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Antiferromagnetic zigzag spin chain in magnetic fields at finite temperatures
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We study thermodynamic behaviors of the antiferromagnetic zigzag spin chain in magnetic fields, using the
density-matrix renormalization-group method for the quantum transfer matrix. We focus on the thermodynam-
ics of the system near the critical fields in the ground-state magnetization proéedsciirve): the saturation
field, the lower critical field associated with excitation gap, and the field at the middle-field cusp singularity.
We calculate magnetization, susceptibility, and specific heat of the zigzag chain in magnetic fields at finite
temperatures, and then discuss how the calculated quantities reflect the low-lying excitations of the system
related with the critical behaviors in théd-H curve.

I INTRODUCTION where S, is the S=1/2 spin operator aith site, g is the g
factor, andug is the Bohr magneton. We have denoted the
Magnetization processed(-H curves, wheréM is mag-  pearest-neighbor coupling dsthe ratio of the next-nearest
netization ancH is magnetic fielg of low-dimensional anti- ¢ pling asj(>0), and the applied field as. In Ref. 14, it
ferromagnetic(AF) quantum spin systems have attractedy s peen shown that the zigzag chain has fascinAtiflg

much att_entlon, In a_ccordan_ce with remarkable develo_pmentéurves as varying Near the saturation field, there exists the
in material synthesis techniques and high-field experlmentﬁ\./":(:S for j>1/4 , and the associated two component

Recently, a lot of theoretical and experimental research h omonaca-Luttinaer liquid behavior is observed. where the
clarified the mechanisms of various interesting behaviors o 9 ger g '

the M-H curves at the zero temperature, e.g., the Criticapispersion curve of the elementary excitation is the double-

phenomenaAM~+H-—H_ associated with the gapped well curve.llft Jus.tj =1/4, theM-H curve behaves aAM
excitation(excitation gapxH.) (Ref. 1-5 or with the satu- ~(H—25HS) . unlike th_e usual square-rqot behaylor ;n
rated magnetizatiofat the saturation fieltHJ) >~ magneti- <1/4._ N.ear the zero field, thM.—H curve in the spin-fluid
zation platead;° and, the middle-field cusp singularity PN@sej<jw(=0.2411)(Ref. 28 is similar to that of theS
(MFCS).1*~*These are field-induced phase transitions of the= 1/2 Heisenberg spin chain. Fprj;y, theM-H curve ex-
ground states, reflecting the nontrivial energy-level structure8ibits the square-root behavior, since the system is in the
of the systems. dimerized phase and becomes gapful. Furtherj f00.5, the
Such nontrivial structures of the excitation often causéncommensurate behavior of the ground-state correlation
various characteristic behaviors on bulk quantities at finitunctior?’~2° suggests that another MFCS appears in the
temperatures as well. For instance, thermodynamic quantitidd -H curve near the lower critical field. We focus on how the
in magnetic fields are calculated for ladder systéfmjxed  above characteristic behaviors of tNeH curves influence
spin systemé&® etc. where various peak structures of the spethe thermodynamic properties of the zigzag chain.
cific heat are observed. In order to calculate the finite-temperature quantities of
In this paper, we study the thermal behaviors of the antithe zigzag chain, we employ the density-matrix
ferromagnetic zigzag spin chain in magnetic fields, which isrenormalization-groudDMRG) method® for the quantum
one of typical systems exhibiting the phase-transition behawtransfer matrix(QTM).%>%? The remarkable point is that the
iors in theM-H curves and actually realized as quasi-one-DMRG is free from the negative sign problem and thus it is
dimensional materials: SrCy@®’ Cu(ampy)Bs,'® and the successfully applied to some frustrated spin ladder
organic compound JFPIMNH.!® However, the finite- systemg:?*We calculate the magnetization, susceptibil-
temperature properties of the zigzag chain in the thermodyity x, and specific hea€ at various temperatures down to
namic limit have not been studied quantitatively soT/J~0.05 in the thermodynamic limit. Then we discuss the
much?®~23since the frustrated interaction makes the reliableeffects of the nontrivial energy spectrum on the obtained
quantum Monte CarléQMC) simulation difficult?* Thus it quantities.
is a fairly interesting problem to investigate the finite- This paper is organized as follows. In Sec. Il, we describe
temperature behavior of the zigzag chain both from theoretthe DMRG for the QTM in brief. In Sec. Ill, we show the
ical and experimental viewpoints. calculated results for th®l-H curves of the zigzag chain. In
The Hamiltonian of the zigzag chain is given by Sec. IV, the thermodynamic properties of the zigzag chain
near the saturation field are discussed in detail. In particular,
— 2 & & & q_ z we consider the effect of the MFCS on the specific heat. In
H_JZ [S-S+at 1SS gMBHEi s Sec. V, we calculate the quantitigs C, andC/T near the
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where e=J/(kgTN) and the notatior|sf\>y=|sf\ s\ is
introduced for simplicity.
In the thermodynamic limit —o, the thermal property
FIG. 1. The ladder representation of the zigzag spin chain.  of the system is extracted from the largest eigenvalue and the
corresponding eigenvector of the QTM with the sufficiently
zero field, and discuss the relation to the low-energy excitatarge Trotter numbeN. Then we can employ the DMRG for
tion of the system. Conclusions are summarized in Sec. Vithe transfer matrix developed by T. NishiffbPractically,
we regard, for examplés/’) as a four-state single spin, and
Il. NUMERICAL METHODS perform the DMRG calculation with the periodic boundary

