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Inhomogeneous nucleation and growth of cavities in irradiated materials
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The origin of the effect of inhomogeneous swelling observed near grain boundaries in irradiated materials is
examined taking into account both nucleation and diffusional growth of cavities, and the interaction of cavities
with mobile interstitial clusters produced in collision cascades. The model shows the formation of a charac-
teristic profile of inhomogeneous swelling that exhibits features similar to those observed experimentally. The
rate of swelling is found to be strongly dependent on the size of cavities, with cavities growing near the
boundary being able to reach substantially larger sizes than those growing in the interior area of the grain. The
distancez* between the peak of swelling and the grain boundary scales with the density of cavitiesN0 as
z* ;N0

2b , whereb is close to 1/3.
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I. INTRODUCTION

The kinetics of phase transformations in materials driv
far from equilibrium has recently attracted considerable
tention stimulated by the need to develop better understa
ing of how materials behave in a hostile environment.1 A
typical example of an evolving nonequilibrium system
given by a material irradiated by a flux of energe
particles,2 and this is rapidly becoming one of the issu
central to the design of a fusion power station.3,4

The evolution of the microstructure of an irradiated m
terial is characterized by the presence of dynamic quasie
librium between the generation of lattice defects by the in
dent energetic particles and the annihilation of these def
by dislocations, grain boundaries, and cavities in the m
rial. A chemical reaction-type theory describing the tempo
evolution of spatially averagedconcentrations of vacancie
and interstitial atoms in the presence of randomly distribu
mesoscopic lattice defects was formulated 30 years ago
Brailsford and Bullough.5 Recent theoretical advances ha
been associated with the development of a more accu
treatment of effects of cascade damage. Effects of cas
damage are described by either the molecular dynamic6,7

the kinetic Monte Carlo8 or the continuum9 models. One of
the important aspects that emerges from recent theore
studies concerns the importance of taking into account s
tial fluctuations of concentrations of defects in the mater
see, e.g., Refs. 10–13.

Spatially inhomogeneous concentration profiles natur
appear in the treatment of kinetics of nucleation and gro
where growing cavities act as sources or sinks for the di
sion fields describing moving vacancies and intersti
atoms.14,15 Extended lattice defects absorb mobile point d
fect, too, reducing concentration of vacanciescv(r ,t) and
interstitial atomsci(r ,t) in the vicinity of each sink and sup
pressing both the nucleation and diffusional growth of ca
ties in the vicinity of each sink.

Clustering of defects in collision cascades brings a n
important element in the dynamics of microstructural evo
tion of irradiated materials. The mobility of certain types
clusters of interstitial atoms produced in collision casca
turns out to be higher than that of point defects.16 As the
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number of interstitial atoms in a cluster increases, its Brow
ian motion becomes nearly one dimensional. One dimens
ally moving clusters are able to propagate in the atmosph
of randomly distributed lattice defects through larger d
tances than single vacancies or interstitial atoms. At the s
time lattice defects affect the motion of one dimensiona
diffusing clusters in a more substantial way than they infl
ence the motion of single vacancies and interstitials si
one dimensionally moving clusters cannot avoid obstacles
changing their direction of propagation.

It is in the dependence of the rate of growth of cavities
their size where the difference between contributions fr
diffusing point defects and from one dimensionally movi
clusters manifests itself in the most notable way. For re
tively small cavities growing by the attachment of vacanci
the rateȧ(t) of variation of cavity radiusa(t) is inversely
proportional toa(t), ȧ(t);1/a(t), while the~negative! con-
tribution to ȧ(t) resulting from the bombardment of cavitie
by interstitial clusters exhibits no singularity as a function
a(t). Given that extended lattice defects, for example, gr
boundaries, affect the motion of point defects and def
clusters in a radically different way, we may expect that
the vicinity of those extended defects the growth of cavit
is going to be characterized by features that are differ
from those characterizing the growth in the interior area
the grains. It has been observed experimentally17–19 that in
the vicinity of grain boundaries the distribution of growin
cavities becomes highly inhomogeneous. The growth
cavities is suppressed in the immediate vicinity of a gr
boundary and the rate of growth is maximum at a cert
distance from the boundary, decreasing again in the inte
region of the grain. A theoretical model explaining the o
served effects was proposed in Refs. 20 and 21 where
formation of the zone of inhomogeneous swelling was int
preted as being associated with the dependence of the s
ing rate on the distance from the boundary. However, t
model considered in20,21 neither takes into account the de
pendence of the rate of swelling on the size of growing ca
ties ~where the size represents probablythe most important
parameter of the model22! nor it accounts for the nucleatio
of new cavities. The significance of the latter effect ste
9325
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9326 PRB 62S. L. DUDAREV
directly from experimental observations~see, e.g. Fig. 22 o
Ref. 12!.

