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Reversible thermal fusing model of carbon black current-limiting thermistors
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Composites of carbon black particles in polyethylene exhibit an unusually rapid increase in resistivity as the
applied electric field is increased, making this material commercially useful as current-limiting thermistors,
also known as automatically resettable fuses. In this application the composite is in series with the circuit it is
protecting: at low applied voltages the circuit is the load, but at high applied voltages the composite becomes
the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network
of nonlinear resistors. Each resistor has a resistance that depends explicitly and reversibly on its instantaneous
power dissipation. This model predicts that in the soft fusing, or current-limiting, regime, where the current
through the composite decreases with increasing voltage, a platelike dissipation instability develops normal to
the applied field, in agreement with experimental observations, which is solely due to fluctuations in the
microstructure.
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INTRODUCTION

The electrical conductivity of composites of conducti
carbon-black particles dispersed in a solid insulating po
meric matrix is of significant interest because of the wid
spread applications of this material, such as current-limit
thermistors, self-regulating heating elements, xerograp
inks, static electricity dissipation devices, electrical ca
sheathing, etc. A novel property of this material is its e
tremely large, positive thermal coefficient of resistan
which is roughly understood as follows. At sufficiently hig
concentrations of carbon black, percolating paths of partic
exhibit a dc conductivity that is sensitively dependent on
poly~ethylene!-filled gaps between particles. When the te
perature of the composite is increased the polymer expa
increasing the gaps only slightly, yet greatly increasing
composite resistivity.~For a review of this phenomena se
Carmana.1! Experiments on the temperature dependence
the conductivity,2,3 measured on isothermal samples with
very small current density, show a very abrupt increase in
resistance at;133 °C, which is related to the sudden speci
volume increase that accompanies melting of the semic
talline poly~ethylene! matrix. In fact, when the resistance
plotted against the thickness of the sample, a smooth, fa
than-exponential dependence of the resistivity is found.2

When a carbon black composite is used as a current
iting thermistor, self-heating can lead to nonisothermal te
perature fields, which can develop into pronounced elec
field and dissipation instabilities within the device. In a typ
cal application, the thermistor is electrically in series with
circuit it is protecting. Under normal operating condition
the resistance of the circuit is greater than that of the th
mistor, so the voltage drop across the thermistor is sm
However, should a serious circuit short occur, the resista
of the thermistor will become much greater than the rema
ing electrical path to ground and the predominate volta
drop V will eventually occur across the composite. If th
PRB 620163-1829/2000/62~14!/9390~8!/$15.00
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remaining shorted circuit inductanceL is significant, the rate
of current rise,V/L, can be sufficiently low that the therma
diffusion length will greatly exceed the average separation
the highly dissipative fraction of the carbon black phase
fore current limiting occurs. This can be referred to as aslow
fusingregime. In this circumstance a continuum model of t
composite should be accurate, and this has been pursu
the work of Dougal4 and of Loseret al.5 who have modeled
both the temperature and electric fields in a one dimensio
thermistor, during a current limiting transient.

On the other hand, if the remaining shorted circuit indu
tance is small the current rise rate is high, and if the curr
density through the composite is sufficiently large, the te
perature distribution within the granular composite will ha
large local variations, so that a smooth temperature field
not attained. In this regime the granularity of the compos
can lead to large electric field instabilities that can precipit
breakdown, so this might be an operating condition tha
impractical, but interesting nonetheless.