. condition. The detail of the algorithm follows Ref. 35, where
The DMRG method for the QTM is widely used to study +(N) 44 T(N) are renormalized separately. In addition we
one-dimensional1D) quantum spin systems at finite tem- _° y

: . . o make the density-matrix block-diagonal with help of the con-
peratures numericall§%% since the physical quantities can Y g P

be obtained successfully down to low temperatures Whergervation law for the QTM}
y P ’ In the DMRG calculation, we often meet undesirable

the QTM with a sufficient large Trotter number should becomplex eigenvalues of the density matrix, because the nu-

gi/laéeg fac;ctlrjlratel_lyl.vllziurftrher,frlt rihtcr)1U|dn be ;?Ventlior;‘edrtrg)ellt r':]h%erical diagonalization yields inaccurate results for an asym-
or the Q s Iree Iro € Negallve sSign probiem o yic matrix having degenerate eigenvalues. Thus, if the

e B e s saaCoMpIX rUber appears i he nesty degenerat igenvec
cal tools to study the zigzag chain. tors of the' density matrix, we reorthogonalize the corre-
To see our strategy concretely, we rewrite the Hamil_spondlng eigenvectors to bg re_presented by real numbers.
tonian of the zigzag chain with the’ lattice length tto a we Calculate_the magnenzatldxm gnd the internal energy
ladder form shown in Fig. 1: E from the obtained eigenvector directly. We further calcu-
T late the susceptibilityy and specific heaC by numerical
L differentiation forM and E, respectively. In the following,
H:Jz ﬁi 1 2) we setkg=1, gug=1, andJ=1 for simplicity. The calcu-
i=1 lations were done witle=0.1 and the maximum number of
the retained bases=_88. We have confirmed that the com-
puted data converged with respectnicand e.

with

~ 1 ., .. = N n =
_ B B B
hml—z[SﬁA'Sl +S4 -S540+ S-S, lIl. NUMERICAL RESULTS FOR THE M-H CURVES

L2A & 2B & In Fig. 2, we show the calculateM-H curves of the
FIS" S0+ & §4 1]+ Zeeman terms, (3) zigzag ghain at finite temperatures for 0.2, 0.5, and 0.6.
where A and B are the labels of the lower and upper legs, We also show the zero-temperatwkH curves calculated
respectively. by the product wave-function renormalization-group method
By using the Suzuki-Trotter decomposition, we map the(PWFRQ (Ref. 37 for comparison. At zero temperature, the
zigzag chain at finite temperature into a 2D classical syster¥l-H curve forj=0.2 has no anomaly in the middle field
on a checkerboard latti¢8 Then the partition function of the region. On the other hand, tii¢-H curve forj=0.5 has one

system can be represented by the QTP TV : MFCS atH,s5~1.9. We further find that thv1-H curve for
j=0.6 has two MFCS aiti,ss=0.6 and 1.8.
Z= lim Tr[(TgN)TgN))L’Z], (4) At finite temperature, the singularities of the ground-state
N—o M-H curve are generally rounded by the thermal excitation.

. . ) Indeed theM-H curves show no singularity in the high-
whereN is the Trotter number. The QTM is defined by the yo yherature region. As temperature decreases, however, the
product of the_loca_l operatdd; , originating from the local quantum effects appear. We can see that the temperature
Boltzmann weight in the mapped system: dependence of thM-H curve forj=0.5 is enhanced near

the cusp fieldH,q~1.9, comparing with that foj =0.2.

