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Classical ferromagnet with double-exchange interaction: High-resolution Monte Carlo simulations

A. A. Caparica
Instituto de Fsica, Universidade Federal de G@iaCaixa Postal 131, Gorda GO, CEP 74001-970, Brazil
and Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602

Alex Bunker and D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602
(Received 30 June 1999

A high-resolution Monte Carlo study has been carried out for a classical ferromagnet on the simple cubic
lattice with double-exchange interaction. The static critical exponents were determined0a8949(38),8
=0.3535(30), andy=1.3909(30). Comparison of these values, as well as the value of the fourth-order
cumulant at the transition temperature, with those for the classical Heisenberg model leads to the conclusion
that these systems belong to the same universality class. Some comparisons with experiment are presented.

[. INTRODUCTION detail in Sec. Il. Results are presented in Sec. Illl and we
summarize and conclude in Sec. IV.
The recent discovery of anomalously large magnetoresis-
tance effects near the Curie temperature in doped rare-earth
perovskite manganite#\; ,B,MnO; (A=La,Pr,Nd andB Il. BACKGROUND
=Ca, Ba,Sr,Pbhas led to an increasing interest in these A Model
materials because of both the new physics involved and of '
the possible technological applications. Traditionally the We are interested in a classical spin model for an isotropic
properties of the perovskite manganites have been explaind@rromagnet on the simple cubic lattice with double-
by double-exchange theotyThe basic idea of double ex- €xchange interaction. The Hamiltonian for such system is
change is that each Mn ion has a core spi§of3/2, and a  given by
fraction (1-x) have an extra electron in titg, orbitals with
spin parallel to the core spin due to strong intrasite exchange.
When an electrqn hops from sitéo si_tej its spin must also H=— 2 Jm (1)
change from being parallel t8, to being parallel td&5,, but an
with an energy loss proportional to the cosine of half the

angle between the core spihsAlthough the double- hered is the f i i tant and th .
exchange mechanism provides a good qualitative epranaY‘—' ereJIs the ferromagnetic coupling constant and the spin

tion for the “colossal” magnetoresistancd€€MR), it has Sq_:(SﬁX,Sjy,Si) is of O(3) symmetry and unit length in the
been suggested by several authors that it cannot alone dePin Space. We considedrxL XL systems with nearest-
scribe this phenomenon. They propose that, in addition to thB€ighbor interactions and periodic boundary conditions, so
double exchange, a complete understanding of these mateffat the sum in Eq1) runs over all nearest-neighbor pairs of
als should include strong electron correlatidna, strong lattice sites. The basic thermodynamlc.quantltlgs of mterest
electron-phonon interactichor coexisting phasesNever- ~ @re the total energl and the magnetizatiom. In discussing
theless, there are also attempts to describe CMR behavid€ critical properties of this model we will work with the
exclusively in the framework of the double-exchanged'mens'onless coupling constamre_zlated to the interaction
mechanisn?: Such a scenario suggests that a high-precisiofonstantd by K=J/kgT, wherekg is the Boltzman's con-
study of the classical ferromagnet with double-exchange inStant andT is the absolute temperature.

teraction would be an important reference point for the
evaluation of the real role of the double-exchange in the
CMR materials. Monte Carlo computer simulations currently
are a powerful tool to investigate critical phenomena, and we We have simulated. XL XL simple cubic lattices with
present here results of a high-resolution Monte Carlo studperiodic boundary conditions and dimensidns 10, 14, 20,

of the static critical behavior of the simple cubic classical30, and 40. Sampling was performed using the single spin
ferromagnet with double-exchange interaction. The analysiflip Metropoli® Monte Carlo technique. We used a check-
of the data is carried out by combining finite-size scdifidf ~ erboard algorithm, and one Monte Caf®IC) step is de-
and cumulant method$:® applying the reweighting fined as the attempt to flip every spin in the lattice once. For
techniqué® we obtain the fourth-order cumulants and deter-each simulation, 1000 steps were initially discarded and then
mine the location and value of the extrema of various therd10° MC steps were considered for each run. The number of
modynamic quantities. The model is defined and simularuns varied according to the behavior of the error bars for
tional techniques and data analysis are described in sonwfferent thermodynamic functions and also the size of the

B. Simulations
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lattice. The greater the lattice size the greater the number of a(m")
runs required to reach the desired precision. Because of these [m"]=In T (15
limitations theL =40 lattice was taken into account only in
some of our calculations. A minimal number of 6 runs wasThis set of thermodynamic quantities allows us to determine
taken for the 1& 10X 10 lattice, while the 38 30X 30 lat-  the static critical exponent, even though we do not yet have
tice demanded up to 28 runs in some cases. an estimate for the critical temperature, since using(Byjit

is easy to show that

. Finite-si l the hist th
C. Finite-size scaling and the histogram method V,~(1v)ln L+Vj(tL1/”) (16)

