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Thermodynamic characteristics of the classicaln-vector magnetic model in three dimensions

Z. E. Usatenko and M. P. Kozlovskii
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 290011 Lviv, Uk
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A method of calculating the free energy and thermodynamic characteristics of the classicaln-vector three-
dimensional magnetic model at the microscopic level without any adjustable parameters is proposed. Math-
ematical description is performed with the collective variables method used within the framework of ther4

model approximation. The exponentially decreasing function of the distance between the particles situated at
the N sites of a simple cubic lattice is used as the interaction potential. Explicit analytical expressions for
entropy, internal energy and specific heat near the phase-transition point as functions of the temperature are
obtained. The dependence of the amplitudes of the thermodynamic characteristics of the system forT.Tc and
T,Tc on the microscopic parameters of the system are studied for the casesn51,2,3. The obtained results
provide the basis for accurate analysis of the critical behavior in three dimensions including the nonuniversal
characteristics of the system.
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I. INTRODUCTION

Investigating the behavior of the real three-dimensio
systems near the phase-transition~PT! point is one of the
most important problems of condensed-matter physics. In
present paper we propose a theoretical description schem
the critical behavior of the classicaln-vector magnetic mode
in three dimensions on the microscopic level without a
adjustable parameters. The description is based on the o
nal method of calculating the thermodynamic and structu
characteristics of three-dimensional~3D! model systems nea
the PT point, which is known as the collective variabl
~CV! method.1,2 The method of collective variables as we
as Wilson’s approach3 are based on Kadanoff’s idea4 of
using effective spin blocks near the phase-transition p
instead of initial spins. The description of the critical beha
ior of the model in Wilson’s works3,5 was based on Gaussia
distributions. The recursion relations between the coe
cients of successive block Hamiltonians were obtained
corresponding combinations of the moments of Gaussian
tribution. It is known that in the case of 3D model differe
types of divergent diagrams appear in the frame of this
proach. At the present time there are a number of powe
series resummation techniques~see Refs. 6–10 as an ex
ample of its application! which enable us to remove dive
gences appearing in calculating universal values. Howe
the present methods make it impossible for us to calcu
the nonuniversal characteristics of the system. The invest
tion of the nonuniversal properties of the system near the
point require the use of non-Gaussian measure densitie
the spin-density fluctuations.11

Unlike Wilson’s approach,5 the method of collective
variables,1,12 uses non-Gaussian basis distributions. In t
case divergent terms do not appear either in the analys
recursion relations or in the calculation of the free ene
near the phase-transition point. Hence it follows that
presence of the divergent terms appearing in Wilson’s
proach is of purely mathematic character and is conne
with limitation in calculations by Gaussian measure~and
Gaussian moments! the dispersion of which strives to infinit
PRB 620163-1829/2000/62~14!/9599~17!/$15.00
l

e
of

y
gi-
l

t
-

-
s

is-

-
ul

r,
te
a-
T
of

s
of
y
e
-
d

in the vicinity of the phase-transition point. Such basis m
sure does not describe the system in the critical region
must be replaced by the non-Gaussian measure, the fou
one in particular.

We have devoted this paper to the widely studied class
n-vector magnetic model13 on three-dimensional simple cu
bic lattice, which is also known as the Heisenberg class
O(n) spin model or, in field-theoretic language, as the latt
O(n) nonlinears model. The investigation of the critica
behavior of the classicaln-vector model and its partial case
was conducted in the frame of different methods such
high- and low-temperature series, the field theory, se
microscopic scaling-field theory and Monte Carlo calcu
tions. Much attention in these works was given to investig
ing the universal properties of the system such as crit
exponents14–19 and some combinations of the critical amp
tudes of thermodynamic functions.20–33Besides, the equation
of state of Ising system was obtained to ordere2 by Avde-
jeva and Migdal34 and by Bresin, Wallace, and Wilson.35

Later these results were generalized for the case of
n-vector model.35

Some important results were also obtained for calculat
the thermodynamic functions near the critical point. One
the first works in this sphere is a paper by Wegner~the so-
called Wegner’s expansion!,36 suggesting the expression fo
the free energy with ‘‘irrelevant’’ operators in the Wilso
approach taken into account. The works by Fisher a
Aharony,37 Nicoll and Albright,38 and Nelson39 were also
devoted to receiving crossover scaling functions for tempe
turesT.Tc in zero external field near four dimensions.
1974, Riedel and Wegner40 developed a numerical tech
nique, called the scaling-field method, for obtaining cro
over scaling functions of the free energy and susceptibil
Crossover functions rather than power laws41–43 have de-
scribed the nonasymptotic region between criticality and
noncritical ‘‘background.’’ In the frame of the massive fie
theory by Bagnuls and Bervillier18,44the nonasymptotic criti-
cal behavior ford53 in the disordered phase case was a
lyzed. They obtained explicit expressions for the correlat
lengthj, the susceptibilityx, and the specific heatC as tem-
9599 ©2000 The American Physical Society
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perature functions in the disordered phase along the cri
isohore for one-, two-, and three-component models. T
description of nonasymptotical~though still critical! behav-
ior was obtained as crossover between the Wilson-Fis
~near the critical temperatureTc! and mean-field~very far
from Tc! behaviors with three adjustable parameters use

At the present time the actual task of the critical pheno
ena physics is elaborating the methods giving quantity
scription of the critical behavior of the system without usi
any adjustable parameters. This has been demonstrated
example, in the works of Dohm and co-workers45–47 in
which calculation of the temperature dependence of the t
modynamic characteristics of the system was perform
without usinge expansion in the frame of the minimal su
traction scheme for then-vector model in three dimension
on the basis of high-order perturbation theory and Borel
summation. In these papers the amplitude functions of
susceptibility, the correlation length and the specific h
above and belowTc up to two-loop order within thef4

model for the casesn51,2,3 were calculated. This approac
exploits simultaneously the experimental information a
simple relation between the specific heat above and belowTc
for defining the effective renormalized static coupling of t
model in the terms of the measured specific heat. The ef
tive renormalized static coupling determined in such a w
allows to obtain expressions for other thermodynamic ch
acteristics of the model above and belowTc without using
additional adjustable parameters. These results were
tended for higher approximations in Ref. 48. Besides, in
recent works by Butera and Comi49 high- and low-
temperature expansions for the free energy, the suscep
ity, and the second correlation moment of the class
n-vector model on the simple cubic~sc! and the body-
centered-cubic~bcc! lattices were extended to orderb.21 This
research only contains temperature dependence of the
modynamic characteristics and does not give the possib
to describe the functional dependence of basic thermo
namic functions on the microscopic parameters of the in
action potential and characteristics of the crystal lattice.
this indicates that nonuniversal properties of the 3D syste
near the phase-transition point have not been studied s
ciently yet. However, the precise role and significance o
lattice structure and interaction potential parameters for
approach to asymptotic critical behavior still seems open
question. We hope that our explicit representations may p
vide useful benchmarks in studying this question.

The approach to the investigation of the critical propert
of the n-vector magnetic model, suggested in Ref. 50 p
vides the necessary conditions for our complex approac
the study of the universal and nonuniversal phase-trans
characteristics. The approach suggested in this paper al
us to perform the analysis of the dependence of the ther
dynamic characteristics of then-vector 3D magnetic mode
in the vicinity of the phase-transition point as functions
temperature and study their dependence on the microsc
parameters of the interaction potential and characteristic
the crystal lattice without any adjustable parameters be
used. These results are interesting from the point of view
comparing the theoretical investigations and experime
data.

