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Thermodynamic characteristics of the classicah-vector magnetic model in three dimensions
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A method of calculating the free energy and thermodynamic characteristics of the classzabr three-
dimensional magnetic model at the microscopic level without any adjustable parameters is proposed. Math-
ematical description is performed with the collective variables method used within the framework gf the
model approximation. The exponentially decreasing function of the distance between the particles situated at
the N sites of a simple cubic lattice is used as the interaction potential. Explicit analytical expressions for
entropy, internal energy and specific heat near the phase-transition point as functions of the temperature are
obtained. The dependence of the amplitudes of the thermodynamic characteristics of the sy$teri fand
T<T,. on the microscopic parameters of the system are studied for the mask®,3. The obtained results
provide the basis for accurate analysis of the critical behavior in three dimensions including the nonuniversal
characteristics of the system.

[. INTRODUCTION in the vicinity of the phase-transition point. Such basis mea-
sure does not describe the system in the critical region and
Investigating the behavior of the real three-dimensionaimust be replaced by the non-Gaussian measure, the fourfold
systems near the phase-transiti@l) point is one of the one in particular.
most important problems of condensed-matter physics. In the We have devoted this paper to the widely studied classical
present paper we propose a theoretical description scheme Bivector magnetic mod€! on three-dimensional simple cu-
the critical behavior of the classicalvector magnetic model bic lattice, which is also known as the Heisenberg classical
in three dimensions on the microscopic level without anyO(n) spin model or, in field-theoretic language, as the lattice
adjustable parameters. The description is based on the origP(n) nonlinearo model. The investigation of the critical
nal method of calculating the thermodynamic and structurabehavior of the classical-vector model and its partial cases
characteristics of three-dimensiort@D) model systems near was conducted in the frame of different methods such as
the PT point, which is known as the collective variableshigh- and low-temperature series, the field theory, semi-
(CV) method*? The method of collective variables as well microscopic scaling-field theory and Monte Carlo calcula-
as Wilson's approachare based on Kadanoff's ideaf  tions. Much attention in these works was given to investigat-
using effective spin blocks near the phase-transition poining the universal properties of the system such as critical
instead of initial spins. The description of the critical behav-exponent¥~'°and some combinations of the critical ampli-
ior of the model in Wilson’s work¥® was based on Gaussian tudes of thermodynamic functiof$-**Besides, the equation
distributions. The recursion relations between the coeffiof state of Ising system was obtained to ordérby Avde-
cients of successive block Hamiltonians were obtained ageva and Migdat* and by Bresin, Wallace, and Wilsdh.
corresponding combinations of the moments of Gaussian did-ater these results were generalized for the case of the
tribution. It is known that in the case of 3D model different n-vector modef®
types of divergent diagrams appear in the frame of this ap- Some important results were also obtained for calculating
proach. At the present time there are a number of powerfuthe thermodynamic functions near the critical point. One of
series resummation techniquésee Refs. 6—10 as an ex- the first works in this sphere is a paper by Wegfibe so-
ample of its applicationwhich enable us to remove diver- called Wegner's expansipi® suggesting the expression for
gences appearing in calculating universal values. Howevethe free energy with “irrelevant” operators in the Wilson
the present methods make it impossible for us to calculatapproach taken into account. The works by Fisher and
the nonuniversal characteristics of the system. The investiggdharony?’ Nicoll and Albright®® and Nelso®’ were also
tion of the nonuniversal properties of the system near the P@evoted to receiving crossover scaling functions for tempera-
point require the use of non-Gaussian measure densities tfresT>T,. in zero external field near four dimensions. In
the spin-density fluctuatioris. 1974, Riedel and Wegrf¥r developed a numerical tech-
Unlike Wilson's approach, the method of collective nique, called the scaling-field method, for obtaining cross-
variablest'? uses non-Gaussian basis distributions. In thisover scaling functions of the free energy and susceptibility.
case divergent terms do not appear either in the analysis @rossover functions rather than power 148 have de-
recursion relations or in the calculation of the free energyscribed the nonasymptotic region between criticality and the
near the phase-transition point. Hence it follows that thenoncritical “background.” In the frame of the massive field
presence of the divergent terms appearing in Wilson's aptheory by Bagnuls and Bervillié¥**the nonasymptotic criti-
proach is of purely mathematic character and is connectedal behavior ford= 3 in the disordered phase case was ana-
with limitation in calculations by Gaussian measuend lyzed. They obtained explicit expressions for the correlation
Gaussian momentshe dispersion of which strives to infinity length¢, the susceptibilityy, and the specific he& as tem-
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perature functions in the disordered phase along the criticalf the partition function of then-vector model using non-
isohore for one-, two-, and three-component models. Th&aussian measure density. The explicit analytical expres-
description of nonasymptoticé&though still critica) behav-  sions for partial partition functions and general recursion re-
ior was obtained as crossover between the Wilson-Fishdations (RR) between coefficients of the “effective
(near the critical temperatur'éc) and mean-ﬁe|dvery far Hamiltonian blocks” which arise in that case are obtained in
from T,) behaviors with three adjustable parameters used. the p*-model approximation. We define the scope of appli-
At the present time the actual task of the critical phenom<ation of these approximate solutions and show that RR as
ena physics is elaborating the methods giving quantity gepartial solution have_ a saddle-type fixed point formIWe
scription of the critical behavior of the system without using Pe"form the calculation of the eigenvectors and eigenvalues
any adjustable parameters. This has been demonstrated, fgr the RG transformation matrix and give the results of the
example, in the works of Dohm and co-work&ré in investigation of the dependence of the PT temperature on the

which calculation of the temperature dependence of the thefllicroscopic parameters of the interaction potential and the

modynamic characteristics of the system was pen‘orme((}hara(:t.eri‘c’tic.s of the crystal lattice. .

without usinge expansion in the frame of the minimal sub- Section Il is devoteql to the calculation of the free energy
traction scheme for the-vector model in three dimensions ©f the n-vector magnetic model for temperatures above and
on the basis of high-order perturbation theory and Borel reP€low the phase-transition point. The main idea of such cal-

summation. In these papers the amplitude functions of th(c_;ulatiqr} lies in_considering separately t.he pontribution from
susceptibility, the correlation length and the specific heafn® critical region(CR) where renormalization-group sym-
above and belowTl, up to two-loop order within thep? metry takes place and the contribution from the region of the
C . .
model for the cases=1,2,3 were calculated. This approach [ong-wavelength fluctuationsLWF) of the spin moment
ddensity. It shown that in the case of the temperatdresT .