For the heating rate to be rapid enough for the compo
granularity to generate instabilities, we require a signific
temperature rise in the particle gaps, relative to the surrou
ing media. This circumstance can cause current limiting
occur before thermal diffusion smooths local temperat
variations, which we define asfast fusing. Fast fusing is fa-
vored by low thermal conductivity of the surrounding m
dium, and a high Joule heating in the gaps, as discusse
detail below. This rapid heating regime is probably mo
likely when the carbon black particles form aggregated
mains of appreciable size, and is especially important w
the carbon black phase is near the percolation threshold.
cause these materials are often manufactured to be clos
the percolation threshold, the relevant length scale for th
mal diffusion to eliminate the effects of composite granul
ity is probably of the order of the spatial correlation length
the so-called conducting backbone, under the assump
that the occurrence of ‘‘hot bonds’’ scales with this leng
9390 ©2000 The American Physical Society
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PRB 62 9391REVERSIBLE THERMAL FUSING MODEL OF CARBON . . .
The conducting backbone6 is that fraction of the carbon
black phase that contributes to current conduction, and i
much lower dimensionality than the percolating fraction
the carbon black, defined as the volume fraction of carb
black attached to the infinite cluster. This length scale
comes arbitrarily large as one approaches the percola
threshold.

In both the fast and slow fusing regimes instabilities c
develop, but for quite different reasons. Dougal4 treated the
slow switching case by finite difference computations o
one-dimensional device, using the material parameters o
composite, including the dependence of the electrical c
ductivity on temperature and the heat of fusion of poly~eth-
ylene!. The device was modeled under normal steady s
operating conditions and the temperature field determin
which had a maximum at the center of the composite, m
way between the electrodes, which were of relatively h
thermal conductivity. A circuit short was then introduce
causing the inductance-limited current to gradually incre
through the composite. Because of the initial nonunifo
temperature distribution, an instability then developed at
middle of the sample, due to the positive feedback in t
system. As current limiting developed, the middle of t
sample became much hotter, and therefore more resistiv
that essentially all of the voltage drop was across this nar
region, causing an increase in the field there. When the s
simulation was run from an initially isothermal conditio
this field instability was far less focused, extending throug
out the sample. In operating conditions where the remain
circuit inductance is very high, and the actual device is v
thin, this instability will be significantly broadened.

In this paper we explore the regime where the current
is so fast, and the heating rate is so high, that structural
resistivity fluctuations in the composite drive the develo
ment of instabilities. In this regime the Joule heating p
duced at the resistive contacts between carbon black part
will significantly raise the gap temperature relative to t
surrounding material, causing runaway contact resista
Our three-dimensional model of these composites is ru
mentary. First, a real carbon black composite is treated
randomly distributed hard spheres and mapped onto a
work of nonlinear resistors; second, the resistivity rise
particle contacts is taken to be a nonlinear, reversible fu
tion of the instantaneous local Joule heating, a nonobvious
assumption~at least to us! which follows from the consider-
ations given below. The resistance changes propagate
trically through the network, not thermally.

The expression that relates the contact resistance ex
itly to the dissipation has an exponent that is a free par
eter. We find that when this exponent is just large enoug
cause current limiting behavior, a two-dimensional, platel
instability develops orthogonal to the applied field. The
cation of this instability is due to structural and contact
sistance fluctuations in the disordered composite, and
width is determined by the proximity to the percolatio
threshold. It should be emphasized that in this model, at
applied fields the composite is isothermal. The instability i
result of composite granularity and because it is extrem
narrow, it could lead to breakdown.

Various microscopic models have been proposed to
plain this increase in contact resistance; e.g., some sug
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ing that the contact resistance between particles can be m
eled by quantum mechanical tunneling currents, which
exponentially dependent on the particle gaps.7–9 Classical
conduction effects can also be important, since the con
resistance between spherical particles in a conducting
aligned with the field depends on the logarithm of the dime
sionless gap. Also, real particles are rough, so classical e
singularities occur in the electrical field at the particle s
faces, creating highly gap-sensitive conduction. Regard
of the microscopic details of the conductivity mechanis
the conductivity of these particle composites is a nonlin
network problem that is subject to strong positive feedba
and catastrophic failure.

