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Reversible thermal fusing model of carbon black current-limiting thermistors
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Composites of carbon black particles in polyethylene exhibit an unusually rapid increase in resistivity as the
applied electric field is increased, making this material commercially useful as current-limiting thermistors,
also known as automatically resettable fuses. In this application the composite is in series with the circuit it is
protecting: at low applied voltages the circuit is the load, but at high applied voltages the composite becomes
the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network
of nonlinear resistors. Each resistor has a resistance that depends explicitly and reversibly on its instantaneous
power dissipation. This model predicts that in the soft fusing, or current-limiting, regime, where the current
through the composite decreases with increasing voltage, a platelike dissipation instability develops normal to
the applied field, in agreement with experimental observations, which is solely due to fluctuations in the
microstructure.

INTRODUCTION remaining shorted circuit inductanteis significant, the rate
of current rise V/L, can be sufficiently low that the thermal
The electrical conductivity of composites of conducting diffusion length will greatly exceed the average separation of
carbon-black particles dispersed in a solid insulating polythe highly dissipative fraction of the carbon black phase be-
meric matrix is of significant interest because of the wide-fore current limiting occurs. This can be referred to aoav
spread applications of this material, such as current-limitingusingregime. In this circumstance a continuum model of the
thermistors, self-regulating heating elements, xerographicomposite should be accurate, and this has been pursued in
inks, static electricity dissipation devices, electrical cablethe work of Dougdl and of Loseret al® who have modeled
sheathing, etc. A novel property of this material is its ex-both the temperature and electric fields in a one dimensional
tremely large, positive thermal coefficient of resistancethermistor, during a current limiting transient.
which is roughly understood as follows. At sufficiently high  On the other hand, if the remaining shorted circuit induc-
concentrations of carbon black, percolating paths of particlegance is small the current rise rate is high, and if the current
exhibit a dc conductivity that is sensitively dependent on thedensity through the composite is sufficiently large, the tem-
poly(ethyleng-filled gaps between particles. When the tem-perature distribution within the granular composite will have
perature of the composite is increased the polymer expandkrge local variations, so that a smooth temperature field is
increasing the gaps only slightly, yet greatly increasing thenot attained. In this regime the granularity of the composite
composite resistivity(For a review of this phenomena see can lead to large electric field instabilities that can precipitate
Carmand) Experiments on the temperature dependence ofreakdown, so this might be an operating condition that is
the conductivity’® measured on isothermal samples with aimpractical, but interesting nonetheless.
very small current density, show a very abrupt increase in the For the heating rate to be rapid enough for the composite
resistance at-133 °C, which is related to the sudden specificgranularity to generate instabilities, we require a significant
volume increase that accompanies melting of the semicrygemperature rise in the particle gaps, relative to the surround-
talline poly(ethyleng matrix. In fact, when the resistance is ing media. This circumstance can cause current limiting to
plotted against the thickness of the sample, a smooth, fasteoccur before thermal diffusion smooths local temperature
than-exponential dependence of the resistivity is fotind.  variations, which we define dast fusing Fast fusing is fa-
When a carbon black composite is used as a current limvored by low thermal conductivity of the surrounding me-
iting thermistor, self-heating can lead to nonisothermal temdium, and a high Joule heating in the gaps, as discussed in
perature fields, which can develop into pronounced electridetail below. This rapid heating regime is probably more
field and dissipation instabilities within the device. In a typi- likely when the carbon black particles form aggregated do-
cal application, the thermistor is electrically in series with amains of appreciable size, and is especially important when
circuit it is protecting. Under normal operating conditions, the carbon black phase is near the percolation threshold. Be-
the resistance of the circuit is greater than that of the thereause these materials are often manufactured to be close to
mistor, so the voltage drop across the thermistor is smalithe percolation threshold, the relevant length scale for ther-
However, should a serious circuit short occur, the resistancmal diffusion to eliminate the effects of composite granular-
of the thermistor will become much greater than the remainity is probably of the order of the spatial correlation length of
ing electrical path to ground and the predominate voltagehe so-called conducting backbone, under the assumption
drop V will eventually occur across the composite. If the that the occurrence of “hot bonds” scales with this length.
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The conducting backbofds that fraction of the carbon ing that the contact resistance between particles can be mod-
black phase that contributes to current conduction, and is ofled by quantum mechanical tunneling currents, which are
much lower dimensionality than the percolating fraction ofexponentially dependent on the particle g&psClassical
the carbon black, defined as the volume fraction of carbogonduction effects can also be important, since the contact
black attached to the infinite cluster. This length scale beresistance between spherical particles in a conducting path
comes arbitrarily large as one approaches the percolatiodligned with the field depends on the logarithm of the dimen-
threshold. sionless gap. Also, real particles are rough, so classical edge
In both the fast and slow fusing regimes instabilities canSingularities occur in the electrical field at the particle sur-

