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Theory of disordered itinerant ferromagnets. II. Metal-insulator transition
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The theory for disordered itinerant ferromagnets developed in a previous paper is used to construct a simple
effective-field theory that is capable of describing the quantum phase transition from a ferromagnetic metal to
a ferromagnetic insulator. It is shown that this transition is in the same universality class as the one from a
paramagnetic metal to a paramagnetic insulator in the presence of an external magnetic field and that strong
corrections to scaling exist in this universality class. The experimental consequences of these results are
discussed.
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I. INTRODUCTION

It is well known that interacting electrons in the presen
of quenched disorder at zero temperature form a disord
Fermi-liquid or paramagnetic metal state that shows, w
increasing disorder, an instability against the formation of
insulator. This Anderson-Mott transition~PM to PI in the
schematic phase diagram shown in Fig. 1! is believed to be
the metal-insulator transition observed in doped semicond
tors and other disordered electron systems, and it has
studied theoretically in considerable detail.1,2 Similarly, with
increasing exchange interaction, the Fermi-liquid state is
stable against the formation of long-range ferromagnetic
der ~PM to FM in Fig. 1!.

This quantum phase transition has also been studied,
with and without quenched impurities.4 In the Fermi-liquid
phase, the PM-PI transition is preceded by nonanalytici
of various observables~e.g., the conductivity, the tunnelin
density of states, the spin susceptibility, etc.! as functions of
wave number, frequency, or temperature. These nonan
icities are often referred to as ‘‘weak-localization effects
They are caused by soft modes, viz. diffusive particle-h
excitations~‘‘diffusons’’ !, and can be studied in perturbatio
theory.5 The diffusons are known to drive the metal-insula
transition, at least near two dimensions, which is the low
critical dimensionality for this transition. The analogous so
mode effects in the metallic ferromagnetic state have
cently been investigated in Ref. 6~to be referred to as pape
I!, but the quantum phase transition that must occur from
ferromagnetic metal to a ferromagnetic insulator upon
creasing the disorder~FM to FI in Fig. 1! has never been
considered.

In this paper we address the latter problem. In particu
we derive and analyze an effective-field theory that is
pable of describing the disorder driven transition from a f
romagnetic metal to a ferromagnetic insulator. An interest
theoretical question that arises in this context is the role
the Goldstone modes that occur due to the broken spin r
tional symmetry, i.e., the spin waves. Since they constit
soft modes in addition to the diffusons, one woulda priori
expect them to influence the critical behavior. It was sho
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in paper I that the Goldstone modes, while they contribute
the leading frequency nonanalyticity ofO(V (d22)/2) in the
conductivity, yield a prefactor that is ofO(1), while the
diffusons contribute a prefactor that is ofO„1/(d22)… and
thus diverges asd→2. Since it is known that this singularity
drives the transition near two dimensions,7 it follows that the
Goldstone modes do not contribute to the asymptotic crit
behavior. Largely as a consequence of this,
ferromagnetic-metal–to–ferromagnetic-insulator transit
turns out to be in the same universality class as the one f
a paramagnetic metal to a paramagnetic insulator in the p
ence of an external magnetic field. We find strong corr
tions to scaling for this universality class.8

Another important motivation for the present study
the recently observed apparent metal-insulator transi
in Si metal-oxide-semiconductor field-effect transisto
~MOSFETs! and other two-dimensional~2D! electron
systems,9 which contradicts the orthodox theoretical resu
that predict an insulating state ind52 even for arbitrarily
weak disorder.10,1,2 Since it is known that magnetic fluctua
tions have a tendency to increase the conductivity in or cl
to two dimensions,2,11 it is conceivable that there might be
ferromagnetic metallic phase at small but nonzero disorde
d52. We find that this is not the case, which rules ou

FIG. 1. Schematic phase diagram of disordered, interacting e
trons, showing paramagnetic metal~PM!, paramagnetic insulato
~PI!, ferromagnetic metal~FM!, and ferromagnetic insulator~FI!
phases.M denotes a multicritical point.
966 ©2000 The American Physical Society
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possible mechanism for a metal-insulator transition ind
52.

This paper is organized as follows. In Sec. II we brie
recall the generalQ-matrix field theory for itinerant ferro-
magnets that was developed in paper I. On the basis of
and using the perturbative results of paper I, we construc
effective theory for the most relevant soft modes in the s
tem. This theory takes the form of a generalized nonlineas
model. In Sec. III we show that this model describes
ferromagnetic-metal–to–ferromagnetic-insulator transit
in d.2, and we calculate the critical behavior at this tran
tion in a d521e expansion. In Sec. IV we conclude with
discussion of our results.

II. EFFECTIVE FIELD THEORY FOR DISORDERED
ITINERANT FERROMAGNETS

A. Q-matrix theory

In paper I it was shown that disordered itinerant fer
magnets are described by the following action:

A@Q,L̃#5Adis1Aint1
1

2
Tr ln~G0

212 i L̃ !

1E dx tr@L̃~x! Q~x!#. ~2.1a!

Here

G0
2152]t1]x

2/2me1m ~2.1b!

is the inverse free-electron Green operator, with]t and ]x
derivatives with respect to imaginary time and position,
spectively,me is the electron mass, andm the chemical po-
tential. Q and L̃ are matrix fields that carry two Matsuba
frequency indicesn andm, and two replica indicesa andb.
The matrix elementsQnm

ab and L̃nm
ab are spin-quaternion val

ued. They are conveniently expanded in a basis

Qnm
ab~x!5 (

r ,i 50

3

~t r ^ si ! r
i Qnm

ab~x! ~2.1c!

and analogously forL̃. Here t05s0512 is the 232 unit
matrix andt j52sj52 is j ( j 51,2,3), withs1,2,3 the Pauli
matrices. In this basis,i 50 and i 51,2,3 describe the spin
singlet and the spin triplet, respectively. An explicit calcu
tion reveals thatr 50,3 corresponds to the particle-ho
channel whiler 51,2 describes the particle-particle chann
In Eq. ~2.1a!, Tr denotes a trace over all degrees of freedo
including the continuous position variable, while tr is a tra
over all those discrete indices that are not explicitly show
For the disorder part of the action one finds12

Adis@Q#5
1

pNFtE dx tr@Q~x!#2, ~2.2!

with t the single-particle scattering or relaxation time.13 The
electron-electron interactionAint is conveniently decom-
posed into four pieces that describe the interaction in
particle-hole and particle-particle spin-singlet and spin-trip
channels.12 We will need only the particle-hole channel, an
thus write
is,
n
-

a
n
-

-

-

-

.
,

.

e
t

Aint@Q#5Aint
(s)1Aint

(t) , ~2.3a!