A significant amount of work has been done on netwo
that exhibit catastrophic failure. This work falls into tw
classes: Resistor-Short models, which describe dielec
breakdown, and Resistor-Fuse models, which describe
current-limiting devices and fracture of materials~at the sca-
lar level!. Resistor-Short models consist of linear resisto
that become electrical shorts when a critical volta
drop10–13 or power dissipation14,15 is exceeded. Fluctuation
can be introduced in a variety of ways, including fluctuatio
in the threshold values for shorting, and geometrical disor
such as proximity to the percolation threshold. Resistor-F
models consist of linear resistors that suddenly become e
trical open circuits when a critical voltage is exceeded. Th
models16–18 of hard irreversible fusingshow the sheetlike
failure zones characteristic of fracture, and consider the
fect of critical voltage fluctuations. Thereversible thermal
fusingmodel of current-limiting thermistors we present he
differs from these earlier studies in that the networks
construct are based on simulated three-dimensional~3D!
composite structures, and so have structural disorder m
icking these materials; and the nonlinear resistance is a
tinuous, reversible function of the instantaneous power d
sipation. In the following we describe the nonlinear netwo
model, consider instabilities that occur in series networ
and apply this model to simulated hard sphere compos
including those near the percolation threshold. The sim
model we present might encourage the full scale comp
tion of the properties of current limiting thermistors, usin
realistic structural models, and simultaneously solving
both the heat diffusion and the electric fields in these co
posite materials.

MODEL

Nonuniform self-heating. A key issue is the conditions
under which fast fusing can occur. In other words, und
what conditions can we expect large local temperature va
tions? Real materials have very complex structures, wh
can only be treated accurately by exhaustive discrete num
cal calculations, but some general conclusions can
reached from simple considerations. The carbon black c
posite is in essence a resistor network, where the resis
connect the line of centers~‘‘bonds’’ ! between neighboring
particles. Because the conductivity of carbon black is ma
orders of magnitude greater than that of the polymer,
resistance values are determined by roughly the logarithm
the dimensionless gap between particles~true for perfectly
conducting spheres!, as well as the particle roughness tunn
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9392 PRB 62JAMES E. MARTIN AND MICHAEL B. HEANEY
ing conductivity, etc. Large variations in these resistance
ues can be expected,9 which is a fundamental type of disor
der in the equivalent resistor network, and is thought to b
source of the observed nonuniversality in the conductiv
divergence near the percolation threshold.9 A second issue is
the geometrical disorder that exists in these networks. E
when each resistance is identical, a voltage applied to c
tacting parallel planar electrodes will lead to large variatio
in the currents through each resistor, and thus large va
tions in the voltage drop and Joule heating. This is especi
true near the percolation threshold,19,20 where there has bee
significant investigation of the so-called ‘‘hot bond
problem.14,15Because carbon black current limiters are oft
manufactured near the percolation threshold,21 we envision
sparse, branched current paths, with well isolated hot bo
providing most of the Joule heating. We now need to
velop some idea about the nature of fusing in these mater

The Joule heating in the hot bonds will largely occur
the resistive gaps between particles. Consider the elemen
problem of a point source of heatQ in a three-dimensiona
continuum. If heat is instantaneously delivered at the orig
the distribution of heat in a volumed3r around r will be
given by the random walk result

p~r ,t !d3r 5~4pDt !23/2exp~2r 2/4Dt !d3r , ~1!

where D is the thermal diffusivity, and the integral of th
distribution is normalized to unity. If heat is supplied at t
origin at a constant rateQ̇, the distribution of heat will be

Q~r ,t !d3r 5Q̇E
0

t

p~r ,t2s!dsd3r . ~2!

The temperature rise field will then be given byDT(r ,t)
5(1/cpr)Q(r ,t), wherecp is the constant pressure heat c
pacity per unit mass andr is the density of the material
From Eqs.~1! and ~2! the temperature rise is

DT~r ,t !d3r 5
Q̇

4pcprDr
3erfc~r /A4Dt !d3r , ~3!

where erfc(x) is the complementary error function. Th
function decays faster than exponentially, having the lim
erfc(x!1)'1 and erfc(x@1)'0. Thus the temperature ris
field decays as 1/r for distances small compared to the d
fusion lengthA4Dt and rapidly approaches zero for larg
distances, rather like a screened Coulomb potential. The
that the stationary state result is Coulombic on length sc
r !A4Dt is trivial, since the time-independent thermal fie
is just described by Laplace’s equation. The thermal grad
is then equivalent to the electric field, and Gauss’s theo
guarantees that the heat flux through a closed spherical
face is independent of it’s radius—the definition of stea
state.