exploits simultaneously the experimental information an . . !
simple relation between the specific heat above and bglow " the region of the LWF the fluctuations are described by
non-Gaussian distribution with negative coefficient at square

for defining the effective renormalized static coupling of the

model in the terms of the measured specific heat. The effedSm- The distributiqns of the spin moment density fluctua-
tive renormalized static coupling determined in such a Wa)pons after the selection of the ordering free energy is reduced

allows to obtain expressions for other thermodynamic charl® the Gaussian distribution. The dependence of the coeffi-

acteristics of the model above and beld without using cients of the complete expression of the free energy on the

additional adjustable parameters. These results were ericroscopic parameters of the init_ial _int_eracti_on potential
tended for higher approximations in Ref. 48. Besides, in thL@nd characteristics of the crystal lattice is investigated for the
recent works by Butera and Coffi High.- and low- casesn=123. The contributions into the expressions for

temperature expansions for the free energy, the susceptibﬁ’-mmpy and specific heat from the CR an'd LWF region are
ity, and the second correlation moment of the classicaf’malyzed' It has been shown that considering the contribution

n-vector model on the simple cubits9 and the body- of the LWF region satisfies the positiveness of the specific

centered-cubi¢bcg) lattices were extended to ordgr! This he?t Oé then\—/ve(f:]tor mo|q§l and systgm Stfab'“tg' d .
research only contains temperature dependence of the the%r- n Sec. ¢ ht € egplmt ?xpre_ssmns} ﬁr thermodynamic
modynamic characteristics and does not give the possibilit nctions of the model as functions of the temperature are

to describe the functional dependence of basic thermod)f?btained' The dependence of the critical amplitudes of the

namic functions on the microscopic parameters of the inter’gﬂermodyna}mlc funct!olns %n ;he rr?lcroscqpl_c pa;arrlweters Ofl
action potential and characteristics of the crystal lattice. AlItNE INteraction potential and the characteristics of the crysta

this indicates that nonuniversal properties of the 3D systemi@tice is investigated for the cases=1,2,3. It has been
near the phase-transition point have not been studied sufff1oWn that in the case=3 (the Heisenberg modethe spe-
ciently yet. However, the precise role and significance of &1fiC heat at ther =T, has the finite value. The dependence
lattice structure and interaction potential parameters for th@f the maximum of the specific heat on the microscopic pa-

approach to asymptotic critical behavior still seems open tgameters of the interaction potential is examined for the case

question. We hope that our explicit representations may prd?=3: The ratio of the critical amplitudes of the thermody-

vide useful benchmarks in studying this question. namic functions at the temperaturés T, andT<T, is cal-

The approach to the investigation of the critical propertiescUlated in order to compare the obtained results with the
of the n-vector magnetic model, suggested in Ref. 50 pro-€sults of the other methods.
vides the necessary conditions for our complex approach to

the study of the universal and nonuniversal phase-transitioy CALCULATION OF THE PARTITION FUNCTION AND

characteristics. The appr_oach suggested in this paper allows |\\/EsTIGATION OF THE RECURSION RELATIONS
us to perform the analysis of the dependence of the thermo-

dynamic characteristics of thevector 3D magnetic model The critical behavior of different physical systems is char-
in the vicinity of the phase-transition point as functions of acterized by their belonging to a specific class of universality
temperature and study their dependence on the microscopichich is defined by the dimensionality of the systdmnand
parameters of the interaction potential and characteristics dhe symmetry of the order parameterThe Stanley modét
the crystal lattice without any adjustable parameters beings selected as the object of our investigation of the critical
used. These results are interesting from the point of view ophenomena. This model describes the system of interacting
comparing the theoretical investigations and experimentah-component classical spins localized at tHesites of the
data. d-dimensional crystal lattice. The Stanley model is a gener-
In Sec. Il of the present paper we perform the calculatioralization of a series of different models. In the case0 it is
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reduced to the task of a self-avoiding walk and is used for
describing the polymerization phenomena. The cases ; InJ[p(R)]. (2.9
=1,2,3 correspond to the Ising model, th&Y, and the

Heisenberg model, respectively. The boundary ¢ese- is  They are diagonal ip(R) coordinate CV representation.

equivalent to the Berlin-Kac spherical moﬁelbr whi_ch the There are two possible approaches to calculating Eg.
exact result is known. The Stanley model is described by they 3) The first one is using, variables in the calculation of
Hamiltonian the partition function of the system. In such case the energy
contributions are diagonal and the nondiagonality of the en-
A=— l E J(|R—R'|)éR§RI, 2.1) tropy contributions leads to an approximate method of cal-
28R culation. One of such approximations is writing Eg.3) in

~ . ~ the following form:
whereSz=(5¢,...,8%) is the n-component classical spin
with the lengthm (2" _,|8{?|2=m?). Spins are localized at . 1 ok
the N sites of thed-dimensional simple cubic lattice with =] exp 3 2, [2= L) ]pup—«
coordinateRR. The interaction has an exchange character and

can be described by the exponentially decreasing function of 1, N
distance between the particles X| 1+ 577+ |(dp)7, 2.9
IR—R’| where
J(|R—R'|)=Apexp — b , (2.2
aI

where A,, b are the constants. In the CVpy n= 2 (le)ll Nl"E Pryre Py Otk - (2.10
=(pM,....p\") representation the partition function of the =2 e ki

. . 50 .
model(2.1) is written as As rule, such a way of calculation assumes that for the value

7 it is sufficient to restrict the consideration to one terim (

ZZJ ex;{%z BO(K) pep_i | I[p1(dpN, (2.3 =2) and in addition it is presupposed that
k

where ® (k) is the Fourier transform of the interaction po-

tential (2.2), the element of the phase spac¥ is The second way of calculating the partition functithd
assumes the use of tlh€R) CV representation. In that case
the entropy contributions are diagor{al5 and the approxi-
mation relates to the energy contributi@?7), as it is non-
diagonal in thep(R) representation. The essence of such
andJ[p] is the transition Jacobian from the spin variables tofitting leads to a certain approximation ®(k) (see Ref. 1

the CV. The expression fal{ p] is given in Appendix A. In - which allows to diagonalize the expressions in the exponent

[a,— BD(Kk)]'>a) . (2.1

!

n
(dpk)N=a1:[l dp%l;[ dpg °dp®

the coordinate CV representation under the integrand for the partition function
R ! > ikR (2.4) 1 2
=— exp(—i : = — —(a,—
p(R) N o ) z 1;[ f exp — 5 (a3~ BPap)p(R)
the expression fod[ p] is factored ay
=2 PR |de(R). (2.12

Ip)=expugN)I'[O]1] Ip(R)] (2.5

We use such approximation fdr(k) whered (k) is a con-
stant®,,, for every intervalke (B;,B,_;) and equals the
where respective mean valu (k).
The first way corresponds to considering the moments of
a certain Gaussian distribution. It allows us to calculate only
certain classes of the graphs and does not solve the problem
of the description of the critical behavior as such. Besides,
The expressions fay, were obtained in Refs. 1 and 11. The the condition(2.11) is too strong in the vicinity of the phase-
partition function(2.3) contains the contributions of two dif- transition point. Nevertheless, such an approach has its ad-
ferent types. The first is energy contributions vantages owing to considering the wave-vector dependence
of ®(k). The second way is not restricted to Gaussian mo-
1 ments and is based on the use of the non-Gaussian measure
EkgB B (K)pp— - (2.7 density® In this case we do not need to perform the sum-
mation of various types of infinite series of perturbation
They are diagonal i, representation and connected with theory, certain terms of which strive to infinity witf
the interaction potential. The second is entropy contributions— T . Besides, the conditiof2.11) becomes optional. In our

ay)
=1 (21)!