develop, but for quite different reasons. Dodgatated the faces, creating highly gap-sensitive conduction. Regardless

slow switching case by finite difference computations of a2f the microscopic details of the conductivity mechanism,

one-dimensional device, using the material parameters of '[httle"e conductivity of these particle composites is a nonlinear

composite, including the dependence of the electrical conr—]em’ork problem th_at Is subject to strong positive feedback
ductivity on temperature and the heat of fusion of geti- an('jo\cgtagft.ropr;m fa|Iur<ta. f K has b q work
yleng. The device was modeled under normal steady stat i S'ghn:;.fan tarr:ounh.o fvx{?r a_ljc’h. een ;r;e”on_nte tor S
operating conditions and the temperature field determine at exnibit catastropnic faiiureé. -his work fafls into two

which had a maximum at the center of the composite, migclasses: Resistor-Short models, which describe dielectric

way between the electrodes, which were of relatively highbreakdtolwn.’t. an% R(-BSIStOI’—El;SG tmode:cs, wthlc.;s?hscnbe both
thermal conductivity. A circuit short was then introduced,Curren -IMmiting devices and Iracture of materi e sca-

causing the inductance-limited current to gradually increasj?ar leve). Resistor-Short models consist of linear resistors

through the composite. Because of the initial nonuniform atpwtlg:ome ele(;['rlcr'all tsglroﬁlrfss when O?dcrg:calt vtqltage
temperature distribution, an instability then developed at th ro or power dissipatl IS exceeded. Fiuctuations

middle of the sample, due to the positive feedback in thi<an be introduced in a variety of ways, including fluctuations

system. As current limiting developed, the middle of the'" the threshold values for shorting, and geometrical disorder

sample became much hotter, and therefore more resistive, §8Ch as prox_imity to the per_colation threshold. Resistor-Fuse
that essentially all of the voltage drop was across this narro odels consist of linear resistors that suddenly become elec-

region, causing an increase in the field there. When the san*@bal Ofﬁrllgdrcu“s W_hen a CT‘“CG" vqltage is exceeded. These
simulation was run from an initially isothermal condition, model of hard irreversible fusingshow the sheetlike

this field instability was far less focused, extending throug failure zones characteristic of fracture, and consider the ef-

out the sample. In operating conditions where the remainin ect of critical voltage f|.UC.tl..lati0nS. T_hfeversible thermal
usingmodel of current-limiting thermistors we present here

S . hiah h | o | | thert
circuit inductance is very high, and the actual device is ver differs from these earlier studies in that the networks we

thin, this instability will be significantly broadened. : : .
In this paper we explore the regime where the current risgonstruqt are based on simulated three-dlme_nsubaab .
; gPmposite structures, and so have structural disorder mim-

resistivity fluctuations in the composite drive the develop—![.Cklng these m"’.‘gf”?lS; ?.nd th]:atﬂon_lln(taartresstance 'S a gpn-
ment of instabilities. In this regime the Joule heating pro- INuous, Teversibie function of the Instantaneous power dis-

