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We reexamine the numerical study of the magnetized state @12 spin chain with single-ion anisot-
ropy D(>0) for the magnetizatio =M 4/3, whereMg is the saturation magnetization. At this magnetiza-
tion, we find that forD <D, =0.387 the system is critical and the magnetization plateau does not appear. For
D>D¢,, the parameter region is divided into two pabtg;<D <D ,=0.943 and,<D. In each region, the
system is gapful and thl=M</3 magnetization plateau appears in the magnetization process. From our
numerical calculation, the intermediate regldp, <D <D, should be characterized by a magnetized valence-
bond-solid state.

[. INTRODUCTION and the results with the numerical diagonalization data. To
study the system, we first consider the finite-size behavior
Recently, there has been a considerable interest in theith conformal field theory and the renormalization-group
magnetization process of one-dimensional quantum spin sysmnalysis. Next, using them, we determine the boundary of the
tems. Extending the Lieb-Schultz-Mattis theorém, plateau and the no-plateau regions, and also check the criti-
Oshikawaet al? gave a necessary condition for the appear-cal behavior. The last section gives our conclusion.
ance of the magnetization plateau p&S—(m))=integer,

whereS s the magnitude of.the spim,is the perio_dic_ity_ of Il. EEFECTIVE CONTINUUM MODEL
the magnetic ground state in the thermodynamic limit, and
(m) is the magnetization per site. For the magnetizatioM = M ¢/3, the effective continuum

As a simple case, th8=3/2 spin chain with single-ion Model describing the low-energy physics is giver by
anisotropy(D) in a magnetic field,

dX Ug d¢ 2
- L Heff:J'E UsK(ﬂ'H)ZﬂL? a)
H=2 §-S.1+D2 (S)?~hM, (1)
=1 =1 dx
has been studied. Hef® is the S=3/2 spin operator at the +v5y¢f Ecos\/fd), 2

jth site, L is the system size, anMl is the magnetization _ _ _
M=3S}. Hereafter, we define the saturation magnetizatiowhere II “is the ‘momentum density conjugate 1@,
asMs (=3L/2). In this model, a magnetization plateau canl #(X),IL(x")]=i8(x—x"), vs is the sound velocity of the
appear aM =Mg/3 (p=1). ForD=0 (S=3/2 Heisenberg System. The dual field is defined as), 0= wIl. The corre-
mode), a magnetization plateau does not apge@n the Iatlon. exponents of several operators are governed by the
other hand, for large®, the spin of each site tends to have coupling K and the scaling dimension of the operator
S=1/2 for M=Mg/3, and a magnetization plateau appears.y2 08/2¢ is x=K/2. Thus, the second term in the Hamil-
Oshikawaet al? checked numerically that a magnetization tonian(1) is relevant forK <4 and irrelevant foK >4.
plateau appears fdd=2. Sakai and Takahaghstudied this The one-loop renormalization-group equations of this
model with the numerical diagonalization calculation usingmodel are given by
the phenomenological renormalization-gro(RG analy-
sis, and found that the transition point B,=0.93+0.01. dkiL)™t 1,
They concluded that this point is the Berezinskii-Kosterlitz- dinL §y¢ ), dinL
Thouless(BKT) transitiorr’ point, that is, the plateau and
the no-plateau transition point. Although the PRG analysis igvhereL is an infrared cutoff. These are the recursion rela-
a powerful method to study the second-order phase transfions of KosterlitzZ The renormalization-group flow is
tion, this is not sufficient for the BKT transition because of shown in Fig. 1. In regiom, the couplingK renormalized to
the singular behavior of the energy gap and of the logaritha finite value andy, to zero; the system is critical and this
mic size dependence of excitation energies. Thus, we thinRorresponds to the no-plateau region in the spin system. In
that it is worthwhile to reexamine this problem by use ofregionsB andB’, K renormalized to 0 anfy/,| to «; these
another numerical approach. regions are massive phases and the field locked torr and

The organization of this paper is as follows. In the nextO for B and B’ respectively. There is a separatrixk32"
section, we consider an effective continuum model in order-8 In K‘l—yfﬁ=8+8ln4 that separates the infrared stable
to investigate the mechanism of the appearance ofMhe region(A) from the infrared unstable regionB @ndB’). On
=Mg/3 plateau. In Sec. Ill, we show the numerical methodthis separatrix the BKT transition takes place. Nelry(,)

dy,(L K(L
o )—( —%)y(ﬁ(u,
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whereEy(L) is the ground-state energy of thesite system
with PBC.

