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We have argued in recent papers that the Monte Carlo results for the equilibrium properties of the Edwards-
Anderson spin glass in three dimensions, which had been interpreted earlier as providing evidence for replica
symmetry breaking, can be explained quite simply within the droplet model once finite-size effects and
proximity to the critical point are taken into account. In this paper we show that similar considerations are
sufficient to explain the Monte Carlo data in four dimensions. In particular, we study the Parisi overlap and the
link overlap for the four-dimensional Ising spin glass in the Migdal-Kadanoff approximation. Similar to what
is seen in three dimensions, we find that temperatures well below those studied in the Monte Carlo simulations
have to be reached before the droplet model predictions become apparent. We also show that the double-peak
structure of the link overlap distribution function is related to the difference between domain-wall excitations
that cross the entire system and droplet excitations that are confined to a smaller region.

[. INTRODUCTION see also Ref. 11, do not seem compatible with droplet model
predictions but the cause of this is unclear at present.

Despite over two decades of work, the controversy con- It is expected that critical point effects are less dominant
cerning the nature of the ordered phase of short-range Isinig four dimensions than in three dimensions. Our aim in this
spin glasses continues. For a few years, Monte Carlo simypaper is to quantify the extent of critical point effects in the
lations appeared to be providing evidence for replica symiow-temperature phase of the four-dimensional Edwards-
metry breaking(RSB) in these systems? However, recent Anderson spin glass. We do this by providing results for the
developments have cast doubt on this interpretation of th&ur-dimensional Ising spin glass in the MKA and compare
Monte Carlo data. In a series of papers on the Ising spirthese with existing Monte Carlo work. In particular, we
glass within the Migdal-Kadanoff approximatidMKA ), we  study the Parisi overlap function and the link overlap func-
showed that the equilibrium Monte Carlo data in three di-tion for system sizes up to= 16 and temperatures as low as
mensions that had been interpreted in the past as giving evi=0.16T.. We find that for system sizes and temperatures
dence for RSB can actually be interpreted quite easily withircomparable to those of the Monte Carlo simulations, the Pa-
the droplet picture, with apparent RSB effects being attribisi overlap distribution shows also in MKA the sample-to-
uted to a crossover between critical behavior and thesample fluctations and the stationary behavior at small over-
asymptotic dropletlike behavior for small system siZes. lap values, that are normally attributed to RSB. It is only for
We also showed that system sizes well beyond the reach ddrger system sizesor for lower temperaturgs that the
current simulations would probably be required in order toasymptotic dropletlike behavior becomes apparent. For the
unambiguously see dropletlike behavior. The finding that thdink overlap, we find similar double-peaked curves as those
critical-point effects can still be felt at temperatures lowerfound in Monte Carlo simulations. This double-peak struc-
than those accessible by Monte Carlo simulations is supture is expected on quite general grounds independent of the
ported by the Monte Carlo simulations of Berg and Jdnke nature of the low-temperature phase. However, we show that
who found critical scaling working reasonably well down to two peaks in the link overlap in MKA occur because of a
T=0.8T. for system sizes upth =8 in three dimensions. difference between domain-wall excitatiofwghich cross the
The zero-temperature study of Pallasini and Yduatso  entire systemand droplet excitationevhich do not cross the
suggests that the ground-state structure of three-dimensionatire systerth We argue that for small system sizes, the
Edwards-Anderson model is well described by dropleteffect of domain walls increases with increasing dimension,
theory, though the existence of low-energy excitations notnaking it necessary to go very far beloW, to see the
included in the conventional droplet theory remains an opemsymptotic droplet behavior.
question. Thus, while puzzles do remain, the weight of the This paper is organized as follows: in Sec. Il, we define
evidence seems to be shifting towards a dropletlike descripthe quantities discussed in this paper, and the droplet-model
tion of the ordered phase in short-range Ising spin glassegredictions for their behavior. In Sec. lll, we describe the
This conclusion is also supported by the analytical arguMKA, and our numerical methods of evaluating the overlap
ments of Newman and StefrHowever, replica field theory distribution. In Sec. IV, we present our numerical results for
calculations such as those reviewed by de Domirgtial,’°  the Parisi overlap distribution, and compare to Monte Carlo
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data. The following section studies the link overlap distribu-mension(which is smaller than)3 B/ v is positive, leading to
tion. Finally, Sec. VI contains the concluding remarks, in-an increasd®(q=0,L) as a function of. (at T=T,). On the

