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Theory of disordered itinerant ferromagnets. Il. Metal-insulator transition
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The theory for disordered itinerant ferromagnets developed in a previous paper is used to construct a simple
effective-field theory that is capable of describing the quantum phase transition from a ferromagnetic metal to
a ferromagnetic insulator. It is shown that this transition is in the same universality class as the one from a
paramagnetic metal to a paramagnetic insulator in the presence of an external magnetic field and that strong
corrections to scaling exist in this universality class. The experimental consequences of these results are
discussed.

[. INTRODUCTION in paper | that the Goldstone modes, while they contribute to
the leading frequency nonanalyticity Gf(Q(4~29) in the
It is well known that interacting electrons in the presenceconductivity, yield a prefactor that is dd(1), while the
of quenched disorder at zero temperature form a disorderediffusons contribute a prefactor that is 6f(1/(d—2)) and
Fermi-liquid or paramagnetic metal state that shows, witdhus diverges ad—2. Since it is known that this singularity
increasing disorder, an instability against the formation of aﬁjnves the transition near two d_|men5|o7n$,follows tha_t the_ .
insulator. This Anderson-Mott transitioPM to Pl in the S:#;f’/tig?e ngggl;/jo ggt cgntr(l:ktcj)l:]tseet(;)ut:r(]ecgsyg}ptcmcizscr|t|t(IE]aeI
schematic phase diagram shown in Fig.islbelieved to be ' '

: " - ) ferromagnetic-metal—-to—ferromagnetic-insulator  transition
the metal-insulator transition observed in doped semlconduc[—urnS out to be in the same universality class as the one from

tors and other disordered electron systems, and it has begfaramagnetic metal to a paramagnetic insulator in the pres-
studied theoretically in considerable detaISimilarly, with ence of an external magnetic field. We find strong correc-
increasing exchange interaction, the Fermi-liquid state is Ungons to scaling for this universality clads.

stable against t_he formation of long-range ferromagnetic or-  apother important motivation for the present study is
der(PMto FMin Fig. 3. , the recently observed apparent metal-insulator transition
_This quantum phase transition has also been studied, boff}  5j  metal-oxide-semiconductor field-effect transistors
with and without quenchgd mpunﬂésl.n the Ferml-hqu[d” (MOSFET$ and other two-dimensional(2D) electron
phase, the PM-PI transition is preceded by nonanalyticitiegystems which contradicts the orthodox theoretical results
of various observable.g., the conductivity, the tunneling {hat predict an insulating state =2 even for arbitrarily
density of states, the spin susceptibility, ts functions of ook disordef®12 Since it is known that magnetic fluctua-

wave number, frequency, or temperature. These nonanalyfions have a tendency to increase the conductivity in or close
icities are often referred to as “weak-localization effects.” +, two dimension2it is conceivable that there might be a

They are caused by soft modes, viz. diffusive particle-holggromagnetic metallic phase at small but nonzero disorder in
excitations(“diffusons” ), and can be studied in perturbation 4_ > \ve find that this is not the case. which rules out a
theory® The diffusons are known to drive the metal-insulator '

transition, at least near two dimensions, which is the lower 1
critical dimensionality for this transition. The analogous soft-
mode effects in the metallic ferromagnetic state have re-
cently been investigated in Ref.(tb be referred to as paper
), but the quantum phase transition that must occur from a
ferromagnetic metal to a ferromagnetic insulator upon in- M
creasing the disordef-M to FI in Fig. 1) has never been
considered.

In this paper we address the latter problem. In particular, PM PI
we derive and analyze an effective-field theory that is ca-
pable of describing the disorder driven transition from a fer-
romagnetic metal to a ferromagnetic insulator. An interesting
theoretical question that arises in this context is the role of
the Goldstone modes that occur due to the broken spin rota- FIG. 1. Schematic phase diagram of disordered, interacting elec-
tional symmetry, i.e., the spin waves. Since they constitutérons, showing paramagnetic met@M), paramagnetic insulator
soft modes in addition to the diffusons, one woaldriori (PI), ferromagnetic meta(FM), and ferromagnetic insulatgiFl)
expect them to influence the critical behavior. It was showrphasesM denotes a multicritical point.
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piozssible mechanism for a metal-insulator transitiondin And Q1= A+ AW, (2.33
This paper is organized as follows. In Sec. Il we briefly e

recall the generaQ-matrix fielq theory for itinerant ferro— _ Ai(s)= TJ dx 2 (—1)" 2 2

magnets that was developed in paper I. On the basis of this, r=03 np.nz.m a

and using the perturbative results of paper I, we construct an wa

effective theory for the most relevant soft modes in the sys- X{tr[(Tf®SO)Qn1v“1+m(X)]}

tem. This theory takes the form of a generalized nonlirear aa

model. In Sec. lll we show that this model describes a ><{tr[(T’®SO)Q”2+"“‘2(X)]}’ (2.30)

ferromagnetic-metal—to—ferromagnetic-insulator  transition

in d>2, and we calculate the critical behavior at this transi- ® TT® 8

tion in ad=2+ € expansion. In Sec. IV we conclude with a Ain{ = f dx 203 (-1" > X 21

discussion of our results. e fufzmoa 1=

X{tr[(7r®si)Qﬁinl+m(X)]}
Il. EFFECTIVE FIELD THEORY FOR DISORDERED
ITINERANT FERROMAGNETS X{tl’[(Tr@Si)Qaa (X)]} (2.30

ny+m,n,

A. Q-matrix theor
Q Y HereI'®>0 andI'®>0 are the spin-singlet and spin-triplet

In paper | it was shown that disordered itinerant ferro-jnteraction amplitudes, respectivelf® is responsible for

magnets are described by the following action: producing magnetism.
1 As was shown in paper |, the Goldstone modes do not
A[Q,A]= Agist+ A+ ETrIn(Ggl—iK) contribute leading singular terms to the conductivity or to

any of the two-point vertices in perturbation theory up to
one-loop order agd— 2 in the metallic ferromagnetic phase.