duced at the resistive contacts between carbon black particlé?%“?n' In thde fo.IIovtvlrE)gl';/'ve dtis?'be the. ”0”"T‘ear nt:\}\/wolzk
will significantly raise the gap temperature relative to theMOdel, consider Instabiliies that occur in Series networks,

surrounding material, causing runaway contact resistanc@.nd apply this model to simulated hard sphere composites,

our three-dimensional model of these composites is rudi|_ncluding those near the percolation threshold. The simple

mentary. First, a real carbon black composite is treated g]odel we present might encourage the full scale computa-

randomly distributed hard spheres and mapped onto a ne jon of the properties of current limiting thermistors, using

work of nonlinear resistors; second, the resistivity rise a ealistic structural mOdeIS’ and simu!tan_eous!y solving for
particle contacts is taken to be a nonlinear, reversible func: Oth the hea_t diffusion and the electric fields in these com-
tion of theinstantaneous local Joule heating nonobvious posite materials.
assumption(at least to uswhich follows from the consider-

ations given below. The resistance changes propagate elec-

trically through the network, not thermally.

The expression that relates the contact resistance explic- Nonuniform self-heatingA key issue is the conditions
itly to the dissipation has an exponent that is a free paramunder which fast fusing can occur. In other words, under
eter. We find that when this exponent is just large enough tevhat conditions can we expect large local temperature varia-
cause current limiting behavior, a two-dimensional, plateliketions? Real materials have very complex structures, which
instability develops orthogonal to the applied field. The lo-can only be treated accurately by exhaustive discrete numeri-
cation of this instability is due to structural and contact re-cal calculations, but some general conclusions can be
sistance fluctuations in the disordered composite, and theeached from simple considerations. The carbon black com-
width is determined by the proximity to the percolation posite is in essence a resistor network, where the resistors
threshold. It should be emphasized that in this model, at lovzonnect the line of centefsbonds”) between neighboring
applied fields the composite is isothermal. The instability is goarticles. Because the conductivity of carbon black is many
result of composite granularity and because it is extremelyprders of magnitude greater than that of the polymer, the
narrow, it could lead to breakdown. resistance values are determined by roughly the logarithm of

Various microscopic models have been proposed to exthe dimensionless gap between partidlegse for perfectly
plain this increase in contact resistance; e.g., some sugges®nducting spherg¢sas well as the particle roughness tunnel-

MODEL
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ing conductivity, etc. Large variations in these resistance val«Q/«a. This temperature rise will be large when the heating
ues can be expectédyhich is a fundamental type of disor- rate is large and/or the source is of small spatial extent and/or
der in the equivalent resistor network, and is thought to be ghe thermal conductivity is small. This temperature rise will
source of the observed nonuniversality in the conductivityoccur very quickly, on the time scatg~a%/6D.

divergence near the percolation threshbiisecond issue is  To relate this result to real composites we first stipulate
the geometrical disorder that exists in these networks. Eveﬂwat we are in the regime wheteT=0/«a is sufficiently

whep each resistance is identical, a voltage applied .to.cor]érge to cause substantial nonlinearities in the contact resis-
.tactmg parallel planar electrodes \.N'” lead to large Va”at'on.stance between particles, presumably by achieving melting of
in the currents through each resistor, and thus large varigp crystalline domains in the pabthylene. Consider the

tions in the voltage drop and Joule heating. This is especiall : . .
true near the percolation threshdff° where there has been ﬁfigeucttegfi: ?Fl)gger\?v?tﬂya?cg\\llgr:ge él ;:gg:ggg)ﬂtihbeo?gris ésr a

significant investigation of the so-called “hot bond” e AToc O/ hieved hot bond .
problem™**®Because carbon black current limiters are oftentUr€ rseAT«Q/«a achieved at any hot bond at timg
~a“/6D will persist until heat finally floods in from the

manufactured near the percolation thresHoldie envision i o ,
any other active sources, and this will be on a timescale