The BKT transition takes place between the gapless and

gapful regions, and the PRG analysis is affected by several
irrelevant corrections sensitively. Moreover, on the transition
point, there exists a logarithmic size correction in the exci-
tation energy. PRG analysis does not suppose these features.
In order to determine the BKT transition point, we apply the
method proposed by Nomura and Kitazah@ee also Refs.
11 and 12, which is free from the logarithmic size correc-
tion. If we can have the half-integer for the “magnetic”
chargem, which is not permitted for PBC by the translational
symmetry, we have the following finite-size spectrum for
m=*+1/2:

L K(L) 1
XS 1o L)=5——AES 1 o(L)=—%—+ 5Y4(L),
FIG. 1. Renormalization-group flow diagram. The bold lines w120 27mvg w20 8 27¢

(separating regionsé and B, and A andB’) are the BKT critical

lines. On the dotted line between regiddsaindB’ (y,=0K<4), s _ L s _ K(L) o+
a second-order phase transition occurs. X 1/2,0(L)—_27TUSAEt1/2,o(L) 78 2 y¢(L), (6)
=(4,0), and with the notatio = 4(1+y,/2), the BKT tran- where the energieAE.Ci'Sl,zyo(L) correspond to the operatprs
sition point is on the lingy,|=Yo, and we obtain V2 cos¢/\2 and \2 sing/\/2, respectively. The term with
y4 comes from the first-order perturbation and from the op-
Yo erator product expansions,
Yo(L)= Yo(LILg) +1° € ) .
2 cosy2 2 COS—= ¢ |~ 2 COS— ¢,

wherey, andL, are the bare values, ang flows to zero V2 cosj29| V2 \/§¢ V2 \/Ed)

very slowly. Near the transition point ang<|y,|, the en-

ergy gap—that is, the width of the plateau—behaves singu- 1 1
larly as Ah~ exp(—constAy 4/ — o). V2 c08/2| /2 sin— ¢ |~ 2 sin—= .
According to the numerical calculation by Oshikawa V2 V2

et al? for the S=3/2 Heisenberg chaind=0) at the mag- Near the BKT transition pointy 4| =yo [K=4(1+Y,/2)],

netizationM =Mg/3, the Gaussian coupling is K~4.4,[in definingy,,= +y,(1+1) wheret measures the distance from
the notation of Ref. 2, the compactification radius is given bythe transition point, we have for,>0

R=(27K) Y?=0.954/87], and the system is gaple$so
plateay. This value is slightly larger than the BKT critical . 1 3 2
(fixed poiny couplingK =4. Xz120L) =5+ 7Yo(L)| 1+ 3],

ll. NUMERICAL APPROACH AND RESULTS 11
Xil/z,o(L):E_ZYO(L)(:H'Z'[): (7)
A. Finite-size behavior

In order to study numerically, let us consider the finite-and fory,<0,
size behavior of the effective mod@) based on the confor- 1 1
mal invariancé. The scaling dimension of the primary field XS oo L)=% — =yo(L)(1+21),
Om,nzexp@m\/iqsﬂn\/ia) for the fixed-point Hamiltonian o 2 4
(y4,=0) with the periodic boundary conditiofPBC) is

; 1 3 2
given by Xil/z,o(L):§+Zy0(L)(1+ §t). (8
- n:5m2+ inZ' (4) On the other hand, fom§,n)=(0,=2), corresponding to the
T2 2K operatore™22¢ we have

where m and n are the “magnetic” and the “electric” L 2 1 1
charges in the Coulomb gdsAccording to the conformal xo:z(L)EZ_AEO:Z(L): K=3~ Zy0(|_), 9
field theory, the state of the finite-size system has a corre- Vs

spondence to the operator in the infinite-size system, and thg these scaling dimensions, the logarithmic size corrections

excitation energy of the finite-size system is given by are expressed by,(L). From Eqgs.(7), (8), and(9), energy

X differencesAE%{), (L) and AEy ., cross linearly at the

_ . _£TUs BKT transition pointt=0 for y,>0(y,<0), and this be-
ABmn(L)=Emn(L) ~Eq(L) L fmn ® havior can be used to determine the BKT critical point.
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From Eq.(6), AES ;0 and AE ), cross aty,=0."3 1.2 . . .
This is the Gaussian fixed point. F&t<4, the operator
\J2 cos/2¢, which is in the second term of the Hamiltonian
(2), is relevant and a second-order phase transition occurs at
this point. On this transition point, we havAE$Y,,
<AEg., from K<4.