+ f dxtrf A(x) Q(x)]. (2.13  Itwas further shown that they do not contribute to the renor-
malization of the density of statéBOS), and hence they do
Here not contribute to the wave-function renormalization. It fol-
lows that both the heat and the charge diffusion constants do
Ggl=—d,+d2I2me+ 1 (2.1  not carry any singular renormalizations due to Goldstone

modes. If we assume that this signals the absence of
- ; . ; ; . Goldstone-mode effects on the critical properties near the
denvgtlves W'.th respect to imaginary time and p‘?s'“on- " metal-insulator transition as well, we can ignore the Gold-
spectively,me is the electron mass, and the chemical po- 1,6 modes for the purpose of constructing an effective-
tential. Q and A are matrix fields that carry two Matsubara fie|d theory for the soft modes that drive the metal-insulator
frequency indices andm, and two replica indicee andB.  transition'* Furthermore, we can ignore the particle-particle
The matrix eIementQ;‘,‘f1 andf\ﬁﬁ] are spin-quaternion val- channel, which is massive in a system with a nonvanishing
ued. They are conveniently expanded in a basis magnetization. Accordingly, we drop both the particle-
. particle channel (=1,2) and the transverse spin-triplet
By | ~ap channelsi(=1,2) from our model definition. For the remain-
Qnm(X)—riZ:O (7®5;) [ Qum(X) (2190 ing soft modes,we will now construct an effective theory by
’ generalizing the procedure followed in Ref. 12.

is the inverse free-electron Green operator, withand d,

and analogously for\. Here ro=sy=1, is the 2<2 unit
matrix andr;=—s;=—io; (j=1,2,3), withoy , 3 the Pauli B. Soft and massive modes
matrices. In this basid,=0 andi=1,2,3 describe the spin

singlet and the spin triplet, respectively. An explicit calcula- i - e
vation of a nonlinear- model in Ref. 12, which in turn was

tion reveals thatr=0,3 corresponds to the particle-hole - .
channel whiler =1,2 describes the particle-particle channel.,msed on the work by Scfea and Wegnef on noninteract-

In Eq. (2.18, Tr denotes a trace over all degrees of freedom!NY electrons. First one realizes, by means of a Ward identity,

including the continuous position variable, while tr is a trace![h.at the soft mo_des are given by the matrix elelm@,tg]_
over all those discrete indices that are not explicitly shown.Wlth nm<0, V\.’h'le theQnm with nm>0 are massive. This
For the disorder part of the action one fiffls remains tru'e in the present case except for the Goldstone
modes, which we can neglect for our purposes. Next one
1 block-diagonalizes the matriQ in frequency space. Alge-
Agid Q1= Wﬂf dx tf Q(x)]?, (2.2 braic arguments show that the most gené&raan be written

as

Let us briefly recall the basic philosophy behind the deri-

with 7 the single-particle scattering or relaxation tifiehe

electron-electron interactiomd;,; is conveniently decom- Q=SPs 1. (2.43
posed into four pieces that describe the interaction in the

particle-hole and particle-particle spin-singlet and spin-tripletHere S is a matrix that represents an element of the coset
channels? We will need only the particle-hole channel, and space USp(BIn,C)/USp(4Nn,C) X USp(4Nn,C), and P is
thus write block diagonal in Matsubara frequency space,
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P> 0 We now write
P=(P)+AP, A=(A)+AA, (2.10

where P~ and P~ are matrices with element®,, where  4nq expand in powers &P, AA, and derivatives of. Let
n,m>0 andn,m<0, respectively. It is further convenient to |5 first consider the Trin term in E¢.6). Using the cyclic

define a transformed field by property of the trace, we can write it in the form
AX)=8"H)AX)S(x) (2.5 Trin(Gy = SiA S Y
and to write the action in terms of these variables, :Trln(sflGalS_iA)

A[S,P,A]=A4d P]1+ Aind SPS 1]
=TrIn(Gsy 1) +Trln

L 1+GgpS 1 3,S)
+§Tr|n(egl—i5A3*l) . )
+ = GpS (V) V+ 5-Ggp S HV2S)

+f dxtrf A(X)P(x)]. (2.6
_ _ —Gspi(AA)}. (2.119
The next step is to exparsg] P, andA about their respec-
tive saddle-point values, which we denote {#), (P), and | i
(A), respectively. From Sec. Il B in paper | we have
Ge=(Go ' —i(A)) ? (2.11b

(S)=1® 79, (2.79
the saddle-point Green function. This is formally the same
i expression as in the absence of ferromagnetfsonly the
(P)12= 512@ Ep [(TO®50)gn1(p) +(73®53)7:n1(p)]’ saddle-point Green function is more complicated. In particu-
(2.7b lar, the transformation matri§ appears only in conjunction
with some derivative and is therefore soft, while the fluctua-
—i 1 tions AA are massive. Expanding the second term on the
(A)12= 1A 70®%0) —5—¢; > Gn(p) right-hand side, the simplest contribution is the one involv-
F P ing the time derivative,

1
_ iT(s) jom0 —
012 70® S0) 21T T% Y, 2,,: Gm(P) Tr[GSpS*l(aTS)]zf dX {1 S(X) Gy x=0)S ~1(x)]

+5(r®s)_—i£EF(p) mNe . 2¢
S Y, = /'y = dxtr[Q Q(x)]+0(02°Q).
1 2.1
+ o1 ©5)2TOTS, €S 7, (p), 212
m P Here
279 Q45= (10®Sp) 81282n, (2.133

with G and F from paper I, Eqs(2.13. In the popular ap- o _
proximation that replaces the wave-vector sum over a Greeis a frequency matrix witlf),=27Tn a bosonic Matsubara
function by an integral oveg,=p®/2m,,'® we have frequency, and

Q) =8(x)7 S (%), (2.130

with 7 from Eq. (2.9b. Here we have made use of Egs.

