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Surface magneto-optical effects in cubic antiferromagnets
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~Received 28 March 2000!

Time-odd optical effects of electric quadrupole-magnetic dipole order, which are due to the spatial symmetry
of a ~001! surface layer, are predicted in reflection and transmission for certain classes of cubic antiferromagnet
which do not exhibit bulk effects of the same multipole order. Reflection and transmission matrices for normal
incidence at the vacuum-crystal interface are derived by taking the boundary conditions in relativistically
covariant form, so ensuring that the requirements of reciprocity~time-reversal symmetry! are satisfied. These
matrices show that the reflected and transmitted light should be rotated due to the properties of the surface
layer. The possibility is discussed of observing this rotation in those classes of cubic antiferromagnet which do
not display additional surface effects such as specular optical activity of surface origin or the surface Faraday
effect.
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I. INTRODUCTION

When electromagnetic radiation interacts with matter
oscillating electric and magnetic fields of the light wave m
induce optical phenomena in a medium that are related t
bulk properties,1–4 as well as surface effects that may
described in terms of properties that are permitted by
spatial symmetry of a surface layer.5–8 However, on accoun
of their relatively smaller magnitudes, surface effects
generally observed only in the absence of the correspon
bulk effect.

Many classes of uniaxial and cubic antiferromagne
crystal may exhibit optical effects of magnetic origin both
transmission4,9,10and in reflection.11–13Theoretical consider-
ations have shown4,9 that such effects first arise at the lev
of induced electric quadrupoles and magnetic dipoles
that they may be described in terms of components of
time-odd property tensors,Gab and aabg8 , that are, respec
tively, second-rank axial and third-rank polar. There a
however, certain classes of cubic antiferromagnet, name

m3, 432, 4̄3m, m3m, m3m, m3m,

which, to the order of electric quadrupole and magnetic
pole, may not display time-odd optical effects due to th
bulk magnetic properties.12 Such crystals would be suitabl
for the observation of surface effects.

In this paper we identify the classes of cubic antifer
magnet that may exhibit effects in transmission and in refl
tion due to components of the tensorsGab andaabg8 that are
allowed by the symmetry of the surface when the light p
is along the normal to a cube face. This is a particula
favorable geometry for examining surface phenomena in
flection, as bulk effects of chiral14 and magnetic13 origin are
absent in this arrangement for the full range of magne
point-group symmetries of the cubic system. For simplic
details are presented only for the magnetic point groupm3m.
An important aspect of our theory is the use of relativis
cally covariant forms for the boundary conditions15 to deter-
mine the reflection and transmission matrices at the vacu
crystal interface. Relativistic covariance is an essen
PRB 620163-1829/2000/62~14!/9561~5!/$15.00
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requirement if both spatial and temporal symme
constraints16,17are to be satisfied. This is discussed in Sec
where the relevant electromagnetic theory is also sum
rized before being applied to a crystal ofm3m symmetry in
Sec. III. In Sec. IV we discuss the possible coexistence
other surface effects.7,8 Our conclusions follow in Sec. V.

II. ELECTROMAGNETIC THEORY

We consider reflection and transmission at the surface
a source-free, homogeneous, anisotropic, magnetic cryst
a vacuum. Thexy plane of the laboratory system of Cart
sian axesO(x,y,z) is taken to lie in the interface with the
vacuum in the half-spacez,0 and the crystal in the half
spacez.0. A monochromatic plane light wave with an ele
tric field of the form

E5E(0)exp$ iv~ns•r /c2t !% ~1!

is incident normally on the surface of the crystal from t
vacuum side. In Eq.~1!, v is the angular frequency of th
light wave,E(0) is the complex amplitude for the refractiv
index n when propagation is in the direction of the un
wave-normals, andc is the speed of light in a vacuum.

The theory in this paper is taken to the order of induc
electric quadrupoles and magnetic dipoles. To this multip
order theD andH fields in matter are18–20

Da5e0Ea1Pa2 1
2 ¹bQab1•••, ~2!

Ha5m0
21Ba2Ma1•••, ~3!

wherePa , Qab , andMa are, in Cartesian tensor notatio
macroscopic volume densities of electric dipole mome
electric quadrupole moment, and magnetic dipole mom
respectively.

