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Surface magneto-optical effects in cubic antiferromagnets
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Time-odd optical effects of electric quadrupole-magnetic dipole order, which are due to the spatial symmetry
of a(001) surface layer, are predicted in reflection and transmission for certain classes of cubic antiferromagnet
which do not exhibit bulk effects of the same multipole order. Reflection and transmission matrices for normal
incidence at the vacuum-crystal interface are derived by taking the boundary conditions in relativistically
covariant form, so ensuring that the requirements of reciprdtitye-reversal symmetjyare satisfied. These
matrices show that the reflected and transmitted light should be rotated due to the properties of the surface
layer. The possibility is discussed of observing this rotation in those classes of cubic antiferromagnet which do
not display additional surface effects such as specular optical activity of surface origin or the surface Faraday
effect.

I. INTRODUCTION requirement if both spatial and temporal symmetry
constraint¥®!” are to be satisfied. This is discussed in Sec. II
When electromagnetic radiation interacts with matter thewhere the relevant electromagnetic theory is also summa-
oscillating electric and magnetic fields of the light wave mayrized before being applied to a crystal mBm symmetry in
induce optical phenomena in a medium that are related to itSec. lll. In Sec. IV we discuss the possible coexistence of
bulk properties;* as well as surface effects that may be other surface effects® Our conclusions follow in Sec. V.
described in terms of properties that are permitted by the
spatial symmetry of a surface lay&f However, on account Il. ELECTROMAGNETIC THEORY
of their relatively smaller magnitudes, surface effects are ) . o
generally observed only in the absence of the corresponding We consider reflection and transmission at the surface of
bulk effect. a source-free, homogeneous, anisotropic, magnetic crystal in
Many classes of uniaxial and cubic antiferromagneticd vacuum. Thexy plane of the laboratory system of Carte-
crystal may exhibit optical effects of magnetic origin both in Sian axesO(x,y,z) is taken to lie in the interface with the
transmissiof®'°and in reflection~**Theoretical consider- vacuum in the half-space<0 and the crystal in the half-
ations have showh? that such effects first arise at the level spacez>0. A monochromatic plane light wave with an elec-
of induced electric quadrupoles and magnetic dipoles an#fic field of the form
that they may be described in terms of components of the E— ) ) le—t 1
time-odd property tensor$;,,; and a;By, that are, respec- - explio(no-r/c—t); @

tively, second-rank axial and third-rank polar. There arejs incident normally on the surface of the crystal from the
however, certain classes of cubic antiferromagnet, namely vacuum side. In Eq(1),  is the angular frequency of the
o light wave, E(© is the complex amplitude for the refractive
m3, 432, 43m, m3m, m3m, m3m, index n when propagation is in the direction of the unit
- o wave-normale, andc is the speed of light in a vacuum.
which, to the order of electric quadrupole and magnetic di- The theory in this paper is taken to the order of induced

pole, may not display time-odd optical effects due to theirglectric quadrupoles and magnetic dipoles. To this multipole
bulk magnetic propertie€. Such crystals would be suitable grder theD andH fields in matter aré—2°
for the observation of surface effects.

In this paper we identify the classes of cubic antiferro- D,=¢€E, + Pa—%VBQaﬁ+ . 2)
magnet that may exhibit effects in transmission and in reflec-
tion due to components of the tens@g, anda, ;. that are Ho=#o Ba= Mg+, ©)
allowed by the symmetry of the surface when the light path _ _ )
is along the normal to a cube face. This is a particulariywhereP,, Q,z, andM, are, in Cartesian tensor notation,
favorable geometry for examining surface phenomena in refacroscopic volume densities of electric dipole moment,
flection, as bulk effects of chirdland magneti€ origin are eIectnc.quadrupole moment, and magnetic dipole moment,
absent in this arrangement for the full range of magnetidespectively. _
point-group symmetries of the cubic system. For simplicity, By means of the Maxwell equatidi X E= — B, the space
details are presented only for the magnetic point gno@m.  and time derivatives of the electric fiell and the magnetic
An important aspect of our theory is the use of relativisti-field B of a plane electromagnetic wave may all be expressed
cally covariant forms for the boundary conditidnso deter-  in terms ofE when complex notation is used, such as that in
mine the reflection and transmission matrices at the vacuuntqg. (1). These space and time derivative fields are able to
crystal interface. Relativistic covariance is an essentialnduce multipoles in matter, the moments of which are speci-
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fied by their densitiesP,, Q,z, M,,.... Accordingly, tial component ofH is continuous. In the vacuunt
these densities may all be expressed in termg,0nd so =B/, in which H is well-defined and unique becauBe
therefore may the response fielBsandH in Egs.(2) and  has this property, as follows from the Lorentz force. By con-
(3). However, Podt has shown that, to be relativistically trast,H in the dielectric is not uniquely defined by the Max-
covariant,D andH for a linear and homogeneous dielectric well equation

