Ol) andC,(_OZ) from Eq. (28). present in Fig. @). Notice, that the ringlike vortex L

The energies of the equilibrium vortex states are plotted™ 0 "=1) for &/b=—0.2 became unstable too.

PR ; : : In case of¢/b=0 a disk with radiusR/¢é=2.0 does not
in Figs. a)—(c) for different values of/b and disk radius . . :
R/¢=2.0 and in Fig. &) also for a larger radiui/¢=3.0. exhibit anystablemultivortex states. The multivortex states

. o are unstable and correspond to the saddle points of the
The correspondindgvl(H) curves are shown in Figs.(a—

g v ' g F(C_.,C_..) function. Their energieswhich are shown by
(d). The giant vortex statgsolid curve$ are given by theit. 12

; ] dotted curves in Fig. Bare slightly larger than the energies
value and the multivortex statédashed curvey (L1:L2),  of the corresponding giant vortices. The saddle points are the

i.e., the angular momentum values of which they are comiowest energy barriers which separate the different stable gi-
posed. There exist regions of magnetic field where the giandnt vortex states. At the magnetic field where the giant vor-
vortex states become unstable which result in free-energiex loses stability its energy becomes equal to the energy of
curves which extend over a smaller magnetic field range thathe saddle-point state. For the considered radius the states
in Figs. 3a)—(c). For example, the separatéd=9 state of  with smallL=0,1,2 transit through a first-order transition to
Fig. 3(b) for ¢/b=-0.1 is no longer stable and thus not states having a differerit value. For example, foé/b=0
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0.2 T T T T [ T T

(1:\~2) oF-- o (1:6) I (1:(\)I —(0:7; I 5 6 - ]
i s . 7 ]
i e N\ ST

Py

z-
Z

FIG. 6. The free energy of the ground state and some of the metastable and saddle-point states as a function of the external magnetic field
for: (a) é/b=0,R/I¢=2.0; (b) é&/b=—0.1R/£=2.0,(c) é&/b=—0.2R/¢=2.0, and(d) £&/b=0,R/£=3.0. The solid and dashed curves are the
stable giant vortex and multivortex states, respectively. The saddle-point states are sliawtb)nand(d) by the dotted curves where in
(b) only those saddle-point states are shown which lead to transitions between diffestanes.

the energies of th& =0 andL=1 states are equal & With increasing &/b| the phase transitions between states
=Hg,, while the %1 transi.tion takes place at with different L values become more complicated and tran-
=1.23., when increasing the field. sitions withAL > 1 are possible. For example, for a disk with

With increasing|£/b| the multivortices become more ¢/h=—0.1 R/¢=2.0[see Fig. &)] the barrier between the
stable and they can even become the minimum of th¢ _g ang| =2 states has the lowest value. In Fig. 9 the
F(C.,,CL,) function. For example, in Fig. 8 the contour ..o, 010t of the |2 distribution for the(0:2) saddle point
plots of this function for two different multivortex states in a i shown for different magnetic fields. With increasing mag-
disk with radiusR/¢=2.0 and¢/b=—0.2 are shown. AH = \oic field we clearly see that two vortices move away from

;hlé?;gé tt;]: I\(/I(()a:igs)ni[?tsetz;tse Léuztﬂézcrois;mlrbolig;( ??a\]te the center towards the edge of the sample. It allows us to
g interpret the transition betwedn=0 andL=2 states with

correspond to minima of the enerdgthe L=2 state is the . i . : ;
local minimum and the.=0 state is the global opeAt H increasing field as the simultaneous penetration of two vor-