In this paper we introduce a model describing the evo
tion of a population of cavities nucleating and growing in t
vicinity of a planar sink and interacting with the binary di
fusion field of single vacancies and interstitial atoms a
with mobile interstitial clusters. We show that the compe
tion between the nucleation and growth of cavities and
dependence of the rate of growth on the size of cavities g
rise to the formation of a zone of highly inhomogeneo
swelling where at maximum the magnitude of swelling is
to eight times higher than that in the grain interior. We fi
that cavities growing near the grain boundary are able
reach substantially larger sizes than those growing in
interior area of the grain. We also show that the position
the peak of swelling depends on the density of growing ca
ties and that the distance between the peak and the boun
scales approximately as the inverse cubic root of the volu
density of cavities, in agreement with experimental obser
tions.

The paper is organized as follows. First we introduce
self-consistent set of equations describing the evolution
spatially inhomogeneous distribution of growing cavitie
Then we illustrate properties of these equations by analyz
several limiting cases where analytical treatment is possi
In what follows we develop a numerical scheme and inv
tigate the self-consistent problem of inhomogeneous sw
ing of the material in the vicinity of a grain boundary. W
compare the calculated swelling curves with those obser
experimentally, and analyze the dependence of solution
the model on parameters typically addressed in an exp
mental investigation of the problem.

II. THE MODEL

To characterize the population of cavities nucleating a
growing in a spatially inhomogeneous system it is con
nient to introduce the cavity size distribution function, whi
is a function of the cavity radiusa, its coordinater and time
t

f ~a,r ,t !5E
0

t

n~r ,t!d@a2a~r ,t,t!#dt. ~1!

Heret denotes the nucleation time,a(r ,t,t) is the radius of
a cavity nucleated at pointr at the momentt5t, andn(r ,t)
is the number of cavities nucleating per unit volume per u
time. Function~1! satisfies the normalization condition of th
form

E
0

`

f ~a,r ,t !da5E
0

t

n~r ,t!dt5N~r ,t !,

whereN(r ,t) is the number density of growing cavities. U
ing Eq. ~1! we find the total volume of cavities

S~r ,t !5
4

3
pE

0

`

a3f ~a,r ,t !da5
4

3
pE

0

t

n~r ,t!a3~r ,t,t!dt,

~2!
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which is a dimensionless parameter characterizing the lo
swelling of the material. The swellingrate is found by the
differentiation of Eq.~2!

dS~r ,t !

dt
54pE

0

t

n~r ,t!a2~r ,t,t!
da~r ,t,t!

dt
dt, ~3!

where it is taken into account thata(r ,t,t)50. Equation~3!
shows that to characterize the magnitude of local swelling
point r at timet we need to know the time dependence of t
nucleation raten(r ,t) for tP@0,t# and also the equation
describing the rateȧ(r ,t,t) of variation of the radius of a
cavity nucleated atr at t5t.

There are two competing processes giving rise to
variation of the radius of cavities considered as a function
time t. The first process is associated with the attachmen
the surface of the cavity of single vacancies and interstiti
and the second one is due to the bombardment of grow
cavities by mobile interstitial clusters, see e.g., Ref. 22,

da~r ,t,t!

dt
5Fda~r ,t,t!

dt G
point defects

1Fda~r ,t,t!

dt G
interst clusters

.

~4!

The first term in the right-hand side of Eq.~4! equals the
difference between fluxes of single vacancies and interst
atoms integrated over the surface of the cavity. For su
ciently large cavities~see Ref. 23 and Appendix A for mor
detail! this term can be expressed as

Fda~r ,t,t!

dt G
point defects

5
1

a~r ,t,t!
@Dvcv~r ,t !2Dici~r ,t !#

3Q~ t2t!, ~5!

whereDv andDi are the diffusion coefficients (Dv!Di) of
vacancies and interstitials, respectively, andcv(r ,t) and
ci(r ,t) are the local concentrations of vacancies and inter
tial atoms. FunctionQ(t2t) entering Eq.~5! is defined as
Q(t2t)51 for t>t andQ(t2t)50 for t,t.

The time-dependent concentrations of vacancies and
terstitial atoms satisfy a system of two nonlinear equatio
describing the generation, diffusion, recombination and
sorption of point defects in the presence of a sink

]

]t
ci~r ,t !5Di

]2

]r2
ci~r ,t !1K~12e!

2@Zir1v~r ,t !#Dici~r ,t !2aci~r ,t !cv~r ,t !

2s i~r ,t !,

]

]t
cv~r ,t !5Dv

]2

]r2
cv~r ,t !1K2@Zvr1v~r ,t !#Dvcv~r ,t !

2aci~r ,t !cv~r ,t !2sv~r ,t !. ~6!

In these equationsK is the effective rate of generation o
point defects in the material by energetic particles andr is
the density of randomly distributed dislocation lines. Disl
cations absorb vacancies and interstitial atoms at slighly
ferent rates, and this effect is described by the bias fac
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Zi;1 andZv;1, Zi.Zv . v(r ,t) describes the absorptio
of point defects by growing cavities~an explicit expression
for this term is derived in Appendix A! anda is the recom-
bination constant. Here we are interested in following
evolution of the binary diffusion field$ci(r ,t),cv(r ,t)% in the
vicinity of an extended lattice defect~a grain boundary!, and
functionssv(r ,t) ands i(r ,t) represent the rates of absor
tion of vacancies and interstitial atoms by this defect.

