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Influence of critical behavior on the spin-glass phase
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We have argued in recent papers that the Monte Carlo results for the equilibrium properties of the Edwards-
Anderson spin glass in three dimensions, which had been interpreted earlier as providing evidence for replica
symmetry breaking, can be explained quite simply within the droplet model once finite-size effects and
proximity to the critical point are taken into account. In this paper we show that similar considerations are
sufficient to explain the Monte Carlo data in four dimensions. In particular, we study the Parisi overlap and the
link overlap for the four-dimensional Ising spin glass in the Migdal-Kadanoff approximation. Similar to what
is seen in three dimensions, we find that temperatures well below those studied in the Monte Carlo simulations
have to be reached before the droplet model predictions become apparent. We also show that the double-peak
structure of the link overlap distribution function is related to the difference between domain-wall excitations
that cross the entire system and droplet excitations that are confined to a smaller region.
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I. INTRODUCTION

Despite over two decades of work, the controversy c
cerning the nature of the ordered phase of short-range I
spin glasses continues. For a few years, Monte Carlo si
lations appeared to be providing evidence for replica sy
metry breaking~RSB! in these systems.1,2 However, recent
developments have cast doubt on this interpretation of
Monte Carlo data. In a series of papers on the Ising s
glass within the Migdal-Kadanoff approximation~MKA !, we
showed that the equilibrium Monte Carlo data in three
mensions that had been interpreted in the past as giving
dence for RSB can actually be interpreted quite easily wit
the droplet picture, with apparent RSB effects being attr
uted to a crossover between critical behavior and
asymptotic dropletlike behavior for small system sizes.3–6

We also showed that system sizes well beyond the reac
current simulations would probably be required in order
unambiguously see dropletlike behavior. The finding that
critical-point effects can still be felt at temperatures low
than those accessible by Monte Carlo simulations is s
ported by the Monte Carlo simulations of Berg and Jan7

who found critical scaling working reasonably well down
T50.8Tc for system sizes uptoL58 in three dimensions
The zero-temperature study of Pallasini and Young8 also
suggests that the ground-state structure of three-dimens
Edwards-Anderson model is well described by drop
theory, though the existence of low-energy excitations
included in the conventional droplet theory remains an o
question. Thus, while puzzles do remain, the weight of
evidence seems to be shifting towards a dropletlike desc
tion of the ordered phase in short-range Ising spin glas
This conclusion is also supported by the analytical ar
ments of Newman and Stein.9 However, replica field theory
calculations such as those reviewed by de Dominiciset al.,10
PRB 620163-1829/2000/62~2!/946~6!/$15.00
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see also Ref. 11, do not seem compatible with droplet mo
predictions but the cause of this is unclear at present.

It is expected that critical point effects are less domin
in four dimensions than in three dimensions. Our aim in t
paper is to quantify the extent of critical point effects in t
low-temperature phase of the four-dimensional Edwar
Anderson spin glass. We do this by providing results for
four-dimensional Ising spin glass in the MKA and compa
these with existing Monte Carlo work. In particular, w
study the Parisi overlap function and the link overlap fun
tion for system sizes up toL516 and temperatures as low a
T50.16Tc . We find that for system sizes and temperatu
comparable to those of the Monte Carlo simulations, the
risi overlap distribution shows also in MKA the sample-t
sample fluctations and the stationary behavior at small o
lap values, that are normally attributed to RSB. It is only f
larger system sizes~or for lower temperatures!, that the
asymptotic dropletlike behavior becomes apparent. For
link overlap, we find similar double-peaked curves as tho
found in Monte Carlo simulations. This double-peak stru
ture is expected on quite general grounds independent o
nature of the low-temperature phase. However, we show
two peaks in the link overlap in MKA occur because of
difference between domain-wall excitations~which cross the
entire system! and droplet excitations~which do not cross the
entire system!. We argue that for small system sizes, t
effect of domain walls increases with increasing dimensi
making it necessary to go very far belowTc to see the
asymptotic droplet behavior.

This paper is organized as follows: in Sec. II, we defi
the quantities discussed in this paper, and the droplet-m
predictions for their behavior. In Sec. III, we describe t
MKA, and our numerical methods of evaluating the overl
distribution. In Sec. IV, we present our numerical results
the Parisi overlap distribution, and compare to Monte Ca
946 ©2000 The American Physical Society
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data. The following section studies the link overlap distrib
tion. Finally, Sec. VI contains the concluding remarks,
cluding some on the effects of critical behavior on the d
namics in the spin-glass phase. Again we suspect
arguments which have been advanced against the dro
picture on the basis of dynamical studies have failed to t
into account the effects arising from proximity to the critic
point.