By means of the Maxwell equation“3E52Ḃ, the space
and time derivatives of the electric fieldE and the magnetic
field B of a plane electromagnetic wave may all be expres
in terms ofE when complex notation is used, such as that
Eq. ~1!. These space and time derivative fields are able
induce multipoles in matter, the moments of which are spe
9561 ©2000 The American Physical Society
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fied by their densitiesPa , Qab , Ma , . . . . Accordingly,
these densities may all be expressed in terms ofE, and so
therefore may the response fieldsD and H in Eqs. ~2! and
~3!. However, Post21 has shown that, to be relativisticall
covariant,D andH for a linear and homogeneous dielectr
must be a function of bothE andB of the form

Da5AabEb1TabBb , ~4!

Ha5UabEb1XabBb , ~5!

where for a medium of negligible absorption at the frequen
of the wave

Aab5Aba* , Xab5Xba* , Uab52Tba* . ~6!

As an extension of Buckingham’s notation for a nonma
netic medium,22 the induced multipole moment densities f
a magnetic crystal have previously been taken, to the o
of electric quadrupoles and magnetic dipoles, in the form4

Pa5aabEb1v21aab8 Ėb1 1
2 aabg¹gEb

1 1
2 v21aabg8 ¹gĖb1GabBb1v21Gab8 Ḃb , ~7!

Qab5agabEg1v21agab8 Ėg , ~8!

Ma5GbaEb2v21Gba8 Ėb . ~9!

The tensors in Eqs.~7!–~9! that describe the proportionalit
between the induced multipole moment densities and
field terms are macroscopic multipole polarizability densit
of the medium. For instance,aab is the familiar polarizabil-
ity and aabg is the quadrupole polarizability introduce
by Buckingham22 for molecules.

When Eqs.~7!–~9! are substituted into Eqs.~2! and ~3!,
the expressions forD and H do not satisfy the covarian
forms in Eqs.~4! and ~5!. We have shown,23 however, that
the covariance requirements of Post can be met only w
the polarization densities in Eqs.~7!–~9! have the following
forms:

Pa5FabEb2 1
6 iSabg¹gEb1~ tab2 i t ab8 !Bb1•••,

~10!

Qab5 1
3 iSabgEg1•••, ~11!

Ma5~ tba1 i t ba8 !Eb1•••, ~12!

where

Fab5aab2 i @aab8 #, ~13!

Sabg5@aabg8 1abga8 1agab8 #, ~14!

tab5@Gab2 1
3 dabGgg2 1

6 vebgdagda8 #, ~15!

tab8 5Gab8 2 1
2 vebgdagda . ~16!

In Eqs.~15! and~16!, dab is the Kronecker delta andeabg is
the Levi-Civita tensor.

To illustrate the need for covariant forms forD andH, we
consider the Maxwell boundary condition onH at a vacuum-
dielectric interface. In the absence of free current the tang
y
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tial component of H is continuous. In the vacuumH
5B/m0, in which H is well-defined and unique becauseB
has this property, as follows from the Lorentz force. By co
trast,H in the dielectric is not uniquely defined by the Ma
well equation

“3H5Ḋ1J, ~17!

in which it first appears in physics, because specifying
curl of a vector does not fix the vector unambiguously. T
difficulty is overcome by using the covariant form forH. A
similar argument applies toD. The covariant multipole forms
for these fields have, in addition, been shown to be tran
tionally invariant in that they are independent of the arbitra
origin to which the multipole moments are referred.15,23

Of the polarizability tensors in Eqs.~13!–~16! aab , aab8 ,
aabg , and aabg8 are polar, whileGab and Gab8 are axial.
Time-odd tensors have been placed in square brackets.
tensors may exist only for magnetic media.24 Quantum-
mechanical expressions for the polarizability tensors in E
~13!–~16! show that23

aab5aba , aab8 52aba8 , ~18!

aabg5aagb , aabg8 5aagb8 . ~19!

The polarizabilities in Eqs.~13!–~16! may also be associate
with distinct optical properties. Briefly,aab accounts for
double refraction in uniaxial and biaxial crystals,25 aab8 de-
scribes the intrinsic Faraday effect in ferromagnets,26 Gab8
and aabg together give rise to optical activity,1,2 and Gab

and aabg8 are responsible for gyrotropic and nonreciproc
birefringences in antiferromagnetic crystals.4,9

It has been shown from Maxwell’s equations and E
~1!–~3! and ~10!–~16! that in the electric quadrupole
magnetic dipole approximation the equation that descri
wave propagation in a medium is4

@n2~sasb2dab!1e0
21eab#Eb50, ~20!

where

eab5e0dab1aab2 iaab8 1nc21sg~Aabg2 iAabg8 !
~21!

and

Aabg52ebgdGad2eagdGbd1 1
2 v~aabg8 1abag8 !, ~22!