. (2.8).18 This is the same result as the one obtained in the
_ 2 Fn(p)=~0. (2.80) absence of ferromagnetisth. _ _ .

V5 We now turn to the gradient terms. It is convenient to
define a matrix-valued-dimensional vector field

1 2 _ —i 5
V2 gn(p)~TNFSgnwn, (2.89

In this approximatiort/ we can write Eq(2.7b) as

(PY 171, (2.94 () =8"1(X)(VS)(0), (2.14
with and to expand in powers af The term linear irs vanishes
for symmetry reasons. TO(s?), both the next-to-last term
1= 015 (To®Sp)SUN @), (2.9p  on the right-hand side of Eq2.113 and the square of the
1’ '

preceding term contribute. So far our gradient expansion has
with w,=27T(n+1/2) a fermionic Matsubara frequency. been completely general. In order to evaluate the terms of
For our purposes this approximation will be sufficient for O(s?), we now remember that we can neglect the spin waves
reasons that were explained in detail in Ref. 12. for the purpose of deriving a soft-mode transport theory; i.e.,
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we have dropped the channels-0,3, i=1,2 in the spin-  HereQ=0Q— = with 7 the matrix defined in Eq2.9b and
quaternion expansion, Eq2.19. Furthermore, it is well 4, from Egs.(2.3). We recognize this action as the gener-
known that the Cooper channel£1,2) is massive in an glized nonlinear ¢ model for disordered interacting
external magnetic flela,z and the same is true in aferromag- e|ectr0ns1-' augmented by the term with Coup“ng constant
netic state. Consequently, the only spin-quaternion degreesG, that is proportional to the magnetization.

of freedom present ig,, are 7o andsy 3, ands;, commutes It turns out that the bare action, E@.17), is not suffi-
with 73®s3. This simplifies the evaluation of the gradient cient to completely describe the effects of magnetic long-
terms substantially, and we obtain range order, even if one ignores the spin waves as we did. As
1 we will see, under renormalization two additional terms are
TrG..S {Vv2S) — =T G..S L (VS)V12 generated. One is a freque_zncy coupling that is analpgous to
S (V78 m [Gsp (VSV] the second gradient term in ER.17), and the other is an

electron-electron interaction term that is not present in non-
=>> f dx{ 75, (U S1(A)Shy(— )] magnetic systems. We therefore need to add these terms to
12 q our action. Denoting the respective coupling constantsl py

; ; andK,, we obtain our final result for the effective action,
+ 705 (DU (738 3) 1) Shy( — ) T}, :

(2.153 A:;_é dxtr[VQ(x)]2+2Hf dxtr QQ(x)]
where
1 ~
775:(77++77_)/2, 7]a=(7]+_7]—)/2- (215b —EJ dXtr{(T3®S3)[VQ(X)]2}
3
with

. . +2H, [ dxtl(7,5) 08001+ AaO]
712jj (D) = 5 [Gn (D + G (A ]+ 00 G, (9) G (A), (2,183

(2.150
_ . ) ] ) Here A, is given by Egs(2.3) plus the extra term. Intro-
with G, the Green functions defined in paper |, E&-130.  gucing new interaction amplitude = —27T® and K,
Equati0n§2.15) are genel’aﬁzations of the Corresponding ex-—= 2771—‘(0 to comform with notation used ear"éwe write
pressions in the absence of ferromagnetim.
Al Q1= AR[QI+ ARQI+ AF[Q], (218D

C. Nonlinear o model

The remaining steps in the derivation of an effective-field A9[Q]= il K f dx
theory proceed in analogy to Ref. 12. In particular, we inte- nt 4
grate out the massive mod@sand A in a tree approxima-

tion; i.e., we neglect all fluctuationsP andAA. ™ can be XD (=)t (7,©50)Q1aX)]
related to the conductivity in self-consistent Born approxi- T

]%4 5011012 5a1a3 51— 2,4-3

mation of a system whose chemical potential has been

shifted from its value for nonmagnetic electrons hyA XU (7 ®S0)Qaa(X) ], (2.189
=+TOM/ug. HereM is the magnetization in Stoner ap-

proximation, andug is the Bohr magnetofsee paper I, Eq. AW[Q]= W_TK f dx S 5, 8,..8

(2.15]. Denoting these conductivities by, and defining nt 4 {o4s 1102 107172473

the bare coupling constants

XZ (=) t(7,®53)Q12(X)]

1G= ;m(ag +a7), (2.163
Xt (7,®53)Qz4(X) ], (2.180
o
1Gs= (ol —og), 2.16
3= M@0 ~0) L LD R
H= 1 Ng/8, (2.160

X% ; mrs,ijirle(X) st34(X), (2.18¢

we obtain for the effective action

-1 B 5 where

A= %f dxtr[VQ(x)]2+2Hf dxtr[ QQ(X)]
1

My jj =7 (737, TOM(S3si8]). (2.18%

1 ~ ~
~ 3G, dxtr{(m3®85)[VQ(X) 1%} + Ain{ Q1. o _ 5
3 (This is the matrix that was denoted g® in paper I)

(2.17 Finally, we note tha@ as defined in Eq(2.13h obeys
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02x)=1, O'=0, wdx)=0. (2.19  corrections to scaling near the metallic fixed point, as indi-
cated by their contribution to the leading nonanalytic fre-
Equations(2.18 and(2.19 represent the analog for itinerant quency dependence of the conductivity that was studied in
ferromagnets of the nonlinear modet for paramagnetic paper 1.
electron systems.