The “electric charge”n in Eq. (5) relates to the variation
of the magnetization fronM =M /3, and the excitation en-
ergy AEg ., in the spin system is described as

AEg+2(L)
E(M¢3+2L)+E(Mg3—-2L)—2E(Mg3L) 1.2 , . .
B . (10
2 n
whereE(M,L) is the lowest energy for the magnetizatih 08)

with the PBC. The excitation energies corresponding to the = AE

. i 0.6
operatory2 cos¢/\2 and 2 sing/\2 are obtained by the
two low energies with the twisted boundary conditi@BC) 0.4
(Refs. 17-2DS/,,=—S;, §f,,=S} as

0.2 Il 1 1
AES 1, L)=ETES(Mg/3L,1)~E(Mg3L), (1D) 0 05 b s 2
AES 1 o(L)=E™“(Mg3L,~1)-E(Mg/3L), FIG. 2. (a) Energy differencedES 1, (0), AES 1,0 (®), and

TBC ) ] AEg .., (©) for the system(1) with L=14. The crossing point of
whereE ™*(M¢/3.L,P) is the lowest energy with the mag- AgS,, andAE,., is the BKT critical point. The crossing point

netizationM =Mg¢/3 and with the parityP: §—§ _j. . of AES,,,andAES ,,, is a second-order phase transition point.
(b) Energy differenceAES o (O), AES 50 (@), and AEq .,
B. Numerical results (¢) for the system(20) with A=0.5 andL=14. The crossing

oint of AE%,,, and AE, ., is the boundary between the no-
lateau and the large-regions. The crossing point &fE¢ ,;, ;and
AES 1) is the Gaussian fixed point in the no-plateau region.

Here, we show our numerical results. We calculate thé;
energy of finite-size systenis=8, 10, 12, 14 with the nu-
merical diagonalization calculation. In the regibr>0, the
lowest energy state with the magnetizatidnand with PBC
has the parityP=(—1)*"2 and the momentung=(M
+L/2)X 7. 0.39

Figure Za) shows the energy differencedES ), ,

AEZ 0, and AEg., for L=14 systems. We find that 0-38
among these three energies the lowest onAls ., for 0.37
smallD(0<D<D ) andAEZ 5 for largeD(D,<D). In D 0.36
the intermediate regiom ;<D<D,, AES ), is lower '
than AES ;, o and AEg .. In Fig. 1, the smalD region 0 0.35
<D<D¢; should correspond to regiof, the intermediate 0.34 , ) ,
regionD.;<D<D,, to B, and the larged region toB’. 0 0.005 0.01 0.015
From the critical properties of the effective modg) [see 1/L?
Egs. (7) and (9)], the pointD.; should be a BKT critical 0.505
. . . . . T T T
point. The size dependence of the crossing points between (b)

AES 1 0andAE, ., is shown in Fig. 8a) and the extrapo-
lated value is given bip.;=0.387. For smalD(<D.,), the 0.5 .
excitation spectrum is gapless and there does not exist a pla- \9\
teau in the magnetization curve.

In order to check this, we calculate the averaged scaling 0.495
dimensiont®-12

[X3120(L) +3x5156(L) 174, (12 049, 0.005 , 001 0.015
. . 1/L

at the pointD=D,. From Eq.(7), this value cancels the /
leading logarithmic size correction, and should be 1/Dat FIG. 3. (a) Size dependence of the crossing point between the
=Dc;. To calculate the scaling dimension, we need theenergy differenced ES ;o and AE, -, The BKT critical point is
sound velocityvs. This can be calculated using the lowest estimated a®.;=0.387.(b) Size dependence of the averaged scal-
energy withM =Mg/3 and the wave numbey=2m/L [cor-  ing dimension &%, o+ 3x%1, /4 at the BKT critical pointD.,
responding to the (1) current, =0.387.
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E(Mg/3L,g=2n/L)—E(M43,L) 0.945 T T T
vg(L)= (Md/3L. (M . (13 <
27/l
We extrapolate this finite-size value in the polynomial of 0.94
1/L2, and obtain 2rvg=20.06. Figure &) shows the size D
dependence of the valu&2). We can see that the extrapo- 0.935

