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Magnetization-plateau state of theSÄ3Õ2 spin chain with single-ion anisotropy
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We reexamine the numerical study of the magnetized state of theS53/2 spin chain with single-ion anisot-
ropy D(.0) for the magnetizationM5MS/3, whereMS is the saturation magnetization. At this magnetiza-
tion, we find that forD,Dc150.387 the system is critical and the magnetization plateau does not appear. For
D.Dc1, the parameter region is divided into two partsDc1,D,Dc250.943 andDc2,D. In each region, the
system is gapful and theM5MS/3 magnetization plateau appears in the magnetization process. From our
numerical calculation, the intermediate regionDc1,D,Dc2 should be characterized by a magnetized valence-
bond-solid state.
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I. INTRODUCTION

Recently, there has been a considerable interest in
magnetization process of one-dimensional quantum spin
tems. Extending the Lieb-Schultz-Mattis theorem1

Oshikawaet al.2 gave a necessary condition for the appe
ance of the magnetization plateau asp(S2^m&)5 integer,
whereS is the magnitude of the spin,p is the periodicity of
the magnetic ground state in the thermodynamic limit, a
^m& is the magnetization per site.

As a simple case, theS53/2 spin chain with single-ion
anisotropy~D! in a magnetic fieldh,

H5(
j 51

L

Sj•Sj 111D(
j 51

L

~Sj
z!22hM, ~1!

has been studied. HereSj is theS53/2 spin operator at the
j th site, L is the system size, andM is the magnetization
M5( jSj

z . Hereafter, we define the saturation magnetizat
asMS (53L/2). In this model, a magnetization plateau c
appear atM5MS/3 (p51). For D50 (S53/2 Heisenberg
model!, a magnetization plateau does not appear.3 On the
other hand, for largeD, the spin of each site tends to hav
Sz51/2 for M5MS/3, and a magnetization plateau appea
Oshikawaet al.2 checked numerically that a magnetizatio
plateau appears forD52. Sakai and Takahashi4 studied this
model with the numerical diagonalization calculation usi
the phenomenological renormalization-group~PRG! analy-
sis, and found that the transition point isDc50.9360.01.
They concluded that this point is the Berezinskii-Kosterli
Thouless~BKT! transition5–7 point, that is, the plateau an
the no-plateau transition point. Although the PRG analysi
a powerful method to study the second-order phase tra
tion, this is not sufficient for the BKT transition because
the singular behavior of the energy gap and of the logar
mic size dependence of excitation energies. Thus, we th
that it is worthwhile to reexamine this problem by use
another numerical approach.

The organization of this paper is as follows. In the ne
section, we consider an effective continuum model in or
to investigate the mechanism of the appearance of theM
5MS/3 plateau. In Sec. III, we show the numerical meth
PRB 620163-1829/2000/62~2!/940~6!/$15.00
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and the results with the numerical diagonalization data.
study the system, we first consider the finite-size behav
with conformal field theory and the renormalization-gro
analysis. Next, using them, we determine the boundary of
plateau and the no-plateau regions, and also check the
cal behavior. The last section gives our conclusion.

II. EFFECTIVE CONTINUUM MODEL

For the magnetizationM5MS/3, the effective continuum
model describing the low-energy physics is given by2

Heff5E dx

2p FvSK~pP!21
vS

K S df

dx D 2G
1vSyfE dx

2p
cosA2f, ~2!

where P is the momentum density conjugate tof,
@f(x),P(x8)#5 id(x2x8), vS is the sound velocity of the
system. The dual fieldu is defined as]xu5pP. The corre-
lation exponents of several operators are governed by
coupling K and the scaling dimension of the operat
A2 cosA2f is x5K/2. Thus, the second term in the Ham
tonian ~1! is relevant forK,4 and irrelevant forK.4.

The one-loop renormalization-group equations of t
model are given by

dK~L !21

d ln L
5

1

8
yf

2 ~L !,
dyf~L !

d ln L
5S 22

K~L !