Now we must apply this result to composites. In terms
the thermal conductivityk5cprD the temperature rise nea
the point source will quickly approachDT(r ,t)5Q̇/4pkr ,
and will not increase beyond this. In the particle gap
heating is uneven, but we can at least expect that hea
occurs within a domain that scales as the particle radiua.
Because the heat is being generated in a distributed so
the average temperature rise in this region will scale asDT
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}Q̇/ka. This temperature rise will be large when the heati
rate is large and/or the source is of small spatial extent an
the thermal conductivity is small. This temperature rise w
occur very quickly, on the time scalet1'a2/6D.

To relate this result to real composites we first stipul
that we are in the regime whereDT}Q̇/ka is sufficiently
large to cause substantial nonlinearities in the contact re
tance between particles, presumably by achieving melting
the crystalline domains in the poly~ethylene!. Consider the
effect of having many active heat sources~hot bonds! dis-
tributed in space with an average separationj. The tempera-
ture riseDT}Q̇/ka achieved at any hot bond at timet1
'a2/6D will persist until heat finally floods in from the
many other active sources, and this will be on a timesc
t2'j2/6D. If j@a there will be a substantial time where th
emergence of a strong temperature dependent contact r
tance is transmitted through the composite only electrica
not thermally. In this time domain, it is a good approxim
tion to treat the composite as a network of nonlinear resis
whose contact resistance is a function of temperature, wh
in turn is only proportional to the rate of heat production, i
the instantaneousiv drop across that resistor.

To obtain the transition to uniform heating, one can in
grate Eq.~3! over then heat sources in the thermistor volum
V, each of which has a heat productionQ̇. The spatially
averaged temperature rise is then linear in time in this a
batic approximation

DT~ t !5
n

V

Q̇

4pcprD E 1

r
erfc~r /A4Dt !d3r 5

Q̇tot

cpM
t.

~4!

HereQ̇tot5nQ̇ is the total Joule heating in the composite
massM.

Estimating the temperature rise in the hot zones betw
particles is not simple, but it is at least clear that the me
heat rise in the particle gaps will be the overall Joule heat
of the composite, divided by the total volume fraction
polymer between the particle gaps. This will probably lead
very large local heating rates, especially in the hot bonds
real materials there is also a substantial heat of fusion of
poly~ethylene!, and this should increase heat localizatio
making the fast fusing regime more attainable. It is like
that in a real device this regime can be achieved, thoug
might immediately precipitate breakdown.

To summarize, in the following the composite is treat
as a voltage-controlled device and its resistivity increa
with applied voltage is determined. As the applied voltage
ramped up, Joule heating produced at the resistive par
contacts raises the temperature locally, causing the temp
ture to rise in that region, which further increases the con
resistance. As the temperature increases, a steady state
ation evolves as shown above, and the gap temperatu
determined by the balance of heat production and diffusi
This regime ends when heat from nearby hot bonds diffu
in ~times large compared tot2'j2/6D) which reduces tem-
perature variations in the material and leads to a more
form thermal field. The following applies only to curren
limiting behavior on times short compared tot2 .
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Thermal fusing model. We model this system abstract
and qualitatively by a network of nonlinear resistors. Ea
conductor represents the contact resistance between ca
black particles in contact, so the carbon black particles
the nodes of the network. The conductance of each bon
assumed to be of the form

g5
g0

11@~ i / i 0!~Dv/v0!#a 5
g0

11@~g/g0!~Dv/v0!2#a , ~5!