II. DEFINITIONS AND SCALING LAWS

The Edwards-Anderson spin glass in the absence o
external magnetic field is defined by the Hamiltonian

H52(
^ i , j &

Ji j SiSj ,

where the Ising spins can take the values61, and the
nearest-neighbor couplingsJi j are independent from eac
other and Gaussian distributed with a standard deviationJ.

It has proven useful to consider two identical copies~rep-
licas! of the system, and to measure overlaps between th
This gives information about the structure of the lo
temperature phase, in particular about the number of p
states. The quantities considered in this paper are the P
overlap function P(q,L) and the link overlap function
P(ql ,L). They are defined by

P~q,L !5F K dS (̂
i j &

Si
(1)Si

(2)1Sj
(1)Sj

(2)

2NL
2qD L G , ~1!

and

P~ql ,L !5F K dS (̂
i j &

Si
(1)Si

(2)Sj
(1)Sj

(2)

NL
2ql D L G . ~2!

Here, the superscripts (1) and (2) denote the two replica
the system,NL is the number of bonds, and^ . . . & and@ . . . #
denote the thermodynamic and disorder average, res
tively. We useP(q,L) and P(ql ,L) to denote the overlap
functions for a finite system of sizeL, reserving the more
standard notation P(q) and P(ql) for the limit
limL→`P(q,L) and limL→`P(ql ,L).

In the mean-field RSB picture,P(q) is nonzero in the
spin-glass phase in the entire interval@2qEA ,qEA#, while it
is composed only of twod functions at6qEA in the droplet
picture. Similarly, P(ql) is nonzero over a finite interva
@ql

min ,ql
max# in mean-field theory, while it is ad-function

within the droplet picture.
Much of the evidence for RSB for three-~3D! and four-

dimensional~4D! systems comes from observing a stationa
P(q50,L) for system sizes that are generally smaller th
20 in 3D and smaller than 10 in 4D, and at temperatures
the order of 0.7Tc . However, even within the droplet pictur
one expects to see a stationaryP(q50,L) for a certain range
of system sizes and temperatures. The reason is that atTc the
overlap distributionP(q,L) obeys the scaling law

P~q,L !5Lb/nP̃~qLb/n!, ~3!

b being the order-parameter critical exponent, andn being
the correlation length exponent. Above the lower critical
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mension~which is smaller than 3!, b/n is positive, leading to
an increaseP(q50,L) as a function ofL ~at T5Tc). On the
other hand, forT!Tc , the droplet model predicts a decay

P~q50,L !;1/Lu

on length scales larger than the~temperature-dependent! cor-
relation lengthj, u being the scaling exponent of the co
pling strengthJ. A few words are in order here on what w
mean by the correlation length. In the spin-glass phase
correlation functions fall off as a power law at large di
tances. However, within the droplet model, this is true on
asymptotically, and the general form of the correlation fun
tion for two spins a distancer apart, at a temperatureT
<Tc , is ;r 2u f (r /j) where kB is the Boltzmann constan
and f is a scaling function. Thus, forr<j there are correc-
tions to the algebraic long-distance behavior and the ab
expression defines the temperature-dependent correla
length. Note that forT→Tc this correlation length is ex-
pected to diverge with the exponentn.

Consequently, for temperatures not too far belowTc , one
can expect an almost stationaryP(q50,L) for a certain
range of system sizes. In three dimensions where bothb/n
.0.3 ~Ref. 7! and u.0.17 ~Ref. 12! are rather small, this
apparent stationarity may persist over a considerable rang
system sizesL. However, in four dimensions,b/n.0.85
~Ref. 13! and u.0.65 ~Ref. 14! and one would expect the
crossover region to be smaller. In the present paper we s
investigate these crossover effects in four dimensions
studying P(q,L) for the Edwards-Anderson spin glas
within the MKA. It turns out that they are surprisingly pe
sistent even at low temperatures, due to the presence o
main walls.