Jp(R)]= Ip(R)|2. (2.6
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opinion this condition is the basic barrier in the descriptionexclusions the size of effective spin blocks is increased by

of the critical behavior of three-dimensional systems. the factors(s=1). The set of the CVpy is divided into
The calculation of the nonuniversal characteristics of thesubsets. Each of these subsets contains the varipplegh

phase transition, particularly the PT temperatlige is con-  certain values of the wave vectdesFor thel subset we have
nected with the choice of the interaction potential. The Fouke (B, 1B)), whereB,,;=B,/s, andBy=B’. In each of
rier transform of the interaction potenti@.2) takes the form the layers of the CV phase space the valuk) is replaced

by the corresponding mean valtfeAfter the layer integra-

®(K)= ¢ (0) 2.13 tion the partition function(2.15 can be represented as a
(1+b%k?)?’ product of the partial partition function®, of separate

where® (0)=8mAq(b/c)3. The value of®(k) for the wave layers,

vectors similar to the boundary of the Brillouin half zone

(B=m/c) is much smaller thad(0). In this region of the Z=C,’Q0Q1---Q,f (dpON o 1(p),  (2.16
wave vectors a weak dependencedgfk) on the wave vec-

tor is observed. This allows us to accept the following ap-where

proximation for®(k):

1
®(0)(1-2b%?),  k<B' an+ﬂp%=eX%-§ > d™ () pep-i
d(k)= — ) (2.14 k<Bj:1
®=const, B’'<k<B. (14 D)

alm
The coordinateB’ is obtained from the condition of the ap- h

Pkl"'Pk45k1+---+k4 )
plicability of the parabolic approximation fo(k) and

equalsB’ = (bv2) 1. (2.17)
Among the set of the C\py there are those connected

with the order parameter. In the case of the model with the C/=v2MN~N-On  Qu=[Q(u)Q(do) ]V,

exponentially decreasing interaction potential2) it is the

po variable. The investigation of the critical behavior of this Qi=[Q(dNQ(P,_NIM, N,=N’s"9". (2.19

model is largely determined by considering the contribution
from thep, variable in calculating the free energy. The meanThe value Inw;.4(p) corresponds to theblock Hamiltonian
value p, describes the behavior of the order parameter. NevWhich depends on th&, variablesp, connected with the
ertheless, as seen from E@8.3) and(Al), all the CVp, are fluctuation of the spin moment density in the blocks. The
interconnected, and the contribution of the varigijealone  values which are part of the expressions for the partial par-
cannot be separated in the partition functi@rg). The given tition functionsQ, are written in the form

task can be accomplished if we use the method suggested in i 2

Ref. 1. Its essence lies in sequentially integratinggheari- Q(d)) = (2m)™? 3 U(E X )ex;{x—')

ables withk#0 and investigating the functional from tipg ! a{h 2 7 4)

variable. The functional representation of the partition func-

tion of then-vector magnetic model in the*-model approxi-

mation has the forit Q(P_y)=(2m) "™

d
—S
3 PnXj-1

n-+2 aan,l—l))nM

, 1
Z:J'[O]GXF(UON')J exl{—z > d(K) pup—x XU

k<B’

-1 2
nT,y,_l)ex;{ %) (2.19

(dp)"'. QV'(u)=J'[0]expuyN’). (2.20

For coefficientsai™" anda{™" the recursion relationgRR)
(219 are valid:
Part of the interaction potential is contained in the coefficient

ay
T 4N’ o 2 pkl"'pk45k1+---+k4

a"tV=al+d"(B,1,B)My(x),
d(k)=a,— BP(K).

The expressions for the coefficieratg are shown in Appen-

dix B. The calculation of Eq(2.15 employs the smoothing whered"(B,, ;,B,) corresponds to the mean value in the

procedure suggested by WilsShHowever, unlike Ref. 14's layer. Special functions introduced here have the following
approach it is based on the use of the non-Gaussian bas[1§rm:
0

measure densities. It enables us to avoid the necessity

renormalizing a whole class of diverging diagrams. It should en(y))
be mentioned that divergences of the kind are of mathemati- En(x,)=s2d
cal nature and are not directly connected with the physics of

the problem. The basic idea of the calculat{@rl) lies in a U.(y,)
sequential exclusion from the consideration of the short- N ( l):M, (2.22
wavelength variablep, . After each of such step-by-step XiUn(X1)

aM*V=aMNs—dE (x,), (2.21)

M (X)) =Nn(x)— 1,
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where the functionsp,(t),U,(t) are combinations of the TABLE |. The dependence of the fixed-point coordinates and

parabolic cylinder functionsl(a,t), the eigenvalues of the transition matrix on thegarameter of divid-
ing the phase space into the layers andrttt®mponent number of
@n(t)=(n+2)UZ(t)+2tU(1)-2, the model.
U((n+1)/21) s n X Es = fn ¢n
U) = ———5-
nl U((n—1)/2}) 1.1 1 109487 1.2077 0.9092 0.0181  0.0201
Th iabl 2 11.9534 1.2074 0.9089 0.0202 0.0168
€ varables 3 128801 12072 009086 0.0217  0.0144
_ 3 n 15 1 3.3645 2.1521 0.6753 0.0998 0.1088
X~ Narn d"(By+1,By), 2 35927 21379 0.6710 0.1134 0.0914
3 3.8088 2.1273 0.6676 0.1234  0.0787
1/2
yi=s92U (x,) n+2 (2.23 20 1 1.5562 3.4761 0.5347 0.2153  0.2497
! M o0 (%) ' 2 1.5671 3.3901 0.5260 0.2492  0.2105
. 3 1.5848 3.3256 0.5185 0.2746 0.1814
serve as arguments. The obtained expres&obf for the
partition function enables us to calculate the free energy of3.0 1 0.3425 6.3985 0.4140 0.4640 0.6263
the system, 2 0.1684 5.9509 0.4010 0.5498 0.5287
3 0.0154 5.6298 0.3880 0.6145 0.4538
F=- kTIZ InQy, (2.29 40 1 -0.1789 9.6225 0.3560 0.7167 1.0885
=t 2 —04575 85533 0.3402 0.8620 0.9180
3 —0.7086 7.8304 0.3233 09712 0.7841

when the explicit analytical expressions for the partial parti-
tion functionsQ, (2.18 and(2.19 are familiar to us. But, the
calculation of Eq.(2.24 can only be done if the explicit
solutions of the RR12.21) are obtained as functions of the The valuest, and¢, depend on the component numioeof
phase layer numbdr®® In this work we briefly present the the model and the universal valué which is a solution of
results of the investigation of the RR.21),* which allows  the nonlinear equation

us to perform the calculation of the nonuniversal system it

characteristics. The RR2.21) can be represented in the fol- s* T on(y(x*))= @n(X*). (2.31
lowing form:

The valuesf,, and ¢,, for differentn ands are presented in
Table 1.