Aint~s!5
TG (s)

2 E dx (
r 50,3

~21!r (
n1 ,n2 ,m

(
a

3$tr@~t r ^ s0!Qn1 ,n11m
aa ~x!#%

3$tr@~t r ^ s0!Qn21m,n2

aa ~x!#%, ~2.3b!

Aint
(t)5

TG (t)

2 E dx (
r 50,3

~21!r (
n1 ,n2 ,m

(
a

(
i 51

3

3$tr@~t r ^ si !Qn1 ,n11m
aa ~x!#%

3$tr@~t r ^ si !Qn21m,n2

aa ~x!#%. ~2.3c!

HereG (s).0 andG (t).0 are the spin-singlet and spin-triple
interaction amplitudes, respectively.G (t) is responsible for
producing magnetism.

As was shown in paper I, the Goldstone modes do
contribute leading singular terms to the conductivity or
any of the two-point vertices in perturbation theory up
one-loop order asd→2 in the metallic ferromagnetic phase
It was further shown that they do not contribute to the ren
malization of the density of states~DOS!, and hence they do
not contribute to the wave-function renormalization. It fo
lows that both the heat and the charge diffusion constant
not carry any singular renormalizations due to Goldsto
modes. If we assume that this signals the absence
Goldstone-mode effects on the critical properties near
metal-insulator transition as well, we can ignore the Go
stone modes for the purpose of constructing an effect
field theory for the soft modes that drive the metal-insula
transition.14 Furthermore, we can ignore the particle-partic
channel, which is massive in a system with a nonvanish
magnetization. Accordingly, we drop both the particl
particle channel (r 51,2) and the transverse spin-triple
channels (i 51,2) from our model definition. For the remain
ing soft modes,we will now construct an effective theory
generalizing the procedure followed in Ref. 12.

B. Soft and massive modes

Let us briefly recall the basic philosophy behind the de
vation of a nonlinears model in Ref. 12, which in turn was
based on the work by Scha¨fer and Wegner15 on noninteract-
ing electrons. First one realizes, by means of a Ward iden
that the soft modes are given by the matrix elementsQnm
with nm,0, while theQnm with nm.0 are massive. This
remains true in the present case except for the Golds
modes, which we can neglect for our purposes. Next
block-diagonalizes the matrixQ in frequency space. Alge
braic arguments show that the most generalQ can be written
as

Q5SPS 21. ~2.4a!

Here S is a matrix that represents an element of the co
space USp(8Nn,C)/USp(4Nn,C)3USp(4Nn,C), and P is
block diagonal in Matsubara frequency space,
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P5S P. 0

0 P,D , ~2.4b!

where P. and P, are matrices with elementsPnm where
n,m.0 andn,m,0, respectively. It is further convenient t
define a transformed fieldL by

L~x!5S 21~x!L̃~x!S~x! ~2.5!

and to write the action in terms of these variables,

A@S,P,L#5Adis@P#1Aint@SPS 21#

1
1

2
Tr ln~G0

212 iSLS 21!

1E dx tr@L~x!P~x!#. ~2.6!

The next step is to expandS, P, andL about their respec
tive saddle-point values, which we denote by^S&, ^P&, and
^L&, respectively. From Sec. II B in paper I we have

^S&51^ t0 , ~2.7a!

^P&125d12

i

2V (
p

@~t0^ s0!Gn1
~p!1~t3^ s3!Fn1

~p!#,

~2.7b!

^L&125d12~t0^ s0!
2 i

pNFt

1

V (
p

Gn1
~p!

2d12~t0^ s0!2iG (s)T(
m

eivm0
1

V (
p

Gm~p!

1d12~t3^ s3!
2 i

pNFt

1

V (
p

Fn1
~p!

1d12~t3^ s3!2iG (t)T(
m

eivm0
1

V (
p

Fm~p!,

~2.7c!

with G andF from paper I, Eqs.~2.13!. In the popular ap-
proximation that replaces the wave-vector sum over a Gr
function by an integral overjp5p2/2me,16 we have

1

V (
p

Gn~p!'
2 ip

2
NF sgnvn , ~2.8a!

1

V (
p

Fn~p!'0. ~2.8b!

In this approximation,17 we can write Eq.~2.7b! as

^P&12'p12, ~2.9a!

with

p125d12~t0^ s0!sgnvn1
, ~2.9b!

with vn52pT(n11/2) a fermionic Matsubara frequenc
For our purposes this approximation will be sufficient f
reasons that were explained in detail in Ref. 12.
n

We now write

P5^P&1DP, L5^L&1DL, ~2.10!

and expand in powers ofDP, DL, and derivatives ofS. Let
us first consider the Tr ln term in Eq.~2.6!. Using the cyclic
property of the trace, we can write it in the form

Tr ln~G0
212S iL S 21!

5Tr ln~S 21G0
21S2 iL!

5Tr ln~Gsp!
21)1Tr lnF11GspS 21~]tS!

1
1

m
GspS 21 ~¹S! ¹1

1

2m
GspS 21~¹2S!

2Gspi ~DL!G . ~2.11a!

with

Gsp5~G0
212 i ^L&!21 ~2.11b!

the saddle-point Green function. This is formally the sa
expression as in the absence of ferromagnetism,12 only the
saddle-point Green function is more complicated. In parti
lar, the transformation matrixS appears only in conjunction
with some derivative and is therefore soft, while the fluctu
tions DL are massive. Expanding the second term on
right-hand side, the simplest contribution is the one invo
ing the time derivative,

Tr@GspS 21 ~]t S!#5E dx tr@ iVS~x!Gsp~x50!S 21~x!#

5
pNF

2 E dx tr@V Q̂~x!#1O~V2 Q̂!.

~2.12!