Monte Carlo simulations of the link overlap distributio
show a nontrivial shape with shoulders or even a dou
peak, which seems to be incompatible with the droplet p
ture, where the distribution should tend towards ad function.
For sufficiently low temperatures and large length scales,
droplet picture predicts that the width of the link overla
distribution scales as6

Dql;AkTLds2d2u/2,

whereds is the fractal dimension of a domain wall. Below
we will show that the nontrivial shape and the double pe
reported from Monte Carlo simulations are also found
MKA in four dimensions, and we will present strong ev
dence that it is due to the different nature of droplet a
domain-wall excitations. As the weight of domain walls b
comes negligible in the thermodynamic limit, the droplet p
ture is regained on large scales.

III. MIGDAL-KADANOFF APPROXIMATION

The Migdal-Kadanoff approximation~MKA ! is a real-
space renormalization group that gives approximate re
sion relations for the various coupling constants. Evaluat
a thermodynamic quantity in MKA ind dimensions is
equivalent to evaluating it on an hierarchical lattice that
constructed iteratively by replacing each bond by 2d bonds,
as indicated in Fig. 1. The total number of bonds afteI
iterations is 2dI. I 51, the smallest nontrivial system that ca
be studied, corresponds to a system linear dimensionL52,
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I 52 corresponds toL54, I 53 corresponds toL58 and so
on. Note that the number of bonds on hierarchical latt
after I iterations is the same as the number of sites o
d-dimensional lattice of sizeL52I . Thermodynamic quanti-
ties are then evaluated iteratively by tracing over the spins
the highest level of the hierarchy, until the lowest level
reached and the trace over the remaining two spins
calculated.15 This procedure generates new effective co
plings, which have to be included in the recursion relatio

In Ref. 16, it was proved that in the limit of infinitely
many dimensions~and in an expansion away from infinit
dimensions! the MKA reproduces the results of the dropl
picture.

As was discussed in Ref. 3, the calculation ofP(q,L) is
made easier by first calculating its Fourier transformF(y,L),
which is given by

F~y,L !5F K expS iy(̂
i j &

~Si
(1)Si

(2)1Sj
(1)Sj

(2)!

2NL
D L G . ~4!

The recursion relations forF(y,L) involve two- and four-
spin terms, and can easily be evaluated numerically bec
all terms are now in an exponential. Having calculatedF(y)
one can then invert the Fourier transform to getP(q,L).

Similarly, P(ql ,L) is calculated by first evaluating

F~yl ,L !5F K expS iy l(̂
i j &

~Si
(1)Si

(2)Sj
(1)Sj

(2)!

NL
D L G . ~5!

Before presenting our numerical results for the Pa
overlap and the link overlap, let us discuss the flow of
coupling constantJ in the low-temperature phase, as o
tained in MKA. In order to obtain this flow, we iterated th
MKA recursion relation on a set of 106 bonds. At each itera-
tion, each of the new set of 106 bonds was generated b
randomly choosing 16 bonds from the old set and taking
trace over the inner spins~with a bond arrangement as in Fig
1!. Figure 2 showsJ/T as function ofL for different initial
values of the coupling strength. The critical point is atTc
.2.1J. The first curve begins atJ/T50.5, which is close to
the critical point, and it reaches the low-temperature beh
ior only at lengths around 1000. For an initialJ/T50.7, the
asymptotic slope is already reached atL around 40, and for
J/T53.0, which corresponds toT.0.16Tc the entire curve
shows the asymptotic slope. The asymptotic slope is ide
cal to the above-mentioned exponentu and has the valueu
.0.75. In contrast tod536, we did not succeed in fitting the
crossover regime by doing an expansion around the z
temperature fixed point. The reason is that dimension 4 is
far above the lower critical dimension, such that the criti
temperature is not small.

FIG. 1. Construction of a hierarchical lattice.
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Note that for each temperature the length scale bey
which the flows of the coupling constants show t
asymptotic behavior yields one estimate for the correlat
length mentioned above. We have considered the flow to
in the asymptotic regime when its slope was within 90%
its asymptotic value. However, this estimate is specific to
flows of the coupling constant, and other quantities m
show their asymptotic behavior later. In fact, as we shall
below, the convergence of the overlap distributions is mu
slower than that of the couplings, and we will have to gi
reasons for this.

IV. THE PARISI OVERLAP

We now discuss our results for the Parisi overlap. Fi
let us briefly describe the critical behavior. Figure 3 show
scaling plot forP(q,L) for L54,8,16 atT5Tc.2.1J. We
find a good data collapse if we use the valueb/n50.64, thus
confirming the finite-size scaling ansatz Eq.~3!.