In Sec. II of the present paper we perform the calculat
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of the partition function of then-vector model using non-
Gaussian measure density. The explicit analytical exp
sions for partial partition functions and general recursion
lations ~RR! between coefficients of the ‘‘effective
Hamiltonian blocks’’ which arise in that case are obtained
the r4-model approximation. We define the scope of app
cation of these approximate solutions and show that RR
partial solution have a saddle-type fixed point for alln. We
perform the calculation of the eigenvectors and eigenval
of the RG transformation matrix and give the results of t
investigation of the dependence of the PT temperature on
microscopic parameters of the interaction potential and
characteristics of the crystal lattice.

Section III is devoted to the calculation of the free ener
of the n-vector magnetic model for temperatures above a
below the phase-transition point. The main idea of such c
culation lies in considering separately the contribution fro
the critical region~CR! where renormalization-group sym
metry takes place and the contribution from the region of
long-wavelength fluctuations~LWF! of the spin moment
density. It shown that in the case of the temperaturesT,Tc
in the region of the LWF the fluctuations are described
non-Gaussian distribution with negative coefficient at squ
term. The distributions of the spin moment density fluctu
tions after the selection of the ordering free energy is redu
to the Gaussian distribution. The dependence of the co
cients of the complete expression of the free energy on
microscopic parameters of the initial interaction potent
and characteristics of the crystal lattice is investigated for
casesn51,2,3. The contributions into the expressions f
entropy and specific heat from the CR and LWF region
analyzed. It has been shown that considering the contribu
of the LWF region satisfies the positiveness of the spec
heat of then-vector model and system stability.

In Sec. V the explicit expressions for thermodynam
functions of the model as functions of the temperature
obtained. The dependence of the critical amplitudes of
thermodynamic functions on the microscopic parameters
the interaction potential and the characteristics of the cry
lattice is investigated for the casesn51,2,3. It has been
shown that in the casen53 ~the Heisenberg model! the spe-
cific heat at theT5Tc has the finite value. The dependen
of the maximum of the specific heat on the microscopic
rameters of the interaction potential is examined for the c
n53. The ratio of the critical amplitudes of the thermod
namic functions at the temperaturesT.Tc andT,Tc is cal-
culated in order to compare the obtained results with
results of the other methods.

II. CALCULATION OF THE PARTITION FUNCTION AND
INVESTIGATION OF THE RECURSION RELATIONS

The critical behavior of different physical systems is ch
acterized by their belonging to a specific class of universa
which is defined by the dimensionality of the systemd and
the symmetry of the order parametern. The Stanley model13

is selected as the object of our investigation of the criti
phenomena. This model describes the system of interac
n-component classical spins localized at theN sites of the
d-dimensional crystal lattice. The Stanley model is a gen
alization of a series of different models. In the casen50 it is
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reduced to the task of a self-avoiding walk and is used
describing the polymerization phenomena. The casen
51,2,3 correspond to the Ising model, theXY, and the
Heisenberg model, respectively. The boundary casen→` is
equivalent to the Berlin-Kac spherical model51 for which the
exact result is known. The Stanley model is described by
Hamiltonian

Ĥ52
1

2 (
R,R8

J~ uR2R8u!ŜRŜR8, ~2.1!

whereŜR5(ŜR
(1) ,...,ŜR

(n)) is the n-component classical spi

with the lengthm (Sa51
n uŜR

(a)u25m2). Spins are localized a
the N sites of thed-dimensional simple cubic lattice with
coordinatesR. The interaction has an exchange character
can be described by the exponentially decreasing functio
distance between the particles

J~ uR2R8u!5A0 expS 2
uR2R8u

b D , ~2.2!

where A0 , b are the constants. In the CVrk

5(rk
(1) ,...,rk

(n)) representation the partition function of th
model ~2.1! is written as1,50

Z5E expF1

2 (
k

bF~k!rkr2kGJ@r#~drk!N, ~2.3!

whereF(k) is the Fourier transform of the interaction p
tential ~2.2!, the element of the phase space is52

~drk!N5 )
a51

n

dr0
a)

k

8
drk

a,cdrk
a,s

andJ@r# is the transition Jacobian from the spin variables
the CV. The expression forJ@r# is given in Appendix A. In
the coordinate CV representation

r~R!5
1

AN
(

k
rk exp~2 ikR ! ~2.4!

the expression forJ@r# is factored

J@r#5exp~u08N8!J8@0#)
R

J@r~R!# ~2.5!

where

J@r~R!#5(
l>1

a2l8

~2l !!
ur~R!u2l . ~2.6!

The expressions fora2l8 were obtained in Refs. 1 and 11. Th
partition function~2.3! contains the contributions of two dif
ferent types. The first is energy contributions

1

2 (
k<B

bF~k!rkr2k . ~2.7!

They are diagonal inrk representation and connected wi
the interaction potential. The second is entropy contributi
r

e

d
of

s

(
R

ln J@r~R!#. ~2.8!

They are diagonal inr(R) coordinate CV representation.
There are two possible approaches to calculating

~2.3!. The first one is usingrk variables in the calculation o
the partition function of the system. In such case the ene
contributions are diagonal and the nondiagonality of the
tropy contributions leads to an approximate method of c
culation. One of such approximations is writing Eq.~2.3! in
the following form:

Z5E expS 2
1

2 (
k>B

@a282bF~k!#rkr2kD
3F11h1

1

2
h21¯G~drk!N, ~2.9!

where

h5(
l>2

a2l8

~2l !!
N12 l(

ki

rk1
,...,rk2l

dk11¯1k2l
. ~2.10!

As rule, such a way of calculation assumes that for the va
h it is sufficient to restrict the consideration to one terml
52) and in addition it is presupposed that11

@a282bF~k!# l@a2l8 . ~2.11!

The second way of calculating the partition function~2.3!
assumes the use of ther(R) CV representation. In that cas
the entropy contributions are diagonal~2.5! and the approxi-
mation relates to the energy contribution~2.7!, as it is non-
diagonal in ther(R) representation. The essence of su
fitting leads to a certain approximation ofF(k) ~see Ref. 1!
which allows to diagonalize the expressions in the expon
under the integrand for the partition function

Z5)
R

E expS 2
1

2
~a282bFapr!r~R!2

2(
l>2

a2l8

~2l !!
r~R!2l D dr~R!. ~2.12!

We use such approximation forF(k) whereF(k) is a con-
stant Fapr for every intervalkP(Bl ,Bl 21) and equals the
respective mean valueF(k).

The first way corresponds to considering the moments
a certain Gaussian distribution. It allows us to calculate o
certain classes of the graphs and does not solve the pro
of the description of the critical behavior as such. Besid
the condition~2.11! is too strong in the vicinity of the phase
transition point. Nevertheless, such an approach has its
vantages owing to considering the wave-vector depende
of F(k). The second way is not restricted to Gaussian m
ments and is based on the use of the non-Gaussian me
density.53 In this case we do not need to perform the su
mation of various types of infinite series of perturbati
theory, certain terms of which strive to infinity withT
→Tc . Besides, the condition~2.11! becomes optional. In ou
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opinion this condition is the basic barrier in the descripti
of the critical behavior of three-dimensional systems.

The calculation of the nonuniversal characteristics of
phase transition, particularly the PT temperatureTc , is con-
nected with the choice of the interaction potential. The F
rier transform of the interaction potential~2.2! takes the form

F~k!5
F~0!

~11b2k2!2 , ~2.13!

whereF(0)58pA0(b/c)3. The value ofF(k) for the wave
vectors similar to the boundary of the Brillouin half zon
(B5p/c) is much smaller thanF(0). In this region of the
wave vectors a weak dependence ofF(k) on the wave vec-
tor is observed. This allows us to accept the following a
proximation forF(k):

F~k!5H F~0!~122b2k2!, k,B8

F̄5const, B8<k,B.
~2.14!

The coordinateB8 is obtained from the condition of the ap
plicability of the parabolic approximation forF(k) and
equalsB85(b&)21.