- . I1Il. METAL-INSULATOR TRANSITION ON THE
D. Metallic fixed point BACKGROUND OF FERROMAGNETISM
Before we proceed to use tllemodel to study the quan- . . o
tum phase transition from a ferromagnetic metal to a ferro- In th'? section we perform a one—Io_op renormallzatlon of
magnetic insulator, let us ascertain that the model, with somE€ nonlinearr model, Eqs(2.18. We first do this for gen-
correction terms, actually describes a metallic ferromagnetk‘,eral parameter values,_whlc_h Ieads.to rather complicated flow
phase in some parts of parameter space. Since we will wa uations. They contain a fixed point that corresponds to the

to approach the transition from this phase, its existenc&NOWn critical fixed point for nonmagnetic electrons in an
within the model is obviously a necessary condition for ourexternal magnetic field.We then linearize about this fixed

program to be viable point and show that it is perturbatively stable with respect to
This task is very s'imple since it proceeds in exact anaithe additional terms in the action that represent the presence

ogy to the demonstration in Ref. 12 that the model with©f @ nonzero magnetization.
1/G3=H;=K3=0 has a stable Fermi-liquid fixed point.

This is because the power-counting procedure used to prove A. Parametrization and Gaussian order
the existence of a stable fixed point does not depend on In order to set up a loop expansion we use the parametri-
structural details like the presence of extrands matrices . A -

in the various terms of the action, while such details are th&ation for the .ma'ng thgt IS given by Eq(2:20). Npte that
only difference between the current model and the one Cont_hls parametrization builds in the constraints given in Eq.

sidered in Ref. 12. Accordingly, we parametri@ein terms (2.19. Itis the matrix analog of the usua{r(fr) parametri-

; ; 19
of a matrixq with elementsy,,, whose frequency labels are zation (_)f theO(N) vector nonlinearo ”?Od?'- The loop
restricted ton=0, m<0, expansion now proceeds as an expansion in powegs b

Gaussian order, we obtain
. ( vi-qq q )

gt —Vi-dT 229 A<°>=_74Ep 24, 1912(P) SM12:34P) Lzl —P),
and expandS in powers ofq, (3.19
S=1e To"’% " _Oq +O(e?). 2.21) where the Gaussian vertex is given by
As in Ref. 12, we assign scale dimensiongj{x), 1sM1234P) = 8135241 M 12 (P)
[q(x)]=(d—2)/2, (2.223 T 01-23-400,0, 0uya 27T Kisjij
and to the fluctuations of the fieldsand A, (3.1
[AP(X)]=[AA(X)]=d/2. (2225 Wit

Here the scale dimensionjs - -] are defined such that the . 1

scale dimension of a lengthis [L]=—1. The fixed point M Q(p) = 5r55ij6(p2+GHin—n2)

action then consists of the nonlinear model action, Eq.

(2.183, expanded td(q?), plus the corrections bilinear in 1,

AP and AA that arise from Eq(2.6). All other terms are +mrs,ijG_3(p +G3H3Qy ), (310
irrelevant by power counting. The arguments showing this
are exactly the same as the ones given in Ref. 12 and negghq
not be repeated here. The correlation functions for this
Gaussian action are simply related to the Gaussian propaga-
tors of Sec. Il in paper I. We will explicitly determine them
in Sec. Il below. This will show that the fixed point action

) . " with m,g ;i from Eq. (2.18).
really describes a disordered itinerant ferromagnet. ) . .
i The Gaussian propagator can be determined by the same
In contrast to Ref. 12, however, we cannot discuss the

leading corrections to scaling near the stable metallic fixedmEthOdS that were employed in Sec. Il of paper I. We find

point within our current framework. The reason is our having

neglected the transverse spin-triplet channel that contains the (iq (k) g (p)>(o):} S(k+p) M (p), (3.28
Goldstone modes. While the latter are not expected to influ- 12 R sH3d 8 rsT12,34 K A
ence the leading scaling behavior at the critical fixed point

for the reasons pointed out above, they do contribute to theshereM ~! has the structure

Kirs,ij = 0rs6ij( SioKs+ 01K + My jj K3, (3.10
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<é>=1+ Q Q 407

) . FIG. 3. One-loop contributions to the two-point vertex.
FIG. 2. Perturbation theory fgiQ) to one-loop order.
In spin-quaternion space, there are two nonvanishing ma-

UM A P) = 612034 8,58 An. —n.(P)+MysiiBp. (D) A
rsM12:3dP)= 013024 Ors A,y (P riiBny-n,(P)] trix elements of Q), viz., (3Q) and(3Q). These expectation

+061-23 400, 0,00a [5r55ijcin (P values are diagonal in both frequency and replica space.
e v Their inverses constitute one-point vertex functions that we
+Meg ;D n,(P)]. (3.2b  denote byI'Y(Q,) andT'§M(Q,), respectively. A simple