TN = H W, ,, for i=even, (5)  The differentiation curvedM/dH curve) of theM-H curve

2<k=2N;keeven shows the MFCS effect more cleaffipsets of Fig. 2. In the
dM/dH curve forj=0.5 atT=0.05, a shoulder can be ob-

N) o served atH=2.0. Forj=0.6 we can see the winding struc-

TS )_Kkgz,\l,__[l;keodd Wik, for i=odd, (6  { o'in theM-H curve atT=0.05, corresponding to the
higher MFCS and the lower MFCS. TligM/dH curve also
wherei is the index of the spatial direction arkds that of displays the double cusp structureMfH curve at low tem-
the Trotter one. By using th&*-diagonal representatios)  perature; the shoulder at the higher MFCS field becomes
of the spin operato, we have the explicit element of the more clearly and the peak near the lower MFCS field does
weight: sharp.
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FIG. 2. TheM-H curves of the zigzag chains at finite tempera-
tures.(a) j=0.2,(b) j=0.5, and(c) j =0.6. Inset: the differentiation
of the M-H curve @M/dH curve.

IV. NEAR THE SATURATION FIELD
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(b)

FIG. 3. The specific hed nearH=H;. (a) j=0.2 and(b) j
=0.5. Inset of figurga): C/T¥* plot for j=0.1, 0.2, and =1/4 at
H=Hy,. Inset of figurg(b): magnification in low-temperature region
at the slightly upper fields thaH,.

for j>1/4, “van Hove singularity” corresponding to the lo-
cal maximum ofw(k) gives the MFCS in the higher-field
region of theM-H curvel*

In Fig. 3, we show the specific he@tat various applied
fields H aboveH;. In the case of =0.2, clear peaks of
can be seen in the low-temperature regidnr<(Q.3), except
for H=Hg. Then we can find that the peak positi®eay,
which is defined by the temperature at the top of the low-
temperature peak, is approximately proportional to the en-
ergy gap|H—H,|. Hence the low-temperature peaks repre-
sent the divergence of the density of state at the bottom of
the dispersion curvés).

At just H=H, the peak disappears and, then, the tem-

In this section, we consider the thermodynamic behaviorgerature dependence of the specific @@t =Hg) becomes
of the zigzag chain near the saturation field, where we cathe power-law behaviorT*® in T<1 [see the inset of Fig.
take a down-spin-particle picture of the elementary3(a)]. This powera is determined by the shape of the dis-

excitation}* The saturation fieldHg is given by 2 for |
=<1/4 and +2j+1/(8j) for j>1/4. NearHg, a down spin

persion curve ink— limit, where we havew(k)~(k
— ). For j<1/4, in strict senseqg=2 should be obtained

in the saturatedall up) state can be regarded as a spinlessn T—0 limit, since Eq.(8) has a quadratic term. However,

fermion, which is the effective low-energy limit of the
s-function Bose gas modéf and then the energy dispersion
of the particle is calculated to be

w(k)=cosk—1+j(cosXx—1). (8)

the coefficient of the quadratic term decreases and the quartic
term becomes dominant, @sncreases tg=1/4. Thus we

see the cross over behavior frae+4 to 2 as shown in the
inset of Fig. 3a). On the other hand;/TY* plot for j=1/4 is
consistent withe=4, where the quadratic term vanishes
completely and Eq(8) becomesw (k) ~ (k— 7). The above

This one-particle dispersion curve fully characterizes thepower-law behavior ofC is essentially the same as the

qualitative property of theM-H curve nearHg. For j
=<1/4, w(k) has a single minimum at=, while, for j
>1/4, w(k) has a local maximum &= 7 and two minima
at k== cos 1/(4})].%8* Thus, for 0<j<1/4, theM-H
curve is smooth in the whole field rangestHH<Hg. While,

Fermi-liquid one, which is verified for the Heisenberg chain
(j=0) with a=23°

For j=0.5, the double-well structure of E¢8) induces
interesting properties on the specific h€atearH. Indeed,
the low-temperature peak exists everHat H (=2.25), and
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0.2r j=0.2 H=1.6

j=0.5 H=1.85

5 . ) . .0..5. . . .1
T

FIG. 4. The specific hea nearH =H s, For comparison, we
show that forj=0.2 atH=1.6.

a weak shoulder structure can be observed at the slightly
upper fields thar, [see the inset of Fig.(B)] . In addition,

we can see that the peak-temperafligg,cis approximately
proportional toH—H,s, when |H,—H|<1. Therefore the
strong peak represents the van Hove singularity correspond-
ing to the MFCS, and the weak shoulder structure comes
from the bottom of the dispersion curve.