cluding some on the effects of critical behavior on the dy-other hand, folT<T,., the droplet model predicts a decay
namics in the spin-glass phase. Again we suspect that

arguments which have been advanced against the droplet P(q=0L)~1L"°

picture on the basis of dynamical studies have failed to takg, length scales larger than thlemperature-dependeror-
into account the effects arising from proximity to the critical (g|ation lengthé, @ being the scaling exponent of the cou-

point. pling strengthd. A few words are in order here on what we
mean by the correlation length. In the spin-glass phase, all
[l. DEFINITIONS AND SCALING LAWS correlation functions fall off as a power law at large dis-
a@nces. However, within the droplet model, this is true only
asymptotically, and the general form of the correlation func-
tion for two spins a distance apart, at a temperaturé
<T., is ~r % (r/&) wherekg is the Boltzmann constant
H=- E JiiSS, andf is a scaling function. Thus, far<¢ there are correc-

{0 tions to the algebraic long-distance behavior and the above
where the Ising spins can take the valued, and the eXxpression defines the temperature-dt_ependent qorrelation
nearest-neighbor couplingd; are independent from each length. Note that forT— T this correlation length is ex-
other and Gaussian distributed with a standard deviation Pected to diverge with the exponent

It has proven useful to consider two identical copiesp- Consequently, for temperatures not too far belqw one
licas) of the system, and to measure overlaps between thengan expect an almost stationaB(q=0,L) for a certain
This gives information about the structure of the low-range of system sizes. In three dimensions where géth
temperature phase, in particular about the number of pure=0.3 (Ref. 7) and §=0.17 (Ref. 12 are rather small, this
states. The quantities considered in this paper are the Parigpparent stationarity may persist over a considerable range of
overlap function P(q,L) and the link overlap function System sized. However, in four dimensionsp/»=0.85
P(q,,L). They are defined by (Ref. 13 and #=0.65 (Ref. 14 and one would expect the

crossover region to be smaller. In the present paper we shall

The Edwards-Anderson spin glass in the absence of
external magnetic field is defined by the Hamiltonian

SHs®) 4+ g investigate these crossover effects in four dimensions by
P(q,L)=[{ 46 <.E> N, 9/ ) (D) studying P(q,L) for the Edwards-Anderson spin glass
. within the MKA. It turns out that they are surprisingly per-
and sistent even at low temperatures, due to the presence of do-
main walls.
B D SRESERER Monte Carlo simulations of the link overlap distribution
P(ai,.L)=|{ 9 £ N, ~ai|)|- @ show a nontrivial shape with shoulders or even a double

peak, which seems to be incompatible with the droplet pic-
Here, the superscripts (1) and (2) denote the two replicas afire, where the distribution should tend towards fanction.
the systemN, is the number of bonds, afd . .) and[...]  For sufficiently low temperatures and large length scales, the
denote the thermodynamic and disorder average, respedroplet picture predicts that the width of the link overlap
tively. We useP(q,L) and P(q,,L) to denote the overlap distribution scales &s
functions for a finite system of sizk, reserving the more

standard notation P(q) and P(q) for the limit Ag~JKTLIs—d-072,
lim,_..P(q,L) and lim —...P(q;, L), whereds is the fractal dimension of a domain wall. Below,

In the mean-field RSB picture?(q) is nonzero in the e il show that the nontrivial shape and the double peak
spin-glass phase in the entire interyal ea,Qeal, while it enorted from Monte Carlo simulations are also found in
is composed only of tw@ functions at* qe, in the droplet  \ika in four dimensions, and we will present strong evi-
picture. Similarly, P(q) is nonzero over a finite interval gence that it is due to the different nature of droplet and
[ai™".q"*] in mean-field theory, while it is @-function  gomain-wall excitations. As the weight of domain walls be-

within the droplet picture. comes negligible in the thermodynamic limit, the droplet pic-
Much of the evidence for RSB for thre€3D) and four-  tyre is regained on large scales.

dimensional4D) systems comes from observing a stationary

P(q=0,L) for system sizes that are generally smaller than I1l. MIGDAL-KADANOFF APPROXIMATION

20 in 3D and smaller than 10 in 4D, and at temperatures of . o .

