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Classical ferromagnet with double-exchange interaction: High-resolution Monte Carlo simulations
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A high-resolution Monte Carlo study has been carried out for a classical ferromagnet on the simple cubic
lattice with double-exchange interaction. The static critical exponents were determined asn50.6949(38),b
50.3535(30), andg51.3909(30). Comparison of these values, as well as the value of the fourth-order
cumulant at the transition temperature, with those for the classical Heisenberg model leads to the conclusion
that these systems belong to the same universality class. Some comparisons with experiment are presented.
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I. INTRODUCTION

The recent discovery of anomalously large magnetore
tance effects near the Curie temperature in doped rare-e
perovskite manganites,A12xBxMnO3 (A5La,Pr,Nd andB
5Ca, Ba,Sr,Pb! has led to an increasing interest in the
materials because of both the new physics involved and
the possible technological applications. Traditionally t
properties of the perovskite manganites have been expla
by double-exchange theory.1 The basic idea of double ex
change is that each Mn ion has a core spin ofSc53/2, and a
fraction (12x) have an extra electron in theEg orbitals with
spin parallel to the core spin due to strong intrasite exchan
When an electron hops from sitei to site j its spin must also
change from being parallel toSc

i to being parallel toSc
j , but

with an energy loss proportional to the cosine of half t
angle between the core spins.2 Although the double-
exchange mechanism provides a good qualitative expla
tion for the ‘‘colossal’’ magnetoresistance~CMR!, it has
been suggested by several authors that it cannot alone
scribe this phenomenon. They propose that, in addition to
double exchange, a complete understanding of these ma
als should include strong electron correlations,3 a strong
electron-phonon interaction,4 or coexisting phases.7 Never-
theless, there are also attempts to describe CMR beha
exclusively in the framework of the double-exchan
mechanism.5,6 Such a scenario suggests that a high-precis
study of the classical ferromagnet with double-exchange
teraction would be an important reference point for t
evaluation of the real role of the double-exchange in
CMR materials. Monte Carlo computer simulations curren
are a powerful tool to investigate critical phenomena, and
present here results of a high-resolution Monte Carlo st
of the static critical behavior of the simple cubic classic
ferromagnet with double-exchange interaction. The anal
of the data is carried out by combining finite-size scaling10–12

and cumulant methods;13–18 applying the reweighting
technique8,9 we obtain the fourth-order cumulants and det
mine the location and value of the extrema of various th
modynamic quantities. The model is defined and simu
tional techniques and data analysis are described in s
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detail in Sec. II. Results are presented in Sec. III and
summarize and conclude in Sec. IV.

II. BACKGROUND

A. Model

We are interested in a classical spin model for an isotro
ferromagnet on the simple cubic lattice with doubl
exchange interaction. The Hamiltonian for such system
given by2

H52(
^ i , j &

JA11Si•Sj , ~1!

whereJ is the ferromagnetic coupling constant and the s
Si5(Si

x ,Sj
y ,Sk

z) is of O~3! symmetry and unit length in the
spin space. We considerL3L3L systems with nearest
neighbor interactions and periodic boundary conditions,
that the sum in Eq.~1! runs over all nearest-neighbor pairs
lattice sites. The basic thermodynamic quantities of inter
are the total energyE and the magnetizationm. In discussing
the critical properties of this model we will work with th
dimensionless coupling constantK related to the interaction
constantJ by K5J/kBT, wherekB is the Boltzman’s con-
stant andT is the absolute temperature.

B. Simulations

We have simulatedL3L3L simple cubic lattices with
periodic boundary conditions and dimensionsL510, 14, 20,
30, and 40. Sampling was performed using the single s
flip Metropolis20 Monte Carlo technique. We used a chec
erboard algorithm, and one Monte Carlo~MC! step is de-
fined as the attempt to flip every spin in the lattice once. F
each simulation, 1000 steps were initially discarded and t
106 MC steps were considered for each run. The numbe
runs varied according to the behavior of the error bars
different thermodynamic functions and also the size of
9458 ©2000 The American Physical Society
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lattice. The greater the lattice size the greater the numbe
runs required to reach the desired precision. Because of t
limitations theL540 lattice was taken into account only
some of our calculations. A minimal number of 6 runs w
taken for the 10310310 lattice, while the 30330330 lat-
tice demanded up to 28 runs in some cases.

C. Finite-size scaling and the histogram method

According to finite-size scaling theory10–12 the singular
part of the reduced free energy can be described phenom
logically by an universal scaling form

f ~ t,H;L !5L2dY~atL1/n,bHLD/n!, ~2!

where t5(Tc2T)/Tc is the reduced temperature,H is the
external ordering field,a andb are metric factors making th
scaling functionY universal,d is the spatial dimension of th
system~equal to 3 in our case!, andn andD are static critical
exponents. From the definition of the free energy one
obtain scaling forms for several thermodynamic quantiti
such as the zero field expressions for the magnetization,
ceptibility, and specific heat, respectively,

m'L2b/nM~ tL1/n!, ~3!

x'Lg/nX~ tL1/n!, ~4!

c'c`1La/nC~ tL1/n!, ~5!

wherea, b, andg are also static critical exponents whic
should satisfy the scaling and hyperscaling relations19

D5bd5b1g, ~6!