lated value is very close to the expected one 1/22 cor-
rection comes from irrelevant operators with scaling dimen-
sion x=48 We also calculate the conformal anomaly 0.93 ' . '

0 0.005 0.01 0.015
numberc from 1/I2
E(Mg3L) U C 3.78 T T T
f: E<m>:l/2_ 6L2 +-- o (14) (b)
3.77 & 4
wheree€m -1, is the energy per site of the limit—c, cis
the conformal anomaly number, and- means the higher- K 3.76 -
order size correction. We estimateat D=D.; asc=0.97,
which is close to the expected valoe=1. 375 7
Thus, we can conclude that the poibt=D,, is the BKT
critical point. The width of the plateau near the transition 3-740 00'05 061 00'15
point behaves adh~exp(—constA/D—D;). ' 1/L? ) '

According to Eq.(6), the crossing poinD., between
AES 1, 0andAE?S 4, o should be a second-order phase tran-  FIG. 4. (a) Size dependence of the crossing point between the
sition point (K<4 andy,=0). For largeD(D,<D), the  energy differencef\E%,;,, and AE%,,,,. The critical point be-
system is in the larg® region and a plateau appears in thetween the intermediate and the magnetic labgeegions is esti-
magnetization curve amM=Mg/3. Thus, we have another mated asD,=0.943. (b) ParameterK obtained by the data
massive phase in the regi@y,; <D <D.,. As a possibility, X%120=K/8 (O), X312=K/8 (@), andx,.;=1/K (¢). The
this intermediate region should be characterized by the folextrapolated value i&=3.77.

lowing partially magnetized valence-bond-sal\BS) state: ) ) o )
The size dependence of the crossing point is shown in

|l//|(']?\?é:)5> aL aLbT bTa 3] F_ig. 4(@). The estimated_critic_al point between_ the_ interme-
diate and the larg® regions isD.,=0.943, which is very
L-1 close to the valueD,=0.93+0.01 obtained by Sakai and
X H a/(afbl,;—bla/,1)|0), (15  Takahashi. However, the phase transition is not of the BKT
type but a second-order phase transition that is the same

where we describe the spin state by the Schwinger bosonyhiversality class as thf«‘ 1I;Ialdane lai@etransition in the

that is,a] (b]) creates the&s=1/2 1(|) spin at thejth site, S=1 anisotropic mode’

and |0) is the vacuum of the Schwinger bosons. Here we L

assume PBC. This partially magnetized VBS state had been _ XX yay 7cz 7\ 2

discussed by Oshikawhfor another mode(see also Ref. )2 Hszl‘; [S/S+17 5151 T AS St ngl (S)™
Let us consider the crossing behavior near the pbint (19

=D, on this point of view. The larg® phase is character-

ized by the state Especially, the intermediate region of the mod#l corre-

sponds to theés=1 Haldane phase in E18).

To verify that the poinD=D,, is a second-order phase
| iargen) = H aT(aTbT |0). (16)  transition point, we calculate the couplig The sound ve-
locity is evaluated as 2vg=21.87. Using this value, we

det ineK f S L), x5 L) [Eqgs.(6 =0)],
With the twisted boundary conditionaf,,=al,b/, = eterminek from x: 112 o(L), X 12 o(L) [EaS.(6) (v, =0)]

nd
—bl) the magnetized valence-bond-solid state is described

as

3o Eosa(L)=xoua(L) =LK, (19
[ iavse=2al (albi+Db]a]

AEq+q(L)

_ E(M¢/3+1L)+E(Mg/3—1L)—2E(Mg/3L)
_ . ,

L-1
XH aT(a ]+1 ] ]+1 |O> (17)

while the largeb state is also characterized by E#6). The

state|4ese) has the parity of the space inversie=—1,  as shown in Fig. ®). Extrapolated values of these three are
while the largeb state hasP=1. This explains the Ievel consistent, and we obtaik=23.77. This is smaller than the
crossing betweeAES ;,, o andAES ;, 5 in Fig. 2a). BKT fixed-point value, and the poir®d=D., should be a
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second-order phase transition point. We also estimate the wal T T T T
conformal anomaly number from E¢L4), and check that it
is very close to the expected valae-1.