According to finite-size scaling thed'2 the singular _ -
part of the reduced free energy can be described phenomenf®! i =1.2, . . . ,6. At thecritical temperaturd ¢ (t=0) the))

logically by an universal scaling form are constan.ts independent. pf the system '!;jchin(':e we
have an estimate for the critical exponentit is possible to
f(t,H;L)=L"9Y(atLY¥",bHLA), (2)  determine the critical temperature by locating maxima in the

wheret=(T,—T)/T. is the reduced temperatur, is the following quantities:

external ordering fielda andb are metric factors making the x=L3(m—(m))2)/T, (17)
scaling functionY universald is the spatial dimension of the
system(equal to 3 in our cageandr andA are static critical H(m—(m))?)
exponents. From the definition of the free energy one can Dk,=——7 (18)
obtain scaling forms for several thermodynamic quantities,
such as the zero field expressions for the magnetization, sus- a{(m—(m))3)
ceptibility, and specific heat, respectively, Dy,= —7 (19
m*LiB/VM(tLl/V)v (3) 2\2
_d(m=(m)H—{((m—(m))?)?)
X%Ly/VX(tLl/V), (4) DK4_ aT y (20)
o Cart LEL™), ® 3((m—(m)2?—(m—(m))*)
where «, B, and y are also static critical exponents which Uqs= 3(m)?2 : (22)
should satisfy the scaling and hyperscaling relatidns
According to Egs.(3) and (4) locations of the extrema of
A=pBé=pB+v, (6)  these functions vary asymptotically as
2—a=dv=28+17. (7) Ko(L)~Kc+agl ", (22

Estimates for the critical temperature can be carried out byherea, is a quantity-dependent constant, allowing then the
the “cumulant crossing” method introduced by Binder and determination ofK.. Equations(3) and (5) along with the
Stauffer’® which scales the positions of the crossings of thehyperscaling relations provide the necessary tools to estimate

fourth-order magnetization cumulant the remaining critical static coeficients. For an accurate de-
. termination ofK; and the critical exponents we need, how-

(m*), ever, to have all these quantities as continuous functions of
U=1- (8) PR . .

3<m2>f temperature. In order to obtain this we apply the single his-

togram method:® In this approach, the data contained in a
for different lattice sizes. This method does not yield veryhistogram of the energy and the magnetization from a simu-
precise results, but it is important in the beginning of thelation performed at a particular value of the inverse tempera-
simulations to locate the best values of inverse temperaturgire K, are combined to yield an optimized estimate for the
where one should simulate the system. Following Ref. 21 wejensity of stateV(E,M). The equilibrium probability dis-
can define a set of thermodynamic quantities related to logaribution P(E,M) for some value ofK can be written

rithmic derivatives of the magnetization: a$922.2321
V154[m3]—3[m4], (9) Hl(E,M)e_AKE
PW(E.M)= — (23)
V,=2[m?]—[m?], (10 ZgmH(E,M)e
_ 27 3 with AK=(K—Kg) and whereH (E,M) is a histogram kept
Va=3[m]—2[m"], (11) during the simulation, which provides an estimate for the
_ e equilibrium probability, becoming exact in the limit of an
Va=(alm]=[m]/3, (12 infinite-length run. In our simulation we have continuous de-
Vs=(3[m]—3[m?])/2, (13) grees of freedom; thus the energy and the magnetization of

the sampled results are from a continuum of values. For a

(14) finite—size simulation one can build up a hi_stogram by “bin-
ning” the values of energy and magnetization. We can there-

where fore evaluate the first, second, and fourth moments of the

Ve=2[m]—[m?],
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o . A. Finite-size behavior of the fourth-order cumulant
FIG. 1. (top) Variation of the fourth-order cumulant with cou-

pling; (bottom finite-size extrapolation of the cumulant crossings A preliminary way of determining the critical temperature
for lattices of sizeL andL’. is to calculate the variation of the fourth-order cumulbit
with K for various systems sizes and then locate the intersec-

magnetization distribution, thus allowing us to determine thetlf)n of these curves. The valuesdfior two different lattice

. L L'=bL timat -
susceptibility, fourth-order cumulant, and all the thermody-Slzes and bL are compared ani, estimated by ex

o functl h 4 ab Althouah the Hi trapolating the results of this method fdnp) ~1—«.* The
hamic functions that we presented above. Although the Nisg, o tion of Fig. 1 shows the pattern of fourth-order cumu-

togram method allows one to take derivatives and calculatf-am crossings and the linear fits that yield estimates<oin
the functions for temperatures other than that at which the,o |ower portion of the figure. Not surprisingly, due to