must be a function of botk andB of the form

VXH=D+J, (17)
Da:AaﬁEﬂ+TaﬁBﬁl (4)

in which it first appears in physics, because specifying the
Hao=UpEptXupBg, (5 curl of a vector does not fix the vector unambiguously. The
where for a medium of negligible absorption at the frequencyfifficulty is overcome by using the covariant form feir. A
of the wave similar argument applies 0. The covariant multipole forms
for these fields have, in addition, been shown to be transla-
A =A% X .=X* U .=—T% . (6) tionally invariant in that they are independent of the arbitrary
ap” Ppar NapT NBar Fap Ba - . ) 3
origin to which the multipole moments are referféd:
As an extension of Buckingham’s notation for a nonmag-  Of the polarizability tensors in Eqé13)—(16) a5, @,

netic mediunt? the induced multipole moment densities for a,p,. anda,,, are polar, whileG,,; and G/, are axial.

a magnetic crystal have previously been taken, to the ordefime-odd tensors have been placed in square brackets. Such
of electric quadrupoles and magnetic dipoles, in the form tensors may exist only for magnetic meé&taQuantum-
mechanical expressions for the polarizability tensors in Egs.

_ -1 -
Po=anpEpt o tasEpt 38,5, ,Ep (13)—(16) show that®

1—1.7 : -16" E
+5w aaﬂyvyEB+GaﬁBB+w GaﬂBB’ (7) Aap= gy, a;BZ—aga, (18)
- -1/
Qap=ayapEy+ o 8y6E,, ® Bapy=8ayp, arIXBy: ar’wﬁ' (19
M o= G g Ep— w_le'ﬁaEB- (9)  The polarizabilities in Eq913)—(16) may also be associated

with distinct optical properties. Brieflyg,; accounts for
double refraction in uniaxial and biaxial crystafsq ., de-
&cribes the intrinsic Faraday effect in ferromagriéts/, ;
Sand a,p, together give rise to optical activity? and Gup
and a;ﬁy are responsible for gyrotropic and nonreciprocal
birefringences in antiferromagnetic crystafs.

: . It has been shown from Maxwell's equations and Egs.
When Eqs.(7)—(9) are substituted into Eq$2) and (3), (1)-(3) and (10)—(16) that in the electric quadrupole-

the expressions fob and H do not satisfy the covariant o L . :
forms in Eqgs.(4) and (5). We have showR? however, that magnetic dipole approximation the equation that describes
: ' ' ' wave propagation in a mediunt'is

the covariance requirements of Post can be met only when

field terms are macroscopic multipole polarizability densitie
of the medium. For instance, is the familiar polarizabil-
ity and a,g, is the quadrupole polarizability introduced
by Buckinghar? for molecules.