2 D yf~L !,

whereL is an infrared cutoff. These are the recursion re
tions of Kosterlitz.7 The renormalization-group flow is
shown in Fig. 1. In regionA, the couplingK renormalized to
a finite value andyf to zero; the system is critical and th
corresponds to the no-plateau region in the spin system
regionsB andB8, K renormalized to 0 anduyfu to `; these
regions are massive phases and the fieldf is locked top and
0 for B and B8 respectively. There is a separatrix 32K21

28 lnK212yf
25818 ln 4 that separates the infrared stab

region~A! from the infrared unstable regions (B andB8). On
this separatrix the BKT transition takes place. Near (K,yf)
940 ©2000 The American Physical Society
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5(4,0), and with the notationK54(11y0/2), the BKT tran-
sition point is on the lineuyfu5y0, and we obtain

y0 ~L !5
y0

y0 ln~L/L0!11
, ~3!

wherey0 and L0 are the bare values, andy0 flows to zero
very slowly. Near the transition point andy0,uyfu, the en-
ergy gap—that is, the width of the plateau—behaves sin
larly asDh;exp(2const/Auyfu2y0).

According to the numerical calculation by Oshikaw
et al.2 for the S53/2 Heisenberg chain (D50) at the mag-
netizationM5MS/3, the Gaussian couplingK is K'4.4, @in
the notation of Ref. 2, the compactification radius is given
R5(2pK)21/250.95/A8p#, and the system is gapless~no
plateau!. This value is slightly larger than the BKT critica
~fixed point! couplingK54.

III. NUMERICAL APPROACH AND RESULTS

A. Finite-size behavior

In order to study numerically, let us consider the finit
size behavior of the effective model~2! based on the confor
mal invariance.8 The scaling dimension of the primary fiel
Om,n5exp(imA2f1 inA2u) for the fixed-point Hamiltonian
(yf50) with the periodic boundary condition~PBC! is
given by

xm,n5
K

2
m21

1

2K
n2, ~4!

where m and n are the ‘‘magnetic’’ and the ‘‘electric’’
charges in the Coulomb gas.9 According to the conforma
field theory, the state of the finite-size system has a co
spondence to the operator in the infinite-size system, and
excitation energy of the finite-size system is given by

DEm,n~L !5Em,n~L !2Eg~L !5
2pvS

L
xm,n , ~5!

FIG. 1. Renormalization-group flow diagram. The bold lin
~separating regionsA and B, and A and B8) are the BKT critical
lines. On the dotted line between regionsB andB8 (yf50,K,4),
a second-order phase transition occurs.
u-

y

-

e-
he

whereEg(L) is the ground-state energy of theL-site system
with PBC.

The BKT transition takes place between the gapless
gapful regions, and the PRG analysis is affected by sev
irrelevant corrections sensitively. Moreover, on the transit
point, there exists a logarithmic size correction in the ex
tation energy. PRG analysis does not suppose these feat
In order to determine the BKT transition point, we apply t
method proposed by Nomura and Kitazawa10 ~see also Refs.
11 and 12!, which is free from the logarithmic size correc
tion. If we can have the half-integer for the ‘‘magnetic
chargem, which is not permitted for PBC by the translation
symmetry, we have the following finite-size spectrum f
m561/2:

x61/2,0
c ~L ![

L

2pvS
DE61/2,0

c ~L !5
K~L !

8
1

1

2
yf~L !,

x61/2,0
s ~L ![

L

2pvS
DE61/2,0

s ~L !5
K~L !

8
2

1

2
yf~L !, ~6!

where the energiesDE61/2,0
c,s (L) correspond to the operator

A2 cosf/A2 andA2 sinf/A2, respectively. The term with
yf comes from the first-order perturbation and from the o
erator product expansions,13

A2 cosA2fFA2 cos
1

A2
fG;A2 cos

1

A2
f,

A2 cosA2fFA2 sin
1

A2
fG;A2 sin

1

A2
f.

Near the BKT transition pointuyfu5y0 @K54(11y0/2)#,
definingyf56y0(11t) wheret measures the distance from
the transition point, we have foryf.0

x61/2,0
c ~L !5

1

2
1

3

4
y0~L !S 11

2

3
t D ,

x61/2,0
s ~L !5

1

2
2

1

4
y0~L !~112t !, ~7!

and foryf,0,

x61/2,0
c ~L !5

1

2
2

1

4
y0~L !~112t !,

x61/2,0
s ~L !5

1

2
1

3

4
y0~L !S 11

2

3
t D . ~8!

On the other hand, for (m,n)5(0,62), corresponding to the
operatore6 i2A2u, we have

x0,62~L ![
L

2pvS
DE0,62~L !5

2

K
5

1

2
2

1

4
y0~L !. ~9!