In order to illustrate the effects of the MFCS more clearly,
we have calculated the specific he&atnear the cusp field
Heuse=1.9. In Fig. 4, we show the calculated result for
=0.5 atH=1.85(=Hs—0.4), which is slightly belovH ..

We also show that for=0.2 atH=1.6(= H,— 0.4) for com-
parison. Forj=0.5, we can find that the specific heat in-
creases sharply at very low temperature, and has a shoulder
atT~0.1. On the other hand, fge=0.2, we find a peak near
T~0.1 only. Thus the sharp increase of the specific heat at
very low temperature foj=0.5 comes from the van Hove
singularity ofw(k), and the shoulder is attributed to the bot-
tom of w(k). In addition, we note that the bottom af(k)

gives weak contribution to the specific heat. oL

From the above results, we can conclude that the band-
edge singularities ofv(k) at k=7 or k=m*cos }(1/4)) © T
explain correctly the specific-heat behaviors both nidar FIG. 5. Thermodynamic quantities at zero magnetic field
andH cysp- The specific hea€, (b) C/T, and(c) The susceptibilityy.

peaks ofy andC shift to the low-temperature side. As shown
in Figs. 5a) and (b), y and C/T approach to the constant
At the zero magpnetic field, various experiments have beenalue in the zero-temperature limit. We extrapolate the coef-
done for the actual materiaté;*® where the observed sus- ficient of the linear specific heat=lim__ C/T by a poly-
ceptibility is shifted from that of the pur®=1/2 Heisenberg nomial fit of C/T=y+a,;T+a,T? in the range 0.08 T
model. This shift of the susceptibility is attributed to the <0.12, and obtainy=0.75 for j=0.1 and y=0.85 for j
deformation of the low-lying excitation, which is induced by =0.2. We also compute the zero-temperature susceptibility
the frustration effect due to the next-nearest coupling. In this,, by numerical differentiation of the PWFRG results with
section, we calculate the thermodynamic quantities near th& H=0.005: we obtainy,=0.118 forj=0.1 andy,=0.131
zero field, which play a crucial role to determine the ex-for j=0.2. Here we note that the same manner of the ex-
change coupling constant of the materials, and discuss theapolation at the Heisenberg point=£0) yields y=0.66
relation between the obtained quantities and the low-lyingand y,=0.108, which agree with the Bethe ansatz values.

V. NEAR THE ZERO APPLIED FIELD

excitation structures. According to the conformal field theoryCFT), the coeffi-
In Fig. 5, we show the specific he@} the quantityC/T, cient of the linear specific heat and the ground-state suscep-
and the susceptibility at the zero field for 04j=<0.6. tibility x, are given byy=mc/(3v) and xo=1/(27v), re-

In j<jw(=0.2411), the zigzag chain is in the gaplessspectively, wheree is the central charge and is the spin-
spin-fluid phase at the zero field and thleH curves do not wave velocity. The calculated values pfand y, are almost
show any singularity as in Fig.(&. Thus the calculated consistent with the CFT prediction with=1, but the strong
quantities forj =0.1 andj = 0.2 are qualitatively the same as log correction for x2%4%*! prevents us from verifying the
that of theS=1/2 Heisenberg chairj € 0), though the broad CFT relation precisely.
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>0.4 compared with the calculated susceptibility in Fig.
5(c). Then it is suggested that ti-H curve of FPIMNH

has the MFCS. However, the high field experiment has not
102 yet been done for this compound.