—2.3H,, the (0:4) multivortex state corresponds to the tices into the disk. From Fig.(B) we find that in this disk
minimum of energy[solid dot in Fig. 8b)] and both the With increasing field the following transitions occur:—2
Meissner state and the=4 giant vortex state became the —4—6—7—8—"" normal stat¢ while with decreasing
saddle points of th&(C_,C.)) function. field we hav_e_ ‘normal staté _—>8_—>7—>5—>(0:5)—>3—>0.
For &/b=—0.1 multivortices exist only as metastable These transitions are shown in Figbyby the arrows. In the
states. The transitions between the giant and multivorteRresent approach we find that penetration expulsion of
with the samevorticity are of second ordefthey are indi- Mmore than one vortex int¢from) the disk is possible. A
cated by open circles in Figs. 6 ang With increasing mag- similar situation is possible foé/b=0 when the radius of
netic field the single vortices in the multivortex state becomehe disk is sufficiently large. For example, for a disk with
broader, they move towards each other and merge in a cofR/¢=3.0 [Fig. 6(d)] we obtain the transitions: -62—3
tinuous way into a giant vorteXFor £&/b=—0.2 [Fig. 6(c)] —4—5— "“normal stat& with increasing magnetic field,
the multivortices exist in the ground state fo<B<6. At  and “normal staté —5—4—2—0 with decreasing mag-
H=4.829, this multivortex ground state becomes the gi- netic field[see also the corresponding arrows in Figl)}.
ant vortex one and foL=7 only giant vortex states are This picture of many vortex penetratidior expulsion
found as ground state. differs from Ref. 29 where it was claimed that the barriers
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FIG. 7. The magnetic-field dependence of the disk magnetization for the stable states corresponding to the states of Fig. 6. The vertical
dotted lines give the ground-state transition fields. S@liakhegl curves correspond to the giafmhulti-)vortex states.

between thd. andL*1 states have the lowest value. We magnetic fieldH=2.3™., the giant vortex separates into
found that theL —L =1 transitions take place in disks for a single vortices and at the field=3.36H., becomes a giant
small maximum value of vorticity or at magnetic fields closevortex state again. This remarkable phenomenon is illus-
to the “superconducting—normal-state” transition point. Be-trated in Fig. 10 where we show a contour plot of thi¢?
tween these two limiting regimels—L =N transitions are distribution for this multivortex state for different magnetic
possible withN>1. Our results are also in agreement with field values. ForL=6 two kinds of stable multivortex
Ref. 30 where it was found numerically that several vorticesconfigurationd’ are possible(i) single vortices on a single
can enter at once for disks with sufficiently large radius.  ring, and(ii) a ring structure with one vortex situated in the

In Fig. 6(c) we notice that forL=3 vorticity there is a center of the disk. The energy of such stateslfer6,7 vor-
re-entrant(“ giant — multi — giant’) transition. At the

RE =20
Eb=-02

2.5

2.0

15¢

1.

O

J/ﬁ

0.

=3
O

00 05 10 15 20 25 O 05 1.0 15 20 25
C

0 [
H=14H, H=23H,

FIG. 8. Contour plot of theF(CLl,CLZ) function for two differ-
ent magnetic-field values. The black circles correspond to the H/MH =14
minima and the saddle points are shown by crosseqa)irthe
Meissner statéwith L=0) has the lowest energy while i) the FIG. 9. Contour plot of the superconducting density for the
(0:4) multivortex state is the ground state. (0:2) saddle-point statgsee Fig. €c)] for different magnetic fields.
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state in Fig. &) at the magnetic field region 0.8IH/H,
=<0.46]; (ii) the Hessian matrix hasvo negative eigenvalues
[for example, thg(1:2) state in Fig. 6d) at the same field
region]. As a result in Figs. @) and (d) there are connec-
tions between curves corresponding to two different unstable
states. These unstable states differ by the number of the
H/H,, =2.6 H/H, =28 negative eigenvalues in the Hessian matrix. Moreover, by the
same reason there are unstatllel(+ 1:L +2) states corre-

sponding to barriers between thé&:(+1) and C+1:L
+2) unstable statdgor example, in Fig. &) the energy of
the (0:1:2) state is showh Due to the presence of such
states there is the possibility to realize the abavel =2
transitions between stable giant vortex states through.the
—L=*1—L=*=2 transition sequence via the intermediate un-
stableL+1 state.

The above transiton in a disk withb=—0.1,R/£=2.0

FIG. 10. Contour plot of the superconducting density for thefrom the (0:5) multivortex state td. =3 giant vortex state

(0:3) stable multivortex statgsee Fig. €c)] for different magnetic W'th decreasmg magn(_etlc field also '.S reallzgd through .t_he
fields. intermediate saddle-point state. The first step is the transition

from the(0:5) stable multivortex to th€3:5) unstable state
ticity is plotted in the inset of Fig. @) and the corresponding [via the (0:3:5)saddle-point ong After that the transition
contour plots of the density distributios|? are given in Fig. 0 theL=3 state takes place which corresponds to expulsion
11 at the magnetic fielth = 3.3H,, for L=6 vorticity and at  ©f two vortices from the disk.