) o 123 At calculation using the results of Sec. Il A yields
To specify the propagatoss, B, C’=CS, C+=°=C!, andD,

we define
1
a=ay(p)=(p*+GHQ,)/G, (3.39 rPQn=1+5[13(Q)+15(Qy)], (353
b=by(p) = (p*+G3H3Q,)/Gs, (3.3b
and 1
I, =1+ 713(Q,). (3.5b
NENn(p) 3 ( n) 4 1( n
=(a?—b?)[a’—b%?—2bK,;0,+a(K+K)Q,
22 ) Here we have defined the integrals
- K505+ KK Q7. (3.30
In terms of these quantities, we have .
1
An(p)=al(a’~b?), (349 O =G 2 2 CHP). (3.63
Bn(p) = —b/(a®+b?), (3.4b
—27T 1 *
Ch(p) = ——[a’Ks+bK +a(—2bKa— K30, 1%Qn=7 2 2 Di(p). (3.60
+KKi2n)], (3.49
2. Two-point vertex
Cl(p)= _ZWT[ath+szs+ a(—2bK;—K2Q, ~ We now turn to the two-point verteR®), whose Gauss-
N ian approximation is given by Eq§3.1). To one-loop order,
KK )], (349 WOV
27T . . .
Di(p)= [~ a’Ka+ab(Ks+K,) —b(bKs+ K30, ST155dP) = 1EM 1234 P) +15(M)1554p).  (3.7)
— KK Q) 1. (3.4¢

There are two topologically distinct diagrammatic contribu-
. tions to M, which are shown in Fig. 3.
B. Perturbation theory to one-loop order They arise from quartic terms, i.e., terms @fqg*), and

We now proceed to perform a one-loop renormalizationCubic terms, i.e., terms @(q°), respectively, in the expan-
of the theory. We do this by renormalizing the two-point Sion of the action in powers af. An evaluation of the dia-
vertex 'M 1,34, Egs. (3.1). This procedures proves the 9ramsis straightforward but very tedious, since the two to-
renormalizability of the theory to one-loop order; i.e., it Pological structures can be dressed in many ways with the

makes sure that no coupling constants in addition to the oneérious indices carried by tigfield. The calculation reveals
present in the bare theory are generated under renormalizf1at the one-loop contributions can be grouped into three
tion. We also need to determine the wave-function renormaldistinct classes(1) Quartic contributions that are logarithmi-

ization. This we do by considering the one-point vertex func-cally divergent as(),—0 in d=2, (2) cubic contributions
tion F(1)=<Q>*1 that have the same degree of divergence, @dontribu-

tions, both quartic and cubic, which individually diverge

more strongly (“superdivergent terms), but combine to

. yield again terms that are only logarithmically divergent. De-
Let us first consider the one-point propaga{@). To  noting the contributions of these three classes to the one-loop

one-loop order, the only diagram that contributes is shown imenormalization oflf’'® by sM®*), sM®) and sM©9,| re-

Fig. 2. spectively, we find for the first of these classes

1. One-point vertex
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1

igG, (P CsHsn)21P(Qy)

- 1

5(OM){PadP) = 813024 | 8156 g (PP+ GHONI P (D) +110(20) ]+ 6155
My e (P24 GHO) 21BN + Mg e (P24 GaH ) [0 +10(0
mrs||186(p N) 1( N) mrs,|18G3(p 313 N)[l( N) 1( N)]

o
- 51— 2,3— 45(1'10(2 5a1a3 Z

T {8158 [(KstKp) I(Q) +2K3IB( Q) 1+ Mg [2K3I ()
+(Ks+ K I®Q1}, (3.8a

with 185%% given by Eqgs(3.6),

1
IQ=5 2 AP, (3.8D

I8y = \3, 2 By(p), (3.80
andN an external frequencge.g.,N=n;—n,). For the second class we obtain
(M) EadP) == 81 2.5 480, 0yOayay( TT)H{ 8158 [ (8ioK 3+ GigK K+ K3) 19 (D) +(83KE + 80K K +KHIP(Qy)
+ (80K K3+ KKt 813K Ka) I (Qn) + (80K K3+ 85K K g+ KiK3) 1P (Qy)]

+ My ij[(SioK 2+ 8jaK K+ KT (Qp) + (813KZ+ SioK K+ KHT1 D (Qy)

+ (80K K3+ KKt 813K Ka) P (Qn) + (80K K3+ 855K K g+ KKa) 1P () 1} (3.99
Here we have defined integrals
1 ee]
£2Q=G 2 2 [AP)*+Bi(p)*+A(P)ICH(p)+B(P)IDi(P)] (3.9b
1 oo
Q=G 2 2 [2A(P) BI(P)+BI(PICI(P)+ A (P)IDI(P)] (3.99
Finally, for the third class we have
. 1
S(OM) 584 P) = 813920 {0158 [157 (P o) +18)(P, 20) T+ Mg s [167 (P, ) +187(p. ) 1}, (3.103

with integrals

Iés’“(pﬂw):%; 2, {a(k)C{=(k)+ by (K)Dy (k) + 27 T Ko A(k) 27 T Ky By(k) = (2 T)?KE LAy (K +p)

X[A(K)+1CEV(K)]— (27 T)2K K (1B n(k+P)[B(K) +1 D (k) ]— (27 T)2K3IA, . n(k+Pp)
X[AK) +1CEV(K) 1= (27 T)2K3IB) . n(k+p)[ By (K) +1D (k)] — (27 T) 22K 5K (A 4 (K +P)