22a5dn52b1g. ~7!

Estimates for the critical temperature can be carried out
the ‘‘cumulant crossing’’ method introduced by Binder a
Stauffer,13 which scales the positions of the crossings of
fourth-order magnetization cumulant

UL512
^m4&L

3^m2&L
2

~8!

for different lattice sizes. This method does not yield ve
precise results, but it is important in the beginning of t
simulations to locate the best values of inverse tempera
where one should simulate the system. Following Ref. 21
can define a set of thermodynamic quantities related to lo
rithmic derivatives of the magnetization:

V1[4@m3#23@m4#, ~9!

V2[2@m2#2@m4#, ~10!

V3[3@m2#22@m3#, ~11!

V4[~4@m#2@m4# !/3, ~12!

V5[~3@m#23@m3# !/2, ~13!

V6[2@m#2@m2#, ~14!

where
of
se

s

no-

n
,
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y
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e
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@mn#[ ln
]^mn&

]T
. ~15!

This set of thermodynamic quantities allows us to determ
the static critical exponentn, even though we do not yet hav
an estimate for the critical temperature, since using Eq.~3! it
is easy to show that

Vj'~1/n!ln L1Vj~ tL1/n! ~16!

for j 51,2, . . . ,6. At thecritical temperatureTc (t50) theVj
are constants independent of the system sizeL. Since we
have an estimate for the critical exponentn it is possible to
determine the critical temperature by locating maxima in
following quantities:21

x5L3
Š~m2^m&!2

‹/T, ~17!

DK2
5

]Š~m2^m&!2
‹

]T
, ~18!

DK3
5

]Š~m2^m&!3
‹

]T
, ~19!

DK4
5

]~Š~m2^m&!4
‹2Š~m2^m&!2

‹

2!

]T
, ~20!

U45
3Š~m2^m&!2

‹

22Š~m2^m&!4
‹

3^m&2
. ~21!

According to Eqs.~3! and ~4! locations of the extrema o
these functions vary asymptotically as

Kc~L !'Kc1aqL21/n, ~22!

whereaq is a quantity-dependent constant, allowing then
determination ofKc . Equations~3! and ~5! along with the
hyperscaling relations provide the necessary tools to estim
the remaining critical static coeficients. For an accurate
termination ofKc and the critical exponents we need, how
ever, to have all these quantities as continuous function
temperature. In order to obtain this we apply the single h
togram method.8,9 In this approach, the data contained in
histogram of the energy and the magnetization from a sim
lation performed at a particular value of the inverse tempe
ture K0 are combined to yield an optimized estimate for t
density of statesW(E,M ). The equilibrium probability dis-
tribution P(E,M ) for some value ofK can be written
as8,9,22,23,21

PK~E,M !5
H1~E,M !e2DKE

(E,MH1~E,M !e2DKE
, ~23!

with DK5(K2K0) and whereH1(E,M ) is a histogram kept
during the simulation, which provides an estimate for t
equilibrium probability, becoming exact in the limit of a
infinite-length run. In our simulation we have continuous d
grees of freedom; thus the energy and the magnetizatio
the sampled results are from a continuum of values. Fo
finite-size simulation one can build up a histogram by ‘‘bi
ning’’ the values of energy and magnetization. We can the
fore evaluate the first, second, and fourth moments of
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magnetization distribution, thus allowing us to determine
susceptibility, fourth-order cumulant, and all the thermod
namic functions that we presented above. Although the
togram method allows one to take derivatives and calcu
the functions for temperatures other than that at which
system was simulated, one should be careful to avoid
physical predictions of average quantities arising from in
equate accuracy in determining the ‘‘wings’’ of the distrib
tion.

FIG. 1. ~top! Variation of the fourth-order cumulant with cou
pling; ~bottom! finite-size extrapolation of the cumulant crossin
for lattices of sizeL andL8.

FIG. 2. Finite-size dependence of the maxima of the four
order cumulant:h, values atKc ; n values at the cumulant cross
ings.
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-
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III. RESULTS

A. Finite-size behavior of the fourth-order cumulant

A preliminary way of determining the critical temperatu
is to calculate the variation of the fourth-order cumulantUL
with K for various systems sizes and then locate the inters
tion of these curves. The values ofU for two different lattice
sizesL and L85bL are compared andKc estimated by ex-
trapolating the results of this method for (lnb)21→`.13 The
top portion of Fig. 1 shows the pattern of fourth-order cum
lant crossings and the linear fits that yield estimates forKc in
the lower portion of the figure. Not surprisingly, due
finite-size effects the fit forL510 provides the less reliabl
result. As pointed out before this method of determining
critical temperature is not expected to be very precise; n
ertheless the results are consistent with the more accu
ones that we describe below.