sparse, branched current paths, with well isolated hot bond¥ 5 i e
providing most of the Joule heating. We now need to de2~E&°/6D. If £>a there will be a substantial time where the

velop some idea about the nature of fusing in these material§Mergence of a strong temperature dependent contact resis-
The Joule heating in the hot bonds will largely occur in tance is transmitted through the composite only electrically,

the resistive gaps between particles. Consider the elementapt thermally. In this time domain, it is a good approxima-
problem of a point source of he& in a three-dimensional tion to treat the composite as a network of nonlinear resistors

continuum. If heat is instantaneously delivered at the originVN0S€e contact resistance is a function of temperature, which

the distribution of heat in a volumd3r aroundr will be In turn is only proportional to the rate of heat production, i.e.
given by the random walk result the instant_aneouis; dr(_)p across _that resist_or. _
To obtain the transition to uniform heating, one can inte-
p(r,t)d® =(47Dt) *2exp —r?/4Dt)d°r, (1)  grate Eq(3) over then heat sources in the thermistor volume
V, each of which has a heat productigh The spatially
averaged temperature rise is then linear in time in this adia-
batic approximation

where D is the thermal diffusivity, and the integral of the
distribution is normalized to unity. If heat is supplied at the

origin at a constant rat®, the distribution of heat will be

n Q 1 3 Qot
V4mc,pD | T erfo(r/ 4D d’r = cM
The temperature rise field will then be given ByT(r,t) (4)
=(1/cp,p)Q(r,t), wherec, is the constant pressure heat ca-
pacity per unit mass ang is the density of the material. Here Q,,,=nQ s the total Joule heating in the composite of
From Egs.(1) and(2) the temperature rise is massM.
o Estimating the temperature rise in the hot zones between
3 =7\ 43 particles is not simple, but it is at least clear that the mean
AT(r.Hdr= 4macppDr xerfa(r/y4Dt)d-r, ©) heat rise in the particle gaps will be the overall Joule heating
. . . of the composite, divided by the total volume fraction of
wherg erfc§) is the complementary gerror fur]ctlon. T.h'§ polymer between the particle gaps. This will probably lead to
function decays faster than exponentially, having the I|_m|t§/ery large local heating rates, especially in the hot bonds. In
erfcx<1)~1 and erfcg>1)~0. Thus the temperature rise (o) materials there is also a substantial heat of fusion of the
flelq decays as t/for dlstan_ces small compared to the dif- poly(ethylend, and this should increase heat localization,
fusion length 4Dt and rapidly approaches zero for larger making the fast fusing regime more attainable. It is likely
distances, rather like a screened Coulomb potential. The faghat in a real device this regime can be achieved, though it
that the stationary state result is Coulombic on length scaleﬁight immediately precipitate breakdown.
r<y4Dt is trivial, since the time-independent thermal field T summarize, in the following the composite is treated
is just described by Laplace’s equation. The thermal gradierds a voltage-controlled device and its resistivity increase
is then equivalent to the electric fleld, and Gauss’s theorel’With app“ed Vo|tage is determined. As the app“ed Vo|tage is
guarantees that the heat flux through a closed spherical sWamped up, Joule heating produced at the resistive particle
face is independent of it's radius—the definition of steadycontacts raises the temperature locally, causing the tempera-
state. ture to rise in that region, which further increases the contact
Now we must apply this result to composites. In terms ofresjstance. As the temperature increases, a steady state situ-
the thermal conductivityc=c,pD the temperature rise near ation evolves as shown above, and the gap temperature is
the point source will quickly approacAT(r,t)=Q/4mw«r, determined by the balance of heat production and diffusion.
and will not increase beyond this. In the particle gap theThis regime ends when heat from nearby hot bonds diffuses
heating is uneven, but we can at least expect that heating (times large compared te,~ ¢2/6D) which reduces tem-
occurs within a domain that scales as the particle radius perature variations in the material and leads to a more uni-
Because the heat is being generated in a distributed sourderm thermal field. The following applies only to current
the average temperature rise in this region will scald@s limiting behavior on times short compared tg.