In these scaling dimensions, the logarithmic size correcti
are expressed byy0(L). From Eqs.~7!, ~8!, and~9!, energy
differencesDE61/2,0

s(c) (L) and DE0,61 cross linearly at the
BKT transition point t50 for yf.0(yf,0), and this be-
havior can be used to determine the BKT critical point.
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From Eq. ~6!, DE61/2,0
c and DE61/2,0

s cross atyf50.13

This is the Gaussian fixed point. ForK,4, the operator
A2 cosA2f, which is in the second term of the Hamiltonia
~2!, is relevant and a second-order phase transition occu
this point. On this transition point, we haveDE61/2,0

c,s

,DE0,62 from K,4.
The ‘‘electric charge’’n in Eq. ~5! relates to the variation

of the magnetization fromM5MS/3, and the excitation en
ergy DE0,62 in the spin system is described as

DE0,62~L !

5
E~MS/312,L !1E~MS/322,L !22E~MS/3,L !

2
, ~10!

whereE(M ,L) is the lowest energy for the magnetizationM
with the PBC. The excitation energies corresponding to
operatorA2 cosf/A2 andA2 sinf/A2 are obtained by the
two low energies with the twisted boundary condition~TBC!
~Refs. 17–20! SL11

6 52S1
6 , SL11

z 5S1
z as

DE61/2,0
c ~L !5ETBC~MS/3,L,1!2E~MS/3,L !, ~11!

DE61/2,0
s ~L !5ETBC~MS/3,L,21!2E~MS/3,L !,

whereETBC(MS/3,L,P) is the lowest energy with the mag
netizationM5MS/3 and with the parityP: Sj→SL2 j 11.

B. Numerical results

Here, we show our numerical results. We calculate
energy of finite-size systemsL58, 10, 12, 14 with the nu-
merical diagonalization calculation. In the regionD.0, the
lowest energy state with the magnetizationM and with PBC
has the parityP5(21)M1L/2 and the momentumq5(M
1L/2)3p.

Figure 2~a! shows the energy differencesDE61/2,0
c ,

DE61/2,0
s , and DE0,62 for L514 systems. We find tha

among these three energies the lowest one isDE0,62 for
smallD(0,D,Dc1

) andDE61/2,0
c for largeD(Dc2,D). In

the intermediate regionDc1,D,Dc2 , DE61/2,0
s is lower

than DE61/2,0
c and DE0,62. In Fig. 1, the smallD region 0

,D,Dc1 should correspond to regionA, the intermediate
regionDc1,D,Dc2 to B, and the largeD region toB8.

From the critical properties of the effective model~2! @see
Eqs. ~7! and ~9!#, the pointDc1 should be a BKT critical
point. The size dependence of the crossing points betw
DE61/2,0

s andDE0,62 is shown in Fig. 3~a! and the extrapo-
lated value is given byDc150.387. For smallD(,Dc1), the
excitation spectrum is gapless and there does not exist a
teau in the magnetization curve.

In order to check this, we calculate the averaged sca
dimension,10–12

@x61/2,0
c ~L !13x61/2,0

s ~L !#/4, ~12!

at the pointD5Dc1. From Eq. ~7!, this value cancels the
leading logarithmic size correction, and should be 1/2 aD
5Dc1. To calculate the scaling dimension, we need
sound velocityvS . This can be calculated using the lowe
energy withM5MS/3 and the wave numberq52p/L @cor-
responding to the U~1! current#,
at

e

e

en
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FIG. 2. ~a! Energy differencesDE61/2,0
c (s), DE61/2,0

s (d), and
DE0,62 (L) for the system~1! with L514. The crossing point of
DE61/2,0

s andDE0,62 is the BKT critical point. The crossing poin
of DE61/2,0

c and DE61/2,0
s is a second-order phase transition poin

~b! Energy differencesDE61/2,0
c (s), DE61/2,0

s (d), and DE0,62

(L) for the system~20! with D50.5 andL514. The crossing
point of DE61/2,0

c and DE0,62 is the boundary between the no
plateau and the large-D regions. The crossing point ofDE61/2,0

c and
DE61/2,0

s is the Gaussian fixed point in the no-plateau region.