Here

V125~t0^ s0!d12Vn1
~2.13a!

is a frequency matrix withVn52pTn a bosonic Matsubara
frequency, and

Q̂~x!5S~x!p S 21~x!, ~2.13b!

with p from Eq. ~2.9b!. Here we have made use of Eq
~2.8!.18 This is the same result as the one obtained in
absence of ferromagnetism.12

We now turn to the gradient terms. It is convenient
define a matrix-valuedd-dimensional vector field

s~x!5S 21~x!~¹S!~x!, ~2.14!

and to expand in powers ofs. The term linear ins vanishes
for symmetry reasons. ToO(s2), both the next-to-last term
on the right-hand side of Eq.~2.11a! and the square of the
preceding term contribute. So far our gradient expansion
been completely general. In order to evaluate the terms
O(s2), we now remember that we can neglect the spin wa
for the purpose of deriving a soft-mode transport theory; i
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we have dropped the channelsr 50,3, i 51,2 in the spin-
quaternion expansion, Eq.~2.1c!. Furthermore, it is well
known that the Cooper channel (r 51,2) is massive in an
external magnetic field,5,2 and the same is true in a ferroma
netic state. Consequently, the only spin-quaternion deg
of freedom present ins12 aret0,3 ands0,3, ands12 commutes
with t3^ s3. This simplifies the evaluation of the gradie
terms substantially, and we obtain

Tr GspS 21~¹2S!2
1

m
Tr@GspS 21 ~¹S!¹#2

5(
12

(
q
E dx$h12,i j

s ~q!tr@s12
i ~q!s21

j ~2q!#

1h12,i j
a ~q!tr@~t3^ s3!s12

i ~q!s21
j ~2q!#%,

~2.15a!

where

hs5~h11h2!/2, ha5~h12h2!/2, ~2.15b!

with

h12,i j
6 ~q!5d i j

1

2
@G n1

6 ~q!1G n2

6 ~q!#1
1

m
qiqj G n1

6 ~q! G n2

6 ~q!,

~2.15c!

with G n
6 the Green functions defined in paper I, Eq.~2.13c!.

Equations~2.15! are generalizations of the corresponding e
pressions in the absence of ferromagnetism.12

C. Nonlinear s model

The remaining steps in the derivation of an effective-fie
theory proceed in analogy to Ref. 12. In particular, we in
grate out the massive modesP and L in a tree approxima-
tion; i.e., we neglect all fluctuationsDP andDL. h6 can be
related to the conductivity in self-consistent Born appro
mation of a system whose chemical potential has b
shifted from its value for nonmagnetic electrons by6D
56G (t)M /mB . Here M is the magnetization in Stoner ap
proximation, andmB is the Bohr magneton@see paper I, Eq
~2.15!#. Denoting these conductivities bys0

6 and defining
the bare coupling constants

1/G5
p

4
m~s0

11s0
2!, ~2.16a!

1/G35
p

4
m~s0

12s0
2!, ~2.16b!

H5p NF/8, ~2.16c!

we obtain for the effective action

Ã5
21

2GE dx tr@¹Q̃~x!#212HE dx tr@VQ̃~x!#

2
1

2G3
E dx tr$~t3^ s3!@¹Q̃~x!#2%1Aint@Q̃#.

~2.17!
es

-

-

-
n

HereQ̃5Q̂2p with p the matrix defined in Eq.~2.9b! and
Aint from Eqs.~2.3!. We recognize this action as the gene
alized nonlinear s model for disordered interacting
electrons,1 augmented by the term with coupling consta
1/G3 that is proportional to the magnetization.

It turns out that the bare action, Eq.~2.17!, is not suffi-
cient to completely describe the effects of magnetic lon
range order, even if one ignores the spin waves as we did
we will see, under renormalization two additional terms a
generated. One is a frequency coupling that is analogou
the second gradient term in Eq.~2.17!, and the other is an
electron-electron interaction term that is not present in n
magnetic systems. We therefore need to add these term
our action. Denoting the respective coupling constants byH3
andK3, we obtain our final result for the effective action,

A5
21

2GE dx tr@¹Q̃~x!#212HE dx tr@VQ̃~x!#

2
1

2G3
E dx tr$~t3^ s3!@¹Q̃~x!#2%

12H3E dx tr@~t3^ s3! VQ̃~x!#1Aint@Q̃#.

~2.18a!

Here Aint is given by Eqs.~2.3! plus the extra term. Intro-
ducing new interaction amplitudesKs522pG (s) and Kt
52pG (t) to comform with notation used earlier,2 we write

Aint@Q#5Aint
(s)@Q#1Aint

(t)@Q#1Aint
(3)@Q#, ~2.18b!

Aint
(s)@Q#5

2pT

4
KsE dx (

1234
da1a2

da1a3
d122,423

3(
r

~2 !r tr@~t r ^ s0!Q12~x!#

3tr@~t r ^ s0!Q34~x!#, ~2.18c!

Aint
(t)@Q#5

pT

4
KtE dx (

1234
da1a2

da1a3
d122,423

3(
r

~2 !r tr@~t r ^ s3!Q12~x!#

3tr@~t r ^ s3!Q34~x!#, ~2.18d!

Aint
(3)@Q#524pTK3E dx (

1234
da1a2

da1a3
d122,423

3(
rs

(
i j

mrs,i j r
i Q12~x! s

j Q34~x!, ~2.18e!

where

mrs,i j 5
1

4
tr~t3t rts

†!tr~s3sisj
†!. ~2.18f!

~This is the matrix that was denoted bym03 in paper I.!
Finally, we note thatQ̂ as defined in Eq.~2.13b! obeys
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Q̂2~x![1, Q̂†5Q̂, tr Q̂~x![0. ~2.19!

Equations~2.18! and~2.19! represent the analog for itineran
ferromagnets of the nonlinears model1 for paramagnetic
electron systems.