The presence of the fixed point in RR.25 allows us to
write them in the linearized form

M =sT—a+ (" + Ny,

uty ="V Eq(x). (2.29
. . . . (n) _ % (n) _ o*
We introduce the following substitutes: MNy1—"n r M
n)y _ ., % |~= n)_ % |- (2-32)
(n_ 2l (N) _ o4l 5(n,1) U1~ Uy U —uy
nV=s7d"0), uv=s%a,"", (2.2
_ In calculating the matrix elements of the Re matrix we re-
with strict our consideration to a linear term or { x*). As a
result the following expressions for the matrix eleméhtse
r|(n)+q:dn(B|+lvB|)52I! (227) obtalned
where )

S
d (1—-s*2) Ry=s"3uy, R12=E(,uo— waX*)(uk) 12

q=p%(0)q, E:(d+2) 1—s (2.28

wX*
q is the geometric mean value kf in the interval (18,1). Roi=s*"93ufw,, Ry= s4‘d( wo— 12
Equations(2.25 as a partial solution have a fixed point (2.33

ri=—f,80(0), ur=¢,(B®(0))% (229 |t should be pointed out that in E¢R.33 we introduce the
following definition:

where
d/2
. (N (x*)—1)_ P - %); #O:s \/n+2Un(Y*),
"IN, ) 1 2 Ve x)

3 1—s72 2 52d n( *)
o ] 2 20 gy + ron(bi )
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~ ar The normalization conditionsv,v,=1, wo,v,=1 give the
a;=Pyy*ry, ri=d;— PR relations for obtaining the coefficients; , v;;(i=1,2). Pro-
ceeding from Eqgs(2.32 and (2.36 the RR(2.25 can be
B 1 den(Y|)) written in the form
Pn= ,
" Un(y*)( dy" /. r(W=r*+c,E +c,RE,,
b _6 y*r é = . (dm@n(yl)) ufn):u:"’ClRlEll"'CzElzv (2.40
17 1 1 m— ’
en(y) | dy" ), where(see Appendix D
Ri2 =R Up)™%  Roy'=Roy(uy) ™2 C1=BP(0) 7(Cyt Cppa7),
Iglieesi%%g’\églueﬁl and E, of the matrix Re are universal Co,=[ BP(0)]1(Cop+ TCou1 + T2Cop). (2.4

The calculation of the partial partition functior{2.18
E1,= 5 {Ru+ Roo* [ (Ry— Ry +4R(YRY 1M and(2.19 is connected with the employment of common RR
(2349 (2.21. In the vicinity of the fixed poini(2.29 they can be
As is obvious from Table I, we have a saddle-type fixedreplaced by the approximate relatiof2s40 which are exact

point (E;>1,E,<1) for all valuesn ands. According to  for T=Tc. The question arises under what conditions the
Refs. 59 and 60 the bigger eigenvaEe defines the critical  relations(2.40 can be made use of instead of common RR
exponents for the correlation length (2.21). It is obvious that the system of the relations

Ins ” 3 Ir™=r<[rx],

lu{m—u*|<u¥ (2.42

SinceE, is a universal value, the critical exponents arejs 5 condition of the applicability of the approximate rela-
also universal and do not depend on the microscopic charagyg (2.40.
teristics of the system. As we can see from E@s33 and The magnitudes which from E¢R.42) are connected with
(2.34), they only depend on the dimensionality of spate (e value of then spin component number and the value of

and then spin component number. The results of calculatingihe jteration numbet. The main reason for the deviation of
the critical exponents of the model in the framework of th'sthe vaIuesrf”) and uI(n) from their fixed values is the avail-

3Epéogc_h3v¥ﬁéevzmoev;n_lg ;ef‘ El_%ngziz Iguss 4$V52?ecase$oility of the terms proportional t@;E) in the solutions

e —Ufmam T UAeL Y L @.4@. For small values the contribution of these terms is
obtained. These values of the critical exponents corresponsmaII as compared withf andu? , asc;~ . But in the case
to the p* model approximation which gives a good qualita- P n> 1T

tive description of the critical behavior of tlmevector model T#Te thgre alyvays exists such f vaIuEIasan s that the
(see Appendix € contribution will be of the order or uy . With [>m_ the

As is known!! good quantitative results for the critical deviation will become considerable and E¢8.40 cannot

exponents can be obtained in the framework ofghenodel P& used for the description of common RR2D. It is nec-
approximation. For example, the value of theritical ex- ~ €SSary to “S%5the first equation in ER.40 for determining
ponent in thep® model approximation increases and practi-the valuem,,
cally remains unchanged with the increase ofitherder of

the p®™ model. Obtaining the eigenvectors of the transform

matrix Re from Eq(2.32 is an essential aspect of the inves- where 5 is a certain constant values&1). Since we will
tigation of the RR. They can be represented as follb#s:  further compare the results obtained in the casdl ofT,
with those obtained folf <T., we assume thaf=1 with

Tm+1=Tn=0r7, (2.43

W1=W11( L ) Wy =Wo R)y (2.39 T<Tcandé=-1withT>T.. The condition similar to Eq.
Ry 1 (2.43 was employed in Ref. 11. In the first approximation on
where (E,/Eq)™ for m, we have
R, = Ra1 _ Ei—Rn (2.37) m,=— M+ my—1, (2.44
L El_ R22 R12 ! ' |I’1 El
R E_R where
_ 122 E27R2
R_ E2_ Rll R21 ' (238) m0: mC+ mlT'
The Conjugate Vectorsl andU2 are Written in the form Flor the Coefﬁcientsnc and ml the fO”OWing relations take
place:
Rz E>— Rz
vi=vp 1 E, Ry’ vZ:vZZ(R—lz 1) _In(fyélcqy) _ G

me= . oMy
(2.39 c InE, ™ cplInE;



PRB 62 THERMODYNAMIC CHARACTERISTICS OF THE . .. 9605

7.5

FIG. 1. The dependence of the PT temperature on the ratio of the effective barighe interaction potential to the lattice constant
for different values of then component number of the model.

The obtained value ofm, defines the point of exit of the tential in the intervalke[B’,B) makes the results of the
system from the critical region calculation more precise. Let us choose the next formbfor

— le—M J—
Bm, =B's . d=(D(K))+D.., (2.48
The analysis of the RR shows that in the vicinity of the where
PT point two different fluctuation processes take place. The
first one corresponds to the index values(O,m,) and de- Jo,dkd(k)k?
scribes the renormalization-group symmetry. It is the so- <®(k))=W. (2.49
called critical regimgCR). The second one corresponds to B’
the index valued>m, and describes the long-wavelength The results obtained for the temperature in the lifmit
fluctuations(LWF) of the spin and is valid both near and far —« must be in agreement with the mean-field theory results,
from the PT point. It is characterized by Gaussian distribu4.e.,
tion with dispersion depending on the availability of the CR.
It is the so-called Gaussian regin®R) for T>T. and the n
inverse Gaussian reginéGR) for T<T,. BcP(0)= m2:
The calculation of the PT temperature is a significant mo-
ment in the investigation of the critical behavior of the Taking into account this condition and the equation for the
model. As was shown in Refs. 1 and 11, the critical temperatemperatureT (2.47), we obtain the equation for defining
ture is the point where GR is absent and subsequent relatiotide ®... The solution of this equation is written as

occur:
n+2)(f,+ R
:_( )(fat o ) (2.50

limr{",(To)= limr{"(T,)=r*=const, ” 3n(1-sp9)

| —o0 | —o0

The results of calculating the PT temperature of the
limu?y(Te)=limu{™(To)=u} =const. (245  n.vector model in the casa?=n are represented in Fig. 1.
1= 1= As we can see from this figure, the PT temperature in the
In accordance with Eq(2.40), this condition is realized only BcAo Units[whereA, is a constant; see E(.2)] grows with
in the case the increase of the component number of the model. The
PT temperature decreases and strives to the mean-field
cy1(T¢)=0. (2.46  theory results in the case of the increase of the effective