LIt
Q(r,t)d3r=Qf0p(r,t—s)dsd3r. 2 AT(t) = t.
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Thermal fusing modelWe model this system abstractly L NG .
and qualitatively by a network of nonlinear resistors. Each 05 - \‘\\\ |
conductor represents the contact resistance between carbon ) NN
black particles in contact, so the carbon black particles are AN

the nodes of the network. The conductance of each bond is 1.0- A

assumed to be of the form i \ A

A50, [ L]
9= 9o _ Y0 ) 0.0 0.2 0.4 0.6 0.8 1.0
1+[(ilig)(Avlvo)]*  1+[(g/go)(Avlvg)*]*’ vV

wherei =gAv is the current across the conductay is the FIG. 2. When the exponent in Eq. (5) is less than 1.in this

voltage drop,iAv is the Joule heating, and>0 is an ex-  casea=0.5) the voltage of the central node is always stable, re-
ponent that determines how rapidly the conductance changggrdiess of the applied potential. Furthermate,, increases with
with heat production. A few limits of this equation are the applied potentiaV'.

readily obtained. Whedv/vy=v2 the bond conductance is

given byg/go=1/2 for all a. For smallAv/uv, the result rection is negative, and successive iterations will again lead

1+ a(Avlvg)?®

9/go= 1+(1+a)(Avivg)®® =1-(Avlvg)™,

(6)

is obtained, showing that for any fixed valae-0, taking the

to v,=V/2. When the exponent= 2, this completely stable
behavior is altered, Fig. 3. Only for applied voltages less
than the threshold value-2.84 is a stable regime now ob-
served, where only the single solutien=V/2 found. For

limit Av—0 givesg=g,. Finally, for values ofAv/v,>1  larger values of the applied voltage, the solutioy=V/2
the conductance scales lilgge Ay ~2%/(1+4) | this paper becp_mes unstable, since _the derwatdzlevz/dvz becomes
we restrict our attention to exponent values in the range POSitive, and two symmetrically disposed stable solutions ap-
>0.5, which covers the interesting range of nonlinear netP&ar with negative values @Av,/dv,. Thus at high ap-
work behavior. We apply this nonlinear network model to plied voltages,.an instability occurs where essentially all the
both 1D and 3D networks. voltage drop will be over one conductor of very low conduc-
The unstable nature of networks of these nonlinear elel@ncegeV=2*(1*® and the other conductor will hawg
ments can be understood by considering just two conductorg1- The exponentr=1 marks the boundary of stable and
in series, labeled as in Fig. 1. For simplicity, we sgt= 1. unstable nonlinear network models, Fig. 4. In this case there
One node is at ground potential, one is at an applied potential
V, and the potential of the central nodg is to be deter- I A AL L L
mined numerically, by an iterative Laplacian relaxation. To
do this, one first guesses the potential of the central node, B
and then determines the conductangesand g, from Eg. 0.2
(5), with Av,=v, and Av,=V—v,. The next approxima- |
tion to the correct value of the floating potential will then be
given by solving the conductance-weighted average of the
neighboring potentials, that is,

v,:g1><0+ 92XV 0 r A
2 g9:+09, r SN \

The differenceAv,=v,—v, is therefore the correction to L N \
the estimated voltage, and understanding how this difference L N
depends omw, for various values of the exponeatand the
applied voltageV illustrates the nature of the instabilities
involved.

In Fig. 2 we show the stability plot for the case where
a=3. In this case there is only a single stable value gf FIG. 3. When the exponeni in Eq. (5) is greater than 1.0n
=V/2, and when the estimated valuewf is too small, the  this casea=2) an instability develops at the central node as the
correction is positive, so that successive iterations will leachpplied voltage increases. This instability occurs when the deriva-
to this stable value, regardless of the applied voltage. Liketive dAv,/dv, changes sign from negative to positive, which oc-
wise, when the estimated value ©f is too large, the cor- curs in this case a¥=2.84.