D. Metallic fixed point

Before we proceed to use thes model to study the quan
tum phase transition from a ferromagnetic metal to a fer
magnetic insulator, let us ascertain that the model, with so
correction terms, actually describes a metallic ferromagn
phase in some parts of parameter space. Since we will w
to approach the transition from this phase, its existe
within the model is obviously a necessary condition for o
program to be viable.

This task is very simple, since it proceeds in exact an
ogy to the demonstration in Ref. 12 that the model w
1/G35H35K350 has a stable Fermi-liquid fixed poin
This is because the power-counting procedure used to p
the existence of a stable fixed point does not depend
structural details like the presence of extrat ands matrices
in the various terms of the action, while such details are
only difference between the current model and the one c
sidered in Ref. 12. Accordingly, we parametrizeQ̂ in terms
of a matrixq with elementsqnm whose frequency labels ar
restricted ton>0, m,0,

Q̂5S A12qq† q

q† 2A12q†q
D , ~2.20!

and expandS in powers ofq,

S51^ t01
1

2 S 0 2q

q† 0 D 1O~q2!. ~2.21!

As in Ref. 12, we assign scale dimensions toq(x),

@q~x!#5~d22!/2, ~2.22a!

and to the fluctuations of the fieldsP andL,

@DP~x!#5@DL~x!#5d/2. ~2.22b!

Here the scale dimensions@•••# are defined such that th
scale dimension of a lengthL is @L#521. The fixed point
action then consists of the nonlinears model action, Eq.
~2.18a!, expanded toO(q2), plus the corrections bilinear in
DP and DL that arise from Eq.~2.6!. All other terms are
irrelevant by power counting. The arguments showing t
are exactly the same as the ones given in Ref. 12 and n
not be repeated here. The correlation functions for t
Gaussian action are simply related to the Gaussian prop
tors of Sec. III in paper I. We will explicitly determine them
in Sec. III below. This will show that the fixed point actio
really describes a disordered itinerant ferromagnet.

In contrast to Ref. 12, however, we cannot discuss
leading corrections to scaling near the stable metallic fi
point within our current framework. The reason is our havi
neglected the transverse spin-triplet channel that contains
Goldstone modes. While the latter are not expected to in
ence the leading scaling behavior at the critical fixed po
for the reasons pointed out above, they do contribute to
-
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corrections to scaling near the metallic fixed point, as in
cated by their contribution to the leading nonanalytic fr
quency dependence of the conductivity that was studied
paper I.

III. METAL-INSULATOR TRANSITION ON THE
BACKGROUND OF FERROMAGNETISM

In this section we perform a one-loop renormalization
the nonlinears model, Eqs.~2.18!. We first do this for gen-
eral parameter values, which leads to rather complicated fl
equations. They contain a fixed point that corresponds to
known critical fixed point for nonmagnetic electrons in a
external magnetic field.8 We then linearize about this fixe
point and show that it is perturbatively stable with respect
the additional terms in the action that represent the prese
of a nonzero magnetization.

A. Parametrization and Gaussian order

In order to set up a loop expansion we use the param
zation for the matrixQ̂ that is given by Eq.~2.20!. Note that
this parametrization builds in the constraints given in E
~2.19!. It is the matrix analog of the usual (s,pW ) parametri-
zation of theO(N) vector nonlinears model.19 The loop
expansion now proceeds as an expansion in powers ofq. To
Gaussian order, we obtain

A (0)5
24

V (
p

(
1234

r
i q12~p! rs

i j M12,34~p! s
j q34~2p!,

~3.1a!

where the Gaussian vertex is given by

rs
i j M12,34~p!5d13d24 rs

i j M12
(0)~p!

1d122,324da1a2
da1a3

2pT Krs,i j ,

~3.1b!

with

rs
i j M12

(0)~p!5d rsd i j

1

G
~p21GHVn12n2

!

1mrs,i j

1

G3
~p21G3H3Vn12n2

!, ~3.1c!

and

Krs,i j 5d rsd i j ~d i0Ks1d i3Kt!1mrs,i j K3 , ~3.1d!

with mrs,i j from Eq. ~2.18f!.
The Gaussian propagator can be determined by the s

methods that were employed in Sec. III of paper I. We fi

^ r
i q12~k! s

j q34~p!& (0)5
1

8
d~k1p! rs

i j M12,34
21 ~p!, ~3.2a!

whereM 21 has the structure
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rs
i j M12,34

21 ~p!5d13d34@d rsd i j An12n2
~p!1mrs,i j Bn12n2

~p!#

1d122,324da1a2
da1a3

@d rsd i j Cn12n2

i ~p!

1mrs,i j Dn12n2
~p!#. ~3.2b!

To specify the propagatorsA, B, C0[Cs, C1,2,3[Ct, andD,
we define

a[an~p!5~p21GHVn!/G, ~3.3a!

b[bn~p!5~p21G3H3Vn!/G3 , ~3.3b!

and

N[Nn~p!

5~a22b2!@a22b222bK3Vn1a~Ks1Kt!Vn

2K3
2Vn

21KsKtVn
2#. ~3.3c!

In terms of these quantities, we have

An~p!5a/~a22b2!, ~3.4a!

Bn~p!52b/~a21b2!, ~3.4b!

Cn
s~p!5

22pT

N
@a2Ks1b2Kt1a~22bK32K3

2Vn

1KsKtVn!#, ~3.4c!

Cn
t ~p!5

22pT

N
@a2Kt1b2Ks1a~22bK32K3

2Vn

1KsKtVn!#, ~3.4d!

Dn~p!5
2pT

N
@2a2K31ab~Ks1Kt!2b~bK31K3

2Vn

2KsKtVn!#. ~3.4e!

B. Perturbation theory to one-loop order

We now proceed to perform a one-loop renormalizat
of the theory. We do this by renormalizing the two-poi
vertex rs

i j M12,34, Eqs. ~3.1!. This procedures proves th
renormalizability of the theory to one-loop order; i.e.,
makes sure that no coupling constants in addition to the o
present in the bare theory are generated under renorma
tion. We also need to determine the wave-function renorm
ization. This we do by considering the one-point vertex fun
tion G (1)5^Q̂&21.