The value of the magnetization cumulant at the critic
temperature,U* , is an important universal quantity. We ca

-

FIG. 3. Size dependence of the maxima ofVj . The slopes yield
1/n.

FIG. 4. Size dependence of the locations of the extrema in
ferent thermodynamic quantities withn50.6949.
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culatedU* in two different ways, by determining the valu
of U at our estimate forKc and by considering the values o
U at the crossings forb52. In Fig. 2 we show these attemp
plotted versusL21/n. For the estimate from the values ofU at
K5Kc we obtainedU* 50.620 22(52) and by cumulan
crossingsU* 50.620 6(19).~The error in the estimate ofU*
at K5Kc is due primarily to the statistical error in the da
and not the uncertainty in the location of the critical poin!
This second result is consistent with the first one, but i
less precise because there are only two crossings forb52;
L510, L8520 andL520, L8540.

B. Determination of Kc and critical exponents
from thermodynamic functions

By locating the extrema of the thermodynamic functio
defined in Eqs.~9!–~14! we can determine the critical expo
nentn as the inverse of the slopes of the straight lines giv
by Eq. ~16!, since atKc (t50) the Vj should be constant
independent of the system sizeL. In Fig. 3 we present this
set of lines. From the linear fits to these points we estim
that 1/n51.4391(78), which yieldsn50.6949(38).~The er-

FIG. 5. Log-log plot of size dependence of~top! the finite-lattice
susceptibility at Tc(L); the true susceptibility at Tc

50.745 15J/kB . The error bars are smaller than the symbols.
s

n

te

ror in the final value for 1/n was determined from the error
in the individual estimates whose mean value is our fi
estimate.! With the critical exponentn accurately determined
we can use Eq.~22! to determineKc as the extrapolation to
L→` (L21/n50) of the linear fits given by the locations o
the maxima of the functions defined by Eqs.~17!–~21!. In
Fig. 4 we show this set of linear fits that converge toKc at
L21/n50. To estimate the errors in our results, the locat
of the maximum of each thermodynamic function was det
mined several times~the number of times in each case var
ing from function to function and according to the size of t
lattice!, and the statistical error bars for each function in F
4 is given as61s, wheres is the standard deviation of th
mean. The final estimate forKc was taken as the mean of th
five values obtained from fits for each thermodynamic fun
tion and wasKc51.342 02(12) orTc50.745 15(7). If we
compare with the Heisenberg ferromagnet21 @Tc
51.442 92(8)# we see that the phase transition in t
double-exchange ferromagnet takes place at a lower t
perature.

Sincen andTc are now estimated to a high precision, w
can calculate the critical exponentsb and g. According to
Eq. ~4!, the maximum of the finite-lattice susceptibility de
fined by Eq.~17! and the true susceptibility atTc , given by
the same equation witĥm&50, are both asymptotically pro
portional toLg/n. In Fig. 5 we show the two situations tha
yield g51.3791(57) andg51.4028(22), respectively. Sinc
these values agree to within error bars of62s, we can take
their mean to obtaing51.3909(30). In the vinicity of the
critical temperature the magnetization varies asL2b/n. We
can use Eq.~3! at the critical point to calculate the expone
b directly from the slope of the log-log graph and findb
50.3535(30). Our results are in good agreement with
scaling relation, Eq.~7!, yielding dn52.085(11) and 2b
1g52.089(10).@Note that the scaling lawg/n522h then
predicts a very small, negative estimate forh although the
scaling lawh522dg/(2b1g) gives a very small but posi
tive value.#

IV. DISCUSSION AND CONCLUSIONS

It is interesting to compare the exponentsn, b, andg as
well as the value of the magnetization fourth-order cumul
at the transition temperature,U* , obtained for the classica
ferromagnet with double-exchange interaction with tho
calculated for the Ising and Heisenberg model. In Table I
and
TABLE I. Estimates ofn, b, g, andU* compared to the results for the Heisenberg and Ising models
some experimental data.

n b g U* Ref.

Double-exchange 0.6949~38! 0.3535~30! 1.3909~30! 0.62062~38! Our results
Heisenberg 0.7036~23! 0.3616~31! 1.3896~70! 21
Heisenberg 0.704~6! 0.362~4! 1.389~14! 0.6217~8! 24
Ising 0.6289 0.3258~44! 1.2470~39! 22
La0.7Sr0.3MnO3 0.37~4! 1.22~3! 25
La0.7Sr0.3MnO3 0.45~5! 26
La0.7Sr0.3MnO3 0.295 27
La0.8Sr0.4MnO3 0.50~2! 28
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show these values along with some experimental results
three-dimensional. Ising and Heisenberg models values
comparison. One can see that all three exponents for
double-exchange system agree within error bars equa
62s with those of the classical Heisenberg system; furth
more, the values ofU* agree to within61s errors. We can
then conclude with some confidence that these two mo
belong to the same universality class. At the present time
available experimental data are inconsistent with each ot
however, if improved experiments are forthcoming and
.
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resultant critical behavior shows deviations from Heisenb
behavior, it must be due to additional mechanisms other t
double exchange.
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