Among the set of the CVrk there are those connecte
with the order parameter. In the case of the model with
exponentially decreasing interaction potential~2.2! it is the
r0 variable. The investigation of the critical behavior of th
model is largely determined by considering the contribut
from ther0 variable in calculating the free energy. The me
valuer0 describes the behavior of the order parameter. N
ertheless, as seen from Eqs.~2.3! and~A1!, all the CVrk are
interconnected, and the contribution of the variabler0 alone
cannot be separated in the partition function~2.3!. The given
task can be accomplished if we use the method suggeste
Ref. 1. Its essence lies in sequentially integrating therk vari-
ables withkÞ0 and investigating the functional from ther0
variable. The functional representation of the partition fun
tion of then-vector magnetic model in ther4-model approxi-
mation has the form54

Z5J8@0#exp~u08N8!E expF2
1

2 (
k,B8

d~k!rkrÀk

2
a4

4!N8 (
k1 ,...,k4 ,ki,B8

rk1
¯rk4

dk11¯1k4G ~drk!N8.

~2.15!

Part of the interaction potential is contained in the coeffici

d~k!5a22bF~k!.

The expressions for the coefficientsa2l are shown in Appen-
dix B. The calculation of Eq.~2.15! employs the smoothing
procedure suggested by Wilson.14 However, unlike Ref. 14’s
approach it is based on the use of the non-Gaussian b
measure densities. It enables us to avoid the necessit
renormalizing a whole class of diverging diagrams. It sho
be mentioned that divergences of the kind are of mathem
cal nature and are not directly connected with the physic
the problem. The basic idea of the calculation~2.15! lies in a
sequential exclusion from the consideration of the sh
wavelength variablesrk . After each of such step-by-ste
e
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exclusions the size of effective spin blocks is increased
the factors(s>1). The set of the CVrk is divided into
subsets. Each of these subsets contains the variablesrk with
certain values of the wave vectorsk. For thel subset we have
kP(Bl 11Bl), whereBl 115Bl /s, and B05B8. In each of
the layers of the CV phase space the valueF(k) is replaced
by the corresponding mean value.11 After the layer integra-
tion the partition function~2.15! can be represented as
product of the partial partition functionsQl of separate
layers,

Z5Cl8Q0Q1¯QlE ~drk!Nl11v l 11~r!, ~2.16!

where

v l 11~r!5expF2
1

2 (
k,Bl 11

d~n,l 11!~k!rkr2k

2
a4

~n,l 11!

4!Nl 11
(

k1 ,...,k4 ,ki,Bl 11

rk1
¯rk4

dk11¯1k4G ,

~2.17!

Cl85& ~Nl2Nl 21!n, Q05@Q~u!Q~d0!#N8,

Ql5@Q~dl !Q~Pl 21!#Nl, Nl5N8s2dl. ~2.18!

The value lnvl11(r) corresponds to thel-block Hamiltonian
which depends on theNl variablesrk connected with the
fluctuation of the spin moment density in the blocks. T
values which are part of the expressions for the partial p
tition functionsQl are written in the form

Q~dl !5~2p!n/2S 3

a4
~n,l !D n/4

US n21

2
,xl DexpS xl

2

4 D ,

Q~Pl 21!5~2p!2n/2S n12

3
sd

a4
~n,l 21!

wnxl 21
D n/4

3US n21

2
,yl 21DexpS yl 21

2

4 D , ~2.19!

QN8~u!5J8@0#exp~u08N8!. ~2.20!

For coefficientsa2
(n,l ) anda4

(n,l ) the recursion relations~RR!
are valid:

a2
~n,l 11!5a2

~n,l !1dn~Bl 11 ,Bl !Mn~xl !,

a4
~n,l 11!5a4

~n,l !s2dEn~xl !, ~2.21!

wheredn(Bl 11 ,Bl) corresponds to the mean value in thel
layer. Special functions introduced here have the follow
form:

En~xl !5s2d
wn~yl !

wn~xl !
, Mn~xl !5Nn~xl !21,

Nn~xl !5
ylUn~yl !

xlUn~xl !
, ~2.22!



o

rti

t
e

em
l-

re-

nd

1

8

7

3

PRB 62 9603THERMODYNAMIC CHARACTERISTICS OF THE . . .
where the functionswn(t),Un(t) are combinations of the
parabolic cylinder functionsU(a,t),

wn~ t !5~n12!Un
2~ t !12tUn~ t !-2,

Un~ t !5
U„~n11!/2,t…

U„~n21!/2,t…
.

The variables

xl5A 3

a4
~n,l ! dn~Bl 11 ,Bl !,

yl5sd/2Un~xl !S n12

wn~xl !
D 1/2

~2.23!

serve as arguments. The obtained expression~2.16! for the
partition function enables us to calculate the free energy
the system,

F52kT(
l>1

ln Ql , ~2.24!

when the explicit analytical expressions for the partial pa
tion functionsQl ~2.18! and~2.19! are familiar to us. But, the
calculation of Eq.~2.24! can only be done if the explici
solutions of the RR~2.21! are obtained as functions of th
phase layer numberl.55 In this work we briefly present the
results of the investigation of the RR~2.21!,54 which allows
us to perform the calculation of the nonuniversal syst
characteristics. The RR~2.21! can be represented in the fo
lowing form:

r l 11
~n! 5s2@2q1~r l

~n!1q!Nn~xl !#,

ul 11
~n! 5s42dul

~n!En~xl !. ~2.25!

We introduce the following substitutes:

r l
~n!5s2ldn~0!, ul

~n!5s4la4
~n,l ! , ~2.26!

with

r l
~n!1q5dn~Bl 11 ,Bl !s

2l , ~2.27!

where

q5bF~0!q̄, q̄5
d

~d12!

~12s2~d12!!

~12s2d!
, ~2.28!

q̄ is the geometric mean value ofk2 in the interval (1/s,1).
Equations~2.25! as a partial solution have a fixed point

r n* 52 f nbF~0!, un* 5wn„bF~0!…2, ~2.29!

where

f n5
s2~Nn~x* !21!

s2Nn~x* !21
q̄,

wn5
3

~x* !2 q̄2H 12s22

Nn~x* !2s22J 2

. ~2.30!
f

-

The valuesf n andwn depend on the component numbern of
the model and the universal valuex* which is a solution of
the nonlinear equation

s41dwn„y~x* !…5wn~x* !. ~2.31!

The valuesf n andwn for different n ands are presented in
Table I.

The presence of the fixed point in RR~2.25! allows us to
write them in the linearized form

S r l 11
~n! 2r n*

ul 11
~n! 2un*

D 5ReS r l
~n!2r n*

ul
~n!2un*

D . ~2.32!

In calculating the matrix elements of the Re matrix we
strict our consideration to a linear term on (xl2x* ). As a
result the following expressions for the matrix elements54 are
obtained:

R115s2)m1 , R125
s2

2
~m02m1x* !~un* !21/2,

R215s42dA3un* v1 , R225s42dS v02
v1x*

2 D .

~2.33!

It should be pointed out that in Eq.~2.33! we introduce the
following definition:

m15m0S a12
q1

2 D ; m05
sd/2An12Un~y* !

)wn
1/2~x* !