1. One-point vertex

Let us first consider the one-point propagator^Q̂&. To
one-loop order, the only diagram that contributes is show
Fig. 2.

FIG. 2. Perturbation theory for̂Q̂& to one-loop order.
n

es
za-
l-
-

in

In spin-quaternion space, there are two nonvanishing
trix elements of̂ Q̂&, viz., ^0

0Q& and^3
3Q&. These expectation

values are diagonal in both frequency and replica spa
Their inverses constitute one-point vertex functions that
denote byG0

(1)(Vn) and G3
(1)(Vn), respectively. A simple

calculation using the results of Sec. III A yields

G0
(1)~Vn!511

1

8
@ I 1

s~Vn!1I 1
t ~Vn!#, ~3.5a!

G3
(1)~Vn!511

1

4
I 1

3~Vn!. ~3.5b!

Here we have defined the integrals

I 1
s,t~Vn!5

1

V (
p

(
l 5n

`

Cl
s,t~p!, ~3.6a!

I 1
3~Vn!5

1

V (
p

(
l 5n

`

Dl~p!, ~3.6b!

2. Two-point vertex

We now turn to the two-point vertexG (2), whose Gauss-
ian approximation is given by Eqs.~3.1!. To one-loop order,
we write

rs
i j G12,34

(2) ~p!5 rs
i j M12,34~p!1 rs

i j ~dM !12,34~p!. ~3.7!

There are two topologically distinct diagrammatic contrib
tions todM , which are shown in Fig. 3.

They arise from quartic terms, i.e., terms ofO(q4), and
cubic terms, i.e., terms ofO(q3), respectively, in the expan
sion of the action in powers ofq. An evaluation of the dia-
grams is straightforward but very tedious, since the two
pological structures can be dressed in many ways with
various indices carried by theq field. The calculation reveals
that the one-loop contributions can be grouped into th
distinct classes:~1! Quartic contributions that are logarithm
cally divergent asVn→0 in d52, ~2! cubic contributions
that have the same degree of divergence, and~3! contribu-
tions, both quartic and cubic, which individually diverg
more strongly ~‘‘superdivergent terms’’!, but combine to
yield again terms that are only logarithmically divergent. D
noting the contributions of these three classes to the one-
renormalization ofG (2) by dM (4), dM (3), and dM (sd), re-
spectively, we find for the first of these classes

FIG. 3. One-loop contributions to the two-point vertex.
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rs
i j ~dM !12,34

(4) ~p!5d13d24 H d rsd i j

1

8G
~p21GHVN!@ I 1

(s)~VN!1I 1
(t)~VN!#1d rsd i j

1

8G3
~p21G3H3VN!2 I 1

(3)~VN!

1mrs,i j

1

8G
~p21GHVN!2I 1

(3)~VN!1mrs,i j

1

8G3
~p21G3H3VN! @ I 1

(s)~VN!1I 1
(t)~VN!#J

2d122,324da1a2
da1a3

p

4
T $d rsd i j @~Ks1Kt! J~VN!12K3J(3)~VN!#1mrs,i j @2K3J~VN!

1~Ks1Kt! J(3)~VN!#%, ~3.8a!

with I 1
(s,t,3) given by Eqs.~3.6!,

J~VN!5
1

V (
p

AN~p!, ~3.8b!

J(3)~VN!5
1

V (
p

BN~p!, ~3.8c!

andN an external frequency~e.g.,N5n12n2). For the second class we obtain

rs
i j ~dM !12,34

(3) ~p!52d122,324da1a2
da1a3

~pT!2$d rsd i j @~d i0Ks
21d i3KsKt1K3

2! I 4
(s)~VN!1~d i3Kt

21d i0KsKt1K3
2!I 4

(t)~VN!

1~d i0KsK31KsK31d i3KtK3!I 5
(s)~VN!1~d i0KsK31d i3KtK31KtK3!I 5

(t)~VN!#

1mrs,i j @~d i0Ks
21d j 3KsKt1K3

2!I 5
(s)~VN!1~d i3Kt

21d i0KsKt1K3
2!I 5

(t)~VN!

1~d i0KsK31KsK31d i3KtK3!I 4
(s)~VN!1~d i0KsK31d i3KtK31KtK3!I 4

(t)~VN!#%. ~3.9a!

Here we have defined integrals

I 4
(s,t)~VN!5

1

V (
p

(
l 5N

`

@Al~p!21Bl~p!21Al~p!lCl
(s,t)~p!1Bl~p!lD l~p!#, ~3.9b!

I 5
(s,t)~VN!5

1

V (
p

(
l 5N

`

@2 Al~p! Bl~p!1Bl~p!lCl
(s,t)~p!1Al~p!lD l~p!#. ~3.9c!

Finally, for the third class we have

rs
i j ~dM !12,34

(sd) ~p!5d13d24

1

8
$d rsd i j @ I 2

(s)~p,VN!1I 2
(t)~p,VN!#1mrs,i j @ I 3

(s)~p,VN!1I 3
(t)~p,VN!#%, ~3.10a!

with integrals

I 2
(s,t)~p,VN!5

1

V (
k

(
l 51

`

$al~k!Cl
(s,t)~k!1bl~k!Dl~k!12p T Ks,t Al~k!12p T K3 Bl~k!2~2p T!2Ks,t

2 l Al 1N~k1p!

3@Al~k!1 l Cl
(s,t)~k!#2~2p T!2KsKtlBl 1N~k1p!@Bl~k!1 l D l~k!#2~2p T!2K3

2lAl 1N~k1p!

3@Al~k!1 lCl
(s,t)~k!#2~2p T!2K3

2lBl 1N~k1p!@Bl~k!1 lD l~k!#2~2p T!22K3Ks,tlAl 1N~k1p!

3@2Bl~k!1 lD l~k!#2~2p T!22K3Ks,tlBl 1N~k1p!lCl
(s,t)~k!%, ~3.10b!