X [2B(K) +1D (k)] — (27 T)?2K 3K 1| By, n(K+P)IC{*V(K)}, (3.10H

1£9(p, )= % 20 2, {Bi(K)CI* (k) +ay(k) Di(k) +27TKg By (K) + 2 TKg A(K) = (27 T)?KE 1By (K +P)

XIA(K) +1CEY(K) = (27 T)2K K 1A n(k+P)[By(K) +1D (k) ]— (27 T)2K3 1By 4 n(k+P)
X[A(K)+ICEV(K)]— (27 T)2KE 1A n(k+P)[Bi(K)+1D (k) ]— (27 T)22K 5K ¢ |A| 4 (K+P)

X[A(K)+IC{ (k)] = (27 T)?2K 5K 1By (k+p)[ By (K) +1D; (K) ]} (3.100
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As a check, we consider the superdivergent contributions at Ly—Ly
zero external frequency and wave number. Although all of f12(X,Y) =912(X) + 1Y) + X=y
the individual terms are linearly divergent, an explicit calcu-
lation yields Xy
+ﬂ[hlz(x)_h12()’)]. (3.129
1$9(0,0+19(0,0=0 (3.113
-1/1 1
and the same for;. Therefore, faa(x,y)= X—y ;Lx_yl-y>v (3.129
- in terms of
(M) 534 p) =0(p?, Q) (3.11b
-6 1
with coefficients ofp? and ) that are only logarithmically 91(X)=—— =2+ 2 [ L +1/In(1+x), (3.12¢
divergent. The cancellation of the superdivergences thus
holds as expectedand required by, e.g., particle number o 2 1/
conservation and the renormalizability of the thgory hia(x)= — — | +3 In(1+x), (3.129
X
C. Expansion to linear order in the magnetic coupling constants 1 3
As is clear from the preceding subsection, the complete g1 X)= ;{3— ;+2 IN(1+x)|, (3.129
one-loop renormalization of our model is rather complicated.
While it is certainly possible to determine the renormaliza- 1 5
tion group(RG) flow equations from our perturbative results, N P it n
it would not be easy to analyze them for fixed points. At this 1) X2 2 X L]In(1+x)], (3.12

point we therefore take a less general approach that is based

on the following physical considerations. We are intereste@ndL,=In(1+x), Ly=In(1+y).

in a phase transition from a metallic magnetic phase to an Similarly, the correction td; is
insulating magnetic phase. Physically, we expect the magne-

tization to be noncritical at such a transition. The simplest :E ﬁ

possible scenario is then a fixed point where the renormal- © '3 46[ Gs f21(Ks/H, K /H) +Hg fo5(Ks/H, K /H)
ized values of the “magnetic” coupling constant&k/ Hs,

andK 5 are all zero(More complicated possibilities we will +Ks f23(Ks/H-Kt/H)}1 (3.133

come back to in Sec. IV belowThis means that the unver-
sality class of this transition is the same as that for the tran-

sition from a paramagnetic metal to a paramagnetic insulato‘fylth
in the presence of an external magnetic ffeile can check T+x+y
this scenario by expanding to linear order in the three mag- f2106,Y) =0p1(X) +goy(y) — (Lx—Ly)
netic coupling constants and investigate the perturbative sta- X=y
bility of the nonmagnetic fixed point. Xy
Accordingly, we expand the results of the previous sub- - H[hm(x)—hﬂ(y)], (3.13b

section, expressing the result in the form of corrections to the

magnetic coupling constants. We use dimensional regulariza- Ll
ion; i.e. i id= i x_ by
tion; le., we perfqrm the integrals '.d 2+e€ to Iez_:ldlng Fas(X,Y) = G2 X) + QoY) + ——
order in 1£. We find for the correction to G5 to linear X=—y
order in 1G5, Hs, andKj,

+ Xx_y_[hzl(x)—hzl(y)], (3.139
2[ G y
8(1/Gz) = — f1(Ks/H,K{/H)

c|16G, L,—L
x Ly
H K fa3(X,¥) = 023(X) + g23(y) + x—y
+ =2 (K H K TH) + > (Ko /H, K TH) |
8H 4H Xy
(3.123 + H[hzl(x) —hy(y) ], (3.130
Here we have defined the functions in terms of
X 1
Li—Ly 0,m(X)=1+=—|=+1]In(1+x), (3.136
= —2 2 ¥ 2 X
f1a(X,y) =011(X) + 912(y) — 2 x—y