FIG. 3. ~a! Size dependence of the crossing point between
energy differencesDE61/2,0

s andDE0,62. The BKT critical point is
estimated asDc150.387.~b! Size dependence of the averaged sc
ing dimension (x61/2,0

c 13x61/2,0
s )/4 at the BKT critical pointDc1

50.387.
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vS~L !5
E~MS/3,L,q52p/L !2E~MS/3,L !

2p/L
. ~13!

We extrapolate this finite-size value in the polynomial
1/L2, and obtain 2pvS520.06. Figure 3~b! shows the size
dependence of the value~12!. We can see that the extrapo
lated value is very close to the expected one 1/2.L22 cor-
rection comes from irrelevant operators with scaling dim
sion x54.8 We also calculate the conformal anoma
numberc from

E~MS/3,L !

L
5e^m&51/22

pvSc

6L2
1•••, ~14!

wheree^m&51/2 is the energy per site of the limitL→`, c is
the conformal anomaly number, and••• means the higher
order size correction. We estimatec at D5Dc1 asc50.97,
which is close to the expected valuec51.

Thus, we can conclude that the pointD5Dc1 is the BKT
critical point. The width of the plateau near the transiti
point behaves asDh;exp(2const/AD2Dc1).

According to Eq.~6!, the crossing pointDc2 between
DE61/2,0

c andDE61/2,0
s should be a second-order phase tra

sition point (K,4 andyf50). For largeD(Dc2,D), the
system is in the large-D region and a plateau appears in t
magnetization curve atM5MS/3. Thus, we have anothe
massive phase in the regionDc1,D,Dc2. As a possibility,
this intermediate region should be characterized by the
lowing partially magnetized valence-bond-solid~VBS! state:

ucmVBS
~PBC! &5aL

†~aL
†b1

†2bL
†a1

†!u

3 )
j 51

L21

aj
†~aj

†bj 11
† 2bj

†aj 11
† !u0&, ~15!

where we describe the spin state by the Schwinger bos
that is,aj

† (bj
†) creates theS51/2 ↑(↓) spin at thej th site,

and u0& is the vacuum of the Schwinger bosons. Here
assume PBC. This partially magnetized VBS state had b
discussed by Oshikawa21 for another model~see also Ref. 2!.

Let us consider the crossing behavior near the poinD
5Dc2 on this point of view. The large-D phase is character
ized by the state

uc largeD&5)
j 51

L

aj
†~aj

†bj
†!u0&. ~16!

With the twisted boundary condition (aL11
† 5a1

† ,bL11
† 5

2b1
†), the magnetized valence-bond-solid state is descri

as

ucmVBS
~TBC!&5aL

†~aL
†b1

†1bL
†a1

†!

3 )
j 51

L21

aj
†~aj

†bj 11
† 2bj

†aj 11
† !u0&, ~17!

while the large-D state is also characterized by Eq.~16!. The
stateucmVBS

~TBC!& has the parity of the space inversionP521,
while the large-D state hasP51. This explains the leve
crossing betweenDE61/2,0

c andDE61/2,0
s in Fig. 2~a!.
f

-

-

l-

s,

e
en

d

The size dependence of the crossing point is shown
Fig. 4~a!. The estimated critical point between the interm
diate and the large-D regions isDc250.943, which is very
close to the valueDc50.9360.01 obtained by Sakai an
Takahashi. However, the phase transition is not of the B
type but a second-order phase transition that is the s
universality class as the Haldane–large-D transition in the
S51 anisotropic model,14–16

HS515(
j 51

L

@Sj
xSj 11

x 1Sj
ySj 11

y 1DSj
zSj 11

z #1D(
j 51

L

~Sj
z!2.

~18!

Especially, the intermediate region of the model~1! corre-
sponds to theS51 Haldane phase in Eq.~18!.

To verify that the pointD5Dc2 is a second-order phas
transition point, we calculate the couplingK. The sound ve-
locity is evaluated as 2pvS521.87. Using this value, we
determineK from x61/2,0

s (L), x61/2,0
c (L) @Eqs.~6! (yf50)#,

and

L

2pvS
DE0,61~L !5x0,61~L !51/2K, ~19!

DE0,61~L !