,

v05
s2dwn~y* !

wn~x* !
; v15v0~b12q1!,

TABLE I. The dependence of the fixed-point coordinates a
the eigenvalues of the transition matrix on thes parameter of divid-
ing the phase space into the layers and then component number of
the model.

s n x* E1 E2 f n wn

1.1 1 10.9487 1.2077 0.9092 0.0181 0.020
2 11.9534 1.2074 0.9089 0.0202 0.0168
3 12.8801 1.2072 0.9086 0.0217 0.0144

1.5 1 3.3645 2.1521 0.6753 0.0998 0.108
2 3.5927 2.1379 0.6710 0.1134 0.0914
3 3.8088 2.1273 0.6676 0.1234 0.0787

2.0 1 1.5562 3.4761 0.5347 0.2153 0.249
2 1.5671 3.3901 0.5260 0.2492 0.2105
3 1.5848 3.3256 0.5185 0.2746 0.1814

3.0 1 0.3425 6.3985 0.4140 0.4640 0.626
2 0.1684 5.9509 0.4010 0.5498 0.5287
3 0.0154 5.6298 0.3880 0.6145 0.4538

4.0 1 20.1789 9.6225 0.3560 0.7167 1.0885
2 20.4575 8.5533 0.3402 0.8620 0.9180
3 20.7086 7.8304 0.3233 0.9712 0.7841
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a15 P̃1y* r 1 , r 15]12
q1

2
,

P̃m5
1

Un~y* ! S dmUn~yl !

dyl
m D

y*

,

b15Q̃1y* r 1 , Q̃m5
1

wn~y* ! S dmwn~yl !

dyl
m D

y*

,

R12
~0!5R12~un* !1/2, R21

~0!5R21~un* !21/2.

The eigenvaluesE1 and E2 of the matrix Re are universa
values,54,59,60

E1,25
1
2 $R111R226@~R112R22!

214R12
~0!R21

~0!#1/2%.
~2.34!

As is obvious from Table I, we have a saddle-type fix
point (E1.1,E2,1) for all valuesn and s. According to
Refs. 59 and 60 the bigger eigenvalueE1 defines the critical
exponentn for the correlation length

n5
ln s

ln E1
. ~2.35!

SinceE1 is a universal value, the critical exponents a
also universal and do not depend on the microscopic cha
teristics of the system. As we can see from Eqs.~2.33! and
~2.34!, they only depend on the dimensionality of spaced
and then spin component number. The results of calculat
the critical exponents of the model in the framework of th
approach were shown in Refs. 61 and 62. Thus in the c
d53, n53 the valuesn50.674,a520.021,g51.347 were
obtained. These values of the critical exponents corresp
to ther4 model approximation which gives a good qualit
tive description of the critical behavior of then-vector model
~see Appendix C!.

As is known,11 good quantitative results for the critica
exponents can be obtained in the framework of ther6 model
approximation. For example, the value of then critical ex-
ponent in ther6 model approximation increases and prac
cally remains unchanged with the increase of them order of
the r2m model. Obtaining the eigenvectors of the transfo
matrix Re from Eq.~2.32! is an essential aspect of the inve
tigation of the RR. They can be represented as follows:1,54

w15w11S 1
R1

D , w25w22S R
1 D , ~2.36!

where

R15
R21

E12R22
5

E12R11

R12
, ~2.37!

R5
R12

E22R11
5

E22R22

R21
. ~2.38!

The conjugate vectorsv1 andv2 are written in the form

v15v11S 1
R12

E12R22
D , v25v22S E22R22

R12
1D .

~2.39!
c-

g

se

nd

-

The normalization conditionsw1v151, w2v251 give the
relations for obtaining the coefficientswii , v i i ( i 51,2). Pro-
ceeding from Eqs.~2.32! and ~2.36! the RR ~2.25! can be
written in the form

r l
~n!5r n* 1c1E1

l 1c2RE2
l ,

ul
~n!5un* 1c1R1E1

l 1c2E2
l , ~2.40!

where~see Appendix D!

c15bF~0!t~c1k1c1k1t!,

c25@bF~0!#2~c2k1tc2k11t2c2k!. ~2.41!

The calculation of the partial partition functions~2.18!
and~2.19! is connected with the employment of common R
~2.21!. In the vicinity of the fixed point~2.29! they can be
replaced by the approximate relations~2.40! which are exact
for T5Tc . The question arises under what conditions t
relations~2.40! can be made use of instead of common R
~2.21!. It is obvious that the system of the relations

ur l
~n!2r n* u<ur n* u,

uul
~n!2un* u<un* ~2.42!

is a condition of the applicability of the approximate rel
tions ~2.40!.

The magnitudes which from Eq.~2.42! are connected with
the value of then spin component number and the value
the iteration numberl. The main reason for the deviation o
the valuesr l

(n) andul
(n) from their fixed values is the avail

ability of the terms proportional toc1E1
l in the solutions

~2.40!. For small valuesl the contribution of these terms i
small as compared withr n* andun* , asc1;t. But in the case
TÞTc there always exists such a value asl 5mt so that the
contribution will be of the orderr n* or un* . With l .mt the
deviation will become considerable and Eqs.~2.40! cannot
be used for the description of common RR~2.21!. It is nec-
essary to use the first equation in Eq.~2.40! for determining
the valuemt ,65

r mt112r n* 5dr n* , ~2.43!

whered is a certain constant value (d<1). Since we will
further compare the results obtained in the case ofT.Tc
with those obtained forT,Tc , we assume thatd51 with
T,Tc andd521 with T.Tc . The condition similar to Eq.
~2.43! was employed in Ref. 11. In the first approximation
(E2 /E1)mt for mt we have

mt52
lnutu
ln E1

1m021, ~2.44!

where

m05mc1m1t.

For the coefficientsmc and m1 the following relations take
place:

mc5
ln~ f nd/c1k!

ln E1
, m152

c1k1

c1k ln E1
.
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FIG. 1. The dependence of the PT temperature on the ratio of the effective rangeb of the interaction potential to the lattice constantc
for different values of then component number of the model.
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The obtained value ofmt defines the point of exit of the
system from the critical region

Bmt
5B8s2mt.

The analysis of the RR shows that in the vicinity of t
PT point two different fluctuation processes take place. T
first one corresponds to the index valuesl P(0,mt) and de-
scribes the renormalization-group symmetry. It is the
called critical regime~CR!. The second one corresponds
the index valuesl .mt and describes the long-waveleng
fluctuations~LWF! of the spin and is valid both near and f
from the PT point. It is characterized by Gaussian distrib
tion with dispersion depending on the availability of the C
It is the so-called Gaussian regime~GR! for T.Tc and the
inverse Gaussian regime~IGR! for T,Tc .

The calculation of the PT temperature is a significant m
ment in the investigation of the critical behavior of th
model. As was shown in Refs. 1 and 11, the critical tempe
ture is the point where GR is absent and subsequent rela
occur:

lim
l→`

r l 11
~n! ~Tc!5 lim

l→`

r l
~n!~Tc!5r n* 5const,

lim
l→`

ul 11
~n! ~Tc!5 lim

l→`

ul
~n!~Tc!5un* 5const. ~2.45!

In accordance with Eq.~2.40!, this condition is realized only
in the case

c1~Tc!50. ~2.46!

With Eq. ~D1! taken into account the explicit equation fo
critical temperature was obtained:

@bcF~0!#2~12 f n2wn
1/2R* !2a2

~n,0!bcF~0!

52a4
~n,0!R* wn

21/2, ~2.47!

where R* 5RAun* , and a2
(n,0) , a4

(n,0) are functions of the
initial interaction potential~2.14!.66 In this paper we presen
the results of calculating the PT temperature with the in
action potential of the Eq.~2.14! type. As follows from Eq.
~2.14!, the obtaining of the concrete calculation results
connected with the choice of the valueF̄. The correction
considering the presence of the Fourier transform of the
e

-

-
.

-

-
ns

r-

s

o-

tential in the intervalkP@B8,B) makes the results of the
calculation more precise. Let us choose the next form forF̄,

F̄5^F~k!&1F` , ~2.48!

where

^F~k!&5
*B8

B dkF~k!k2

*B8
B dkk2 . ~2.49!

The results obtained for the temperature in the limitb/c
→` must be in agreement with the mean-field theory resu
i.e.,

bcF~0!5
n

m2 .

Taking into account this condition and the equation for t
temperatureTc ~2.47!, we obtain the equation for definin
the F` . The solution of this equation is written as

F`52
~n12!~ f n1w1/2R* !

3n~12s0
2d!

. ~2.50!