wherei 5gDv is the current across the conductor,Dv is the
voltage drop,iDv is the Joule heating, anda.0 is an ex-
ponent that determines how rapidly the conductance cha
with heat production. A few limits of this equation ar
readily obtained. WhenDv/v05& the bond conductance i
given byg/g051/2 for all a. For smallDv/v0 the result

g/g0>
11a~Dv/v0!2a

11~11a!~Dv/v0!2a >12~Dv/v0!2a, ~6!

is obtained, showing that for any fixed valuea.0, taking the
limit Dv→0 givesg5g0 . Finally, for values ofDv/v0@1
the conductance scales likeg}Dv22a/(11a). In this paper
we restrict our attention to exponent values in the rangea
>0.5, which covers the interesting range of nonlinear n
work behavior. We apply this nonlinear network model
both 1D and 3D networks.

The unstable nature of networks of these nonlinear
ments can be understood by considering just two conduc
in series, labeled as in Fig. 1. For simplicity, we setv051.
One node is at ground potential, one is at an applied pote
V, and the potential of the central nodev2 is to be deter-
mined numerically, by an iterative Laplacian relaxation.
do this, one first guesses the potential of the central no
and then determines the conductancesg1 and g2 from Eq.
~5!, with Dv15v2 and Dv25V2v2 . The next approxima-
tion to the correct value of the floating potential will then
given by solving the conductance-weighted average of
neighboring potentials, that is,

v285
g1301g23V

g11g2
. ~7!

The differenceDv25v282v2 is therefore the correction to
the estimated voltage, and understanding how this differe
depends onv2 for various values of the exponenta and the
applied voltageV illustrates the nature of the instabilitie
involved.

In Fig. 2 we show the stability plot for the case whe
a5 1

2 . In this case there is only a single stable value ofv2
5V/2, and when the estimated value ofv2 is too small, the
correction is positive, so that successive iterations will le
to this stable value, regardless of the applied voltage. L
wise, when the estimated value ofv2 is too large, the cor-

FIG. 1. The series network of two nonlinear conductors used
illustrate the emergence of instabilities.V is the applied potential,
andg the conductances.
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rection is negative, and successive iterations will again l
to v25V/2. When the exponenta52, this completely stable
behavior is altered, Fig. 3. Only for applied voltages le
than the threshold value;2.84 is a stable regime now ob
served, where only the single solutionv25V/2 found. For
larger values of the applied voltage, the solutionv25V/2
becomes unstable, since the derivativedDv2 /dv2 becomes
positive, and two symmetrically disposed stable solutions
pear with negative values ofdDv2 /dv2 . Thus at high ap-
plied voltages, an instability occurs where essentially all
voltage drop will be over one conductor of very low condu
tanceg}V22a/(11a), and the other conductor will haveg
>1. The exponenta51 marks the boundary of stable an
unstable nonlinear network models, Fig. 4. In this case th

o

FIG. 2. When the exponenta in Eq. ~5! is less than 1.0~in this
casea50.5) the voltage of the central node is always stable,
gardless of the applied potential. Furthermore,Dv2 increases with
the applied potentialV.

FIG. 3. When the exponenta in Eq. ~5! is greater than 1.0~in
this casea52) an instability develops at the central node as
applied voltage increases. This instability occurs when the der
tive dDv2 /dv2 changes sign from negative to positive, which o
curs in this case atV>2.84.
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9394 PRB 62JAMES E. MARTIN AND MICHAEL B. HEANEY
is a single stable solution atv25V/2, but at high applied
voltages the derivativedDv2 /dv2 vanishes in the vicinity of
the solution. Thus voltage fluctuations can be expected to
quite large in a network witha>1, and solving numerica
problems in this limit with fixed numerical precision limit
one to applied voltages beneath some threshold value.