H/H, =3.0 H/H, =32 H/H,, =34

the field H=3.6H,, for L=7 vorticity. The difference in Notice that for the disk parameters which we used, an
vortex configurations is clearly visible from these contourincrease of the number of components in E2p) does not
plots. lead to different vortex states in the ground state. In general,

It should be noted that in order to find the region of sta-for larger disks more complicate ponfigurations with a larger
bility of the multivortex states in the above analysis we had?umber of components are possiee, for example, Refs.

to take the order parameter as a linear combinatiothiafe 7and 8.

components in Eq22) and to minimize the free energy with

respect to three variational paramet&s. The giant and V. H-T PHASE DIAGRAM

multivortfex states considered before cor.respond to the extre- Up to now all our calculations were done for fixed tem-
mum points of theF(C, ,C, ,,C, ) function. The contour  peratureT. The temperature is indirectly included in the units
plots of theF(CLi,CLj) function for different (;:L;) states we used, namely, intd,\,H.,H., whose temperature de-
can be represented as a projection of B, ,C_,,C,,)  Pendence is as follows:

function on the correspondingC(i,C,_j) plane. Now the T |12 12
Hessian matrix oF(CLl,CLZ,CLs) is 3X 3 dimensional and E=¢(0)|1—- T—‘ , )\=)\(0)‘ 1- T ,
hasthree eigenvalues. Consequently, we can have two dif- °0 °0

ferent kinds of saddle pointsi) the Hessian matrix has only T T
onenegative eigenvalugor example, fol. =2 the unstable H.= Hc(o)‘ 1- T Heo= ch(o)‘ 1- el (37)

(0:6) (1:6)

Now we will insert temperature explicitly and ugé0) and

H.,(0) as the basis for our units. Temperature will be ex-

pressed in units of the zero magnetic-field critical tempera-
H/H, =33 ture T,y for the case£(0)/b=0. After the corresponding
rescaling of distances, magnetic field, and energy we can use
our previous results with the only exception that for tempera-
RE=20 tures larger thanT., the eigenvalues of Eq(l6) are A
Eb=-02 =H(1+2v)+1—Kk? instead of Eq(19).

The H-T phase diagram is shown in Figs. 12 and 13 for
different values of¢(0)/b. The regions inside the different
H/H, =36 curves for fixed. correspond to the stability region of thiat

state. Notice, that the stability regions of thestates are
much smaller than the regions of existence of these states
following only from the solutions of Eq23). For example,

in Fig. 12 the boundary of the region of existence of the

FIG. 11. Contour plot of the superconducting density for two equilibriumL =1 state is shown by a thin dashed line. One
stable multivortex states with=6 andL=7 vorticity [see Fig. can see that the low-field boundary between the neighbor
6(c)] for different multivortex configurations. states differs strongly while the high-field one changes
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FIG. 12. TheH-T phase diagram for a thin disk completely ~ FIG. 14. TheH-T phase diagram for a thin disk with enhance-
surrounded by material which enhances the surface superconductisent of superconductivity only at the radial disk side. The regions
ity. For é/b=—0.01 the giant vortex states are the sole stable statesf stability of possible states are shown.

For comparison the region of existence of the equilibrignot nec-
essarily stablglL =1 state is shown by the thin dashed curve.  configurations are possible. The boundaries of such states are
shown by the dash-dotted curves for the casé ef6. For
slightly. Notice that the critical temperatufig is very sen-  very low temperature there is also a small region where the
sitive to the value o£(0)/b. A change of¢(0)/b from 0 to  (0:3) multivortex state is stable. Notice also that near the
—0.01 results in an increase of from T, to 1.2, (see  “superconductor—normal-state” boundary only the giant
Fig. 12. This increase is mainly due to the effect of the vortex states exist.
boundary condition on the top and bottom surface of the Now we will investigate the influence of the superconduc-
disk. If we include&(0)/b only for the side surface and take tivity enhancement by the disk top and bottom surfaces with
b=oc at the top and bottom surfacg&g practically does not respect to the radial side surface contribution. The ratio of
change. the surface area of the disk “top-bottom” versus the one of

A change of¢(0)/b from 0 to —0.2 gives a significant  the radial wall isS,_,,/S,,q=R/d>1. As a consequence the
increase off; from T, to 5.21T 4 (see Fig. 138 In the latter  contribution from the “top-bottom” surface to the enhance-
case the phase diagram becomes richer. It has regions degnt of superconductivity is the dominant one. To discrimi-
inside the superconducting state where various multivortexate both effects we separate the B and consider two
states are stablgee inset in Fig. 13 With decreasing field cases:
the system starts as a giant vor&V) state, it transits to a (i) the enhancement of superconductivity on the radial
multivortex (MV) state and than back to a giant vor&V)  side boundary only. The corresponding boundary conditions
state. Within a multivortex state &f=6 andL=7 different are