I 3
(s,t)~p,VN!5

1

V (
k

(
l 51

`

$bl~k!Cl
(s,t)~k!1al~k! Dl~k!12pTKs,t Bl~k!12pTK3 Al~k!2~2p T!2Ks,t

2 lBl 1N~k1p!

3@Al~k!1 lCl
(s,t)~k!#2~2p T!2KsKt lAl 1N~k1p!@Bl~k!1 lD l~k!#2~2p T!2K3

2 lBl 1N~k1p!

3@Al~k!1 lCl
(s,t)~k!#2~2p T!2K3

2 lAl 1N~k1p!@Bl~k!1 lD l~k!#2~2p T!22K3Ks,t lAl 1N~k1p!

3@Al~k!1 lCl
(s,t)~k!#2~2p T!22K3Ks,t lBl 1N~k1p!@Bl~k!1 lD l~k!#%. ~3.10c!
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As a check, we consider the superdivergent contribution
zero external frequency and wave number. Although all
the individual terms are linearly divergent, an explicit calc
lation yields

I 2
(s)~0,0!1I 2

(t)~0,0!50 ~3.11a!

and the same forI 3. Therefore,

rs
i j ~dM !12,34

(sd) ~p!5O~p2,VN!, ~3.11b!

with coefficients ofp2 andVN that are only logarithmically
divergent. The cancellation of the superdivergences t
holds as expected~and required by, e.g., particle numb
conservation and the renormalizability of the theory!.

C. Expansion to linear order in the magnetic coupling constants

As is clear from the preceding subsection, the comp
one-loop renormalization of our model is rather complicat
While it is certainly possible to determine the renormaliz
tion group~RG! flow equations from our perturbative result
it would not be easy to analyze them for fixed points. At th
point we therefore take a less general approach that is b
on the following physical considerations. We are interes
in a phase transition from a metallic magnetic phase to
insulating magnetic phase. Physically, we expect the mag
tization to be noncritical at such a transition. The simpl
possible scenario is then a fixed point where the renorm
ized values of the ‘‘magnetic’’ coupling constants 1/G3 , H3,
andK3 are all zero.~More complicated possibilities we wil
come back to in Sec. IV below.! This means that the unver
sality class of this transition is the same as that for the tr
sition from a paramagnetic metal to a paramagnetic insul
in the presence of an external magnetic field.8 We can check
this scenario by expanding to linear order in the three m
netic coupling constants and investigate the perturbative
bility of the nonmagnetic fixed point.

Accordingly, we expand the results of the previous su
section, expressing the result in the form of corrections to
magnetic coupling constants. We use dimensional regular
tion; i.e., we perform the integrals ind521e to leading
order in 1/e. We find for the correction to 1/G3 to linear
order in 1/G3 , H3, andK3,

d~1/G3!5
2

e F G

16G3
f 11~Ks /H,Kt /H !

1
H3

8H
f 12~Ks /H,Kt /H !1

K3

4H
f 13~Ks /H,Kt /H !G .

~3.12a!

Here we have defined the functions

f 11~x,y!5g11~x!1g11~y!22
Lx2Ly

x2y

12
xy

x2y
@h11~x!2h11~y!#, ~3.12b!
at
f

-

s

te
.
-

ed
d
n
e-
t
l-

-
or

-
a-

-
e
a-

f 12~x,y!5g12~x!1g12~y!1
Lx2Ly

x2y

1
xy

x2y
@h12~x!2h12~y!#, ~3.12c!

f 13~x,y!5
21

x2y S 1

x
Lx2

1

y
LyD , ~3.12d!

in terms of

g11~x!5
26

x
221

6

x S 1

x
11D ln~11x!, ~3.12e!

h11~x!5
22

x2
2

2

x
1

1

x2 S 2

x
13D ln~11x!, ~3.12f!

g12~x!5
1

x F32S 3

x
12D ln~11x!G , ~3.12g!

h12~x!5
1

x2 F22S 2

x
11D ln~11x!G , ~3.12h!

andLx5 ln(11x), Ly5 ln(11y).
Similarly, the correction toH3 is

dH35
G

4e FGH

G3
f 21~Ks /H,Kt /H !1H3 f 22~Ks /H,Kt /H !

1K3 f 23~Ks /H,Kt /H !G , ~3.13a!

with

f 21~x,y!5g21~x!1g21~y!2
11x1y

x2y
~Lx2Ly!

2
xy

x2y
@h21~x!2h21~y!#, ~3.13b!

f 22~x,y!5g22~x!1g22~y!1
Lx2Ly

x2y

1
xy

x2y
@h21~x!2h21~y!#, ~3.13c!

f 23~x,y!5g23~x!1g23~y!1
Lx2Ly

x2y

1
xy

x2y
@h21~x!2h21~y!#, ~3.13d!

in terms of

g21~x!511
x

2
2S 1

x
11D ln~11x!, ~3.13e!

h21~x!5
1

x2
ln~11x!, ~3.13f!
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g22~x!5211S 1

x
11D ln~11x!, ~3.13g!

g23~x!5
21

2
1

1

x
ln~11x!. ~3.13h!

Finally, for the correction toK3 we obtain

dK35
G

8e FGH

G3
f 31~Ks /H,Kt /H !1H3 f 32~Ks /H,Kt /H !

1K3 f 33~Ks /H,Kt /H !G , ~3.14a!

with

f 31~x,y!5x1y1
x1y

x2y
@h31~x!2h31~y!#, ~3.14b!

f 32~x,y!5g32~x!1g32~y!1
y

x
Lx1

x

y
Ly

1
~x1y!2

x2y
@h32~x!2h32~y!#, ~3.14c!

f 33~x,y!5g33~x!1g33~y!1
y

x
Lx1

x

y
Ly

1
~x1y!2

x2y
@h32~x!2h32~y!#, ~3.14d!

in terms of

h31~x!522~11x!ln~11x!, ~3.14e!

g32~x!522x1 ln~11x!, ~3.14f!

h32~x!5
1

x
ln~11x!, ~3.14g!

g33~x!5113 ln~11x!. ~3.14h!