We next move on to the low-temperature phase. In Fig
we showP(q,L) at T50.5Tc and L58 for three different
samples.

As one can see there are substantial differences betw
the samples. This sensitivity to samples for system si
around 10 is in Ref. 13 interpreted as evidence for RSB
our case, where we know that the droplet model is exac
has to be considered a finite-size effect. Note that we h
not chosen the three samples in any particular manner.

FIG. 2. Flow of the coupling strengthJ in MKA. The curves
correspond toT/Tc50.96, 0.8, 0.68, 0.6, 0.48, 0.33, 0.16~from
bottom to top!. The correlation lengths, where the slope has reac
90% of the asymptotic slope, are 960, 47, 24, 15, 8, 3, 1.

FIG. 3. Scaling collapse ofP(q,L) at T5Tc , with b/n.0.64.
As P(q,L)5P(2q,L), only the partq>0 is shown. For each sys
tem size, we averaged over at least 5000 samples.
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comparing to the curves obtained forL516 ~not shown!, we
can even see the trend to an increasing number of peaks
as in Ref. 13. Thus, one feature commonly associated w
RSB is certainly present within the MKA for temperatur
and system sizes comparable to those studied in simulat

Let us now focus on the behavior ofP(q50,L) for dif-
ferent system sizes and temperatures. But before exhib
our own data, we discuss the Monte Carlo data of Re
Bhatt, and Young1 who were the first to studyP(q50,L) for
the Edwards-Anderson spin glass. They studied system s
L52,3,4,5,6 at temperatures down toT50.68Tc . At T
5Tc they found the expected critical scaling,P(q50)
.Lb/n with b/n.0.75. Then, as the temperature was lo
ered, the curves forP(q50) as a function ofL showed a
downward curvature for the largest system sizes, which t
interpreted as the beginning of the crossover between cri
behavior and the low-temperature behavior. AtT50.8Tc ,
P(q50) seemed to be roughly constant or decreas
slowly. However, the striking part of their data was that
T50.68Tc they found thatP(q50,L) initially decreased as
a function of system size forL52,3,4 and then saturated fo
L54,5,6. They interpreted this as suggestive of RSB. T
admitted, however, that other explanations are possible.

The most recent Monte Carlo simulation data for the
Ising spin glass are those in Ref. 13. These authors focu
T.0.6Tc , and they find an essentially stationaryP(q
50,L) for system sizes up to the largest simulated sizeL
510. They argue that stationarity over such a large rang
L values is most naturally interpreted as evidence for R
However, as can be seen from Fig. 2, the correlation leng
of the order of 15 for these temperatures and therefore c
parable to the system size.

In Fig. 5, we show the MKA data forP(q50,L). We
have calculatedP(q50,L) for system sizesL54,8,16 at
temperaturesT5Tc , 0.68Tc , 0.33Tc , and 0.16Tc . At T
5Tc , P(q50,L) grows asLb/n with b/n.0.64, in agree-
ment with Fig. 3. AtT50.68Tc ~the lowest temperature stud
ied in Ref. 1, and not far from the lowest temperature stud
by Ref. 13!, we do not see a clear decrease even forL516.
The curve forP(q50) looks more or less flat, though on
could say that there is a slight increase betweenL54 and
L58 and a slight decrease betweenL58 andL516. This
flat behavior is similar to what was found in Refs. 1 and 1
The deviation of theL52 andL53 data from the flat curve
in Ref. 1 can probably be ascribed to artifacts at very sm
system sizes, which are also found elsewhere.17 For lower

FIG. 4. P(q,L) for three different samples atT50.5Tc and L
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temperatures, where the correlation length is smaller than
system size, there is a clear decrease ofP(q50) although
the decrease is not asympotic even at a temperatures as
asTc/6.

We conclude that the observed stationarity ofP(q
50,L) in Monte Carlo data is due to the effects of a fini
system size and finite temperature. Similarly, Monte Ca
simulations atT.0.5Tc and at system sizes around 1
should be able to show the negative slope inP(q50,L). In
the not too far future, it should become possible to perfo
these simulations.