the order of 0.T.. However, even within the droplet picture ~ The Migdal-Kadanoff approximatiotMKA) is a real-
one expects to see a station®§q=0,L) for a certain range SPace renormalization group that gives approximate recur-
of system sizes and temperatures. The reason is tiattae ~ Sion relations for the various coupling constants. Evaluating

overlap distributionP(q,L) obeys the scaling law a thermodynamic quantity in MKA ind dimensions is
equivalent to evaluating it on an hierarchical lattice that is
P(q,L)=LA"P(qLF), 3) constructed iteratively by replacing each bond Bybdnds,
as indicated in Fig. 1. The total number of bonds atfter
B being the order-parameter critical exponent, anbeing iterations is 8'. | =1, the smallest nontrivial system that can

the correlation length exponent. Above the lower critical di-be studied, corresponds to a system linear dimenisie2,
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FIG. 1. Construction of a hierarchical lattice. 1

| =2 corresponds tb =4, | =3 corresponds tb =8 and so .

on. Note that the number of bonds on hierarchical lattice 1 10 100 1000 10000
after | iterations is the same as the number of sites of a L
. - . . _ | . -
d-dimensional lattice of sizé =2'. Thermodynamic quanti- FIG. 2. Flow of the coupling strength in MKA. The curves

ties are then evaluated iteratively by tracing over the Spins 0Rgrespond toT/T,=0.96, 0.8, 0.68, 0.6, 0.48, 0.33, 0.1flom
the highest level of the hierarchy, until the lowest level ispott0m to top. The correlation lengths, where the slope has reached
reached and the trace over the remaining two spins 80y of the asymptotic slope, are 960, 47, 24, 15, 8, 3, 1.
calculated® This procedure generates new effective cou-
plings, which have to be included in the recursion relations. Note that for each temperature the length scale beyond
In Ref. 16, it was proved that in the limit of infinitely which the flows of the coupling constants show the
many dimensiongand in an expansion away from infinite asymptotic behavior yields one estimate for the correlation
dimensiong the MKA reproduces the results of the droplet jength mentioned above. We have considered the flow to be
picture. _ _ _ _ in the asymptotic regime when its slope was within 90% of
As was discussed in Ref. 3, the calculationRf{fg,L) is  jts asymptotic value. However, this estimate is specific to the
made easier by first calculating its Fourier transféf(y,L),  flows of the coupling constant, and other quantities may
which is given by show their asymptotic behavior later. In fact, as we shall see
below, the convergence of the overlap distributions is much

_ (S8 + 51(1)5}2)) slower than that of the couplings, and we will have to give
Fly,L)=]{ ex 'y% 2N, - @ reasons for this.
The recursion relations fofF(y,L) involve two- and four- IV. THE PARISI OVERLAP
spin terms, and can easily be evaluated numerically because
all terms are now in an exponentiaL Ha\/ing Ca|cu|df¢g) We now discuss our results for the Parisi Overlap. First,
one can then invert the Fourier transform to §éty,L). let us briefly describe the critical behavior. Figure 3 shows a
Similarly, P(q,,L) is calculated by first evaluating scaling plot forP(q,L) for L=4,8,16 atT=T,=2.1]. We
find a good data collapse if we use the valkler=0.64, thus
(SWs@gDg(2) confirming the finite-size scaling ansatz Eg).
Flyi,L)= <exp( iy #» . (5 We next move on to the low-temperature phase. In Fig. 4
(i) NL we showP(q,L) at T=0.5T, andL=8 for three different
samples.

Before presenting our numerical results for the Parisi As one can see there are substantial differences between
overlap and the link overlap, let us discuss the flow of thethe samples. This sensitivity to samples for system sizes
coupling constant) in the low-temperature phase, as ob-around 10 is in Ref. 13 interpreted as evidence for RSB. In
tained in MKA. In order to obtain this flow, we iterated the our case, where we know that the droplet model is exact, it
MKA recursion relation on a set of #®onds. At each itera- has to be considered a finite-size effect. Note that we have
tion, each of the new set of 4(onds was generated by not chosen the three samples in any particular manner. By
randomly choosing 16 bonds from the old set and taking the
trace over the inner spir@ith a bond arrangement as in Fig. 0.6
1). Figure 2 showsl/T as function ofL for different initial fa
values of the coupling strength. The critical point isTat
=2.1]. The first curve begins a/T=0.5, which is close to

