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Antiferromagnetic zigzag spin chain in magnetic fields at finite temperatures
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We study thermodynamic behaviors of the antiferromagnetic zigzag spin chain in magnetic fields, using the
density-matrix renormalization-group method for the quantum transfer matrix. We focus on the thermodynam-
ics of the system near the critical fields in the ground-state magnetization process (M -H curve!: the saturation
field, the lower critical field associated with excitation gap, and the field at the middle-field cusp singularity.
We calculate magnetization, susceptibility, and specific heat of the zigzag chain in magnetic fields at finite
temperatures, and then discuss how the calculated quantities reflect the low-lying excitations of the system
related with the critical behaviors in theM -H curve.
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I. INTRODUCTION

Magnetization processes (M -H curves, whereM is mag-
netization andH is magnetic field! of low-dimensional anti-
ferromagnetic~AF! quantum spin systems have attract
much attention, in accordance with remarkable developm
in material synthesis techniques and high-field experime
Recently, a lot of theoretical and experimental research
clarified the mechanisms of various interesting behaviors
the M -H curves at the zero temperature, e.g., the criti
phenomenaDM;AH2Hc associated with the gappe
excitation~excitation gap}Hc) ~Ref. 1–5! or with the satu-
rated magnetization~at the saturation fieldHs),

4–6 magneti-
zation plateau,7–10 and, the middle-field cusp singularit
~MFCS!.11–14These are field-induced phase transitions of
ground states, reflecting the nontrivial energy-level structu
of the systems.

Such nontrivial structures of the excitation often cau
various characteristic behaviors on bulk quantities at fin
temperatures as well. For instance, thermodynamic quant
in magnetic fields are calculated for ladder systems,15 mixed
spin systems,16 etc. where various peak structures of the s
cific heat are observed.

In this paper, we study the thermal behaviors of the a
ferromagnetic zigzag spin chain in magnetic fields, which
one of typical systems exhibiting the phase-transition beh
iors in theM -H curves and actually realized as quasi-on
dimensional materials: SrCuO2,17 Cu(ampy)Br2,18 and the
organic compound F2PIMNH.19 However, the finite-
temperature properties of the zigzag chain in the thermo
namic limit have not been studied quantitatively
much,20–23since the frustrated interaction makes the relia
quantum Monte Carlo~QMC! simulation difficult.24 Thus it
is a fairly interesting problem to investigate the finit
temperature behavior of the zigzag chain both from theo
ical and experimental viewpoints.

The Hamiltonian of the zigzag chain is given by

H5J(
i

@SW i•SW i 111 jSW i•SW i 12#2gmBH(
i

Si
z , ~1!
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whereSW i is the S51/2 spin operator ati th site, g is the g
factor, andmB is the Bohr magneton. We have denoted t
nearest-neighbor coupling asJ, the ratio of the next-neares
coupling asj (.0), and the applied field asH. In Ref. 14, it
has been shown that the zigzag chain has fascinatingM -H
curves as varyingj. Near the saturation field, there exists t
MFCS for j .1/4 , and the associated two compone
Tomonaga-Luttinger liquid behavior is observed, where
dispersion curve of the elementary excitation is the doub
well curve. At just j 51/4, theM -H curve behaves asDM
;(H2Hs)

1/4, unlike the usual square-root behavior inj
,1/4.25 Near the zero field, theM-H curve in the spin-fluid
phasej , j fd([0.2411) ~Ref. 26! is similar to that of theS
51/2 Heisenberg spin chain. Forj . j fd , theM -H curve ex-
hibits the square-root behavior, since the system is in
dimerized phase and becomes gapful. Further, forj .0.5, the
incommensurate behavior of the ground-state correla
function27–29 suggests that another MFCS appears in
M -H curve near the lower critical field. We focus on how th
above characteristic behaviors of theM -H curves influence
the thermodynamic properties of the zigzag chain.

In order to calculate the finite-temperature quantities
the zigzag chain, we employ the density-matr
renormalization-group~DMRG! method30 for the quantum
transfer matrix~QTM!.31,32 The remarkable point is that th
DMRG is free from the negative sign problem and thus it
successfully applied to some frustrated spin lad
systems.21,22 We calculate the magnetizationM, susceptibil-
ity x, and specific heatC at various temperatures down t
T/J;0.05 in the thermodynamic limit. Then we discuss t
effects of the nontrivial energy spectrum on the obtain
quantities.