the polarization densities in Eq&)—(9) have the followin -
fhe po a)-©) g [N2(0°40 5~ Bu) + €g “€uplE4=0, (20)
1 L where
Pa: FQBEB_ EISQB')’V)’EB_I_ (taﬁ_ Itaﬁ)Bﬁ+ sy
(10) 6!1,3: EO(SC!BJ’_ aﬂ(ﬁ_ | a&B_F ncila.‘y(AaB‘y_ IA;B'}’) (21)
QaB: %iSaByEy+ T (11)
and
where Aaﬁ'y:_eﬂ'yﬁGa(s_ eayﬁGﬁ5+ Ew(aaﬁy+aﬁa,y), (22)
’ _ ! ! 1
Faﬁz aaﬁ_i[a;ﬁ]i (13) Aaﬁy_ _G,B'yﬁGaﬁ_'— eaySGﬁé‘_Ew(aaBy_ a,Bay)- (23)
A / / For normal incidence the boundary conditions on the tan-
Sapy=[3apy T Bpyat Byapl, (14 gential components of the electric and magnetic fididand
, B, at the vacuum-crystal interface &te
taﬁ:[Gaﬁ_ %é‘a,BGy'y_ %weﬁyﬁayb‘a]! (15) 4
, , E,—E, =0, (24
taBZGaB_%wfﬁyga.y(sa. (16) X vx
In Egs.(15) and(16), &, is the Kronecker delta anel, ., is E,—E,,=0, (25)
the Levi-Civita tensor.
To illustrate the need for covariant forms forandH, we Bx—Bux=mo(Ky—K.€y,/€;), (26)

consider the Maxwell boundary condition bhat a vacuum-
dielectric interface. In the absence of free current the tangen- By—B,y=—uo(Kx—K €4,/ €;), (27)
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where quantities in the vacuum are denoted by the subscript G11=G,,=Ggs. (32)
v, K is the macroscopic surface current density of bound
charge, anck,; is defined in Eq.(21). It follows from the The symmetry of th€001) surface layer differs from that
multipole expansion of the vector potentfa® that of the bulk crystal and is determined by the subgroup of
symmetry operations of the3m point group that leave a
Ko=—Ng(3i0Qup+ €ap M), (28)  semi-infinite crystali.e., a reflecting samplenvariant®* It
. follows from group symmetry tabléSthat the appropriate
wheren= —z is the outward unit normal to the crystal. To surface symmetry is 40 m. The nonvanishing components
ensure that the boundary conditions in E¢g6) and (27)  of the surface tensoiG;,; anda,j,., that are consistent with
satisfy covariance requirements, it is necessary to use thtis surface symmetry are readily identified as
covariant forms forQ,; andM, in Egs.(11) and(12), re-

spectively, inK. 11=G3, G,
Since the electric field in the vacuul, comprises the
electric fieldsg; andE, of the incident and reflected waves, a153= —asy3= A13,= — as3y, (33

respectively, the replacement L
P y P where use has also been made of the intrinsic symmetry

E,=E+E (299  property in Eq.(19).

) o _ Tensor components in the laboratory frame §(z) may
may be made in Eqg24) and (25). Similarly, B, in Egs.  pe expressed in terms of those in the crystallographic system
(26) and (27) may be replaced bf3;+B, . Equations(24)—  0(1,2,3) by means of the transformation for a rotation
(27) may then be rewritten in matrix form &s

taﬁ...=tij...ai"ajﬁ..., (34)

(E)j=Rjk(Eix, (30 . o _ o
] ) ) where a* is the direction cosine between the axis in
whereR;, is the 2x2 reflection matrix that relates the Car- 0(x,y,Z) and thei axis in 0(1,2,3). Application of Eq34)

tesian components of the electric field of the incident wavey ihe tensor components in Eq82) and (33) yields
to those of the reflected wave. It follows from time-reversal

symmetry (reciprocity that the reflection matrices for a Q= Qyy= Q= 11,

sample in two time-conjugated equilibrium statés and

(—t) must satisfy® Gyu=Gyy=G,,= Gy,
Ri (1) =Ry;(—1). 31 S _ -
i(O=Ra( =1 (31 G3,=Gjy=Gh1, G3,=Cl,

A similar constraint is imposed on the transmission matrix

T;«, which may also be determined from Eq&4)—(27),*’ sy, = Akoy= ~ Ays,— — g5, = a3 (39

and which relates the Cartesian components of the electric o .

field of the incident wave to those of the transmitted wave at For normal incidencer=(0,0,1), and we then find from

the interface. Egs. (2D)—-(23) and Eq.(35) that the propagation equation
Because covariance embodies both spatial and tempor&f0Q) may be written in component form as

invariance, it is the key to obtaining reflection and transmis-

_p2y -1
sion matrices with the correct symmetry properties. "+ €o " €xx 0 0 Ex
0 -n’+ete,y O E, =0,
Ill. THE MAGNETIC POINT GROUP m3m -1
—_—— 0 0 60 EZZ EZ