VN
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vV FIG. 6. A series network of 10 conductors solved for the case
a=2 illustrates the emergence of a dissipation instability. The net-
FIG. 4. The caser=1 is at the edge of stability. At high applied work conductance is inversely proportional to ¥&S,
voltages the derivativdAv,/dv, approaches 0, so that any value

of v, is essentially a solution. In this case large voltage fluctuations RESULTS
are expected to be observed in the floating potential nodes, and the _ _ _ ) _
system is quite sensitive to fluctuations in the conductaggesd Series networksNumerical solutions to simple 1D series

their crossover voltagas,. Numerically, this problem is quite dif- networks are instructive. It is worth pointing out to those that
ficult to solve, requiring ever increasing numerical accuracy as theénight be interested in pursuing this model that these compu-
applied field increases. tations require unusually high numerical accuracy. For ex-
ample, we found it necessary to solve Ef) for the con-
is a single stable solution at,=V/2, but at high applied ductances to full double precision accuracy using a variety of
voltages the derivativdAv,/dv, vanishes in the vicinity of initial guesses and iterative schemes, depending on the value
the solution. Thus voltage fluctuations can be expected to bef «. We then used a Laplacian over-relaxation method with
quite large in a network witlw=1, and solving numerical local update and an over-correction factor of 1.94 to relax the
problems in this limit with fixed numerical precision limits node voltages.
one to applied voltages beneath some threshold value. With the exponenta=1, the results are shown in
Fluctuations The model just described lacks fluctuations, Fig. 5 for a network ofN=10 conductors in series. As the
and clearly these can be important in real physical systemsoltage is increased the network remains stable, in that the
Fluctuations can be introduced in the voltage crossover terrgonductors all have equal potential drops, and thus equal
vo or in the scale of the conductangg. In some of the conductances. The network conductance is then trivially
following simulations we introduced fluctuations injg to G '=3g~ !, soG=g/N. Solving Eq.(5) for g gives
avoid numerical problems associated with defining particles
in contact with the electrodes, as discussed below. Introduc- L BN B B AL UL B
ing these fluctuations has one subtle effect—ihel case
shows an instability.

L1

o
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—e— 1.0
—e—20

T
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1.0 [ etees 1"
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Vg,v,

0.8 1
L -\. 4102
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1071

node voltages/v,

T

0.2_— \« : 10-2 T T

pod v vl vved e vl il 3

o N R 101 100 101 102 103 104 105 108
E.I s cvd el el v ed vl \E V/Vo
107 100 101 102 103 10* 105 108 _ o
VA, FIG. 7. A comparison between the computeWd characteristics

of stable and unstable network models, in this case series networks

FIG. 5. A series network of 10 conductors solved for the caseof ten conductors, shows that the emergence of dissipation instabili-

a=1. The node voltages are stable, and the network conductance fies occurs when the thermal fusing is strong enough to reduce the
inversely proportional to the applied voltage. current with increasing voltage.
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FIG. 8. The conductivity as a function of hard sphere volume
fraction ¢ when particles with gaps smaller than 2.5% of the par-
ticle diameteD have a contact resistanceHerelL is the size of the
simulation volume. The conductivity is zero until the percolation
threshold ¢, whereupon it increases roughly quadratically with

d’*qﬁc-

Thus in this special case the conductance becomes indepen-
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dent of the network size in the nonlinear regime. In this

regime the current is then just given by GV=gqyv,, and

is thus independent of the applied voltage. The Joule heating FIG. 9. (8) The node potentials are visualized for a system of

P does increase with applied voltage, however, andPis 10000 hard spheres at 55 vol. %, with a large applied voltage and
a=2. The ground electrode is at the bottom and the high potential

The case wherer=2, shown in Fig. 6, is more interest- electrode at the top. Ground potential particles are colored blue, and
ite. Essentially all of the balls are either blue or white, due to the