The fact thatP(q50,L) does not show asymptotic beha
ior even atT5Tc/6 for the system sizes that we have studie
is surprising, and is different from our findings ind53.3

That P(q50,L) converges slower towards the asympto
behavior than the flow of the coupling constant~see Fig. 2!,
can be understood in the following way: A Parisi overl
value close to zero can be generated by a domain-wall e
tation. For large system sizes and low temperatures, suc
excitation occurs with significant weight only in thos
samples where a domain-wall excitation costs little ener
These are exactly the samples with a small renormali
coupling constant at system sizeL. As the width of the prob-
ability distribution function of the couplings increases wi
Lu, the probability for obtaining a small renormalized co
pling decreases asL2u. This is the argument that predict
that P(q50,L);L2u. However, for smaller system size
and higher temperatures, there are corrections to this a
ment. Thus, even samples with a renormalized coupling
is not small can contribute toP(q50,L) by means of large
or multiple droplet excitations, or of thermally activated d
main walls. For this reason,P(q50,L) can be expected to
converge towards asymptopia slower that the coupling c
stant itself. Furthermore, as we see in the next section,
superposition of domain-wall excitations and droplet exci
tions leads to deviations from simple scaling, which m
further slow down the convergence towards asymptotic s
ing behavior.

V. THE LINK OVERLAP

The link overlap gives additional information about th
spin-glass phase that is not readily seen in the Parisi ove
The main qualitative differences between the Parisi over
and the link overlap are~i! that flipping all spins in one of the

FIG. 5. P(q50,L) at T5Tc , 0.68Tc , 0.5Tc , 0.33Tc , 0.16Tc

for L54,8,16. The error bars indicate the standard deviation of
values. All data were obtained by averaging at least over 5
samples.
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two replicas changes the sign ofq but leavesql invariant,
and~ii ! that flipping a droplet of finite size in one of the tw
replicas changesq by an amount proportional to the volum
of the droplet, andql by an amount proportional to the su
face of the droplet. Thus, the link overlap contains inform
tion about the surface area of excitations.

First, let us studyP(ql ,L) as function of temperature, fo
a given system sizeL54. Figure 6 shows our curves forT
50.8Tc , 0.67Tc , 0.56Tc , 0.48Tc , and 0.33Tc . They appear
to result from the superposition of two different peaks, w
their distance increasing with decreasing temperature,
the weight shifting from the left peak to the right peak.

Figure 7 showsP(ql ,L) for fixed T50.33Tc and for dif-
ferent L. One can see that with increasing system size
peaks move closer together, and the weight of the left-h
peak decreases.

These results are similar to what we found in MKA
three dimensions,6 however, in four dimensions the peaks a
more pronounced. Monte Carlo simulations of the fo
dimensional Ising spin glass also show two peaks for cer
system sizes and temperatures.18 This feature is attributed by
the authors to RSB. However, as it is also present in MK
there must be a different explanation. The width of t
curves shrinks with increasing system size in Ref. 18, jus
it does in MKA and as is expected from the droplet pictu
If the RSB scenario were correct, the width would go to
finite value in the limitL→`.

In the following we present evidence that the left pe
corresponds to configurations where one of the two repl
has a domain-wall excitation, and the right peak to confi

FIG. 6. P(ql ,L) for T50.8Tc , 0.67Tc , 0.56Tc , 0.48Tc ,
0.33Tc ~from left to right!, with the system sizeL54.

FIG. 7. P(ql ,L) for L52,4,8~from widest to narrowest curve!
and withT50.33Tc .
-
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e
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s
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rations where one of the two replicas has a droplet excitat
In MKA, domain-wall excitations involve flipping of one
side of the system, including one of the two boundary sp
of the hierarchical lattice, while droplet excitations involv
flipping of a group of spins in the interior. If the sign of th
renormalized coupling is positive~negative!, the two bound-
ary spins are parallel~antiparallel! in the ground state. By
plotting separately the contributions from configuratio
with and without flipped boundary spins, we can separ
domain-wall excitations from droplet excitations. Figure
shows the three contributions from configurations wh
none, one, or both replicas have a domain wall. Clearly,
left peak is due to domain-wall excitations, and the rig
peak to droplet excitations.

Similar curves are obtained for other values of the para
eters. We thus have shown that the qualitative differen
between droplet and domain-wall excitations are sufficien
explain the structure of the link overlap distribution, and
other low-lying excitations like those invoked by RSB a
needed.