. . . ) range of the interaction potentibl
With Eg. (D1) taken into account the explicit equation for

critical temperature was obtained: ll. CALCULATION OF THE FREE ENERGY

[ch)(o)]Z(l_ fn_ ‘Pﬁ/ZR* ) _ agn’O)ch)(o) OF THE n-VECTOR MAGNETIC MODEL

— _gNOR 12 (2.47 The calculation of the free energy of the system can be
4 @ ' performed in accordance with E@.24). The given analysis
where R* =R\u*, and al"®, a{"® are functions of the ©f the RR and the definition of the region of the availability
initial interaction potential2.14).%¢ In this paper we present of their approximate splutlons_e_ngble us to present the free
the results of calculating the PT temperature with the inter€nergy of the system in the vicinity of the PT point in the
action potential of the Eq2.14 type. As follows from Eq. form
(2.14), the obtaining of the concrete calculation results is
connected with the choice of the valde. The correction
considering the presence of the Fourier transform of the powhereF is the free energy of the noninteracting spins

F=Fo+FcrtFrwe, (3.9
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TABLE Il. The dependence of the coefficients of the free energy on the microscopic parameters of the interaction potential and the
characteristics of the crystal lattice for a differentomponent number of the model are shown.

b/c n Yo 71 Y2 Y10 Y10 Yo Y3 V3
0.2887 1 0.349 —0.500 —0.459 —0.538 2.737 1.811 1.283 2.726
2 0.727 —0.976 —4.427 3.315 0.368 5.335 5.795 6.294
3 1.099 —1.435 24.497 —25.359 30.049 9.488 —22.603 —22.530
b=c 1 0.297 —0.521 —0.122 —0.448 2.276 61.085 1.066 2.266
2 0.620 —1.011 —3.200 2.722 0.303 192.194 4.759 5.170
3 0.938 —1.470 21.176 —21.397 25.358 349.648 —19.072 —19.013
(2m)"°mn—1 The nonanalytical part characterizing the temperature de-
Fo=—KkTNIn TR | (3.2 pendence of the specific heat in the vicinity of the PT point is
connected with the terny;,r%", where
FLwr is the LWF free energy anéog is part of the free . J
energy corresponding to the CR. The expression ofthg- Y10=7'S ", (3.7
for the caseT >T. is presented in Eq3.13 and the expres- )
sion of theF g for the caseT<T,. is presented in Eq. _ fer f,od, N f26%d, 38
(3.14). For Fcg we have Y19 1-5 9E, 1-s 92 :
M7 and the following definition is introduced:
Fer=—kTX, Fi, 3.3
1=0 fn:TETT+1C1k.
where
For f&g we have
=Nif;,
fx —Eln *+a(y*) 2+ (X*)2+Inu — X
(D n+2 nul "= I Un—l cR-p Ny ety 4 2
=—In| ————| + — X |+ — Y-
=2 n on(yi—1) n 5 X n 5> Yi-1 (3.9
22 The values ofd,, are given in Appendix F. In Table Il the
ZI % (3.4 dependence of;, on the component numberof the model

for different ratiosb/c is shown. The expressiof8.6) de-
scribes the contribution of the region of the renormalization-

In the casd =0 for f, the following relation takes place:
group symmetry to the free energy of the system. It allows us

3 3 (up)? n— n 3 to obtain the respective contributions to the specific heat of
fo=—1In +uy+—-——+INU|——,2' |+ =In|
0=7 ; Uo+ 4 o n ( 5 2 ) zIn ug“)) the system alT <T. andT>T,,
X3 n—1 Cor=kN'[c@—cgglr| ™71, (3.10
+Z+In U(T,XO). (3.5 where
The employment of the RR solutiori2.40 enables us to a=2—dv,
select inf, the explicit dependence on the number of the
phase layed. Having performed the summation along the cO=2(y;+7v,),
layers of the CV phase space to the paimt of the exit of
the system from the CR according to H§.3), for the free Cer=(1—a)Ucg,
energy of the CR we obtain
Ucr=dvy1o. (3.11

Ecr= —KTN [yt yi7+ v2m° = yid 7/%].  (3.6) o o

The curves 1 in Fig. 2 correspond to the contribution of the
Let us note that the signs+"" and “ —" correspond to the  CR to the specific heat &<T. and T>T,, respectively.
casesT>T, and T<T;, respectively. The coefficients The negative value of the specific-heat amplitude that corre-
Y01, Y1, Y2, 1o @re constants and do not depend on the temsponds to the contribution of the CR testifies to the nonsta-
peraturg(see Appendix E The analytical part of the CR free bility of the contribution of the short-wavelength fluctuations
energy is connected with the coefficienig,,y.,y,. It (SWH of the spin moment density. Considering the contri-
should be mentioned that the expressions of these coeffibution of the region of the LWF of the spin moment density

cients coincide at the temperatures above and below the critin calculating the thermodynamic characteristics of the sys-

cal temperature. The dependenceypfon the microscopic
parameters of the interaction potential and theomponent
number of the model are shown in Table II.

tem is a topical problem of today.
The regions of GR foif >T, (and IGR forT<T_) corre-
spond to the LWF of the spin moment density. The increase
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20.0 the fluctuationg2.17) becomes Gaussigsee Appendix G
As a result, forF g we obtain
Fior=—KTN'|7* v we, (3.14
where
: - _ (,U-T)+ (o)
Lo.02  -0.01 o 02 YLWF= V3 Y3

YW= ygt v, Y=cth?, PI=sIE;.
(3.19

The valuey<3‘r> corresponds to the contribution from the or-
dering in the system. The coefficienyg and y, are written

in the form
FIG. 2. The temperature dependence of the specific heat. The
— d

comparison of the contribution of the CR and the region of the Yg= ¥4Cy>
LWF. Notes: 1 corresponds to the CR, 2 to the limit GR>(Q)
and IGR (r<0), 3 to the contribution to the specific heat due to

=20.0

Sd+4(n+2)Um n/4 . n—1

the rise of the ordering in the system. Yo=In|| 5=————— eym/“U(—,ym ) ,
g ( 3w ‘Pn(xm) 2 T

of the basicx; and the intermediatg, variables as functions (3.16
of | is a typical peculiarity of the limit GRLGR) and IGR. o
In this connection the contribution of these regions to the Yo~ YpCus
free energy can be calculated in the Gaussian measure den- . .
sity approximation as in this region of the wave vectors the __ 5 n (1427 n Uy oy
term proportional to the fourth power under the exponent of yp=1—2nL(x)— §|” t37 g [ain
the distribution functions becomes much smaller than the
square term. Since the increasexpfs gradual, there exists uz 9
the so-called transition regiofTR) where it is necessary to +3n3L(X)ap] + 4—8:n4(E4+ 3aday)+ anﬁzrﬁmr.
keep the fourth power of thg, variables in the distribution
function. The value of the TR is defined by a certain number (3.19

of the CV phase space layens’ following the pointm, of
the exit of the system from the CR. The value of the TR is
defined by the condition

It should be pointed out that the following definitions are
introduced here:

T +1=fa(140), Un 1=en—frenRES,  (3.18

o
|er+mg| = 1_—:—c{: (3.12
_ [ x—arctarx _ 1
wherea, is a constant4,,,=10). The arguments mentioned L(x)=3 x3 X T (3.19

above enable us to write the contribution of the LWF at
T>T, to the free energy of the system in the form Besides,c,=(c,1/f,8)” is a nonuniversal value connected
. P _ . with thg microscopic parameters of the initial Hamiltonian.
Flor= —KTN'fyem" = BugH*Ny,7~ ", (3.13  According to Egs.(3.1), (3.6), (3.13, and (3.14) the com-
plete expression of the free energy of the three-dimensional
n-vector magnetic model in the absence of the external field
can be written as

where ug is Bohr's magneton and

flwe=frrtfy .
_ " 20 124 *| 13w
f1r corresponds to the contribution of the TR afidcorre- F=—KTN'[yo=va|7[+»|7[*+ v3|7*"], (320
sponds to the contribution to the free energy of the CV'Syhere

from the wave-vectors region witk<B’s™ (™™ +1) The

explicit analytical expressions of these coefficients were 3 (27)"2m"—1

shown in Ref. 61. The contribution of the region of the LWF Y0=Yort Spln INGITZA K 3.29
of the spin moment density at< T, to the free energy of the

system is described by the val&gsr. The valueF g, cor- Y3 = Yiwe— Yio0- (3.22
responds to the IGR. The calculation of the IGR contribution .

has its own peculiarities. In the temperature regioa T, The coefficientys includes the contribution of the CR

large scale fluctuations of the spin moment density are deand the region of the LWF of the spin moment density at the
scribed by the non-Gaussian distribution in which the coeftemperatures above and below the critical. It describes the
ficient near the square term becomes negative. This indicatégngular behavior of the specific heat in the vicinity of the PT
the appearance of the nonzero order parameter of the systepnint. The dependence of the coefficiemts y; on the mi-
After selecting the ordering free energy the distribution ofcroscopic parameters of the interaction potential and the
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TABLE lll. The dependence of the amplitudes of the thermodynamic functions on the microscopic parameters of the interaction potential
and the characteristics of the crystal lattice for a differ@ebmponent number of the model.

b/c n S st us Uz c® (o3 Ci

0.2887 1 1.311 -1.917 2.355 —5.007 -1.917 1.972 4.190
2 4.359 -10.805 11.226 -12.196 -10.805 10.529 11.436
3 8.053 46.124 —45.677 45.530 46.124 —46.629 —46.478

b=c 1 60.564 —1.286 1.958 —4.163 —1.286 1.639 3.484
2 191.183 -8.421 9.220 -10.017 -8.421 8.646 9.393
3 348.178 39.412 —38.540 38.422 39.412 —39.344 —39.223

characteristics of the crystal lattice for differentomponent where
number of the model is shown in Table II.
a=2-3v, CO=2(y,+7y,), Ci=3w(l—a)ys.
IV. THERMODYNAMIC FUNCTIONS OF THE n-VECTOR
MAGNETIC MODEL IN THE FRAMEWORK The second term in Ed4.2) describes the main peculiarity
OF THE p* MODEL APPROXIMATION of the specific-heat behavior in the vicinity of the PT point.

The complete expression obtained for the free energy of's we can see from Eq4.2), the coefﬂqenCl— includes the
the n-vector magnetic moddB.20) in the p* model approxi- contrlbutlons of th_e CR and the region o_f the LWF of _the
mation allows us to calculate other thermodynamic functionsSp'nﬂ?mn}lem dens:ctyt/r.] We can Se? Ii:/?/r(lg Fig. 22that c_(()jn5|der-
in the vicinity of the phase-transition point. As was observed"d € INfuence ot the regions o Urves 4 provides
above[see Eq.(3.10 and Fig. 4, considering the contribu- the positivity of the specific heat and th(_a system stafnhty,
tion of the LWF of the spin moment density is especially respectwgly. The.dependence of the coefﬁq@@ a”‘?'CI
significant in calculating the thermodynamic functions of the©n the microscopic parameters of the Hamiltonian, i.e., from
system. So, differentiating the expression of the free energ}f'€ P/¢ ratio for a differentn is exhibited in Table Il.

by the temperature, we obtain the expression for the entr0p¥brlgifigr.er?ttnhﬁstgrr:)%r:a%;evfaespﬁggeedngi:\jethﬁn iﬁgcgigeat

S=kN[S’+ St 7+ u§|7-|3V*1], 4.1 =3 the critical exponenty, which describes the singularity
of the specific heat becomes negative: —0.0215%? The
analysis of the expressio@.2) and the obtained values of

- - the specific-heat amplitudgsee Table I} shows that the
— 1_ + __ *
S=yoty1, S'=2(y1+72), Uz=*3vy;. specific heat in the case=3 does not diverge and receives

The values of the coefficieng®, St,u; for differentnvalues & concrete finite valuésee Fig. 3 3 _

are shown in Table 111 The curve of the dependence of the specific heat maxi-

It should be mentioned that the correct temperature beum atT=T in the casen=3 on the ratio of the effective
havior of the specific-heat curves is ensured by considerinf@ngeb of the interaction potential to the lattice constar$

the region of the LWF of the spin moment density, i.e., theShown in Fig. 4. One can see from this figure that the value

where

region of LGR atT>T, and the region of IGR aT<T,.  ©f the specific-heat maximum decreases and tends to a con-
The significant characteristic of the system is the specifiétant value as the effective rangeof the interaction poten-
heat for which we obtain tial increases. This agrees with the results of the mean-field
theory.
C=kN'[CO+C]|7 ], (4.2)
42.0
75.0
41.0 (0)
710.0 40.0
39.0
5.0 n=3
38.0
b/c
00 37.0 LR Trvyrrrrrs TITrorrrrry IHI'|'<T1
. 0.0 1.0 2.0 3.0 4.0
—-0.02

FIG. 4. The dependence of the maximum of the specific heat on
FIG. 3. The temperature dependence of the specific heat for the ratio of the effective range of the interaction potential to the
differentn component number of the model. crystal lattice constart in the casen=3 andT=T,.
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TABLE IV. The dependence of the rati& of the specific heat critical amplitudes &t-T, and T<T, on then component number
of the model.

Present Lattice series Field 1/s—exp
n work expansions theory (Ref. 47 Experiment
1 0.470 0.523:0.009(Ref. 33 0.524+0.010(Ref. 29 0.519 0.538Ref. 67
0.55(Ref. 22 0.53(Ref. 7))

0.541+0.014(Ref. 69
0.540+0.011(Ref. 48

2 0.921 1.08Ref. 69 1.029+0.013(Ref. 29 0.888 1.067(Ref. 67
0.99 (Ref. 22 1.054+0.001(Ref. 72
1.05(Ref. 70 1.088+0.007 (Ref. 73