The results of calculating the PT temperature of t
n-vector model in the casem25n are represented in Fig. 1

As we can see from this figure, the PT temperature in
bcA0 units@whereA0 is a constant; see Eq.~2.2!# grows with
the increase of then component number of the model. Th
PT temperature decreases and strives to the mean-
theory results in the case of the increase of the effec
range of the interaction potentialb.

III. CALCULATION OF THE FREE ENERGY
OF THE n-VECTOR MAGNETIC MODEL

The calculation of the free energy of the system can
performed in accordance with Eq.~2.24!. The given analysis
of the RR and the definition of the region of the availabili
of their approximate solutions enable us to present the
energy of the system in the vicinity of the PT point in th
form

F5F01FCR1FLWF , ~3.1!

whereF0 is the free energy of the noninteracting spins
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TABLE II. The dependence of the coefficients of the free energy on the microscopic parameters of the interaction potential
characteristics of the crystal lattice for a differentn component number of the model are shown.

b/c n g018 g1 g2 g10
1 g10

2 g0 g3
1 g3

2

0.2887 1 0.349 20.500 20.459 20.538 2.737 1.811 1.283 2.726
2 0.727 20.976 24.427 3.315 0.368 5.335 5.795 6.294
3 1.099 21.435 24.497 225.359 30.049 9.488 222.603 222.530

b5c 1 0.297 20.521 20.122 20.448 2.276 61.085 1.066 2.266
2 0.620 21.011 23.200 2.722 0.303 192.194 4.759 5.170
3 0.938 21.470 21.176 221.397 25.358 349.648 219.072 219.013
.
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F052kTN lnF ~2p!n/2mn21

G~n/2! G , ~3.2!

FLWF is the LWF free energy andFCR is part of the free
energy corresponding to the CR. The expression of theFLWF
for the caseT.Tc is presented in Eq.~3.13! and the expres-
sion of the FLWF for the caseT,Tc is presented in Eq
~3.14!. For FCR we have

FCR52kT(
l 50

mt

Fl , ~3.3!

where

Fl5Nl f l ,

f l5
n

4
lnS n12

wn~yl21! D1 ln US n21

2
,xl D1 ln US n21

2
,yl 21D

1
xl

2

4
1

yl 21
2

4
. ~3.4!

In the casel 50 for f l the following relation takes place:

f 05
n

4
lnS 3

u48
D 1u081

3

4

~u28!2

u48
1 ln US n21

2
,z8D1

n

4
lnS 3

u0
~n!D

1
x0

2

4
1 ln US n21

2
,x0D . ~3.5!

The employment of the RR solutions~2.40! enables us to
select in f l the explicit dependence on the number of t
phase layerl. Having performed the summation along th
layers of the CV phase space to the pointmt of the exit of
the system from the CR according to Eq.~3.3!, for the free
energy of the CR we obtain

ECR
6 52kTN8@g018 1g1t1g2t22g10

6 utudn#. ~3.6!

Let us note that the signs ‘‘1’’ and ‘‘ 2’’ correspond to the
cases T.Tc and T,Tc , respectively. The coefficient
g018 ,g1 ,g2 ,g10

6 are constants and do not depend on the te
perature~see Appendix E!. The analytical part of the CR fre
energy is connected with the coefficientsg018 ,g1 ,g2 . It
should be mentioned that the expressions of these co
cients coincide at the temperatures above and below the
cal temperature. The dependence ofg l on the microscopic
parameters of the interaction potential and then component
number of the model are shown in Table II.
-

fi-
iti-

The nonanalytical part characterizing the temperature
pendence of the specific heat in the vicinity of the PT poin
connected with the termg10

6 tdn, where

g10
6 5ḡ8s2dm0, ~3.7!

ḡ85
f CR*

12s2d2
f ndd1

12s2dE1
1

f n
2d2d3

12s2dE1
2 , ~3.8!

and the following definition is introduced:

f n5tE1
mt11c1k .

For f CR* we have

f CR* 5
n

2
ln y* 1ã~y* !221

~x* !2

4
1 ln US n21

2
,x* D .

~3.9!

The values ofdm are given in Appendix F. In Table II the
dependence ofg10

6 on the component numbern of the model
for different ratiosb/c is shown. The expression~3.6! de-
scribes the contribution of the region of the renormalizatio
group symmetry to the free energy of the system. It allows
to obtain the respective contributions to the specific hea
the system atT,Tc andT.Tc ,

CCR
6 5kN8@c~0!2cCR

6 utu2a#, ~3.10!

where

a522dn,

c~0!52~g11g2!,

cCR
6 5~12a!uCR

6 ,

uCR
6 5dng10

6 . ~3.11!

The curves 1 in Fig. 2 correspond to the contribution of t
CR to the specific heat atT,Tc and T.Tc , respectively.
The negative value of the specific-heat amplitude that co
sponds to the contribution of the CR testifies to the nons
bility of the contribution of the short-wavelength fluctuation
~SWF! of the spin moment density. Considering the cont
bution of the region of the LWF of the spin moment dens
in calculating the thermodynamic characteristics of the s
tem is a topical problem of today.

The regions of GR forT.Tc ~and IGR forT,Tc! corre-
spond to the LWF of the spin moment density. The incre
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of the basicxl and the intermediateyl variables as functions
of l is a typical peculiarity of the limit GR~LGR! and IGR.
In this connection the contribution of these regions to
free energy can be calculated in the Gaussian measure
sity approximation as in this region of the wave vectors
term proportional to the fourth power under the exponen
the distribution functions becomes much smaller than
square term. Since the increase ofxl is gradual, there exists
the so-called transition region~TR! where it is necessary to
keep the fourth power of therk variables in the distribution
function. The value of the TR is defined by a certain num
of the CV phase space layersm9 following the pointmt of
the exit of the system from the CR. The value of the TR
defined by the condition

uxmr1m
09
u5

am

12s2d , ~3.12!

wheream is a constant (am>10). The arguments mentione
above enable us to write the contribution of the LWF
T.Tc to the free energy of the system in the form

FLGR
1 52kTN8 f LWF

1 t3n2bmB
2H2Ng4t22n, ~3.13!

wheremB is Bohr’s magneton and

f LWF
1 5 f TR1 f

*
8 .

f TR corresponds to the contribution of the TR andf
*
8 corre-

sponds to the contribution to the free energy of the CV
from the wave-vectors region withk,B8s2(mt1m911). The
explicit analytical expressions of these coefficients w
shown in Ref. 61. The contribution of the region of the LW
of the spin moment density atT,Tc to the free energy of the
system is described by the valueF IGR

2 . The valueF IGR
2 cor-

responds to the IGR. The calculation of the IGR contribut
has its own peculiarities. In the temperature regionT,Tc
large scale fluctuations of the spin moment density are
scribed by the non-Gaussian distribution in which the co
ficient near the square term becomes negative. This indic
the appearance of the nonzero order parameter of the sys
After selecting the ordering free energy the distribution

FIG. 2. The temperature dependence of the specific heat.
comparison of the contribution of the CR and the region of
LWF. Notes: 1 corresponds to the CR, 2 to the limit GR (t.0)
and IGR (t,0), 3 to the contribution to the specific heat due
the rise of the ordering in the system.
e
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the fluctuations~2.17! becomes Gaussian~see Appendix G!.
As a result, forF IGR

2 we obtain

F IGR
2 52kTN8utu3ngLWF

2 , ~3.14!

where

gLWF
2 5g3

~mt!
1g3

^s& ,

g3
~mt!

5gg1gr , g3
^s&5cn

dḡ3
^s& , ḡ3

^s&5s0
dE08 .

~3.15!