This paper is organized as follows. In Sec. II, we descr
the DMRG for the QTM in brief. In Sec. III, we show th
calculated results for theM -H curves of the zigzag chain. In
Sec. IV, the thermodynamic properties of the zigzag ch
near the saturation field are discussed in detail. In particu
we consider the effect of the MFCS on the specific heat
Sec. V, we calculate the quantitiesx, C, andC/T near the
934 ©2000 The American Physical Society
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zero field, and discuss the relation to the low-energy exc
tion of the system. Conclusions are summarized in Sec.

II. NUMERICAL METHODS

The DMRG method for the QTM is widely used to stud
one-dimensional~1D! quantum spin systems at finite tem
peratures numerically,31,32 since the physical quantities ca
be obtained successfully down to low temperatures, wh
the QTM with a sufficient large Trotter number should
treated accurately. Further, it should be mentioned that
DMRG for the QTM is free from the negative sign proble
the QMC simulation is suffering from. Thus we can say th
the DMRG for the QTM is one of the most suitable nume
cal tools to study the zigzag chain.

To see our strategy concretely, we rewrite the Ham
tonian of the zigzag chain with the lattice length 2L into a
ladder form shown in Fig. 1:

H5J(
i 51

L

ĥi ,i 11 , ~2!

with

ĥi ,i 115
1

2
@SW i

A
•SW i

B1SW i 11
A

•SW i 11
B #1SW i

B
•SW i 11

A

1 j @SW i
A
•SW i 11

A 1SW i
B
•SW i 11

B #1Zeeman terms, ~3!

whereA and B are the labels of the lower and upper leg
respectively.

By using the Suzuki-Trotter decomposition, we map t
zigzag chain at finite temperature into a 2D classical sys
on a checkerboard lattice.33 Then the partition function of the
system can be represented by the QTMTe

(N)To
(N) :

Z5 lim
N→`

Tr@~Te
(N)To

(N)!L/2#, ~4!

whereN is the Trotter number. The QTM is defined by th
product of the local operatorWi ,k originating from the local
Boltzmann weight in the mapped system:

Te
(N)5 )

2<k<2N;kPeven
Wi ,k , for i 5even, ~5!

To
(N)5 )

1<k<2N21;kPodd
Wi ,k , for i 5odd, ~6!

where i is the index of the spatial direction andk is that of
the Trotter one. By using theSz-diagonal representationus&
of the spin operatorSW , we have the explicit element of th
weight:

FIG. 1. The ladder representation of the zigzag spin chain.
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^si 11,k
A,B si 11,k11

A,B uWi ,kusi ,k
A,Bsi ,k11

A,B &

5^si ,k11
A,B si 11,k11

A,B uexp~2eĥi ,i 11!usi ,k
A,Bsi 11,k

A,B &, ~7!

where e5J/(kBTN) and the notationusi ,k
A,B&[usi ,k

A ,si ,k
B & is

introduced for simplicity.
In the thermodynamic limitL→`, the thermal property

of the system is extracted from the largest eigenvalue and
corresponding eigenvector of the QTM with the sufficien
large Trotter numberN. Then we can employ the DMRG fo
the transfer matrix developed by T. Nishino.34 Practically,
we regard, for example,usi ,k

A,B& as a four-state single spin, an
perform the DMRG calculation with the periodic bounda
condition. The detail of the algorithm follows Ref. 35, whe
Te

(N) and To
(N) are renormalized separately. In addition w

make the density-matrix block-diagonal with help of the co
servation law for the QTM.31

In the DMRG calculation, we often meet undesirab
complex eigenvalues of the density matrix, because the
merical diagonalization yields inaccurate results for an asy
metric matrix having degenerate eigenvalues. Thus, if
complex number appears in the nearly degenerate eigen
tors of the density matrix, we reorthogonalize the cor
sponding eigenvectors to be represented by real number36

We calculate the magnetizationM and the internal energy
E from the obtained eigenvector directly. We further calc
late the susceptibilityx and specific heatC by numerical
differentiation forM and E, respectively. In the following,
we setkB51, gmB51, andJ51 for simplicity. The calcu-
lations were done withe50.1 and the maximum number o
the retained basesm588. We have confirmed that the com
puted data converged with respect tom ande.