=06 H=0.7
v

VI. SUMMARY

1018 In this paper we have quantitatively studied the thermo-

V02 dynamic behaviors of the antiferromagnetic zigzag spin
% 03 070 03 07 chain in magnetic fields. We have calculated the magnetiza-
T tion processesNi-H curves at finite temperatures by using

the density-matrix renormalization-groypMRG) method
FIG. 6. The specific heal and the susceptibility in the mag-  for the quantum transfer matrix. The zero-temperatréd
netic fieldH=0.7. curves were also calculated by the product wave-function
renormalization-group method. We have shown that the
For j> | the zigzag spin chain is gapful. However, the zero-temperatur-H curve has zero, one, and two middle
magnitude of the gap is quite small jp<j=<0.4?"?®Thus  field cusp singularitie§MFCS'’s) for j=0.2, 0.5 and 0.6,
the specific heaC and the susceptibilityy for j=0.3 are  respectively. The thermal effect on thé-H curve was dis-
similar to those i <j¢. Forj=0.4 and 0.5,y andC catch  cussed as well.
the effect of the gap: the exponential decay of the suscepti- We have further investigated the bulk physical quantities
bility can be seen in the low temperature. Het 0.6, the  at finite temperatures in terms of the nontrivial energy-level
energy gap becomes large, so teindC show clear expo- structures responsible for the singularities in the zero-
nential decay in the low-temperature region. In the specifitemperatureM-H curve. Near the saturation field, we have
heat forj=0.6, the peak at =0.15 seems to be distinguish- considered the band-edge singularitieg #a1/4, where the
able from the broad peak aroufid=0.5[see Fig. 8a)]. As  Fermi-liquid behavior is observed. Fgr>1/4, we have
shown in Fig. Zc), the M-H curve of j=0.6 has the lower shown that the double-minimum shape of the dispersion
MFCS, and the dispersion curve of the excitation is expectedurve correctly explains the peak structures of the specific
to be the double-well structure, which is supported by theheat.
incommensurability of the ground-state correlation Near the zero field, we have considered the susceptibility
function?’=2° The double-well structure of the dispersion y and specific heaE. In the gapless region, i.g.<0.2411,
curve possibly explains the remarkable shape change of thee have showry andC exhibiting typical gapless behaviors
specific heat foij =0.6. and checked the CFT relation between the zero-temperature
Further, we consider the zigzag chain in a small magneticusceptibility and the coefficient of linear specific heat. For
field, where the excitation related with the lower MFCS canj>0.2411, the exponential decay gfand C has been ob-
be observed more directly. In Fig. 6, we show the specificserved in low temperatures. Moreover, we have seen that
heatC and the susceptibility for j=0.2, 0.5, and 0.6 at the another peak o€ is induced forj=0.6, where the double-
fixed fieldH=0.7. Forj=0.2, the properties o€ andy is  well structure of the dispersion curve is expected to accom-
essentially the same as those at the zero fieldj Ed)r.5, on  pany with the lower MFCS. We have also calculated the
the other handC andy are enhanced in the low-temperature susceptibility y and specific heaC in the small fieldH
region, because of the excitation gap. fer0.6, where the =0.7. The highly enhanced peaks fgrand C of j=0.6
lower MFCS appearing in th#1-H curve, we can see the support the double-well structure of the dispersion curve. To
susceptibility has very sharp peak at very low temperatureunderstand the microscopic view about such low-lying exci-
The specific heat also grows sharply at very low temperaturéation connected to the conformation mechanism of the
as well, which is quite similar to that of the higher field lower MFCS is a remaining problem.
MFCS. These outstanding peaksyrand C support that the In the connection to the experiments, thieH curve of
dispersion curve of the low-lying excitation has such a struc+,PIMNH is interesting, since the appearance of the MFCS
ture as the double-well one. However, the evidence for thean be predicted by the present calculation. In addition, the
double-well structure cannot be detected directly within thecrystal structure of another zigzag mateffalsuggests that
present calculation, since the field at the lower MFCS andhey may have large next-nearest couplingpy taking into
the lower critical field of the excitation gap are very close asaccount the orbital symmetry of the atoms concerned with
shown in Fig. Zc). the superexchange interaction. In analyzing experimental
Here, we make a comment on the relevance of preserdata for the above zigzag materials, we believe that the
calculations with the experimental results. For example, th@resent results are of use.
susceptibility of the compound Cu(ampy)Bras measured
by Kikuchi, and then the ratio of the exchange coupling is
estimated ag=0.21% The M-H curve of this compound is
also observed to have no anomaly in the middle field region, We would like to thank H. Kikuchi, Y. Narumi, and M.
which is consistent with the present calculation. MoreoverHagiwara for stimulating discussions about experiments. We
Hosokoshi,et al. have found that the susceptibility of the also thank Y. Akutsu, Y. Hieida for fruitful discussions. One
organic compound fPIMNH shows the clear exponential of the authorgK.O.) was supported by the Japan Society for
decay in the low-temperature regibh,which implies | the Promotion of Science.
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