The valueg3
^s& corresponds to the contribution from the o

dering in the system. The coefficientsgg andgr are written
in the form

gg5ḡgcn
d ,

ḡg5 lnF S sd14~n12!ūmt

3p2wn~xmt
! D n/4

eymt

2 /4US n21

2
,ymtD G ,

~3.16!

gr5ḡrcn
d ,

ḡr5
5

12
nL~x!2

n

2
lnS 112t̄mt

p
D 1

n

3
2

ūmt11

8
@ā1

2n2

13n3L~x!ā2#1
ūmt

2

48
n4~ ā413ā1

2ā2!1
9

4
n2ā2r̄ mr

2 .

~3.17!

It should be pointed out that the following definitions a
introduced here:

r̄ mr115 f n~11d!, ūmr115wn2 f nwn
1/2R1* d, ~3.18!

L~x!53S x2arctanx

x3 D , x5
1

A2r̄ mt11

. ~3.19!

Besides,cn5(c1T / f nd)n is a nonuniversal value connecte
with the microscopic parameters of the initial Hamiltonia
According to Eqs.~3.1!, ~3.6!, ~3.13!, and ~3.14! the com-
plete expression of the free energy of the three-dimensio
n-vector magnetic model in the absence of the external fi
can be written as

F52kTN8@g02g1utu1g2utu21g3
6utu3n#, ~3.20!

where

g05g018 1s0
3 lnF ~2p!n/2mn21

G~n/2! G , ~3.21!

g3
65gLWF

6 2g10
6 . ~3.22!

The coefficientg3
6 includes the contribution of the CR

and the region of the LWF of the spin moment density at
temperatures above and below the critical. It describes
singular behavior of the specific heat in the vicinity of the P
point. The dependence of the coefficientsg0 ,g3

6 on the mi-
croscopic parameters of the interaction potential and

he
e
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TABLE III. The dependence of the amplitudes of the thermodynamic functions on the microscopic parameters of the interaction
and the characteristics of the crystal lattice for a differentn component number of the model.

b/c n S0 S1 u3
1 u3

2 C(0) C1
1 C1

2

0.2887 1 1.311 21.917 2.355 25.007 21.917 1.972 4.190
2 4.359 210.805 11.226 212.196 210.805 10.529 11.436
3 8.053 46.124 245.677 45.530 46.124 246.629 246.478

b5c 1 60.564 21.286 1.958 24.163 21.286 1.639 3.484
2 191.183 28.421 9.220 210.017 28.421 8.646 9.393
3 348.178 39.412 238.540 38.422 39.412 239.344 239.223
n
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characteristics of the crystal lattice for differentn component
number of the model is shown in Table II.

IV. THERMODYNAMIC FUNCTIONS OF THE n-VECTOR
MAGNETIC MODEL IN THE FRAMEWORK

OF THE r4 MODEL APPROXIMATION

The complete expression obtained for the free energy
then-vector magnetic model~3.20! in ther4 model approxi-
mation allows us to calculate other thermodynamic functio
in the vicinity of the phase-transition point. As was observ
above@see Eq.~3.10! and Fig. 2#, considering the contribu
tion of the LWF of the spin moment density is especia
significant in calculating the thermodynamic functions of t
system. So, differentiating the expression of the free ene
by the temperature, we obtain the expression for the entr

S5kN@S01S1t1u3
6utu3n21#, ~4.1!

where

S05g01g1 , S152~g11g2!, u3
6563ng3

6 .

The values of the coefficientsS0,S1,u3
6 for differentn values

are shown in Table III.
It should be mentioned that the correct temperature

havior of the specific-heat curves is ensured by conside
the region of the LWF of the spin moment density, i.e., t
region of LGR atT.Tc and the region of IGR atT,Tc .
The significant characteristic of the system is the spec
heat for which we obtain

C5kN8@C~0!1C1
6utu2a#, ~4.2!

FIG. 3. The temperature dependence of the specific heat f
different n component number of the model.
of

s
d

y
y,

e-
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c

where

a5223n, C~0!52~g11g2!, C1
653n~12a!g3

6 .

The second term in Eq.~4.2! describes the main peculiarit
of the specific-heat behavior in the vicinity of the PT poin
As we can see from Eq.~4.2!, the coefficientC1

6 includes the
contributions of the CR and the region of the LWF of th
spin moment density. We can see from Fig. 2 that consid
ing the influence of the regions of LWF~curves 2! provides
the positivity of the specific heat and the system stabil
respectively. The dependence of the coefficientsC(0) andC1

6

on the microscopic parameters of the Hamiltonian, i.e., fr
the b/c ratio for a differentn is exhibited in Table III.

In Fig. 3 the temperature dependence of the specific h
for different n is shown. As was noted above, in the casen
53 the critical exponenta, which describes the singularit
of the specific heat becomes negativea520.021.61,62 The
analysis of the expression~4.2! and the obtained values o
the specific-heat amplitudes~see Table III! shows that the
specific heat in the casen53 does not diverge and receive
a concrete finite value~see Fig. 3!.

The curve of the dependence of the specific heat m
mum atT5Tc in the casen53 on the ratio of the effective
rangeb of the interaction potential to the lattice constantc is
shown in Fig. 4. One can see from this figure that the va
of the specific-heat maximum decreases and tends to a
stant value as the effective rangeb of the interaction poten-
tial increases. This agrees with the results of the mean-fi
theory.

a
FIG. 4. The dependence of the maximum of the specific hea

the ratio of the effective rangeb of the interaction potential to the
crystal lattice constantc in the casen53 andT5Tc .
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TABLE IV. The dependence of the ratioA of the specific heat critical amplitudes atT.Tc and T,Tc on then component number
of the model.

n
Present
work

Lattice series
expansions

Field
theory

1/s2exp
~Ref. 47! Experiment

1 0.470 0.52360.009~Ref. 33! 0.52460.010~Ref. 29! 0.519 0.538~Ref. 67!
0.55 ~Ref. 22! 0.53 ~Ref. 71!
0.54160.014~Ref. 68!
0.54060.011~Ref. 48!

2 0.921 1.08~Ref. 69! 1.02960.013~Ref. 29! 0.888 1.067~Ref. 67!
0.99 ~Ref. 22! 1.05460.001~Ref. 72!
1.05 ~Ref. 70! 1.08860.007~Ref. 73!
1.05660.004~Ref. 48!
th
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According to Eq.~4.2! the ratio of the critical amplitudes
of the leading singular terms of the specific heat atT.Tc
andT,Tc can be written in the form

A5
g3

1

g3
2 . ~4.3!

The comparison of the results obtained for the ratio of
critical amplitudes of the specific-heat leading singular ter
with results obtained by other methods is shown in Table

V. CONCLUSIONS

In general, it should be noted that separate accountin
the contributions of the short- and long-wavelength fluct
tions of the spin moment density in the expression of the f
energy of the system in the vicinity of the PT temperatu
allows us to find the explicit analytical expressions for t
thermodynamic functions as functions of the temperatu
The proposed method enables us to investigate the de
dence of the critical amplitudes of the thermodynamic fu
tions on the microscopic parameters of the interaction po
tial and the characteristics of the crystal lattice. The res
obtained for the critical exponents and the ratio of the criti
amplitudes agree with those achieved by other methods.
negligible deviation of the obtained results from the expe
mental data and the results of the numerical calculation
connected with the restriction in the calculation by ther4

model approximation. As was seen in Refs. 11 and 74,
employment of ther6 measure density for the investigatio
of the PT in the casen51 gives a more precise definition o
the calculation results of the universal and nonuniver
characteristics of the system. The extension of the sugge
method to the investigation of the critical behavior of t
n-vector model in the frame of ther6 model approximation
does not require any principal changes. To be brief, in
present paper we do not give enough attention to calcula
the scaling corrections. In the casen51 such calculations
were made in Ref. 11. Besides, in the common case
critical exponent of the correlation function ishÞ0. Such
values of the correlation function critical exponent can
obtained by the method we propose if we take into acco
the correction on the averaging of the interaction potentia
each layer of the CV. We are going to perform such inv
tigations in our subsequent papers.
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APPENDIX A

The rk CV are introduced by means of the function
representation for the operators of the spin-density fluct
tion r̂,

r̂k5E rkJ~r2r̂!~drk!N, r̂k5
1

AN
(
R

ŜR exp~2 ikR!,

where

J~r2r̂!5F)
k

8
d~rk

c2r̂k
c!d~rk

s2r̂k
s!Gd~r02r̂0!

is the transition operator. For therk CV the following rela-
tions come into being:

rk5rk
c2 i rk

s , rk
c5r2k

c , rk
s52r2k

s .