system was simulated, one should be careful to avoid Unfinite_size effects the fit fot. =10 provides the less reliable
physical predictions of average quantities arising from inadyegyit. As pointed out before this method of determining the
equate accuracy in determining the “wings” of the distribu- critical temperature is not expected to be very precise; nev-
tion. ertheless the results are consistent with the more accurate
ones that we describe below.
The value of the magnetization cumulant at the critical
temperatureU*, is an important universal quantity. We cal-
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FIG. 2. Finite-size dependence of the maxima of the fourth-
order cumulant(J, values aK,; A values at the cumulant cross- FIG. 4. Size dependence of the locations of the extrema in dif-
ings. ferent thermodynamic quantities with=0.6949.
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ror in the final value for ¥ was determined from the errors
in the individual estimates whose mean value is our final
estimate). With the critical exponent accurately determined
we can use Eq(22) to determineK . as the extrapolation to
L—o (L~ ¥=0) of the linear fits given by the locations of
the maxima of the functions defined by Eq$7)—(21). In
Fig. 4 we show this set of linear fits that convergeKtp at
L~Y"=0. To estimate the errors in our results, the location
of the maximum of each thermodynamic function was deter-
mined several time&he number of times in each case vary-
ing from function to function and according to the size of the
lattice), and the statistical error bars for each function in Fig.
4 is given ast 1o, whereo is the standard deviation of the
mean. The final estimate fét. was taken as the mean of the
five values obtained from fits for each thermodynamic func-
tion and wasK.=1.34202(12) orT.=0.7451%7). If we
compare with the Heisenberg ferromaghet [T,
=1.44292(8) we see that the phase transition in the
double-exchange ferromagnet takes place at a lower tem-
L perature.

Sincev andT,. are now estimated to a high precision, we
can calculate the critical exponen@sand y. According to
Eqg. (4), the maximum of the finite-lattice susceptibility de-
fined by Eq.(17) and the true susceptibility at., given by
the same equation wittm)= 0, are both asymptotically pro-
portional toL”'”. In Fig. 5 we show the two situations that
yield y=1.3791(57) andy=1.4028(22), respectively. Since

10007

Yiv=1.9847(25)

100':

Yv=2.0187(78)
104
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FIG. 5. Log-log plot of size dependence(tdp) the finite-lattice
susceptibility at T.(L); the true susceptibility at T,
=0.74519/kg. The error bars are smaller than the symbols.

culatedU* in two different ways, by determining the value
of U at our estimate foK. and by considering the values of

U at the crossings fds=2. In Fig. 2 we show these attempts h | thi b ; K
plotted versus. ~ . For the estimate from the values dfat these values agree to within error bars:ofor, we can take

K=K, we obtainedU*=0.62022(52) and by cumulant €I mean to obtainy=1.3909(30). In the vinicity of the
crossingU* = 0.620 6(19) (The error in the estimate &f* critical temperature the_ ‘magnetization variesLad”’”. We

at K=K, is due primarily to the statistical error in the data can use Eq(3) at the critical point to calculate the exppnent
and not the uncertainty in the location of the critical pgint. B directly from the slope of th‘? log-log graph and f'.vm
This second result is consistent with the first one, but it is~ 0-3235(30). Our results are in good agreement with the

less precise because there are only two crossingb4@;  Scaling relation, Eq(7), yielding dv=2.085(11) and B
L=10, L' =20 andL =20, L' = 40. + y=2.089(10) [Note that the scaling law/v=2— 7 then

predicts a very small, negative estimate fpralthough the
scaling lawn=2—-dvy/(2B+ y) gives a very small but posi-
B. Determination of K. and critical exponents tive value]

from thermodynamic functions

By Ioc_:atmg the extrema of the ther_modynam|_c functions IV. DISCUSSION AND CONCLUSIONS
defined in Eqs(9)—(14) we can determine the critical expo-
nentwv as the inverse of the slopes of the straight lines given It is interesting to compare the exponemisg, andy as
by Eq. (16), since atK.(t=0) the V), should be constants well as the value of the magnetization fourth-order cumulant
independent of the system sike In Fig. 3 we present this at the transition temperaturt)*, obtained for the classical
set of lines. From the linear fits to these points we estimatéerromagnet with double-exchange interaction with those
that 1/»=1.4391(78), which yieldy=0.6949(38) (The er-  calculated for the Ising and Heisenberg model. In Table | we

TABLE I. Estimates ofv, 8, y, andU* compared to the results for the Heisenberg and Ising models and
some experimental data.

v B v u* Ref.
Double-exchange 0.69438) 0.353%30) 1.390930) 0.62062398) Our results
Heisenberg 0.70383) 0.361631) 1.389670) 21
Heisenberg 0.708) 0.3624) 1.38914) 0.62178) 24
Ising 0.6289 0.32584) 1.247@39) 22
Lag 1Sk sMnO; 0.374) 1.223) 25
Lag 7Si sMnO; 0.455) 26
Lag 1Sf sMNO; 0.295 27

Lag §So ;MnO; 0.502) 28
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show these values along with some experimental results an@sultant critical behavior shows deviations from Heisenberg

three-dimensional. Ising and Heisenberg models values fdsehavior, it must be due to additional mechanisms other than

comparison. One can see that all three exponents for thgéouble exchange.
double-exchange system agree within error bars equal to
+ 20 with those of the classical Heisenberg system; further-

more, the values dJ* agree to within+ 1o errors. We can
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