Inspection of the integrals in Sec. III B further shows th
all corrections to the remaining coupling constantsG, H, and
Ks,t , to the extent that they depend on the magnetic coup
constants, are at least quadratic in the latter and hence ca
neglected for our purposes. The ‘‘nonmagnetic’’ one-lo
corrections are well known,2 and we do not write them down
again.

We also note that 1/G3Þ0 is sufficient to generate non
zero values ofH3 and K3 in perturbation theory, even i
these coupling constants were not present in the bare ac
This is the reason why we have included them in Eq.~2.18a!.

D. Renormalization group flow equations

We now perform a RG analysis of our perturbati
theory. We define renormalized coupling constantsg3 , h3,
andk3 by

G35k2eZg3
g3 , ~3.15a!
t

g
be

n.

H35Zh3
h3 , ~3.15b!

K35Zk3
k3 , ~3.15c!

where theZ are renormalization constants, andk is the arbi-
trary RG momentum scale.19 We further define a two-poin
vertex functionG3

(2) as the ‘‘magnetic piece’’ of the genera
vertex G (2) defined in Eq.~3.7!, i.e., the parts that are pro
portional to 1/G3 , H3, andK3. From Eqs.~3.1!, ~3.7!, and
~3.8!–~3.10! we have

G3
(2)~p,V!5S 1

G3
1d~1/G3! D p21~H31dH3!V

1~K31dK3!V. ~3.16!

The renormalization constants can then be determined f
the renormalization statement

G3,R
(2)~p,V;g3 ,h3 ,k3 ;k!5Z G3

(2)~p,V;G3 ,H3 ,K3!,
~3.17!

whereG3,R
(2) is the renormalized counterpart ofG3

(2) , andZ is
the wave-function renormalization. In our notation, we su
press the dependence of the vertex functions on the rem
ing coupling constantsG, H, Ks,t , and their renormalized
counterparts.

It is a priori not clear that a single wave-function reno
malization constant will suffice. Indeed, the existence of t
distinct one-point vertex functions, Eqs.~3.5!, one being re-
lated to the density of states and the other to the magne
tion, might suggest that one needs at least two. Howeve
mentioned in Sec. III C above, we do not expect the mag
tization to display leading critical behavior at the phase tr
sition we are interested in, despite the fact that the magn
zation has nonanalytic contributions in perturbation theo
We therefore expect the only wave-function renormalizat
to be the one related the vertexG0

(1) ,

G1,R
(1)~V;g3 ,h3 ,k3 ;k!5Z G1

(1)~V;G3 ,H3 ,K3!.
~3.18!

To linear order in 1/g3 , h3, andk3 , Z is given by the wave-
function renormalization for nonmagnetic electrons in an
ternal magnetic field,2

Z512
g

4e
~ l s1 l t!, ~3.19!

where l s,t5 ln(11gs,t), with gs,t[ks,t /h the renormalized
counterparts ofKs,t /H. Our perturbative calculation ofG3

(2)

is then sufficient to determine the remaining renormalizat
constants. Using minimal subtraction, we find

Zg3
511

g

8e F f 11~gs ,g t!22~ l s1 l t!12
g3h3

gh
f 12~gs ,g t!

14
g3k3

gh
f 13~gs ,g t!G , ~3.20a!
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Zh3
511

g

4e F l s1 l t2 f 22~gs ,g t!2
gh

g3h3
f 21~gs ,g t!

2
k3

h3
f 23~gs ,g t!G , ~3.20b!

Zk3
511

g

8e F2~ l s1 l t!2 f 33~gs ,g t!2
h3

k3
f 32~gs ,g t!

2
gh

g3k3
f 13~gs ,g t!G . ~3.20c!

From Eqs.~3.20! and ~3.15! it is now easy to determine
the RG flow equations for the magnetic coupling consta
Our parameter space is spanned bym
5(g,h,gs ,g t ,g3 ,h3 ,k3), and our approximations are vali
only in the vicinity of the fixed point ~FP! m*
5(g* ,h* ,gs* ,g t* ,g3* ,h3* ,k3* ), with 1/g3* 5h3* 5k3* 50,
and g* , h* , gs* , and g t* the FP values of these couplin
constants for the magnetic-field universality class of n
magnetic electrons.2 We therefore immediately lineariz
about this FP. Withb3[1/g3, and l[1/k the RG length
scale, we find

db3

dl
5S e2

g*

8
@ f 11* 22~ l s* 1 l t* !# Db32

f 12*

4h*
h32

f 13*

2h*
k3 ,

~3.21a!

dh3

dl
5

21

4
~g* !2 h* f 21* b31

g*

4
@ l s* 1 l t* 2 f 22* #2

g*

4
f 23* k3 ,

~3.21b!

dk3

dl
5

21

8
~g* !2 h* f 31* b32

g*

8
f 32* h3

1
g*

8
@2~ l s* 1 l t* !2 f 33* # k3, ~3.21c!

where f 11* [ f 11(gs* ,g t* ), etc.
The fixed point values that enter Eqs.~3.21! depend on

whether we consider the long-ranged Coulomb interac
between the electrons, or a short-ranged model interac
We consider here the former, more realistic, case. Then
have2

g* 52e/~12 ln 2!, g t* 52gs* 51, l s* 522/e.
~3.22!

With this input, we obtain the following eigenvalues for th
linearized flow equations, Eqs.~3.21!:

l152e/2~12 ln 2!1O~e2!,0, ~3.23a!

l2521/~12 ln 2!1O~e!,0, ~3.23b!

l352
3 ln 222

12 ln 2
e1O~e2!,0. ~3.23c!

We see that all three eigenvalues are negative, and the
point is therefore stable.
s.

-

n
n.
e

ed

E. Critical behavior

As we have seen in the previous subsection, the crit
fixed point for the transition under consideration is the sa
as the one found before for the metal-insulator transition
nonmagnetic electrons in the presence of an external m
netic field.8 The asymptotic critical behavior is therefore al
the same. Choosing the correlation length exponentn, the
critical exponent for the density of statesb, and the dynami-
cal critical exponentz as the three independent exponen
we thus have2

n51/e1O~1!, ~3.24a!

b51/2e~12 ln 2!, ~3.24b!

z5d. ~3.24c!