— 0.4 \ - 8
- 57N
the critical point, and it reaches the low-temperature behav- B.g \ /
L=

ior only at lengths around 1000. For an initiHIT=0.7, the
asymptotic slope is already reached.aaround 40, and for
J/T=3.0, which corresponds t6=0.16T. the entire curve =8
shows the asymptotic slope. The asymptotic slope is identi- -~ L=16
cal to the above-mentioned exponehaind has the valué 0 ‘ ‘ e
=0.75. In contrast tal=3°, we did not succeed in fitting the 0 03
crossover regime by doing an expansion around the zero-

temperature fixed point. The reason is that dimension 4 is too FIG. 3. Scaling collapse d®(q,L) at T=T., with 8/v=0.64.
far above the lower critical dimension, such that the criticalAs P(q,L)=P(—q,L), only the partg=0 is shown. For each sys-
temperature is not small. tem size, we averaged over at least 5000 samples.

:
ql?”
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_ FIG. 5. P(q=0L) at T=T,, 0.68,, 0.5T., 0.33T,, 0.16T,
FIG. 4. P(q,L) for three different samples &t=0.5T; andL for L=4,8,16. The error bars indicate the standard deviation of the
=8. values. All data were obtained by averaging at least over 5000

. . samples.
comparing to the curves obtained for 16 (not shown, we

can even see the trend to an increasing number of peaks, jugimperatures, where the correlation length is smaller than the
as in Ref. 13. Thus, one feature commonly associated witQystem size, there is a clear decreasd@f=0) although

RSB is certainly present within the MKA for temperatures the decrease is not asympotic even at a temperatures as low
and system sizes comparable to those studied in simulationgs T /6.

Let us now focus on the behavior 8{q=0L) for dif- e conclude that the observed stationarity B{q
ferent system sizes and temperatures. But before exhibiting.q) ) jn Monte Carlo data is due to the effects of a finite
our own data, we discuss the Monte Carlo data of Regefgystem size and finite temperature. Similarly, Monte Carlo
Bhatt, and Youngwho were the first to stud(q=0L) for  simylations atT=0.5T, and at system sizes around 10,
the Edwards-Anderson spin glass. They studied system sizggoyd be able to show the negative slopePig=0,L). In
L=23,4,56 at temperatures down ®=0.68Tc. At T the not too far future, it should become possible to perform
=T, they found the expected critical scalin®(q=0) these simulations.
=LA with B/v=0.75. Then, as the temperature was Iow-  The fact thatP(q=0,L) does not show asymptotic behav-
ered, the curves foP(q=0) as a function ol showed a jor even aff =T,/6 for the system sizes that we have studied,
downward curvature for the largest system sizes, which they surprising, and is different from our findings =323
interpreted as the beginning of the crossover between criticat, ¢ P(q=0L) converges slower towards the asymptotic
behavior and the low-temperature behavior. ?0.8T, ~ behavior than the flow of the coupling constésee Fig. 2,
P(q=0) seemed to be roughly constant or decreasingan pe understood in the following way: A Parisi overlap
slowly. However, the striking part of their data was that atya|ye close to zero can be generated by a domain-wall exci-
T=0.68T they found thatP(q=0.) initially decreased as tation. For large system sizes and low temperatures, such an
a function of system size fdr=2,3,4 and then saturated for excitation occurs with significant weight only in those
L=4,5,6. They interpreted this as suggestive of RSB. Thegamples where a domain-wall excitation costs little energy.
admitted, however, that other explanations are possible.  These are exactly the samples with a small renormalized

'The most recent Monte_ Carlo simulation data for the 4dcoup|ing constant at system sizeAs the width of the prob-
Ising spin glass are those in Ref. 13. These authors focus ogpility distribution function of the couplings increases with
T=0.6T;, and they find an essentially stationaB(q | ¢ the probability for obtaining a small renormalized cou-
=0JL) for system sizes up to the largest simulated dize pling decreases as~’. This is the argument that predicts
=10. They argue that stationarity over such a large range ahat P(q=0L)~L~?. However, for smaller system sizes
L values is most naturally interpreted as evidence for RSBand higher temperatures, there are corrections to this argu-
However, as can be seen from Fig. 2, the correlation length ifyent. Thus, even samples with a renormalized coupling that
of the order of 15 for these temperatures and therefore comg not small can contribute t8(q=0,L) by means of large
parable to the system size. or multiple droplet excitations, or of thermally activated do-

In Fig. 5, we show the MKA data foP(q=0L). We = main walls. For this reasoP(q=0,L) can be expected to
have calculated®(q=0L) for system sized =4,8,16 at converge towards asymptopia slower that the coupling con-
temperaturesT=T,, 0.68[;, 0.33T¢, and 0.16.. At T  stant itself. Furthermore, as we see in the next section, the
=T, P(q=0L) grows asL?'” with B/v=0.64, in agree- superposition of domain-wall excitations and droplet excita-
ment with Fig. 3. AtT=0.68T (the lowest temperature stud- tions leads to deviations from simple scaling, which may
ied in Ref. 1, and not far from the lowest temperature studiedyrther slow down the convergence towards asymptotic scal-
by Ref. 13, we do not see a clear decrease everiferl6.  ing behavior.