Aabg8 52ebgdGad8 1eagdGbd8 2 1
2 v~aabg2abag!. ~23!

For normal incidence the boundary conditions on the t
gential components of the electric and magnetic fields,E and
B, at the vacuum-crystal interface are15

Ex2Evx50, ~24!

Ey2Evy50, ~25!

Bx2Bvx5m0~Ky2Kzeyz /ezz!, ~26!

By2Bvy52m0~Kx2Kzexz /ezz!, ~27!
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where quantities in the vacuum are denoted by the subs
v, K is the macroscopic surface current density of bou
charge, andeab is defined in Eq.~21!. It follows from the
multipole expansion of the vector potential15,20 that

Ka52nb~ 1
2 ivQab1eabgMg!, ~28!

wheren52 ẑ is the outward unit normal to the crystal. T
ensure that the boundary conditions in Eqs.~26! and ~27!
satisfy covariance requirements, it is necessary to use
covariant forms forQab and Ma in Eqs. ~11! and ~12!, re-
spectively, inK .

Since the electric field in the vacuumEv comprises the
electric fieldsEi andEr of the incident and reflected wave
respectively, the replacement

Ev5Ei1Er ~29!

may be made in Eqs.~24! and ~25!. Similarly, Bv in Eqs.
~26! and ~27! may be replaced byBi1Br . Equations~24!–
~27! may then be rewritten in matrix form as27

~Er ! j5Rjk~Ei !k , ~30!

whereRjk is the 232 reflection matrix that relates the Ca
tesian components of the electric field of the incident wa
to those of the reflected wave. It follows from time-revers
symmetry ~reciprocity! that the reflection matrices for
sample in two time-conjugated equilibrium states~t! and
(2t) must satisfy16

Rjk~ t !5Rk j~2t !. ~31!

A similar constraint is imposed on the transmission ma
Tjk , which may also be determined from Eqs.~24!–~27!,27

and which relates the Cartesian components of the ele
field of the incident wave to those of the transmitted wave
the interface.

Because covariance embodies both spatial and temp
invariance, it is the key to obtaining reflection and transm
sion matrices with the correct symmetry properties.

III. THE MAGNETIC POINT GROUP m3m

We now apply the theory in Sec. II to a cubic antiferr
magnet with magnetic point-group symmetrym3m for nor-
mal incidence on a cube face. The crystal properties are
scribed relative to Cartesian crystallographic axes 0(1,2
which are parallel to the cube edges.24 We take the
crystallographic three axis to be parallel to thez axis of the
laboratory reference frame 0(x,y,z) and let the crystallo-
graphic 1 and 2 axes be rotated by an angleu with respect to
the x andy axes in the reflecting surface.

Birss’s tables24 show that the time-even tensorsGab8 and
aabg in Eq. ~16! and the time-odd tensoraab8 in Eq. ~13!
may not exist for this crystal class, although components
the remaining property tensors in Eqs.~13!–~15!, namely
aab , Gab , and aabg8 , may exist. However, those ofaabg8
vanish because of the constraint in Eq.~19!, and hence the
bulk properties of the medium are described by the follow
tensor components:

a115a225a33,
ipt
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G115G225G33. ~32!

The symmetry of the~001! surface layer differs from tha
of the bulk crystal and is determined by the subgroup
symmetry operations of them3m point group that leave a
semi-infinite crystal~i.e., a reflecting sample! invariant.8,11 It
follows from group symmetry tables28 that the appropriate
surface symmetry is 4m m. The nonvanishing component
of the surface tensorsGab

s andaabg8s that are consistent with
this surface symmetry are readily identified as

G11
s 5G22

s , G33
s ,

a1238s 52a2138s 5a1328s 52a2318s , ~33!

where use has also been made of the intrinsic symm
property in Eq.~19!.

Tensor components in the laboratory frame 0(x,y,z) may
be expressed in terms of those in the crystallographic sys
0(1,2,3) by means of the transformation for a rotation

tab . . . 5t i j . . . ai
aaj

b . . . , ~34!

where ai
a is the direction cosine between thea axis in

0(x,y,z) and thei axis in 0(1,2,3). Application of Eq.~34!
to the tensor components in Eqs.~32! and ~33! yields

axx5ayy5azz5a11,

Gxx5Gyy5Gzz5G11,

Gxx
s 5Gyy

s 5G11
s , Gzz

s 5G33
s ,

axyz8s 5axzy8s 52ayxz8s 52ayzx8s 5a1238s . ~35!