= IV = gol) OV'
ing, and probably much more relevant to real materials. Théhe color then increases with potential from blue to red to yellow to
hformation of an instability(b) Thus all the voltage drop occurs over

voltage drops across each of the ten conductors remain eqd’%ﬂ‘
until the applied voltage reaches a critical value, at whic 2D regi d this is wh dissipati |
point an instability occurs and very rapidly essentially all of & NArow =L region, and this Is where power dissipation occurs. In
. this visualization, the particle volume is proportional to the power
the voltage drop ends up across a single conductor, and trae - £ th q hich it i de. Particles th
ther conductors end up with conductances close to 1. | 'ssipation of the conductors to which [t Is a node. Particles that
0 . . : . ?ssentlally do not dissipate are shown in a reduced size.
fact, studies of various system sizes shows that the limit o
stability actually occurs at a fixed electric field, which makesshown in Fig. 7 for selected values ef It is noteworthy that
good sense physically. For these large voltages this leads {@st when the nonlinear behavior is strong enough to actually
cause the current to decrease with applied voltage,di.e.
=1, the dissipation instability occurs.

9
© Simulated 3D composite$he structure of carbon black/

Vo
eonmer composites is complex, apparently consisting of dis-
ersed carbon black aggregates that percolate to form a con-
ducting network. The experimentally determined percolation

G=go IV
threshold® for this system is around=17 vol. %, so it is

) 2af(a+1)
so that the current actually decreases with the applied voltagg

clear that the particle positions are strongly correlated, given
that for random hard spheres ircantinuum(such as a poly-
mer the percolation threshold occurs at the random close
pack concentration of 64 vol.%. There is some confusion
over the proper percolation value for particle composites,
and this apparently stems from the Scher and Z&lewes-

as
v (2)a/(a+ 1)
(10)

'=0oya-1mar D

and the dissipation increases as

ngovga/(cwrl)vﬂ(oﬂrl)' (11)
Within the context of this power-law Thermal Fusing model, tigation of the percolation volume fraction for a random mix-
ture of equal-size spheres of type A and B arranged in con-
tact on a periodic lattice. They found that the percolation

the strongest soft fusing behavior occurs whers infinite,

whereuponG~V~2, |~V~1, andP~V°. Note that in this

limit the power dissipation actually becomes independent othreshold for either type of sphere is about 15 vol. %, de-
the applied voltage. Numerically computed currents argending somewhat on the lattice type. The Scher-Zallen re-
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107 100 101 102 103 10 and the plate-like nature of this zone becomes more appar-
VA, ent. The dependence of the conductance and current on the

applied voltage are shown in Fig. 10.

FIG. 10. (a) The conductance of the 3D random network of Fig. At this point a word of explanation is in order. We found
9 is shown, with the field applied along the three orthogonal axesthat with the simple model that did not include conductance
As expected, this conductance decreaseg’d’s (b) The currentis  fluctuations, the platelike instability always occurred at an
shown, which decreases ¥8". electrode. This we attribute to the fact that the particles at an

electrode are at fixed potential and create a rough boundary
sult is probably also relevant to random mixtures of twocondition that is subtly special. To eliminate this tendency,
types of hard spheres at the close pack density, thus causimge introduced small fluctuations into the conductances,
the confusion, but is not applicable to hard spheres in a conwhich are certainly reasonable from a physical standpoint.
tinuum. Closer to the percolation threshold, this zone becomes