We now apply the theory in Sec. Il to a cubic antiferro- (36)
magnet with magnetic point-group symmemam for nor-  \where
mal incidence on a cube face. The crystal properties are de-
scrjbed relative to Cartesian crystallographic axes 0(1,2,3) Exx= €yy= €2,= (€9 a1y). (37)
which are parallel to the cube edgésWe take the
crystallographic three axis to be parallel to thaxis of the It is interesting that the tensoS,; anda,g, do not con-
laboratory reference frame /,z) and let the crystallo- tribute to Eq.(36) even though certain components, listed in
graphic 1 and 2 axes be rotated by an argieith respect to  Ed. (35), may exist. Equatiori36) shows that the character-
the x andy axes in the reflecting surface. istic waves travelling along the axis in the crystal are po-
Birss’s table?* show that the time-even tensdﬁiﬁ and Igriz_ed parallel to thex andy axes and have the same refrac-
a,p, in Eq. (16) and the time-odd tensax/; in Eq. (13 tive index, namely
may not exist for this crystal class, although components of
the remaining property tensors in Eq4.3)—(15), namely
a.p, Gup, anda,z,, may exist. However, those @z,  The components of the electric and magnetic fields of the
vanish because of the constraint in Ef9), and hence the two waves in the crystal are thus
bulk properties of the medium are described by the following
tensor components: E[x:E=E,(1,0,0, B=E,(0,n/c,0), (39)

n=(1+e¢; a)*2 (39)

= = s, Elly:E=E,(0,1,0, B=E,(—n/c,0,0), (40)
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where use has been made of Ef. and the Maxwell equa- exhibited within the electric quadrupole-magnetic dipole ap-
tion proximation by a crystal with magnetic point group symme-
. try m3m, additional surface effects may exist for certain of

VXE=-B. (41)  the other point groups listed in E€47). For example, Nel-

. o . . son and Ivand¥have shown that when a linearly polarized
Before applying the bOL_mdary conditions in E(&9)—(27) it Iirght beam is incident normally on @01) surface of a non-
is necessary to determine the components of the surface cur ; ) Z

rent densityK in Eq. (28) that are induced in the surface Mmagnetic crystal belonging to the clasSrd, the reflected

layer by the light wave fields in Eq€39) and (40). When and transmitted beams undergo a rotation which may be de-
Egs.(11), (12), (14—(16), and(35) are used in Eq(28), the scribed in terms of time-even surface tensors of electric

following results are obtained: quadrupole-magnetic dipole order, like,, and a,g, in
Eqg. (16). Such effects have been observed in a GaAs
Elx: K=E(0,7,0), (420 crystal?**2which has 8m symmetry, and should also oc-
cur in crystals belonging to the associated magnetic sub-
Ely: K=E,(=700), 43 groups, namely am and43m. Furthermore, we find that the
where cubic class 23 should exhibit a similar effect. It can be
shown from the theory in Sec. Il that the time-even contri-
y=3(G3;— G3y) + s waiss. (44 butions to the elements of the reflection matRy, in Eq.
Then by substituting Eqg39), (40), (42), and (43) into the (30) are
boundary conditions in Eq$24)—(27) and rewriting the four Ryx=[1—n?+iuoc(ng—psin26+qcos 20)]/D,
equations in the form of Eq.30), it can be shown that the (48)

elements of the reflection matry;, are
Ryy=[1-n?+iuec(ng+psin20—qcos 20)]/D,

Rex=Ryy=(1—n)/(1+n), (49)

ny: _Ryx: 2uoCyl(1+ n)z. (45) ny: Ryx: —iuoc(p cos 29+qsin26)/D, (50

Becausey is time odd, as can be seen from H¢4), the ~ Wheren s the refractive index defined in E(38), g, p, and
reciprocity condition in Eq(31) is satisfied. g are functions of the components of the surface ten@gFBs