For normal incidences5(0,0,1), and we then find from
Eqs. ~21!–~23! and Eq.~35! that the propagation equatio
~20! may be written in component form as

F 2n21e0
21exx 0 0

0 2n21e0
21eyy 0

0 0 e0
21ezz

G F Ex

Ey

Ez

G50,

~36!

where

exx5eyy5ezz5~e01a11!. ~37!

It is interesting that the tensorsGab and aabg8 do not con-
tribute to Eq.~36! even though certain components, listed
Eq. ~35!, may exist. Equation~36! shows that the character
istic waves travelling along thez axis in the crystal are po
larized parallel to thex andy axes and have the same refra
tive index, namely

n5~11e0
21a11!

1/2. ~38!

The components of the electric and magnetic fields of
two waves in the crystal are thus

Eix:E5Ex~1,0,0!, B5Ex~0,n/c,0!, ~39!

Eiy:E5Ey~0,1,0!, B5Ey~2n/c,0,0!, ~40!
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where use has been made of Eq.~1! and the Maxwell equa-
tion

“3E52Ḃ. ~41!

Before applying the boundary conditions in Eqs.~24!–~27! it
is necessary to determine the components of the surface
rent densityK in Eq. ~28! that are induced in the surfac
layer by the light wave fields in Eqs.~39! and ~40!. When
Eqs.~11!, ~12!, ~14!–~16!, and~35! are used in Eq.~28!, the
following results are obtained:

Eix: K5Ex~0,g,0!, ~42!

Eiy: K5Ey~2g,0,0,!, ~43!

where

g5 1
3 ~G11

s 2G33
s !1 1

6 va1238s . ~44!

Then by substituting Eqs.~39!, ~40!, ~42!, and~43! into the
boundary conditions in Eqs.~24!–~27! and rewriting the four
equations in the form of Eq.~30!, it can be shown that the
elements of the reflection matrixRjk are

Rxx5Ryy5~12n!/~11n!,

Rxy52Ryx52m0cg/~11n!2. ~45!

Becauseg is time odd, as can be seen from Eq.~44!, the
reciprocity condition in Eq.~31! is satisfied.

Apart from the dependence ofg in Eq. ~44! on surface
tensor components rather than those of the bulk medium
matrix elements in Eq.~45! are identical to the correspond
ing forms that have been derived in terms of bulk proper
for Cr2O3 ~symmetry3 m) when the light path is parallel to
the optic axis.12 Thus the effects observed in reflection fro
Cr2O3,11 namely nonreciprocal rotation and circular dichr
ism, should be exhibited by the crystal classm3m due to the
symmetry of the surface layer.

The components of the corresponding transmission ma
Tjk that follows from the boundary conditions in Eqs.~24!–
~27! are

Txx5Tyy52/~11n!,

Txy52Tyx5Rxy52m0cg/~11n!2, ~46!

and hence the transmitted light~through the first interface! is
also rotated.

As the components ofGab
s and aabg8s in Eq. ~44! can be

shown to vanish for crystals which are invariant under refl
tion in a plane perpendicular to the surface or for which a4
rotation about the light path produces the time-reversed c
tal form, it follows from tables28 that the effects described b
Eqs. ~45! and ~46! would be exhibited only by those cubi
antiferromagnets which belong to the classes

23, m3, 432, 4̄3m, m3m. ~47!

IV. OTHER SURFACE EFFECTS

Although the surface effects described by Eqs.~45! and
~46! are the only ones for the chosen orientation that may
ur-

he

s
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e

exhibited within the electric quadrupole-magnetic dipole a
proximation by a crystal with magnetic point group symm
try m3m, additional surface effects may exist for certain
the other point groups listed in Eq.~47!. For example, Nel-
son and Ivanov8 have shown that when a linearly polarize
light beam is incident normally on a~001! surface of a non-
magnetic crystal belonging to the class 43̄m, the reflected
and transmitted beams undergo a rotation which may be
scribed in terms of time-even surface tensors of elec
quadrupole-magnetic dipole order, likeGab8 and aabg in
Eq. ~16!. Such effects have been observed in a Ga
crystal,29–32 which has 4̄3m symmetry, and should also oc
cur in crystals belonging to the associated magnetic s
groups, namely 4̄3m and4̄3m. Furthermore, we find that the
cubic class 23 should exhibit a similar effect. It can
shown from the theory in Sec. II that the time-even con
butions to the elements of the reflection matrixRjk in Eq.
~30! are

Rxx5@12n21 im0c~ng2p sin 2u1q cos 2u!#/D,
~48!