The critical exponent for the conductivity,s5n(d22), is

s511O~e!. ~3.24d!

In contrast to the asymptotic critical behavior, the corre
tions to scaling are different from any previously studi
universality class for metal-insulator transitions. The reas
for this is the presence of the three irrelevant operators 1/g3 ,
h3, andk3 in our model. We will not go through a complet
analysis of the corrections to scaling here, but only ment
that they lead to a nonanalyticity in the magnetization as
crosses the metal-insulator transition, even though the m
netization is not critical. To see this, we recall that the ma
netization is proportional to a frequency integral over t
inverse of the one-point vertexG3

(1) ; see Eq.~3.5b! above
and Eq.~2.7c! in paper I. The extra frequency integratio
makes the integral finite for alld.0, and the one-loop con
tribution to the magnetization is simply proportional to 1/g3 ,
h3, andk3. Sincel3 has the smallest absolute value of t
three negative eigenvalues given in Eq.~3.23!, the magneti-
zation atT50 behaves like

M ~ t,T50!}const1t2nl3, ~3.25a!

wheret is the dimensionless distance from the critical poi
At criticality as a function of temperature we have

M ~ t50,T!}const1T2l3 /z. ~3.25b!

Putting e51 in our one-loop approximation yields2l3 /z
50.086 . . . . Our theory thus predicts that the meta
insulator transition is reflected in the magnetization in t
form of a very slow temperature dependence.

More generally, the existence of very slow corrections
scaling indicates that it will be very difficult, if not impos
sible, to observe the true asymptotic critical behavior at
ferromagnetic metal-insulator transition. If we extrapola
our one-loop results tod53 by puttinge51, we havenl3
'20.26. This mean that in order to obtain critical expone
with an accuracy of 10% one needs to be within ab
0.01% of the critical point,t&1024. This is not achievable
for any metal-insulator transition observed so far.2 Any ob-
served critical behavior at larger values oft will yield effec-
tive exponents that contain contributions from the domin
irrelevant scaling variables. We note in passing that the sa
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conclusion holds for the Anderson-Mott transition of pa
magnetic electrons in an external magnetic field.8

IV. DISCUSSION

Our chief result is the prediction that the metal-insula
transition from a ferromagnetic metal to a ferromagnetic
sulator is in the same universality class as the one from
paramagnetic metal to a paramagnetic insulator in the p
ence of an external magnetic field. It is important to note t
this statement holds independent of what the actual crit
exponents, which we can determine only to lowest order
21e expansion, are in three-dimensional systems. It is a
independent of the fact that we have considered explic
only the perturbative stability of the nonmagnetic fixed poi
In principle, the full flow equations that follow from th
one-loop calculation in Sec. III B could contain other critic
fixed points. This is a question that remains to be inve
gated; here we just mention a possible scenario.

In both the magnetic-field and ferromagnetic mater
cases a different universality class for the MIT is easy
envisage. First note that the existence of two conductivi
s6 @cf. Eqs. ~2.16!# or, equivalently, two diffusivities just
reflects the fact that either a magnetic field or a finite sp
taneous magnetization leads to a splitting of the energy b
The subband with fewer~more! electrons that have spin
aligned in~opposite to! the direction of the magnetic field o
spontaneous magnetization is called the minority~majority!
subband. If the magnetic energy scale is large compare
other interaction energy scales and comparable to the F
energy, then the two subbands are well separated. A po
ization scenario for the MIT is that the minority subba
carriers become localized first and then act as a static ran
field for the majority mobile carriers.20 In this scenario, the
MIT occurs when the carriers in the majority band beco
localized. In this case the MIT is one for spin-polarized,
effectively spinless, electrons. This is mathematically
scribed by the so-called singlet-only or magnetic impur
universality class that was discussed in Ref. 21. One m
thus expect a multicritical point separating the magnetic-fi
universality class, which was discussed above and is rele
for small values of the magnetization or the magnetic fie
from the singlet-only or polarization universality class
large values of the magnetization. Experimentally, suc
multicritical point could be probed by increasing the ma
netic field in the case of an MIT in an external magnetic fie
or by effectively increasing the triplet interaction for a spo
taneously magnetized system. Theoretically, it remains to
,
,

-

-

r
-
a
s-
t

al
a
o
y
.

l
i-

l
o
s

-
d.

to
mi
r-

m

e
r
-

ht
d
nt
,

t
a
-

-
e

seen whether such a behavior is described by our comp
flow equations. This point will be investigated in a futu
publication.

In any event, it would be very interesting to compa
experiments on a ferromagnetic metal-to-insulator transiti
which has not been studied so far, with the existing res
for nonmagnetic systems in a magnetic field.2 The equiva-
lence of the two universality classes also leads to the con
sion that the existing theory for the nonmagnetic transition
a magnetic field is incomplete since it misses important c
rections to scaling.8

From a theoretical point of view, this result isa priori
rather surprising. The critical behavior at the metal-insula
transition, and hence the universality class, is determined
the structure of the soft modes in the system, at least n
two dimensions. Since ferromagnetism leads to additio
soft modes, namely, the Goldstone modes or spin wa
compared to paramagnetic metals, one would expect
critical behavior to change. The reason why it does not
in the fact that the Goldstone modes do not lead to a sing
correction to the conductivity ind52, in contrast to the
diffusive soft modes that are also present in the absenc
ferromagnetic long-range order. Since these singular cor
tions drive the transition in low dimensions, and since t
Goldstone modes are the only substantial difference betw
the soft-mode spectra of ferromagnetic systems and p
magnetic systems in a magnetic field, respectively, the
that the universality class remains unchanged is at least p
sible.

We finally mention again that one of our motivations f
the present study had been the observed apparent m
insulator transition in certain 22d electron systems,9 which
contradicts the results of orthodox theories and is not und
stood. Since it is known that ferromagnetic fluctuations e
hance the conductivity ind52,2 it was a plausible hypoth-
esis that ferromagnetic long-range order might have an e
stronger effect and lead to a metallic phase ind52. Our
results rule out this possibility, at least on a perturbat
level.
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