The Jacobian of the transition from spins to CV has
form11,54

J@r#5Z̃0E expS 2ip(
k

rkvk1D̄@v# D ~dvk!N,

~A1!

where forvk variables conjugate tork variables we have

vk5 1
2 ~vk

c1 i vk
s!, vk

c5v2k
c , vk

s52v2k
s ,

~dvk!N5 )
a51

n

dv0
a)

k

8
dvk

a,cdvk
a,s .

APPENDIX B

For the coefficientsa2l the following expressions are
available:
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a25
n

m2 s0
d/2F 1

12
20m2

~n14! (
kPD

bF~k!

N
G 1/2

U0 ,

a452
3n2

m4 s0
dF 1

12
20m2

~n14! (
kPD

bF~k!

N
G

3@12z8Un~z8!2U0
2#. ~B1!

Here subsequent definitions are introduced:

U05An12

2
Un~z8!, D5@B8,B!, ~B2!

Un~z8!5
U„~n11!/2,z8…

U„~n21!/2,z8…
, z85A 3

u48
u28 , ~B3!

where U(a,x)5D2a21/2(x) are the Weber cylinder para
bolic functions. The renormalizedu2l cumulants considering
the availability ofF(k) for the large values ofk have the
form

u085s0
d u2n

2N (
kPD

bF~k!, u285u22
uu4un
2N (

kPD
bF~k!,

u485F uu4u2
u6n

2N (
kPD

bF~k!Gs0
2d . ~B4!

The coefficientsu2l have the following expressions:50

u25
m2

n
, u452

6m4

n2~n12!
,

u6515m6F 1

n~n12!~n14!
2

3

n2~n12!
1

2

n3G . ~B5!

In the casen→` the behavior of the coefficientsu2l were
represented in Appendix C.

APPENDIX C

In the marginal case of the largern→`, the cumulants
u2l strive for their limit values

lim
n→`

u251, lim
n→`

u45 lim
n→`

6

n12
→0,

lim
n→`

u2l50, l 53,4,...

~in normalizing the spin dimensionalitym25n!. Considering
only the leading members by order of the value 1/n in the
process of integration of the partition functions enables u
employ the method ofg expansion.50,56,58 In this case the
values

g2l5
u2l

~2l !! Y S d~B1 ,B8!

2 D l

, g5~g4 ,g6 ,...!

are small. It allows obtaining the next relations for the c
relation length critical exponent~in the caseh50!
to

-

g1* 50, n5 1
2 , at d.4;

g2* 5
12sd24

~n18!~12s2d!
,

n5F21
ln$11@~n12!/~n18!#~sd2421!%

ln s G21

, at d,4,

wheregi* are the fixed points. But, starting from the type
fixed point we have certain restrictions on thes value (1
<s,2). In the limit n→` for d,4 we obtainn51, which
is in agreement with the Berlin-Kac spherical model.51 Ana-
logical expressions forn were obtained in a series o
works.50,56,58,63,64

APPENDIX D

From the initial conditions atl 50

r 0
~n!5a2

~n,0!2bF~0!, u0
~n!5a4

~n,0!

the following expressions for the coefficientsc1 ,c2 were
found:

c15$r 0
~n!2r n* 1~a4

~n,0!2un* !~2R!%D21,

c25$a4
~n,0!2un* 1~r 0

~n!2un* !~2R1!%D21, ~D1!

where D5(E12E2)/(R112E2). For temperatures close t
Tc the coefficientsc1 andc2 can be represented as follows

c1~T!5c1TtbF~0!,

c2~T!5c2T@bF~0!#2. ~D2!

Having applied these relations we evaluate the critical reg
of the temperaturest,t* in which the solutions of RR
~2.40! are valid. For the critical region to exist it is necessa
that the ‘‘exit’’ from this region atl→1 should not exceed
the ‘‘entrance.’’ It means that the valuet* is equal to the
smaller root of the two equations

c2RE25c1E1 , c1R1E15c2E2 .

Taking into account Eq.~D2! we obtain fort1,2*

t1* 5Uc2TRE2b~0!

c1TE1
U, t2* 5Uc2TE2b~0!

c1TE1R1
U.

The results of calculatingt1,2* in the cases54 are shown in
Table V.

As c1(T);t, the valuec1T can be represented in th
following approximation:

c1T5c1k1c1k1t1O~t2!, ~D3!

TABLE V. The dependence of the temperature critical regi
t1,2* on then spin component number of the model.

n t1* g2*

1 0.0286 0.3449
2 0.0371 0.3448
3 0.0424 0.3270
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where

c1k5Fc111
c12

@bcF~0!#2GD21,

c1k15
c12

@bcF~0!#2 D21, ~D4!

with

c11512 f n2R* wn
1/2,

c1252a4
~n,0!R* wn

21/2. ~D5!

In accordance with Eq.~D2! for c2T we consider only the
terms proportional tot2,

c2T5c2k1tc2k11t2c2k21O~t3!, ~D6!

where the following definitions are introduced:

c2k5Fc231
c22

bcF~0!
1

c21

@bcF~0!#2GD21,

c2k15F c22

bcF~0!
1

2c21

@bcF~0!#2GD21, ~D7!

c2k25
c21

@bcF~0!#2 D21

and

c215a4
~n,0! , c2252a2

~n,0!R1* wn
1/2,

c235R1* wn
1/2~12 f n!2wn ,

R1* 5R1~un* !21/2, R* 5R~un* !1/2.

APPENDIX E

The coefficientsg018 ,g1 ,g2 are expressed in the form

g018 5ā01g01,

g15ā11g02,

g25ā21g03,

where

ā05a081
n

2
ln 2p1

n

4
lnS 3

a4
n~0!D 1

~x~0!!2

4

1 ln US n21

2
,x~0!D ,

a085 lnS mn21

GS n

2D D 1
n

4
lnS 3

u48
D 1

3~u28!2

4u48

1 ln US n21

2
,An12

2 D ,
ā152nTcUn~x~0!!S dx~0!

dT DT5Tc ,

ā252
n

4
Tc

2H Un~x~0!!S d2x~0!

dT2 D
T5Tc

1FdUn~x~0!!

dx~0! S dx~0!

dT D 2G
T5Tc

J
and

x~0!5)d2c~a4c!
21/2,

d2c5q̄2 f 01c2kR
~0!w0

21/2,

a4c5w01c2k .

For theg0i coefficients we have

g015s2dS f *

12s2d 1
c2kd2E2

12s2dE2
1

c2k
2 d4E2

2

12s2dE2
2D ,

g025s2dS c2k1d2E2

12s2dE2
1

b1d4E2
2

12s2dE2
2 1

c1kd1E1

12s2dE1

1
c1kc2kd5E1E2

12s2dE1E2
1

c1kb0d7E2
2E1

12s2dE1E2
2 D ,

g035s2dS c2k2d2E2

12s2dE2
1

~c1kc2k11c2kc1k1!d5E1E2

12s2dE1E2

1
c1k1d1E1

12s2dE1
1

b2d4E2
2

12s2dE2
2 1

~c1kb11c1k1b0!d7E1E2
2

12s2dE1E2
2

1
c1k

2 d3E1
2

12s2dE1
2 1

c1k
2 c2kd6E1

2E2

12s2dE1
2E2

1
c1k

2 b0d8E1
2E2

2

12s2dE1
2E2

2 D ,

where

b05c2k
2 , b152c2kc2k1 , b25c2k1

2 12c2kc2k2 .