. .. Y 1
(=iV=A)|;=+g4p=0, — =—= .
sl R S ] n-(—i )lz= +a2=0 |, b‘/’p:R
P L=5 (38
e _ : .
Ny T In this case we can make the averaging procedure on the disk
= SO thickness from the beginning and use the results of Sec. llI
S MV~ Y )
=4 [T Ty ] with k=0.
§ 2 3 (i) the enhancement of superconductivity on the top-
T/T .
< bottom surface only. The boundary conditions are
RE©O)=20 | ]
EOyb=-02 .. i Yy
n'(—lv—A)¢|z=id/2:Bl// e Y
- 7= +dP2 Ply=r

5 (39)

Here the calculations are similar as in Sec. Ill but instead of

FIG. 13. TheH-T phase diagram for a thin disk with both giant Ed. (18) we have to solve the equation
and multivortex states fof/b= —0.2. Only the regions of stability

of states withL=<7 vorticity are shown. The thick solid curves are — Ml =» L+ 12 . v® Ml —p+1 L+22 =0
the boundaries of the stabilty regions for increasing magnetic field. 2 ' 2 L+1 ' 2 '
Thin solid curves are the boundaries for decreasing magnetic field, (40

where the dashed curves are those in which the state is in the mul-

tivortex state. The inset is an enlargement of the region deep inside The H-T phase diagram fo(0)/b=0 and —0.2 is
the superconducting state. The dashed curves delimit the stabilighown in Fig. 14 for a disk with enhanced superconductivity
regions of the (OL) multivortex states. The dash-dotted curves only on the side walls. The correspondifigT diagram for
delimit the region of the metastab{é:6) multivortex state. the boundary conditions of EQR9) is practically the same as



9674 S. V. YAMPOLSKII AND F. M. PEETERS PRB 62

the one with the boundary conditions of E¢) (see Fig. 13  gram and found that surface enhancement significantly in-
which was already discussed in detail. Notice that the effectreases the region of existence of the superconducting state
of the &/b#0 boundary condition on our result is indeed (both the critical temperature and the nucleation jielthe
predominantly a result of the disk top and bottom surfacesmain contribution for this surface enhancement is due to the
The enhancement of superconductivity on the disk radiaboundary conditions at the disk top and bottom surfaces. The
side boundary influences the results to a much lesser exteaiddle points between the different vortex states were calcu-
as compared to thé/b=0 results. Nevertheless, this small lated which gives us the energy barrier for flux entrance and
effect promotes the penetration of a larger number of vortiflux expulsion. For intermediate magnetic fields we found
ces at magnetic fields close to the nucleation field for thesituations in which more than one flux can enter or exit at the
case of large- ¢/b. For example, when we compare in Fig. same time.

5 the two magnetization curves for a disk wighb=—0.2 Finally, it must be noted that our results are only valid in
one sees that enhancement of superconductivity on the sidke limit of very thin disks. It allowed us to separate the two
wall of the disk increases the maximum value of the vorticityGL equations because of the fact that the magnetic field may

fromL=14 toL=16. be taken uniform inside the disk. Notice also that in the limit
k>1 [see Eq(7)] the same separation of equations is pos-
VI. CONCLUSIONS sible. Therefore our results can also be applied to describe

) ) vortex structures in extreme type-ll superconducting disk-
We studied theoretically how surface enhancement of sushaped samples.

perconductivity influences the structure of the vortex state in
a thin mesoscopic disk. We found that both giant vortex
states and multivortex states can exist in such disks if they
are sufficiently large. Numerous phase transitions are found,
both first order(between states with different angular mo-  This work was supported by the Flemish Science Foun-
mentum valuesand second ordetbetween the giant and dation(FWO-VI) and the Belgian Inter-University Attraction
multivortex states with the same angular momentugoth  Poles(IUAP-VI). One of us(S.V.Y.) is supported by a fund-
the giant vortex states and the multivortex states can occur asg from DWTC (Belgium) to promote tle S & T collabora-
metastable states. Surface enhancement of superconductivitpn with Central and Eastern Europe. Stimulating discus-
is found to stabilize the multivortex state as the ground statsions with J. Indekeu, E. Montevecchi, V. Schweigert, J.
(i.e., with minimal energy We obtained thé1-T phase dia- Palacios, and B. Baelus are gratefully acknowledged.
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