1.056+0.004 (Ref. 48

According to Eq.(4.2) the ratio of the critical amplitudes APPENDIX A
of the leading singular terms of the specific heafTat T,

andT<T, can be written in the form The p, CV are introduced by means of the functional

representation for the operators of the spin-density fluctua-
tion p,

A=—. (4.3

1

A A N AT & s
The comparison of the results obtained for the ratio of the pk—f PI(p=P)(dpI”, P N ; SreXp(—TkR),
critical amplitudes of the specific-heat leading singular terms

with results obtained by other methods is shown in Table IV.
where

V. CONCLUSIONS )
In gen.erall, it should be noted that separate accounting of Jp—p)= H 8(pi—pY) 8(py—py) | 8(po— Po)

the contributions of the short- and long-wavelength fluctua- K
tions of the spin moment density in the expression of the free
energy of the system in the vicinity of the PT temperaturéjs the transition operator. For thg CV the following rela-
allows us to find the explicit analytical expressions for thetjons come into being:
thermodynamic functions as functions of the temperature.
The proposed method enables us to investigate the depen-
dence of the critical amplitudes of the thermodynamic func- =P ipR, PPk, PR= P
tions on the microscopic parameters of the interaction poten-
tial and the characteristics of the crystal lattice. The results ] i )
obtained for the critical exponents and the ratio of the critical queSZ]acobmn of the transition from spins to CV has the
amplitudes agree with those achieved by other methods. THEM ™
negligible deviation of the obtained results from the experi-
mental data and the results of the numerical calculations is o
connected with the restriction in the calculation by #fe J[p]=20f ex;{ 2imY, pra+D[w]|(dey)V,
model approximation. As was seen in Refs. 11 and 74, the K
employment of the® measure density for the investigation
of the PT in the casa=1 gives a more precise definition of
the calculation results of the universal and nonuniversawhere forw, variables conjugate tp, variables we have
characteristics of the system. The extension of the suggested
method to the investigation of the critical behavior of the
n-vector model in the frame of the® model approximation
does not require any principal changes. To be brief, in the
present paper we do not give enough attention to calculating n ,
the scaling corrections. In the case=1 such calculations N_ a acqy as
were madge in Ref. 11. Besides, in the common case the (deoy) _31;[1 dwOl;[ ey doy™
critical exponent of the correlation function s+ 0. Such
values of the correlation function critical exponent can be
obtained by the method we propose if we take into account APPENDIX B
the correction on the averaging of the interaction potential in
each layer of the CV. We are going to perform such inves- For the coefficientsa,, the following expressions are
tigations in our subsequent papers. available:

(A1)

_1 C H S C__ C S__ S
o=3(wtimy), o=w ,, o=—o,,
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1 1/2

20m? BD(K)
(n+4) ke A N

dr2
ax= m2 So
1 —

Uy,

3n® 1
m* %o L 2o 5 B (K)
(n+4) ¢ca N

a4: -

X[1-2'Un(2')—U3].

Here subsequent definitions are introduced:
n+2 , ,
Ug= TU"(Z ), A=[B’,B),
U((n+1)/2,2")

)22 ,_\/3,
U(n-Dizz)’ 2= Nyt ®3

where U(a,x)=D _,_15(x) are the Weber cylinder para-
bolic functions. The renormalizad,, cumulants considering
the availability of®(k) for the large values ok have the
form

(B1)

(B2)

Un(z')=

u Ugin
Up=S9 5 N E BO(K), uj=u,— '2,L g BO(K),
= Juy| - 2 BD(K)[s (B4)

The coefficientau, have the following expressions:

m? B 6m*
U=y W= " ooy
=15m°® 3 + (B5)
Us= n(n+2)(n+4) n%n+2) nd3|

In the casen—« the behavior of the coefficients,, were
represented in Appendix C.

APPENDIX C

In the marginal case of the larger—«, the cumulants
U, strive for their limit values

limu,=1, limu,= I|m —F—0,
n—oo n—o n— +2
limuy,=0, 1=34,..

n—o

(in normalizing the spin dimensionalitp?=n). Considering
only the leading members by order of the valua i the

process of integration of the partition functions enables us to

employ the method ofy expansiorr®*%°8|n this case the

values
d(B;,B")\'
2 ’ gz(g41961"-)

Uy
(21

921=

are small. It allows obtaining the next relations for the cor-

relation length critical exponeriin the casep=0)
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TABLE V. The dependence of the temperature critical region
71, on then spin component number of the model.

n 1 Y
1 0.0286 0.3449
2 0.0371 0.3448
3 0.0424 0.3270
g¥r=0, »=1%, atd>4
. l_sd*4
%28y (1-s 9’
IN{1+[(n+2)/(n+8)](s4 *-1)}] 1
i P {1+[( )( )1( )}  atd=a,

Ins

whereg;" are the fixed points. But, starting from the type of
fixed point we have certain restrictions on thevalue (1
=<5<2). In the limitn—« for d<4 we obtainv=1, which
is in agreement with the Berlin-Kac spherical motfeAna-

logical expressions forv were obtained in a series of
works: 50,56,58,63,64

APPENDIX D
From the initial conditions alt=0

BP(0),

the following expressions for the coefficients,c, were
found:

rE)n):a(zn,O)_ ugn):agln,o)

cr={r{"—r*+(@M—u*)(-R)}D 1,

c={al?—uX +(r{"—uX)(~RYIDL, (D)

whereD=(E;—E,)/(R;—E,). For temperatures close to
T. the coefficient; andc, can be represented as follows:
ci(T)=cyr78P(0),

Co(T)=Cor[ BP(0)]2. (D2)

Having applied these relations we evaluate the critical region
of the temperatures<<7* in which the solutions of RR
(2.40 are valid. For the critical region to exist it is necessary
that the “exit” from this region att —1 should not exceed
the “entrance.” It means that the valug is equal to the
smaller root of the two equations

C2RE2:C1E1, ClRlEl:CZEZ'

Taking into account Eq(D2) we obtain for7y ,

CorE2B(0)
CitEaRy |

*:

*
Ty =

72

Ci7Eq

The results of calculatingy , in the cases=4 are shown in
Table V.

As ¢4(T)~ 7, the valuec,; can be represented in the
following approximation:

C17=Cix+ Cya 7+ O(72), (D3)
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where
C12 1
Cuc=| Cut g0 <I><0>]4D ’
C12 1
TN (09
with

1/2
Cllzl_fn_R* P

c1o=—ay""R* ¢, 2. (DS5)

In accordance with Eq(D2) for ¢, we consider only the

terms proportional ta?,

CZT: C2k+ TC2k1+ 72C2k2+ O( 7'3), (DG)

where the following definitions are introduced:

Co2 Co1 _

ca=| 2t 550y * gD
S B S - S P (D7)

2T B@(0)  [BD(0)]2]

and

n 0 R: @ 1/2

_ ,0 _
CZl_agln ), Coo=—
112

Cs=RI oy (1—f,)—on,

— Rl( U: ) —1/2, R* = R( U: )1/2_

APPENDIX E

The coefficientsyg,, y1,7, are expressed in the form

Y01= a0~ You.,
Yi=a1+ Yoo,
Y2=az+ Yo3,
where
_,.n 3 (X(O))2
a0=a0+§In27r+ In n(O) 7
n—-1
+InU[—= x|,
1
- m"~1 +n| 3\ 3(up)
a,=In —In
0 47\ uy 4uy

THERMODYNAMIC CHARACTERISTICS OF THE . ..
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(0)

— dx
a;= —nTCUn(x(O))( 9T )T:Tc,

T_Tc]

— —1p
dae=0—fo+cuR Vg V2,

c

o n 2y(0)
a=— ZTi[ Un(X(O))(W>
T=T

dU,(x©@) (dx(®)2
dx© dT

and

x(@= V3dae(age) ™ 1/2,

Agc=Po T Cok-
For the yy; coefficients we have

f* C2kd2E2
=g d +
Yo1= S (1_Sd 1_S*dE2

c5d4E>
1-s 95}’

b,d,E3

4 C1d1Eq
1-s 9E;

1-s 9E;