Ryy5@12n21 im0c~ng1p sin 2u2q cos 2u!#/D,
~49!

Rxy5Ryx52 im0c~p cos 2u1q sin 2u!/D, ~50!

wheren is the refractive index defined in Eq.~38!, g, p, and
q are functions of the components of the surface tensorsGab8s

and aabg
s , u is the angle between the crystallographic a

laboratory axes in the reflecting surface, and

D5~11n!~11n2 im0cg!. ~51!

For the class 23

g5G128
s2G218

s1 1
2 v~a113

s 1a223
s 2a311

s 2a322
s !, ~52!

p5G118
s2G228

s2v@ 1
2 ~a123

s 1a213
s !2a312

s #, ~53!

q5G128
s1G218

s1 1
2 v~a113

s 2a223
s 2a311

s 1a322
s !, ~54!

while for the class 4̄3m

g52G128
s1v~a113

s 2a311
s !, ~55!

p52G118
s2v~a123

s 2a312
s !, ~56!

q50. ~57!

The matrix elements in Eqs.~48!–~50! reduce to the forms
that Nelson and Ivanov8 derived for the class 43̄m using a
different procedure to the one described here when, as
did, we setg50 and neglectp in Eqs.~48! and ~49!.

Although components ofGab8s andaabg
s may also exist for

the class 432, there is no rotation at the~001! surface since
p5q50, while g has the form in Eq.~55!.

It follows by inspection from the matrix elements in Eq
~45!, ~46!, and ~48!–~50! that only the time-even effects o
electric quadrupole-magnetic dipole order may depend
the crystal orientationu.

In addition to surface phenomena of electric quadrupo
magnetic dipole order, effects may also arise at the elec



e
e

ti
r

ha
w
m

g-
e

n-
-

f
e
c

uld
ent
e
ith
as
lk

the
the
ag-

lec-
-

ric

ribe

e

PRB 62 9565SURFACE MAGNETO-OPTICAL EFFECTS IN CUBIC . . .
dipole level due to components of the time-odd, antisymm
ric, second-rank polar tensoraab8s , which describes a surfac
Faraday effect.7 It is readily shown from symmetry
considerations24,28 that this effect should occur at a~001!
surface layer in cubic crystals belonging to the magne
point groups 23, 432, and4̄3m, even though the bulk tenso
aab8 is zero for all cubic crystals.24

Because electric dipole effects are very much larger t
those of electric quadrupole-magnetic dipole order, it follo
from Eq. ~47! that the observation of the time-odd pheno
ena described by Eqs.~45! and ~46! would be limited to the
point groupsm3m and m3. For the same reason the ma
netic point group 4̄3m would be the only one suited to th
observation of the time-even effects derived from Eqs.~48!–
~50!. Similar difficulties do not, however, arise for the no
magnetic point groups 23 and 43̄m since these may not pos
sess components of the time-odd tensoraab8 .24

V. CONCLUSION

The theory presented in this paper provides the basis
selecting crystals that would be suitable for the measurem
of surface effects of different multipole order in the absen
n

-
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t-

c

n
s
-

or
nt
e

of the corresponding bulk effect. Such measurements wo
be of value in establishing the magnitudes of the differ
multipole orders of surface effect which, in turn, would b
useful in assessing their relative importance compared w
those of the bulk medium in reflection at an interface. It h
been suggested7 that the surface Faraday effect and the bu
magnetoelectric effect may have similar magnitudes in
optical region. This could be investigated by comparing
surface Faraday effect measurements on a crystal of m
netic point group symmetry 23, 432, or4̄3m with the values
that have been obtained experimentally for the magnetoe
tric properties of Cr2O3.10,11 As the observed rotation in re
flection and transmission in a GaAs crystal29–32 has been
interpreted in terms of surface properties of elect
quadrupole-magnetic dipole order,8 it seems likely that other
surface effects of the same multipole order that we desc
in this paper should also be capable of measurement.
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