Fluctuations. The model just described lacks fluctuation
and clearly these can be important in real physical syste
Fluctuations can be introduced in the voltage crossover t
v0 or in the scale of the conductanceg0 . In some of the
following simulations we introduced fluctuations intog0 to
avoid numerical problems associated with defining partic
in contact with the electrodes, as discussed below. Introd
ing these fluctuations has one subtle effect—thea51 case
shows an instability.

FIG. 4. The casea51 is at the edge of stability. At high applie
voltages the derivativedDv2 /dv2 approaches 0, so that any valu
of v2 is essentially a solution. In this case large voltage fluctuati
are expected to be observed in the floating potential nodes, an
system is quite sensitive to fluctuations in the conductancesg0 and
their crossover voltagesv0 . Numerically, this problem is quite dif-
ficult to solve, requiring ever increasing numerical accuracy as
applied field increases.

FIG. 5. A series network of 10 conductors solved for the c
a51. The node voltages are stable, and the network conductan
inversely proportional to the applied voltage.
be

,
s.
m

s
c-

RESULTS

Series networks. Numerical solutions to simple 1D serie
networks are instructive. It is worth pointing out to those th
might be interested in pursuing this model that these com
tations require unusually high numerical accuracy. For
ample, we found it necessary to solve Eq.~5! for the con-
ductances to full double precision accuracy using a variety
initial guesses and iterative schemes, depending on the v
of a. We then used a Laplacian over-relaxation method w
local update and an over-correction factor of 1.94 to relax
node voltages.

With the exponenta51, the results are shown in
Fig. 5 for a network ofN510 conductors in series. As th
voltage is increased the network remains stable, in that
conductors all have equal potential drops, and thus eq
conductances. The network conductance is then trivia
G215(g21, soG5g/N. Solving Eq.~5! for g gives

s
the

e

e
is

FIG. 6. A series network of 10 conductors solved for the ca
a52 illustrates the emergence of a dissipation instability. The n
work conductance is inversely proportional to theV4/3.

FIG. 7. A comparison between the computedI -V characteristics
of stable and unstable network models, in this case series netw
of ten conductors, shows that the emergence of dissipation insta
ties occurs when the thermal fusing is strong enough to reduce
current with increasing voltage.
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G5
g0

N

A114~V/Nv0!221

2~V/Nv0!2 >g0

v0

V
for V@Nv0 .

~8!

Thus in this special case the conductance becomes inde
dent of the network size in the nonlinear regime. In th
regime the current is then just given byI 5GV5g0v0 , and
is thus independent of the applied voltage. The Joule hea
P does increase with applied voltage, however, and isP
5IV5g0v0V.

The case wherea52, shown in Fig. 6, is more interes
ing, and probably much more relevant to real materials. T
voltage drops across each of the ten conductors remain e
until the applied voltage reaches a critical value, at wh
point an instability occurs and very rapidly essentially all
the voltage drop ends up across a single conductor, and
other conductors end up with conductances close to 1
fact, studies of various system sizes shows that the limi
stability actually occurs at a fixed electric field, which mak
good sense physically. For these large voltages this lead

G>g0S v0

V D 2a/~a11!

~9!

so that the current actually decreases with the applied vol
as

I >g0

v0
2a/~a11!

V~a21!/~a11! ~10!

and the dissipation increases as

P>g0v0
2a/~a11!V2/~a11!. ~11!

Within the context of this power-law Thermal Fusing mod
the strongest soft fusing behavior occurs whena is infinite,
whereuponG;V22, I;V21, andP;V0. Note that in this
limit the power dissipation actually becomes independen
the applied voltage. Numerically computed currents

FIG. 8. The conductivity as a function of hard sphere volu
fraction f when particles with gaps smaller than 2.5% of the p
ticle diameterD have a contact resistancec. HereL is the size of the
simulation volume. The conductivity is zero until the percolati
thresholdfc , whereupon it increases roughly quadratically w
f2fc .
en-
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shown in Fig. 7 for selected values ofa. It is noteworthy that
just when the nonlinear behavior is strong enough to actu
cause the current to decrease with applied voltage, i.ea
51, the dissipation instability occurs.