1
+2%[h11(x)—h11(y)], (3.12h h21(><)=§ln(l+><), (3.139
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1 Hs;=2Z,.hs, (3.15h
922(¥) = —1+| o +1]In(1+x), (3.139 $
_ 1 K3:Zk3k3, (3150
X)=—+—In(1+Xx). 3.13
923(X) 2 X ( ) ( h where theZ are renormalization constants, ards the arbi-
) ) . trary RG momentum scalf€.We further define a two-point
Finally, for the correction td<; we obtain vertex functionl'{?) as the “magnetic piece” of the general
GIGH vertexI'(?) defined in Eq.(3.7), i.e., the parts that are pro-
OK3=o—| = fau(Ks/H, K /H) +Hj f3(Ks/H, K /H) portional to 163, Hz, andK,. From Egs.(3.1), (3.7, and
8e[ G3 (3.89—(3.10 we have
+ K5 fas(K/H, K /H) |, (3.143 1
ST rP(p,0)= G, T (1UGa) | P+ (Hat 5Hy)0
with
+(K3+ K3) Q. (3.1
fa(x,y)= x+y+ [hSl(X) hai(y)], (3.14B  The renormalization constants can then be determined from
the renormalization statement
i X (2) ()
f3a(X,¥) =032X) + 03 y) + ;Lx"')_/Ly I3ap,€2;03,h3.Ks k) =215 (p,Q;G3,H3,Ky),
(3.17
[h AX)—hz(y)], (3.140  wherel'y4is the renormalized counterpart Eﬁ andZis
the wave- functlon renormalization. In our notation, we sup-
press the dependence of the vertex functions on the remain-
- Y o .x i l tants, H, K d thei lized
faad(X,Y) =0aaX) + gady) + L, +-Ly ing coupling constants&, H, Kg;, and their renormalize
X y counterparts.
(x+ y)z It is a priori not clear that a single wave-function renor-
+ [ha(X)—hs(y)],  (3.149 malization constant will suffice. Indeed, the existence of two
X= distinct one-point vertex functions, Eq8.5), one being re-
in terms of lated to the density of states and the other to the magnetiza-
tion, might suggest that one needs at least two. However, as
hay(X)=—2(1+x)In(1+x), (3.140 mentioned in Sec. Il C above, we do not expect the magne-
tization to display leading critical behavior at the phase tran-
g3(X)=—2x+In(1+x), (3.144) sition we are interested in, despite the fact that the magneti-
zation has nonanalytic contributions in perturbation theory.
1 We therefore expect the only wave-function renormalization
haoX) =2 In(1+x), (3.149  to be the one related the vert&k"
GasX) =143 In(1+x). (3.14H T{N(Q;93,h3,ks:6) =ZT{(0;G;3,H3,Ky).

(3.18
Inspection of the integrals in Sec. Il B further shows that ) o
all corrections to the remaining coupling consta@igd, and 10 linear order in 1d;, h;, andks, Zis given by the wave-
K., to the extent that they depend on the magnetic couplingcnon renormalization for nonmagnetic electrons in an ex-
constants, are at least quadratic in the latter and hence can K&nal magnetic field,
neglected for our purposes. The “nonmagnetic” one-loop

corrections are well knowhand we do not write them down g

again. Z=1—E(IS+II), (3.19
We also note that B;+#0 is sufficient to generate non-

zero values ofHz and K3 in perturbation theory, even if where I =In(1+1ysy), with ys=Kks./h the renormalized

these coupling constants were not present in the bare aCthBounterparts oK, /H. Our perturbative calculation dT(Z)

This is the reason why we have included them in @q183. s then sufficient to determine the remaining renormahzatlon

constants. Using minimal subtraction, we find
D. Renormalization group flow equations

We now perform a RG analysis of our perturbation .. 9 gzhs
theory. We define renormalized coupling constaygs hs, Zgy= 1% ge| Tulvs ) —2(lstl)+27 3 gh fadys.m)
andks by
g3ks

+4

Gg=K‘fZgag3, (3.153 ﬁfls( 751%)}, (3.203
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gh E. Critical behavior
Zng=1 g |t Tadl v, 70 - @fﬂ( Ys: ) As we have seen in the previous subsection, the critical
fixed point for the transition under consideration is the same
_ Ef A ) (3.20p &S the one found before for the metal-insulator transition of
hg 2 Yo Wi ' nonmagnetic electrons in the presence of an external mag-
netic field® The asymptotic critical behavior is therefore also
g hs the same. Choosing the correlation length exponenthe
Zi=1+ g2 2(1sH+ 1) = faglys, v — i fa ¥s: 70 critical exponent for the density of statgs and the dynami-
3 cal critical exponentz as the three independent exponents,
gh we thus havé
_@fl?,( Ys: V) |- (3.200
v=1/e+0(1), (3.24a
From EQ@s.(3.20 and(3.15 it is now easy to determine
the RG flow equations for the magnetic coupling constants. B=1/2¢(1-1In2), (3.24h
Our parameter space is spanned by u
=(9,h,¥s,7:.93,h3,k3), and our approximations are valid z=d. (3.249

only in the vicinity of the fixed point (FP) u*
=(9*.h* %5 .97 .03 .03 K3), with 1/lg3=h3=k3=0,
andg*, h*, y%, and y; the FP values of these coupling s=1+0(e). (3.249
constants for the magnetic-field universality class of non-

magnetic electrons.We therefore immediately linearize  |n contrast to the asymptotic critical behavior, the correc-
about this FP. With3;=1/g3, andI=1/x the RG length tions to scaling are different from any previously studied

The critical exponent for the conductivitg=v(d—2), is

scale, we find universality class for metal-insulator transitions. The reason
for this is the presence of the three irrelevant operatayg,1/
dgs; g ., . 1, i3 h;, andks in our model. We will not go through a complete
or —\ € g 205 +10)1) B~ el Eksy analysis of the corrections to scaling here, but only mention