5
E~MS/311,L !1E~MS/321,L !22E~MS/3,L !

2
,

as shown in Fig. 4~b!. Extrapolated values of these three a
consistent, and we obtainK53.77. This is smaller than the
BKT fixed-point value, and the pointD5Dc2 should be a

FIG. 4. ~a! Size dependence of the crossing point between
energy differencesDE61/2,0

c and DE61/2,0
s . The critical point be-

tween the intermediate and the magnetic large-D regions is esti-
mated asDc250.943. ~b! ParameterK obtained by the data
x61/2,0

c 5K/8 (s), x61/2,0
s 5K/8 (d), and x0,6151/2K (L). The

extrapolated value isK53.77.
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second-order phase transition point. We also estimate
conformal anomaly number from Eq.~14!, and check that it
is very close to the expected valuec51.

In the vicinity of the critical pointD5Dc2, the width of
the magnetization plateau decreases asDh;uD2Dc2un,
where the critical exponentn is given by n51/(22x61,0)
58.68

Restricting to three statesSz53/2, 1/2, and21/2 ~in suf-
ficiently large magnetic field! Sakai and Takahashi mappe
the S53/2 model to anS51 generalized anisotropic mode
with h50. In order to investigate the relation between t
S51 with h50 and theS53/2 model in a magnetic field
we further applied the same analysis to the followingS
53/2 model:

HD5(
j

L

~Sj
xSj 11

x 1Sj
ySj 11

y 1DSj
zSj 11

z !

1D(
j

L

~Sj
z!22h(

j

L

Sj
z , ~20!

in the region 0<D<1. Figure 2~b! shows the energy differ
encesDE61/2,0

c , DE61/2,0
s , and DE0,62 for L514, D50.5

system. The lowest one isDE0,62 for small D andDE61/2,0
c

for largeD. In this case, there is a BKT transition betwe
the no-plateau and the large-D regions.@The crossing point
of DE61/2,0

c andDE61/2,0
s is the Gaussian fixed pointyf50

in the no-plateau region (K.4).#
We show theD-D diagram in Fig. 5. We found that fo

0.808,D,1, the M5MS/3 phase structure is the same
that of theD51 case, and there exists the intermediate m
netic region (Dc1,D,Dc2). But for 0,D,0.808, the di-
rect transition~BKT type! occurs between the no-plateau a
the large-D regions. This boundary runs from (D,D)
5(0,1.312) to the multicritical point~0.808,0.817!. The
phase structure is topologically the same as that of thS
51 anisotropic model14–16 with h50 ~18!.

IV. CONCLUSION

We studied theS53/2 spin chain with the single-ion an
isotropy in a magnetic field~1!. With the numerical approach
based on the field theoretical analysis, we determined bou
aries between the plateau and the no-plateau regions
found an intermediate plateau-region between the no-pla
(D,Dc150.387) and the magnetized large-D (Dc250.943
,D) regions. In order to check the critical properties, w
estimated the conformal anomaly number, the averaged s
ing dimension@Fig. 3~b!#, and the Gaussian coupling@Fig.
he

-

d-
nd
au

al-

4~b!#, and obtained consistent results with the argumen
Sec. III A. As far as we know, this is the first work in whic
a no-plateau state and two kinds of plateau states are fo
when the parameter is changed in a simple and real
model. This intermediate region should have the same c
acter of the partially magnetized valence-bond-solid sta
and should be characterized by the string ord
parameter21–23 and by the edge states for the open bound
system24,25 reflecting a hidden discrete symmetry.21,26 But in
our small-size calculation, we could not collect this ev
dence, because the critical exponentn58.68 atD5Dc2 is
somewhat large, and it is expected that the correlation len
is large in the intermediate region.

We also studied the model with the exchange (D) and the
on-site~D! anisotropies~20!. In this case, we found that fo
D,0.808, the intermediate region that exists for theD51
case disappears. The boundaries of the plateau and the
plateau regions are the same as Fig. 1 and theS51 aniso-
tropic model~18!.
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FIG. 5. The boundary of the no-plateau, the large-D, and the
magnetized VBS (m-v) regions. The boundary between the n
plateau and the large-D regions, and between the no-plateau and
magnetized VBS regions (s) are the BKT critical lines. The
boundary between the large-D and the magnetized VBS region
(L) is a second-order critical line. The multicritical point of the
regions (d) are estimated as (D,D)5(0.808,0.817). We also show
the Gaussian fixed line in the no-plateau region (3).
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