Simulated 3D composites. The structure of carbon black
polymer composites is complex, apparently consisting of d
persed carbon black aggregates that percolate to form a
ducting network. The experimentally determined percolat
threshold21 for this system is aroundf517 vol. %, so it is
clear that the particle positions are strongly correlated, gi
that for random hard spheres in acontinuum~such as a poly-
mer! the percolation threshold occurs at the random cl
pack concentration of 64 vol. %. There is some confus
over the proper percolation value for particle composit
and this apparently stems from the Scher and Zallen22 inves-
tigation of the percolation volume fraction for a random mi
ture of equal-size spheres of type A and B arranged in c
tact on a periodic lattice. They found that the percolati
threshold for either type of sphere is about 15 vol. %, d
pending somewhat on the lattice type. The Scher-Zallen

-

FIG. 9. ~a! The node potentials are visualized for a system
10 000 hard spheres at 55 vol. %, with a large applied voltage
a52. The ground electrode is at the bottom and the high poten
electrode at the top. Ground potential particles are colored blue,
the color then increases with potential from blue to red to yellow
white. Essentially all of the balls are either blue or white, due to
formation of an instability.~b! Thus all the voltage drop occurs ove
a narrow 2D region, and this is where power dissipation occurs
this visualization, the particle volume is proportional to the pow
dissipation of the conductors to which it is a node. Particles t
essentially do not dissipate are shown in a reduced size.
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sult is probably also relevant to random mixtures of tw
types of hard spheres at the close pack density, thus cau
the confusion, but is not applicable to hard spheres in a c
tinuum.

Rather than try to model the detailed structure of th
complex correlated materials, we took a simpler appro
and generated random hard sphere systems at various
centrations well beneath random close packed. These s
lated composites will not easily percolate if one insists t
only perfectly contacting spheres have conducting pathw
between them. Thus to map these systems onto a condu
network, we simply defined a nonzero threshold for the p
ticle gaps that qualify as conducting paths. Particles clo
than this threshold are considered to have a conducting
between them. Choosing this threshold particle gap to
2.5% of the particle diameter then gives a percolation thre
old of around 42 vol. %, and in point of fact, the value w
choose is completely arbitrary, being immaterial to all of t
issues that follow. With this choice of the particle gap, t
dependence of the linear conductivity~fixed conductances!
on particle volume fraction is shown in Fig. 8.

To investigate the dissipation instabilities that can oc
in these systems we seta52 and slowly ramped up the
applied potential. Results well above the percolation thre
old were computed for a system atf555 vol. %. In Fig. 9~a!
we show a visualization of the particle voltages for a lar
applied voltage that is well into the unstable region.

FIG. 10. ~a! The conductance of the 3D random network of F
9 is shown, with the field applied along the three orthogonal ax
As expected, this conductance decreases asV4/3. ~b! The current is
shown, which decreases asV1/3.
ing
n-

e
h
on-
u-
t

ys
ing
r-
er
th
e

h-

r

h-

e

roughly two-dimensional zone perpendicular to the appl
field can be observed over which essentially all the volta
drop occurs. In Fig. 9~b! we visualize the zone of dissipation
and the plate-like nature of this zone becomes more ap
ent. The dependence of the conductance and current on
applied voltage are shown in Fig. 10.