In the vicinity of the critical pointD=D_,, the width of
the magnetization plateau decreases Ms~|D—D,|?,
where the critical exponent is given by v=1/(2—X.1 )
=8.68

Restricting to three state¥=3/2, 1/2, and—1/2 (in suf- 4

ficiently large magnetic fieldSakai and Takahashi mapped R no plateau

the S=3/2 model to arS=1 generalized anisotropic model 0.2 1

with h=0. In order to investigate the relation between the 0 Y S T ST SO S MO S

S=1 with h=0 and theS=3/2 model in a magnetic field, 0 010203 04 05 06 0.7 08 09 1

we further applied the same analysis to the followiBg A

=3/2 model: FIG. 5. The boundary of the no-plateau, the lalyeand the

magnetized VBS rf-v) regions. The boundary between the no-
plateau and the large-regions, and between the no-plateau and the
magnetized VBS regions{) are the BKT critical lines. The
boundary between the lardge-and the magnetized VBS regions
L L (¢©) is a second-order critical line. The multicritical point of these
+D2, ($)?— hY . (200 regions @) are estimated as\(D)=(0.808,0.817). We also show
! J the Gaussian fixed line in the no-plateau regiof) (

in the region BsA<1. Figure Zb) shows the energy differ-
encesAES 1,0, AES 50, andAEg ., for L=14, A=0.5 4(b)], and obtained consistent results with the argument in
system. The lowest one iSE, . , for smallD andAES,,,  Sec. Il A. As far as we know, this is the first work in which
for large D. In this case, there is a BKT transition betweena no-plateau state and two kinds of plateau states are found
the no-plateau and the lard®+egions.[The crossing point when the parameter is changed in a simple and realistic
of AES 1, 0andAES 1 is the Gaussian fixed poiyt;=0  model. This intermediate region should have the same char-
in the no-plateau regiorK(>4).] acter of the partially magnetized valence-bond-solid state,

We show theA-D diagram in Fig. 5. We found that for and should be characterized by the string order
0.808<A<1, theM=Mg/3 phase structure is the same asparameter~>*and by the edge states for the open boundary
that of theA=1 case, and there exists the intermediate magsystemi*?° reflecting a hidden discrete symmet/y?°But in
netic region D.;<D<D,,). But for 0<A<0.808, the di- our small-size calculation, we could not collect this evi-
rect transition(BKT type) occurs between the no-plateau anddence, because the critical exponent8.68 atD=D_, is
the largeb regions. This boundary runs fromA(D) somewhat large, and it is expected that the correlation length
=(0,1.312) to the multicritical point(0.808,0.81Y. The is large in the intermediate region.
phase structure is topologically the same as that ofShe  We also studied the model with the exchandg énd the

L
Ha=2 (S'S',,+9/S), +ASISE )
J

=1 anisotropic modéf~*®with h=0 (18). on-site(D) anisotropieg20). In this case, we found that for
A <0.808, the intermediate region that exists for the 1
IV. CONCLUSION case disappears. The boundaries of the plateau and the no-

) . o ) . plateau regions are the same as Fig. 1 andthd aniso-
We studied theS=3/2 spin chain with the single-ion an- {ropic model(19).

isotropy in a magnetic fieldl). With the numerical approach
based on the field theoretical analysis, we determined bound-
aries between the plateau and the no-plateau regions and
found an intermediate plateau-region between the no-plateau
(D<D¢;=0.387) and the magnetized lar§e{D.,=0.943 We acknowledge K. Nomura, M. Oshikawa, and T. Sakai
<D) regions. In order to check the critical properties, wefor discussions. The computation in this work was performed
estimated the conformal anomaly number, the averaged scalsing the facilities of the Supercomputer Center, Institute for
ing dimension[Fig. 3b)], and the Gaussian couplifgig.  Solid State Physics, University of Tokyo.
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