The curve forP(g=0) looks more or less flat, though one

could say that there is a slight increase betwkend and

L=8 and a slight decrease betweler8 andL=16. This V. THE LINK OVERLAP

flat behavior is similar to what was found in Refs. 1 and 13. The link overlap gives additional information about the
The deviation of thd. =2 andL =3 data from the flat curve spin-glass phase that is not readily seen in the Parisi overlap.
in Ref. 1 can probably be ascribed to artifacts at very smallThe main qualitative differences between the Parisi overlap
system sizes, which are also found elsewHérgor lower  and the link overlap aré) that flipping all spins in one of the



950 HEMANT BOKIL, BARBARA DROSSEL, AND M. A. MOORE PRB 62

4 T T T

| A
f L

0.2 04 0.6 0.8 1
ql
FIG. 8. Contribution of domain-wall excitatiorfieft curve and
droplet excitations(right curve to P(q,,L), for L=4 and T

=0.33T.. The third, flat curve is due to configurations where both
replicas have a domain wall.

FIG. 6. P(q,,L) for T=0.8T.,, 0.67T., 0.56T., 0.48T,
0.33T, (from left to right, with the system sizé =4.

two replicas changes the sign qfbut leavesq, invariant,

and(ii) that flipping a droplet of finite size in one of the two rations where one of the two replicas has a droplet excitation.
replicas changeg by an amount proportional to the volume |n MKA, domain-wall excitations involve flipping of one
of the droplet, andy; by an amount proportional to the sur- side of the system, including one of the two boundary spins
face of the droplet. Thus, the link overlap contains informa-of the hierarchical lattice, while droplet excitations involve
tion about the surface area of excitations. flipping of a group of spins in the interior. If the sign of the
First, let us studyP(q;,L) as function of temperature, for renormalized coupling is positiveegative, the two bound-
a given system size=4. Figure 6 shows our curves f@r  ary spins are parallelantiparalle) in the ground state. By
=0.8T, 0.67T;, 0.56T, 0.48T;, and 0.33 ;. They appear plotting separately the contributions from configurations
to result from the superposition of two different peaks, withwith and without flipped boundary spins, we can separate
their distance increasing with decreasing temperature, angomain-wall excitations from droplet excitations. Figure 8
the weight shifting from the left peak to the right peak.  shows the three contributions from configurations where
Figure 7 shows(q;,L) for fixed T=0.33T and for dif-  none, one, or both replicas have a domain wall. Clearly, the
ferentL. One can see that with increasing system size théeft peak is due to domain-wall excitations, and the right
peaks move closer together, and the weight of the left-hangleak to droplet excitations.
peak decreases. Similar curves are obtained for other values of the param-
These results are similar to what we found in MKA in eters. We thus have shown that the qualitative differences
three dimension&however, in four dimensions the peaks are between droplet and domain-wall excitations are sufficient to
more pronounced. Monte Carlo simulations of the four-explain the structure of the link overlap distribution, and no
dimensional Ising spin glass also show two peaks for certaidther low-lying excitations like those invoked by RSB are
system sizes and temperatutB3his feature is attributed by needed.
the authors to RSB. However, as it is also present in MKA,  The weight with which domain-wall excitations occur is
there must be a different explanation. The width of thein agreement with predictions from the droplet model. The
curves shrinks with increasing system size in Ref. 18, just aprobability of having a domain wall in a system of sizés
it does in MKA and as is expected from the droplet picture.according to the droplet picture of the order of
If the RSB scenario were correct, the width would go to a (TIIL°
finite value in the limitL — . o '
In the following we present evidence that the left peakWhich is =0.25 atT=0.33T; andL=4, and=0.15 atT
corresponds to configurations where one of the two replicas 0.33T; andL =8. From our simulations, we find that the

has a domain-wall excitation, and the right peak to confi u_relative weights of domain \_/valls for these MO situations are
gntp g =0.12 and=0.076, which fits the droplet picture very well