(3.213 that they lead to a nonanalyticity in the magnetization as one
crosses the metal-insulator transition, even though the mag-
1 g* g* net!zat@on i; not critigal. To see this, we reqall that the mag-
= T(g*)z h* f% B+ T[I;‘Hf—fgz]— T 33K, _net|zat|on is proportlo_nal to a H()equency integral over the
inverse of the one-point verteky™”’; see Eq.(3.5b above
(3:219 and Eqg.(2.79 in paper |. The extra frequency integration
dke -1 N makes the integral finite for ai>0, and the one-loop con-
-8 —2(g*)2h* £%, By~ 9 % hg tribution to the magnetization is simply proportional tg4/
di 8 8 hs, andks. Since\; has the smallest absolute value of the
* three negative eigenvalues given in E8.23), the magneti-
+ %[2(|;c +17) — 33] kg, (3.219 zation atT=0 behaves like

dhs
dl

— — VA
wheref%,=f 4(v* ,¥¥), etc. M(t,T=0)xconst-t~ "3, (3.25a

The fixed point values that enter E¢8.21) depend on wheret is the dimensionless distance from the critical point.
whether we consider the long-ranged Coulomb interactiomt criticality as a function of temperature we have
between the electrons, or a short-ranged model interaction.
We éconsider here the former, more realistic, case. Then we M (t=0,T)oconstr T *3/2, (3.25h
hav
Putting e=1 in our one-loop approximation yields \;/z
g*=2el(1-In2), yf=—yi=1, I¥=-2l. =0.08.... Our theory thus predicts that the metal-
(3.22 insulator transition is reflected in the magnetization in the
form of a very slow temperature dependence.
With this input, we obtain the following eigenvalues for the  More generally, the existence of very slow corrections to

linearized flow equations, Eq€3.21): scaling indicates that it will be very difficult, if not impos-
sible, to observe the true asymptotic critical behavior at the
A= —€/2(1-In2)+0(€*)<0, (3.233  ferromagnetic metal-insulator transition. If we extrapolate
our one-loop results td=3 by puttinge=1, we havevi,
No=—1(1-In2)+0O(e)<0, (3.230  ~—0.26. This mean that in order to obtain critical exponents
with an accuracy of 10% one needs to be within about
3In2-2 5 0.01% of the critical pointt=<10*. This is not achievable
Ag=~— T-in2 € O(e“)<0. (3230 for any metal-insulator transition observed so%amy ob-

served critical behavior at larger valuestafill yield effec-
We see that all three eigenvalues are negative, and the fixéive exponents that contain contributions from the dominant
point is therefore stable. irrelevant scaling variables. We note in passing that the same
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conclusion holds for the Anderson-Mott transition of para-seen whether such a behavior is described by our complete
magnetic electrons in an external magnetic ffeld. flow equations. This point will be investigated in a future
publication.
In any event, it would be very interesting to compare
IV. DISCUSSION experiments on a ferromagnetic metal-to-insulator transition,

Our chief result is the prediction that the metal-insulatorwhich has not been studied so far, with the existing results
transition from a ferromagnetic metal to a ferromagnetic in-for nonmagnetic systems in a magnetic fiéf@he equiva-
sulator is in the same universality class as the one from #nce of the two universality classes also leads to the conclu-
paramagnetic metal to a paramagnetic insulator in the pre§ion that the existing theory for the nonmagnetic transition in
ence of an external magnetic field. It is important to note tha® Magnetic field is incomplete since it misses important cor-
this statement holds independent of what the actual criticdlections to scallnﬁ_. _ _ _ L
exponents, which we can determine only to lowest order in a From a theoretical point of view, this result & priori
2+ € expansion, are in three-dimensional systems. It is alséather surprising. The critical behavior at the metal-insulator
independent of the fact that we have considered explicitiyfransition, and hence the unlversgllty class, is determined by
only the perturbative stability of the nonmagnetic fixed point.the structure of the soft modes in the system, at least near
In principle, the full flow equations that follow from the tWO dimensions. Since ferromagnetism leads to additional
one-loop calculation in Sec. Il B could contain other critical SOft modes, namely, the Goldstone modes or spin waves,

fixed points. This is a question that remains to be investicompared to paramagnetic metals, one would expect the
gated; here we just mention a possible scenario. critical behavior to change. The reason why it does not lies

In both the magnetic-field and ferromagnetic materialin the fact that the Goldstone modes do not lead to a singular

cases a different universality class for the MIT is easy toCOrrection to the conductivity id=2, in contrast to the
envisage. First note that the existence of two conductivitie§liffusive soft modes that are also present in the absence of
o* [cf. Egs.(2.16] or, equivalently, two diffusivities just fgrromagneﬂc Iong-rgrjge .order. S}nce these smgular correc-
reflects the fact that either a magnetic field or a finite spontions drive the transition in low dimensions, and since the
taneous magnetization leads to a splitting of the energy ban&oldstone modes are the only substant_lal difference between
The subband with fewefmore electrons that have spins the soft-mode spectra of ferromagnetic systems and para-
aligned in(opposite t9 the direction of the magnetic field or Magnetic systems in a magnetic field, respectively, the fact
spontaneous magnetization is called the minofitajority) that the universality class remains unchanged is at least plau-
subband. If the magnetic energy scale is large compared ® le. i i . o

other interaction energy scales and comparable to the Fermi We finally mention again that one of our motivations for
energy, then the two subbands are well separated. A polaf?€ present study had been the observed apparent metal-
ization scenario for the MIT is that the minority subband Insulator transition in certain-2d electron system$which
carriers become localized first and then act as a static randofPntradicts the results of orthodox theories and is not under-
field for the majority mobile carrier® In this scenario, the Stood. Since it is known that ferromagnetic fluctuations en-
MIT occurs when the carriers in the majority band becomeh@nce the conductivity inl=2,” it was a plausible hypoth-
localized. In this case the MIT is one for spin-polarized, or€Sis that ferromagnetic long-range order might have an even
effectively spinless, electrons. This is mathematically deStronger effect and lead to a metallic phasedn2. Our
scribed by the so-called singlet-only or magnetic impurityresults rule out this possibility, at least on a perturbative
universality class that was discussed in Ref. 21. One migHgVel-

thus expect a multicritical point separating the magnetic-field

universality class, which was di§cu§sed above and is_rel_evant ACKNOWLEDGMENTS
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