III. NUMERICAL RESULTS FOR THE M -H CURVES

In Fig. 2, we show the calculatedM -H curves of the
zigzag chain at finite temperatures forj 50.2, 0.5, and 0.6.
We also show the zero-temperatureM -H curves calculated
by the product wave-function renormalization-group meth
~PWFRG! ~Ref. 37! for comparison. At zero temperature, th
M -H curve for j 50.2 has no anomaly in the middle fiel
region. On the other hand, theM -H curve for j 50.5 has one
MFCS atHcusp.1.9. We further find that theM -H curve for
j 50.6 has two MFCS atHcusp.0.6 and 1.8.

At finite temperature, the singularities of the ground-st
M -H curve are generally rounded by the thermal excitati
Indeed theM -H curves show no singularity in the high
temperature region. As temperature decreases, however
quantum effects appear. We can see that the tempera
dependence of theM -H curve for j 50.5 is enhanced nea
the cusp fieldHcusp.1.9, comparing with that forj 50.2.
The differentiation curve (dM/dH curve! of the M -H curve
shows the MFCS effect more clearly~insets of Fig. 2!. In the
dM/dH curve for j 50.5 atT50.05, a shoulder can be ob
served atH52.0. For j 50.6 we can see the winding struc
ture in the M -H curve at T50.05, corresponding to the
higher MFCS and the lower MFCS. ThedM/dH curve also
displays the double cusp structure ofM -H curve at low tem-
perature; the shoulder at the higher MFCS field becom
more clearly and the peak near the lower MFCS field d
sharp.
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IV. NEAR THE SATURATION FIELD

In this section, we consider the thermodynamic behav
of the zigzag chain near the saturation field, where we
take a down-spin-particle picture of the elementa
excitation.14 The saturation fieldHs is given by 2 for j
<1/4 and 112 j 11/(8j ) for j .1/4. NearHs , a down spin
in the saturated~all up! state can be regarded as a spinle
fermion, which is the effective low-energy limit of th
d-function Bose gas model,4,5 and then the energy dispersio
of the particle is calculated to be

v~k!5cosk211 j ~cos 2k21!. ~8!

This one-particle dispersion curve fully characterizes
qualitative property of theM -H curve nearHs . For j
<1/4, v(k) has a single minimum atk5p, while, for j
.1/4, v(k) has a local maximum atk5p and two minima
at k5p6cos21@1/(4j )#.38,14 Thus, for 0< j <1/4, theM -H
curve is smooth in the whole field range 0<H<Hs . While,

FIG. 2. TheM -H curves of the zigzag chains at finite temper
tures.~a! j 50.2,~b! j 50.5, and~c! j 50.6. Inset: the differentiation
of the M -H curve (dM/dH curve!.
rs
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for j .1/4, ‘‘van Hove singularity’’ corresponding to the lo
cal maximum ofv(k) gives the MFCS in the higher-field
region of theM -H curve.14

In Fig. 3, we show the specific heatC at various applied
fields H aboveHs . In the case ofj 50.2, clear peaks ofC
can be seen in the low-temperature region (T,0.3), except
for H5Hs . Then we can find that the peak positionTpeak,
which is defined by the temperature at the top of the lo
temperature peak, is approximately proportional to the
ergy gapuH2Hsu. Hence the low-temperature peaks rep
sent the divergence of the density of state at the bottom
the dispersion curve~8!.

At just H5Hs , the peak disappears and, then, the te
perature dependence of the specific heatC(H5Hs) becomes
the power-law behavior:T1/a in T!1 @see the inset of Fig.
3~a!#. This powera is determined by the shape of the di
persion curve ink→p limit, where we havev(k);(k
2p)a. For j ,1/4, in strict sense,a52 should be obtained
in T→0 limit, since Eq.~8! has a quadratic term. Howeve
the coefficient of the quadratic term decreases and the qu
term becomes dominant, asj increases toj 51/4. Thus we
see the cross over behavior froma54 to 2 as shown in the
inset of Fig. 3~a!. On the other hand,C/T1/4 plot for j 51/4 is
consistent witha54, where the quadratic term vanishe
completely and Eq.~8! becomesv(k);(k2p)4. The above
power-law behavior ofC is essentially the same as th
Fermi-liquid one, which is verified for the Heisenberg cha
( j 50) with a52.39

For j 50.5, the double-well structure of Eq.~8! induces
interesting properties on the specific heatC nearHs . Indeed,
the low-temperature peak exists even atH5Hs(52.25), and

FIG. 3. The specific heatC nearH5Hs . ~a! j 50.2 and~b! j
50.5. Inset of figure~a!: C/T1/4 plot for j 50.1, 0.2, andj 51/4 at
H5Hs . Inset of figure~b!: magnification in low-temperature regio
at the slightly upper fields thanHs .
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a weak shoulder structure can be observed at the slig
upper fields thanHs @see the inset of Fig. 3~b!# . In addition,
we can see that the peak-temperatureTpeak is approximately
proportional toH2Hcusp when uHs2Hu!1. Therefore the
strong peak represents the van Hove singularity corresp
ing to the MFCS, and the weak shoulder structure com
from the bottom of the dispersion curve.