For g8 we have

g85
f *

12s2d 1
f ndd1

12s2dE1
1

f n
2d2d3

12s2dE1
2 .

The values ofdm are given in Appendix F. Forg4 we have

g45s2m9S f nd

c1T
D 2n 1

2bF~0!g0
, ~E1!

where g0 is a complex function ofxm
t821

* with mt85mt

1m912 ~see Ref. 61!.

APPENDIX F

For the coefficientsdi the following expressions are valid

d15B3S A31
A1

E1
D , d25B1S A31

A1

E2
D ,
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d35B6S A31
A1

E1
2D 1B3

2S A41
A2

E1
2D ,

d45B2S A31
A1

E2
2D 1B1

2S A41
A2

E2
2D ,

d55B4S A31
A1

E1E2
D12B1B3S A41

A2

E1E2
D ,

d65B7S A31
A1

E1E2
2D 12~B1B61B3B4!S A41

A2

E1
2E2

D ,

d75B5S A31
A1

E1E2
2D 12~B1B41B2B3!S A41

A2

E1E2
2D ,

d85B8S A31
A1

E1
2E2

2D 12S B1B71B2B61B3B51
B4

2

2 D
3~A41A2E1

22E2
22!,

where the coefficientsAi ,Bj are universal constants and a
defined by the fixed-point coordinates. For theBj coeffi-
cients we have

B15wn
21S R*)2

x*

2 D , B25wn
22S 3

8
x* 2

)

2
R* D ,

B35wn
21/2S)2

R1* x*

2 D ,

B45wn
23/2S 2

)

2
R1* R* 2

)

2
1

3

4
R1* x* D ,

B55wn
25/23)

4 S R1* R* 1
1

2
2

5

4)
R1* x* D ,

B65wn
21R1* S 3

8
x* R1* 2

)

2 D ,

B75wn
22 3)

4
R1* S 11

R1* R*

2
2

5R1* x*

4)
D ,

B85
wn

2315)R1*

16 S 7x* R1*

4)
211R* R1* D .

The coefficientsAi are written in the form

A15
n

2
r 12

2r 1ã

~y* !2 , A25
n

2
r 22

n

4
r 1

21
ã~3r 1

222r 2!

~y* !2 ,

A352
n

2
Un~x* !, A452

n

4
U8~x* !,

where the following definitions are introduced:

ã5
~5n116!n

8
2

n/2~n/211!

2
, Un8~x* !5S dUn~xl !

dxl
D

x*
,

r 15d̃12
q1

2
, r 25

1

2
d̃22

1

2
d̃1q11

3

8
q1

22
1

4
q2 ,

d̃i5
1

Un~x* ! S diUn~xl !

dxl
i D

x*

, qi5
1

wn~x* ! S diwn~xl !

dxl
i D

x*

.

APPENDIX G

The contribution of the IGR to the free energy can
written in the form

F IGR
2 52kTN8s2d~mt11! ln@2n/2Q~Pmt

!#2kT ln Zmt11 ,
~G1!

where

Zmt115E expF 2
1

2 (
k<Bmt11

d~n,mt11!~k!rkr2k2
a4

~n,mt11!

4!Nmt11

3 (
k1 ,...,k4

ki<Bmt11

rk1
¯rk4

dk11¯1k4G ~dr!Nmt11,

Q~Pmt
!5~2p!2n/2H n12

3
sd

a4
~n,mt21!

wn~xmt21!J n/4

3US n21

2
,ymt21DexpS ymt21

2

4
D . ~G2!

After the separation of the ordering free energy inZmt11 the
coefficient at the square term becomes positive. It allows
to use the Gaussian measure density as basic under the
gration of Zmt11 by the variablesrk with kÞ0. After the

integration forZmt11 we obtain

Zmt115e2bFmt11E expS bANmBHr01Br0
22

G

N
r0

4Ddr0 .

~G3!

The valueFmt11 corresponds to the contribution of the LW

region of the spin moment density~i.e., from the variablesrk
with k→0, butkÞ0! to the free energy of the system

2bFmt115Nmt11H 3

2
ud~n,mt11!~0!uI 12

n

2

1

Nmt11

3 ( 8
k<Bmt11

lnS d2~k!

p
D 2

a4
~n,mt11!I 1

2

8

1
a4

2~n,mt11!

48
~ I 413I 1

2I 2!1
9

4
ud~n,mt!~0!u2I 2

2
b2~n,mt!

8
I 1I 2J . ~G4!

For I i( i 51,...,4) the next relations take place:
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I 15nā1

s2~mt!

bF~0!
, ā15

L~x!

2r̄ mt

,

I 25n2ā2F s2~mt!

bF~0!G
2

, ā25@ā1
216e1

2~11e2
2!#,

I 35n3ā3F s2~mt!

bF~0!G
3

, ā35ā1
316e1

3S 11
e2

3

&
D ,

I 45n4ā4F s2~mt!

bF~0!G
4

, ā45ā1
416e1

4S 11
e2

4

&
D . ~G5!

It should be mentioned that

e15
15

p2@3110r̄ mt
#
,

e25
1

2p
$sin~p& !2p& cos~p& !%. ~G6!

The variabler0 in Eq. ~G3! is connected with order param
eter. Its mean value is proportional to the spin density of
system. For the valuesB andG we obtain

B5utu2nB0 , B05bF~0!B~0!,

B~0!5cn
2f n

11d

2
B1

~0! ,

B1
~0!512a11ūmt

1a22

ūmt

2

2r̄ mt

, ~G7!

G5utunG0 ,G05@bF~0!#2G~0!,

G~0!5cn

s0
3

24
ūmt

g~0!, g~0!512
3

2
n2ā2ūmt

, ~G8!

where

a115
n

2

ā1

r̄ mt

1
3

2
n2ā2 , a225n3H ā1ā2

2
1

ā3

3 J . ~G9!

The variabler0 is a macroscopic value, so we can accept t

r05ANr. ~G10!

It makes it possible for us to apply the saddle-point meth
for the calculation ofZmt11 in Eq. ~G3!. As a result we find

Zmt115A 2p

E09~^r&!
exp$2bFmt112NE0~^r&!%,

~G11!
he
,

e

t

d

where^r& is an extreme point of expression

E0~r!5Gr42Br22bmHr, ~G12!

which arrises in Eq.~G3! with the change of variables~G10!.
The variable r0 corresponds to the operatorr̂0

5(1/AN)S lŝl , the mean value of which is connected wi
the equilibrium value of the order parameters. In the case of
H50 we find for ^r& the following solutions:

^r1,2&56A B

2G
, ^r3&50. ~G13!

The solutionŝ r1,2& and^r3& correspond to extreme value o
the functionalE0(r) ~G12!. The presence of the nonzer
mean spin moment at the temperaturesT,Tc testifies to the
appearance of spontaneous magnetization in the syste
the absence of the external field. Figure 5 shows the temp
ture dependence of the order parameters for different values
of n component number of the model in the absence of
external magnetic field.

In accordance with the above forE0(^r&) we obtain

E0~^r&!52
B2

4G
5E08utu3n, ~G14!

where

E085
3

2

r̄ mt

2

ūmt

~B1
~0!!2

s0
3g~0! . ~G15!

All this enables us to obtain the explicit analytical express
for the IGR free energy. Summarizing the expression~G4!
by the variablesk<Bmt

(kÞ0) and considering the contribu

tion of the r0 variables in accordance with Eqs.~G11!–
~G15!, for F IGR

2 we obtain the expression~3.14!.

FIG. 5. The temperature dependence of the order paramete
different values of then-component number of the model in th
caseH50 ~with b5c!.
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