Rather than try to model the detailed structure of thesdroader, probably increasing as the connectivity correlation
complex correlated materials, we took a simpler approackength in the material, which diverges at the percolation
and generated random hard sphere systems at various cdhreshold. The zone of dissipation also decreases to just a
centrations well beneath random close packed. These simfew particles, due to the tenuous nature of percolating path-
lated composites will not easily percolate if one insists thatvays close to the threshold. For samples near the percolation
only perfectly contacting spheres have conducting pathwaythreshold the currents are shown as functions of the applied
between them. Thus to map these systems onto a conductingltage in Fig. 11. Proximity to the percolation threshold
network, we simply defined a nonzero threshold for the pardoes not appear to cause the onset of nonlinear behavior to
ticle gaps that qualify as conducting paths. Particles closeoccur at smaller voltages, but this is really a little misleading.
than this threshold are considered to have a conducting patery close to the critical point such an effect should be ob-
between them. Choosing this threshold particle gap to bserved, since the length of a conducting path that traverses
2.5% of the particle diameter then gives a percolation threshthe sample will increase. Networks near the percolation
old of around 42 vol. %, and in point of fact, the value we threshold do have much smaller maximum currents, and will
choose is completely arbitrary, being immaterial to all of theact as much more sensitive fuses, because these will act as
issues that follow. With this choice of the particle gap, thethe load at much smaller circuit conductance, due to their
dependence of the linear conductiviffixed conductances lower conductance. The maximum current near the percola-
on particle volume fraction is shown in Fig. 8. tion threshold will scale as the conductivity in this model.

To investigate the dissipation instabilities that can occur
in these systems we set=2 and slowly ramped up the
applied potential. Results well above the percolation thresh-
old were computed for a systemét55 vol. %. In Fig. 9a) The principal finding we have made is that in the regime
we show a visualization of the particle voltages for a largewhere the fusing behavior is strong enough to generate cur-
applied voltage that is well into the unstable region. Arent limiting behavior, an instability develops wherein dissi-

DISCUSSION
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pation occurs in a platelike zone orthogonal to the appliednodel is solved for 1D series networks and a dissipation
field. This platelike failure occurs at a fixed field in the instability is shown to occur when the current through the
sample, essentially independent of the proximity to the pernetwork actually decreases with increasing applied voltage.
colation threshold. It is in this unstable region where theln the strong fusing limit of this model, the conductance
voltage drop and power dissipation occurs. In real materialsjecreases as the inverse square of the applied voltage at high
the formation of this platelike zone should have a tremenapplied voltages, the current decreases as the inverse voltage,
dous impact on the rate of fusing: because Joule heating snd the Joule heating in the composite is independent of the
essentially confined to this region, the temperature riseoltage.
should be very fast, causing fusing to occur very quickly. Networks constructed from random hard sphere compos-
However, the narrowness of this instability will lead to tre- ites show that in 3D networks this dissipation instability is
mendous fields, which could in turn lead to dielectric break-platelike, and roughly orthogonal to the field. Experimental
down. measurements using thermal imadihgonfirm the develop-
Does this platelike electric field instability occur in real ment of the dissipation instability during thermal fusing. The
composite systems? In fact, infrared imaging of carbon blaclexistence of this instability should make these devices fuse
composites during fusifgactually shows this platelike elec- much more rapidly than if this instability did not occur, since
tric field instability, and so this model may describe someheating is confined to a small region in the sample. Because
aspects of the physics of these devices. But this limited suahe width of this zone should scale as the connectivity cor-
cess should not lead one to believe that the thermal fusingglation length of the material, one would guess that the de-
model is a realistic description of the actual device, since thizice dynamics would be sensitive to the particle size, with
instability can occur from continuum models as wellA small particle systems fusing more rapidly. However, an in-
more realistic description of these current-limiting ther- stability of small width will result in tremendous electric
mistors would enable the full prediction of the device dy-field development and subsequent dielectric breakdown, and
namics over a wide range of self-heating rates. This is ahis might ultimately limit practical applications of these de-
complex issue involving heat production and thermal diffu-vices to slow fusing situations.
sion in composites that is beyond the scope of this rudimen- Finally, the field at which the instability occurs is insen-
tary network model, and would doubtlessly require full scale sitive to the percolation threshold, but the maximum current
finite element modeling of the material—a very difficult nu- that can be transmitted through the device should scale as the
merical problem in a system of contacting particles with amaterial conductivity, i.e., should obey a second-order criti-

large conductivity contrast. cal point behavior, and so in practical applications these de-
vices should become more sensitive near the percolation
CONCLUSIONS threshold.
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