At this point a word of explanation is in order. We foun
that with the simple model that did not include conductan
fluctuations, the platelike instability always occurred at
electrode. This we attribute to the fact that the particles a
electrode are at fixed potential and create a rough boun
condition that is subtly special. To eliminate this tenden
we introduced small fluctuations into the conductanc
which are certainly reasonable from a physical standpoin

Closer to the percolation threshold, this zone becom
broader, probably increasing as the connectivity correlat
length in the material, which diverges at the percolati
threshold. The zone of dissipation also decreases to ju
few particles, due to the tenuous nature of percolating pa
ways close to the threshold. For samples near the percola
threshold the currents are shown as functions of the app
voltage in Fig. 11. Proximity to the percolation thresho
does not appear to cause the onset of nonlinear behavio
occur at smaller voltages, but this is really a little misleadin
Very close to the critical point such an effect should be o
served, since the length of a conducting path that trave
the sample will increase. Networks near the percolat
threshold do have much smaller maximum currents, and
act as much more sensitive fuses, because these will a
the load at much smaller circuit conductance, due to th
lower conductance. The maximum current near the perc
tion threshold will scale as the conductivity in this model

DISCUSSION

The principal finding we have made is that in the regim
where the fusing behavior is strong enough to generate
rent limiting behavior, an instability develops wherein dis

s.

FIG. 11. Results near the percolation threshold show that
voltage where fusing starts is essentially independent of par
concentration, so that the maximum current is proportional to
conductivity.
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pation occurs in a platelike zone orthogonal to the app
field. This platelike failure occurs at a fixed field in th
sample, essentially independent of the proximity to the p
colation threshold. It is in this unstable region where t
voltage drop and power dissipation occurs. In real materi
the formation of this platelike zone should have a trem
dous impact on the rate of fusing: because Joule heatin
essentially confined to this region, the temperature
should be very fast, causing fusing to occur very quick
However, the narrowness of this instability will lead to tr
mendous fields, which could in turn lead to dielectric brea
down.

Does this platelike electric field instability occur in re
composite systems? In fact, infrared imaging of carbon bl
composites during fusing23 actually shows this platelike elec
tric field instability, and so this model may describe som
aspects of the physics of these devices. But this limited s
cess should not lead one to believe that the thermal fu
model is a realistic description of the actual device, since
instability can occur from continuum models as well.4,5 A
more realistic description of these current-limiting the
mistors would enable the full prediction of the device d
namics over a wide range of self-heating rates. This i
complex issue involving heat production and thermal dif
sion in composites that is beyond the scope of this rudim
tary network model, and would doubtlessly require full sca
finite element modeling of the material—a very difficult n
merical problem in a system of contacting particles with
large conductivity contrast.

CONCLUSIONS

We have proposed a nonlinear network model for the f
ing behavior of carbon black current-limiting thermistor
wherein the conductance of the network elements depe
on their Joule heating in a power law fashion at high appl
voltages. The underlying motivation for this model is expe
ments reported by Heaney2,3 that conclusively show that th
conductivity of these composites is a smooth, strong func
of the thermal expansion of the material, which increases
contact resistance between carbon black particles. T
y

d

r-
e
s,
-
is
e
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model is solved for 1D series networks and a dissipat
instability is shown to occur when the current through t
network actually decreases with increasing applied volta
In the strong fusing limit of this model, the conductan
decreases as the inverse square of the applied voltage at
applied voltages, the current decreases as the inverse vol
and the Joule heating in the composite is independent of
voltage.

Networks constructed from random hard sphere comp
ites show that in 3D networks this dissipation instability
platelike, and roughly orthogonal to the field. Experimen
measurements using thermal imaging23 confirm the develop-
ment of the dissipation instability during thermal fusing. T
existence of this instability should make these devices f
much more rapidly than if this instability did not occur, sinc
heating is confined to a small region in the sample. Beca
the width of this zone should scale as the connectivity c
relation length of the material, one would guess that the
vice dynamics would be sensitive to the particle size, w
small particle systems fusing more rapidly. However, an
stability of small width will result in tremendous electri
field development and subsequent dielectric breakdown,
this might ultimately limit practical applications of these d
vices to slow fusing situations.

Finally, the field at which the instability occurs is inse
sitive to the percolation threshold, but the maximum curr
that can be transmitted through the device should scale a
material conductivity, i.e., should obey a second-order cr
cal point behavior, and so in practical applications these
vices should become more sensitive near the percola
threshold.
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