In order to illustrate the effects of the MFCS more clear
we have calculated the specific heatC near the cusp field
Hcusp.1.9. In Fig. 4, we show the calculated result forj
50.5 atH51.85(5Hs20.4), which is slightly belowHcusp.
We also show that forj 50.2 atH51.6(5Hs20.4) for com-
parison. Forj 50.5, we can find that the specific heat i
creases sharply at very low temperature, and has a sho
at T;0.1. On the other hand, forj 50.2, we find a peak nea
T;0.1 only. Thus the sharp increase of the specific hea
very low temperature forj 50.5 comes from the van Hov
singularity ofv(k), and the shoulder is attributed to the bo
tom of v(k). In addition, we note that the bottom ofv(k)
gives weak contribution to the specific heat.

From the above results, we can conclude that the ba
edge singularities ofv(k) at k5p or k5p6cos21(1/4j )
explain correctly the specific-heat behaviors both nearHs
andHcusp.

V. NEAR THE ZERO APPLIED FIELD

At the zero magnetic field, various experiments have b
done for the actual materials,17–19 where the observed sus
ceptibility is shifted from that of the pureS51/2 Heisenberg
model. This shift of the susceptibility is attributed to th
deformation of the low-lying excitation, which is induced b
the frustration effect due to the next-nearest coupling. In
section, we calculate the thermodynamic quantities near
zero field, which play a crucial role to determine the e
change coupling constant of the materials, and discuss
relation between the obtained quantities and the low-ly
excitation structures.

In Fig. 5, we show the specific heatC, the quantityC/T,
and the susceptibilityx at the zero field for 0.1< j <0.6.

In j , j fd(50.2411), the zigzag chain is in the gaple
spin-fluid phase at the zero field and theM -H curves do not
show any singularity as in Fig. 2~a!. Thus the calculated
quantities forj 50.1 andj 50.2 are qualitatively the same a
that of theS51/2 Heisenberg chain (j 50), though the broad

FIG. 4. The specific heatC nearH5Hcusp. For comparison, we
show that forj 50.2 atH51.6.
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peaks ofx andC shift to the low-temperature side. As show
in Figs. 5~a! and ~b!, x and C/T approach to the constan
value in the zero-temperature limit. We extrapolate the co
ficient of the linear specific heatg[ lim

T→0
C/T by a poly-

nomial fit of C/T5g1a1T1a2T2 in the range 0.06,T
,0.12, and obtaing50.75 for j 50.1 andg50.85 for j
50.2. We also compute the zero-temperature susceptib
x0 by numerical differentiation of the PWFRG results wi
DH50.005: we obtainx050.118 for j 50.1 andx050.131
for j 50.2. Here we note that the same manner of the
trapolation at the Heisenberg point (j 50) yields g50.66
and x050.108, which agree with the Bethe ansatz valu
According to the conformal field theory~CFT!, the coeffi-
cient of the linear specific heat and the ground-state sus
tibility x0 are given byg5pc/(3v) and x051/(2pv), re-
spectively, wherec is the central charge andv is the spin-
wave velocity. The calculated values ofg andx0 are almost
consistent with the CFT prediction withc51, but the strong
log correction forx0

26,40,41 prevents us from verifying the
CFT relation precisely.

FIG. 5. Thermodynamic quantities at zero magnetic field~a!
The specific heatC, ~b! C/T, and~c! The susceptibilityx.
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For j . j fd the zigzag spin chain is gapful. However, th
magnitude of the gap is quite small inj fd, j &0.4.27,28 Thus
the specific heatC and the susceptibilityx for j 50.3 are
similar to those inj , j fd . For j 50.4 and 0.5,x andC catch
the effect of the gap: the exponential decay of the susce
bility can be seen in the low temperature. Forj 50.6, the
energy gap becomes large, so thatx andC show clear expo-
nential decay in the low-temperature region. In the spec
heat for j 50.6, the peak atT.0.15 seems to be distinguish
able from the broad peak aroundT.0.5 @see Fig. 5~a!#. As
shown in Fig. 2~c!, the M -H curve of j 50.6 has the lower
MFCS, and the dispersion curve of the excitation is expec
to be the double-well structure, which is supported by
incommensurability of the ground-state correlati
function.27–29 The double-well structure of the dispersio
curve possibly explains the remarkable shape change o
specific heat forj 50.6.