Apart from the dependence of in Eq. (44) on surface and aiﬁy, 0 is the angle between the crystallographic and
tensor components rather than those of the bulk medium, thiaboratory axes in the reflecting surface, and
matrix elements in Eq45) are identical to the correspond- .
ing forms that have been derived in terms of bulk properties D=(1+n)(1+n—iuecg). (51)
for Cr,03 (symmetry3 m) when the light path is parallel to  For the class 23
the optic axis? Thus the effects observed in reflection from

Cr,03,* namely nonreciprocal rotation and circular dichro- g=G3—Gitiw(ajjstad,—a3;— a3y, (52
ism, should be exhibited by the crystal clas8m due to the
symmetry of the surface layer. p=G3—Gs— w[3(a5,5+ a5 — a3, (53
The components of the corresponding transmission matrix
(szk7)that follows from the boundary conditions in Eq84)— Q=G5+ Gyt 0(aj13— a5 8311183y,  (54)
are

while for the class 8m
Tex=Tyy=2/(1+1),

9=2G15+ w(aj;3— a3y, (55

Txy: _Tyx: ny: 2#007/(1"_”)27 (46)
. . . . pP=2G;]— w(aj—azy, (56)

and hence the transmitted liglthrough the first interfagds
also rotated. q=0. (57)

As the components dB;; anda,j., in Eq. (44) can be . .
shown to vanish for crystals which are invariant under reflecThe matrix elements in Eq$48)—(50) reduce to the forms
tion in a plane perpendicular to the surface or for which,a C that Nelson and Ivandwderived for the class 3m using a
rotation about the light path produces the time-reversed crygdifferent procedure to the one described here when, as they
tal form, it follows from table€® that the effects described by did, we setg=0 and neglecp in Egs.(48) and (49).

Egs. (45 and (46) would be exhibited only by those cubic Although components 03;33 anda® .. may also exist for

antiferromagnets which belong to the classes the class 432, there is no rotation atﬁilytﬂé)l) surface since
o p=q=0, while g has the form in Eq(55).
23, m3, 432, 43m, m3m. (47 It follows by inspection from the matrix elements in Egs.
o - (45), (46), and (48)—(50) that only the time-even effects of
IV. OTHER SURFACE EFFECTS electric quadrupolg-magnetic dipole order may depend on
the crystal orientatiors.
Although the surface effects described by E@) and In addition to surface phenomena of electric quadrupole-

(46) are the only ones for the chosen orientation that may benagnetic dipole order, effects may also arise at the electric
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dipole level due to components of the time-odd, antisymmeteof the corresponding bulk effect. Such measurements would
ric, second-rank polar tens a‘}, which describes a surface be of value in establishing the magnitudes of the different
Faraday effecf. It is readily shown from symmetry multipole orders of surface effect which, in turn, would be

consideratioré?® that this effect should occur at @01)  useful in assessing their relative importance compared with
surface layer in cubic crystals belonging to the magnetidhose of the bulk medium in reflection at an interface. It has
point groups 23, 432, ardBm, even though the bulk tensor been suggesté_dhat the surface Faraday effect and the bulk

a is zero for all cubic crystal® magnetoelectric effect may have similar magnitudes in the

Because electric dipole effects are very much larger thaffPtical region. This could be investigated by comparing the

those of electric quadrupole-magnetic dipole order, it followsSUrface Faraday effect measurements on a crystal of mag-

from Eq. (47) that the observation of the time-odd phenom-netic point group symmetry 23, 432, 48m with the values
ena described by Eqé45) and (46) would be limited to the that have been obtained experimentally for the magnetoelec-
point groupsm3m and m3. For the same reason the mag- tric properties of CiQa-%o’ll As the observed_roztation in re-
netic point group 8m would be the only one suited to the €Ction and transmission in a GaAs cry$taf? has been
observation of the time-even effects derived from E48)— interpreted in terms _Of surfage prope_rtles of electric
(50). Similar difficulties do not, however, arise for the non- duadrupole-magnetic dipole ordeit, seems likely that other

i int 23 an®@m si th i surface effects of the same multipole order that we describe
magnetic point groups 25 an since eff may not pos- , this paper should also be capable of measurement.
sess components of the time-odd tenaqy, .
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