_gd Cor1d2E>
Yoz 1—s_dE2

C1kCakdsE1E>
1-s 9EE,

ClkbOd7E§E1
1-s 9E,E3

_gd Cok2d2E>
Yo3 1_S—dE2

C1k1d1Eq
1-s 9E,

(C1kCak1+ CokCak1) dsE1 E5
1-s 9E,E,

b,d,E3
1-s 9E3

(Caxby+ C1abo)d7E,ES
1-s 9E,E3

CiibodgETES
1-s 9E2E5 )’

2 2
C1kC2kd6ETE,

cidsE3 .
1-s ‘EZE,

+
1-s 9E?

where

_ 2 _ _ 2
bo=Co D1=2CxCok1, D2=0Co;+2CCoxz-

For y" we have

, . f,od; .\ £25%d4
Y15 159, 1-s 92

The values ofd,, are given in Appendix F. Foy, we have

fn6)2” 1
(ED)

=52m”(— Py Wy
& 2B%(0)go

Cit
where gy is a complex function ofx
+m"+2 (see Ref. 61

_y With m/ =m,_
APPENDIX F

For the coefficientsl; the following expressions are valid:

Ay
dl:B3 d2:Bl A3+E_ y

At Da
3 E_11
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Ay ) A, ~ 0 1. 1. 3,1
d3=Bs A3+E71 +B3 A4+E§ , rl_dl_?- zzid _§d1Q1+§Q1_ZQZ.
I 5 A; 4o 1 d'Up(x) 1 (dig(x)
4= b7 3+ E2 + 4+ E2 ’ I_Un(X*) dX: . ’ I_QDn(X’k) dX: . .
" + + APPENDIX G
ds=B,| A; EE) 2B.B3| A4 EE2>
The contribution of the IGR to the free energy can be
written in the form
d¢=B; A3+EZ +2(B1Bg+B3By) A4+EZE
! Figr=—KTN's™ M In[2"2Q(P )]-kTINZpy, 44,
Ay (GD
d,=Bs| Azt —— E.E2 +2(B1By+B2By)| Ast ¢ E2>’ Where
BZ 1 (n m,+1)
_ _ = (n,m_+1)
dg=Bg A3+E E2 +2| B1B7+B;Be+BaBs+ — AN f ex 2k§%1+1d (K)pxp—— 4|N
X (At AET°E; %),
where the coefficients, ,B; are universal constants and are X2 P POk teik, | (dp)Nmt1
defined by the fixed-point coordinates. For tBe coeffi- kg L ATt
cients we have ki<Bm +1

*

1 R*\/_';—X—) B,= 2(§ *_ﬁ *)
’ 2 QDn 8X R ’

Bl:(Pn 2 2

(n,m_—1) ) n/4

n+2 a4,

Pp)=(2m) " s
QfPm)=(2m) [ 3% a0

2
n—1 ymT—l

_3,2( V3 _, ﬁ 3 *x*) After the separation of the ordering free energyjp ., the

B,= - -
4= %n coefficient at the square term becomes positive. It allows us
to use the Gaussian measure density as basic under the inte-

R} x*
Baz(pnllz(\/?;— L ),

2 XU

3v3 5 gration of Z,, , 1 by the variablesp, with k#0. After the
B _(P75/2 *RY 4 Z T Ry . . " .
57%n 4 1 2 4y3 * ' integration forZ,, ., we obtain
3 V3 _ G
Bs=or 1R’1‘(§x R* ;) In +1=€ Bme*lf eXF{ﬁ\/N,U«BHPoJFBP%_ NPS dpo-
(G3
L33 RiR* B5Ryx* The valueF, ., corresponds to the contribution of the LWF
Br=¢n "7 R 2 43 | region of the spin moment densitiye., from the variablep,
with k—0, butk+ 0) to the free energy of the system
-3 * *
15/3R} [ 7x*R
= - L 1+R*RY n o1
16 4v3 BFm +1=Np, STl _|d(nm+l)(o)|| 5
2Nm 41
The coefficientsA; are written in the form
d (k) a(n,m,+1)|§
A_n 2ra A_n n 2+Zv(3rf—2r2) X 2’ In( 2 )_ 4
1—§r1 (y*—)z, 2—5"2 Zrl (y*—)z, K<Bm +1 ™ 8
2(n,m_+1)
n n a4 (n,m_) 2
ASZ_EUH(X*)v A4:_ZU,(X*)' +4—8(|4+3|1|2 —|d “'(O)|
where the following definitions are introduced: p2(nm;)
- I, (G4
_(5n+16n n/2(nf2+1) () (dUn(x|)) 8
o= y X = ’
8 2 dx ) Forl,(i=1,...,4) the next relations take place:
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R g2(m;) _L(X)
R M an,
[ g2(m,) ]2
| ,=n%a, 5500) a,=[a?+6ei(1+e3)],
2(m,) 13 3
| sftMe _ e,
l3=n® , az=a;+6e}| 1+ —|,
3 a3_ﬂq)(0)_ a3=aq l( ‘/§>
- S2(m7,) 14 ezzl
l,=n“a, . ay=ai+6eell 1+ —=|. (G
4 a4_B(D(O)_ ap=0ay 1 Va2 ( 5)
It should be mentioned that
15
T3 10,
1
ezzz{sm(wﬁ)—mfz cogmv2)}. (G6)

The variablep, in Eq. (G3) is connected with order param-
eter. Its mean value is proportional to the spin density of the_

system. For the valueB and G we obtain

B=|7|*"By, Bo=pBP(0)B,
1+6
B0 =c?f TB;’ :
Uy
B&O)zl_allUmT‘F le222rT, (G?)
m
G=117/"Go,Go=[BP(0)]°G'"?,
(0) 83 (0) 3 2 U
G _Cvﬂum 99, g =1-5n%aUp, (G§
where
n El 3 alaz -
a11= 2 —+ 2n sz, a22=n3( 2 + (Gg)

The variablepy is a macroscopic value, so we can accept that

po=Np.

(G10
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FIG. 5. The temperature dependence of the order parameter for
different values of thex-component number of the model in the
caseH=0 (with b=c).

where(p) is an extreme point of expression
Eo(p)=Gp'—Bp?— BuHp,

which arrises in Eq(G3) with the change of variabld§10).
The variable py corresponds to the operatoip,
(1/yN)3, &, the mean value of which is connected with
the equilibrium value of the order parameterin the case of
H=0 we find for(p) the following solutions:

(pr2==* \/% (p3)=0.

The solutiong p; ,) and(ps) correspond to extreme value of
the functionalEqy(p) (G12. The presence of the nonzero
mean spin moment at the temperatufesT, testifies to the
appearance of spontaneous magnetization in the system in
the absence of the external field. Figure 5 shows the tempera-
ture dependence of the order parametéor different values
of n component number of the model in the absence of the
external magnetic field.

In accordance with the above f&i((p)) we obtain

(G12

(G13

2

E0(<P>)—_ —Eo| %, (G149
where
E,\= 3 r_rzn (B O))z Gl
072 Un 590 (19

It makes it possible for us to apply the saddle-point method
for the calculation oZmTH in Eq. (G3). As a result we find  All this enables us to obtain the explicit analytical expression

I +1= VE (< >)€‘Xp[ BFm_+1—NEo({p))},

(G11)

for the IGR free energy. Summarizing the expressicGd)
by the variablek<B, (k+#0) and considering the contribu-
tion of the p, variables in accordance with Eq8G11)—
(G19), for F,gg We obtain the expressio3.14).
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