The weight with which domain-wall excitations occur
in agreement with predictions from the droplet model. T
probability of having a domain wall in a system of sizeL is
according to the droplet picture of the order of

~T/J!L2u,
which is .0.25 at T50.33Tc and L54, and .0.15 at T
50.33Tc and L58. From our simulations, we find that th
relative weights of domain walls for these two situations a
.0.12 and.0.076, which fits the droplet picture very we
if we include a factor 1/2 in the above expression. Dom
walls become negligible only when the product (T/J)L2u

becomes small. In higher dimensions, the critical value
T/J becomes larger, and for a given relative distance fr
the critical point, the weight of domain walls, therefore, al
becomes larger. This explains why the effect of dom
walls is more visible in four dimensions than in three dime
sions. However, with increasing system size, domain w
should become negligible more rapidly in higher dimensio
due to the larger value of the exponentu.

VI. CONCLUSIONS

Our results for the Parisi overlap distribution in four d
mensions show that there are rather large finite-size effec

FIG. 8. Contribution of domain-wall excitations~left curve! and
droplet excitations~right curve! to P(ql ,L), for L54 and T
50.33Tc . The third, flat curve is due to configurations where bo
replicas have a domain wall.
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four dimensions which give rise to phenomena normally
tributed to RSB. The system sizes needed to see the be
ning of dropletlike behavior within the MKA are larger, an
the temperatures are lower, than those studied by Mo
Carlo simulations. However, at temperatures not too far
low those studied in Monte Carlo simulations (T50.5Tc),
the weight of the Parisi overlap distribution functionP(q
50,L) within the MKA appears to decrease, albeit with
effective exponent different from the asymptotic value. Th
simulations at these temperatures for the Ising spin glas
a cubic lattice might resolve the controversy regarding
nature of the ordered state in short-range spin glasses. H
ever, the MKA is a low-dimensional approximation and it
possible that the system sizes needed to see asymptoti
havior for a hypercubic lattice in four dimensions are diffe
ent from what is indicated by the MKA. So, any comparis
of the MKA with the Monte Carlo data should be taken wi
a pinch of salt.

Recently, a modified droplet picture was suggested
Houdayer and Martin19, and by Bouchaud.20 Within this pic-
ture, excitations on length scales much smaller than the
tem size are dropletlike, however, there exist large-scale
citations that extend over the entire system and that ha
small energy that does not diverge with increasing sys
size. As we have demonstrated within MKA, the doub
peaked curves for the link overlap distribution, can be fu
explained in terms of two types of excitations that contrib
to the low-temperature behavior, namely domain-wall ex
tations and droplet excitations. We, therefore, believe t
there is no need to invoke system-wide low-energy exc
tions that are more relevant than domain walls.

Finally, the whole field of dynamical studies of sp
glasses is thought by many21 to provide a strong reason fo
believing the RSB picture. A very recent study of spin-gla
dynamics on the hierarchical lattice,22 on which the MKA is
exact, indicates that no ageing occurs at low temperature
the response function whereas in Monte Carlo simulations
zo
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the Edwards-Anderson model and in spin-glass experim
ageing is seen in the response function. We suggest tha
ageing behavior found in Monte Carlo simulations and e
periment are in fact often dominated by critical point effec
and not by droplet effects. Indeed we would expect that if
simulations of Ref. 22 were performed at temperatures clo
to the critical temperature then ageing effects would be s
in the response function, since near the critical point of ev
a ferromagnet such ageing effects occur.23 The reason why
experiments and simulations on the Edwards-Ander
model see ageing in the response function is that they
probing time scales that may be less than the critical ti
scale, which is given by

t5t0~j/a!z,

with a being the lattice constant andt0 being the character
istic spin-flip time. The dynamical critical exponentz.6 in
three dimensions.24 Only for droplet reversals which tak
place on time scales larger thant ~i.e., for reversals of drop-
lets whose linear dimensions exceedj) will droplet results
for the dynamics be appropriate. However, because of
large values ofj down to temperatures of at least 0.5Tc and
the large value ofz, t may be very large in the Monte Carl
simulations and experiments. Thus ifj/a is 100, thent/t0 is
1012, which would make dropletlike dynamics beyond th
reach of a Monte Carlo simulation. In practice, most d
will be in a crossover regime leading to an apparen
temperature-dependent exponentz(T) ~see, for example,
Ref. 25!.
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