Further, we consider the zigzag chain in a small magn
field, where the excitation related with the lower MFCS c
be observed more directly. In Fig. 6, we show the spec
heatC and the susceptibilityx for j 50.2, 0.5, and 0.6 at the
fixed field H50.7. For j 50.2, the properties ofC andx is
essentially the same as those at the zero field. Forj 50.5, on
the other hand,C andx are enhanced in the low-temperatu
region, because of the excitation gap. Forj 50.6, where the
lower MFCS appearing in theM -H curve, we can see th
susceptibility has very sharp peak at very low temperatu
The specific heat also grows sharply at very low tempera
as well, which is quite similar to that of the higher fie
MFCS. These outstanding peaks inx andC support that the
dispersion curve of the low-lying excitation has such a str
ture as the double-well one. However, the evidence for
double-well structure cannot be detected directly within
present calculation, since the field at the lower MFCS a
the lower critical field of the excitation gap are very close
shown in Fig. 2~c!.

Here, we make a comment on the relevance of pres
calculations with the experimental results. For example,
susceptibility of the compound Cu(ampy)Br2 was measured
by Kikuchi, and then the ratio of the exchange coupling
estimated asj 50.2.18 The M -H curve of this compound is
also observed to have no anomaly in the middle field reg
which is consistent with the present calculation. Moreov
Hosokoshi,et al. have found that the susceptibility of th
organic compound F2PIMNH shows the clear exponentia
decay in the low-temperature region,19 which implies j

FIG. 6. The specific heatC and the susceptibilityx in the mag-
netic fieldH50.7.
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.0.4 compared with the calculated susceptibility in F
5~c!. Then it is suggested that theM -H curve of F2PIMNH
has the MFCS. However, the high field experiment has
yet been done for this compound.

VI. SUMMARY

In this paper we have quantitatively studied the therm
dynamic behaviors of the antiferromagnetic zigzag s
chain in magnetic fields. We have calculated the magnet
tion processes (M -H curves! at finite temperatures by usin
the density-matrix renormalization-group~DMRG! method
for the quantum transfer matrix. The zero-temperatureM -H
curves were also calculated by the product wave-funct
renormalization-group method. We have shown that
zero-temperatureM -H curve has zero, one, and two midd
field cusp singularities~MFCS’s! for j 50.2, 0.5 and 0.6,
respectively. The thermal effect on theM -H curve was dis-
cussed as well.

We have further investigated the bulk physical quantit
at finite temperatures in terms of the nontrivial energy-le
structures responsible for the singularities in the ze
temperatureM -H curve. Near the saturation field, we hav
considered the band-edge singularities inj <1/4, where the
Fermi-liquid behavior is observed. Forj .1/4, we have
shown that the double-minimum shape of the dispers
curve correctly explains the peak structures of the spec
heat.

Near the zero field, we have considered the susceptib
x and specific heatC. In the gapless region, i.e.,j ,0.2411,
we have shownx andC exhibiting typical gapless behavior
and checked the CFT relation between the zero-tempera
susceptibility and the coefficient of linear specific heat. F
j .0.2411, the exponential decay ofx and C has been ob-
served in low temperatures. Moreover, we have seen
another peak ofC is induced forj 50.6, where the double
well structure of the dispersion curve is expected to acco
pany with the lower MFCS. We have also calculated t
susceptibility x and specific heatC in the small fieldH
50.7. The highly enhanced peaks forx and C of j 50.6
support the double-well structure of the dispersion curve.
understand the microscopic view about such low-lying ex
tation connected to the conformation mechanism of
lower MFCS is a remaining problem.

In the connection to the experiments, theM -H curve of
F2PIMNH is interesting, since the appearance of the MF
can be predicted by the present calculation. In addition,
crystal structure of another zigzag materials42 suggests that
they may have large next-nearest couplingj, by taking into
account the orbital symmetry of the atoms concerned w
the superexchange interaction. In analyzing experime
data for the above zigzag materials, we believe that
present results are of use.
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