. . ; if we include a factor 1/2 in the above expression. Domain
0 walls become negligible only when the produdt/J)L "’

J becomes small. In higher dimensions, the critical value of
T/J becomes larger, and for a given relative distance from
the critical point, the weight of domain walls, therefore, also
becomes larger. This explains why the effect of domain
7 walls is more visible in four dimensions than in three dimen-
sions. However, with increasing system size, domain walls
should become negligible more rapidly in higher dimensions,
due to the larger value of the exponeht

0 Lo L
-025 0 025 05 0.75 1
q, VI. CONCLUSIONS

FIG. 7. P(q,,L) for L=2,4,8(from widest to narrowest curye Our results for the Parisi overlap distribution in four di-
and with T=0.33T. mensions show that there are rather large finite-size effects in
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four dimensions which give rise to phenomena normally atthe Edwards-Anderson model and in spin-glass experiments
tributed to RSB. The system sizes needed to see the begiageing is seen in the response function. We suggest that the
ning of dropletlike behavior within the MKA are larger, and ageing behavior found in Monte Carlo simulations and ex-
the temperatures are lower, than those studied by Montperiment are in fact often dominated by critical point effects,
Carlo simulations. However, at temperatures not too far beand not by droplet effects. Indeed we would expect that if the
low those studied in Monte Carlo simulation$€0.5T;),  simulations of Ref. 22 were performed at temperatures closer
the weight of the Parisi overlap distribution functidi(q to the critical temperature then ageing effects would be seen
=0,L) within the MKA appears to decrease, albeit with anin the response function, since near the critical point of even
effective exponent different from the asymptotic value. Thusa ferromagnet such ageing effects octuThe reason why
simulations at these temperatures for the Ising spin glass cgxperiments and simulations on the Edwards-Anderson
a cubic lattice might resolve the controversy regarding thenodel see ageing in the response function is that they are
nature of the ordered state in short-range spin glasses. Howrobing time scales that may be less than the critical time
ever, the MKA is a low-dimensional approximation and it is scale, which is given by

possible that the system sizes needed to see asymptotic be- r=T1o(&la)?,

havior for a hypercubic lattice in four dimensions are differ-

ent from what is indicated by the MKA. So, any comparisonWith a being the lattice constant ang being the character-

of the MKA with the Monte Carlo data should be taken with istic spin-flip time. The dynamical critical exponer#6 in

a pinch of salt. three dimension$! Only for droplet reversals which take

Recently, a modified droplet picture was suggested bylace on time scales larger tharti.e., for reversals of drop-
Houdayer and Martit?, and by Bouchau@® Within this pic-  ets whose linear dimensions excegdwill droplet results
ture, excitations on length scales much smaller than the sy$or the dynamics be appropriate. However, because of the
tem size are dropletlike, however, there exist large-scale edarge values of down to temperatures of at least Oc5and
citations that extend over the entire system and that have te large value o, = may be very large in the Monte Carlo
small energy that does not diverge with increasing systersimulations and experiments. Thugtif is 100, thenr/ 74 is
size. As we have demonstrated within MKA, the double-10*% which would make dropletlike dynamics beyond the
peaked curves for the link overlap distribution, can be fullyreach of a Monte Carlo simulation. In practice, most data
explained in terms of two types of excitations that contributewill be in a crossover regime leading to an apparently
to the low-temperature behavior, namely domain-wall exci-temperature-dependent exponex(fl) (see, for example,
tations and droplet excitations. We, therefore, believe thaRef. 25.
there is no need to invoke system—widg low-energy excita- ACKNOWLEDGMENTS
tions that are more relevant than domain walls.

Finally, the whole field of dynamical studies of spin  We thank A. P. Young for discussions and for encourag-
glasses is thought by maftyto provide a strong reason for ing us to write this paper. Part of this work was performed
believing the RSB picture. A very recent study of spin-glasswhen H.B. and B.D. were at the Department of Physics,
dynamics on the hierarchical lattié&pn which the MKA is  University of Manchester, supported by EPSRC Grants No.
exact, indicates that no ageing occurs at low temperatures i@R/K79307 and GR/L38578. B.D. also acknowledges sup-
the response function whereas in Monte Carlo simulations oport from the Minerva foundation.
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