Equations~6! show that the rates of generation of inte
stitial atoms and vacancies are unequal. This inequalit
associated with the formation of clusters of interstitial ato
in collision cascades, ande is the cluster formation ratio,e
;1.

The second term in Eq.~4! is associated with the bom
bardment of growing cavities by mobile interstitial cluste
To assess the contribution of this process to the rate of va
tion of the radius of growing cavities we need to average
flux of interstitial atoms transported by clusters to cavit
over the positions and orientations of dislocation lines a
over the coordinates of centres of cavities. For the cas
spatially homogeneousdistribution of cavities, where
a(z,t,t) is independent ofz, the second term in Eq.~4! is
given by

Fda~ t,t!

dt G
interst clusters

52
Ke

prd14pE
0

t

n~t8!a2~ t,t8!dt8

3Q~ t2t!, ~7!

whered is the effective radius of absorption of one dime
sionally moving clusters by dislocations. A more general
pression valid for the case of a spatially inhomogeneous
tribution of cavities near a plain grain boundary is derived
Appendix B. It has the form

Fda~z,t,t!

dt G
interst clusters

52
Ke

8M
Q~ t2t!

3(
i 51

M H E
0

` dz8

ucosg i u
expF2E

0

z8 dz9

ucosg i u
v~z1z9,t !G

1E
0

z dz8

ucosg i u
expF2E

0

z8 dz9

ucosg i u
v~z2z9,t !G J , ~8!

wherev(z,t)5p/4rd1p*0
t n(z,t8)a2(z,t,t8)dt8 and sum-

mation is performed over possible directions of on
dimensional motion of interstitial clusters in a given crys
structure (M54 for the bcc and M56 for the fcc
structure.24! g i is the angle between the direction of motio
of clusters and thez axis, which is assumed to be perpe
dicular to the plane of the grain boundary.

Expressions~1!–~8! form a closed self-consistent set
equations, the solution of which describes the evolution o
spatially inhomogeneous distribution of cavities nucleat
and growing in the vicinity of a grain boundary in an irrad
ated material. Equations~1!–~8! describe the case where co
lision cascades lead to the formation of mobile clusters
e
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interstitial atoms. Analysis given below shows that cluste
sation of interstitial atoms has a very significant effect on
evolution of the population of cavities. In particular, comp
tition between growth by attachment of point defects to
surface of cavities and the bombardment of cavities by m
bile interstitial clusters complemented by radically differe
transport properties of point defects and mobile clust
gives rise to a highly inhomogeneous pattern of swellin
where peak values are up to eight times higher than va
characterizing swelling in the interior region of the grain.

III. ANALYSIS OF THE MODEL

A. Spatially homogeneous case

We start by considering a solution of Eqs.~1!–~8! corre-
sponding to the case of spatially homogeneous distribu
of cavities. The characteristic scale of spatial fluctuations
concentrationsci(r ,t) andcv(r ,t) equalsz̃;r21/2 and there-
fore the temporal variation of concentrations is characteri
by the time scalet̃;(Dr)21;10 s forD;1029 cm2/s and
r;108 cm22. Since the time scale characterizing th
growth of cavities is many times this value, the time deriv
tives of concentrations entering the left-hand side of Eq.~6!
may be neglected. Assuming also that the defect produc
rate satisfies the conditionK!rDiDv /a, we neglect the re-
combination term and obtain

ci~ t !5
K~12e!

Di
FrZi14pE

0

t

n~t8!a~ t,t8!dt8G21

,

cv~ t !5
K

Dv
FrZv14pE

0

t

n~t8!a~ t,t8!dt8G21

. ~9!

Combining Eqs.~9! and~5!, we obtain the contribution to the
rate of variation of the cavity radius associated with the fl
of point defects arriving on its surface

Fda~ t,t!

dt G
point defects

5
Q~ t2t!

a~ t,t!

3F K

rZv14pE
0

t

n~t8!a~ t,t8!dt8

2
K~12e!

rZi14pE
0

t

n~t8!a~ t,t8!dt8G .

~10!

In the case of instanteneous nucleation of cavitiesn(t)
5N0d(t) Eqs.~10! and ~7! transform into equation22

a~ t,0!

dt
5

1

a~ t,0! F K

rZv14pN0a~ t,0!
2

K~12e!

rZi14pN0a~ t,0!G
2

Ke

prd14pN0a2~ t,0!
. ~11!

Depending on the choice of bias parametersZi ,Zv and the
cluster formation ratioe, solutions of Eq.~11! show two
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radically different types of asymptotic behavior. One of the
corresponds to the case where the growth of cavities e
tially saturates, while the other describes growth which c
tinues indefinitely as a function of irradiation timet. To in-
vestigate conditions corresponding to the crossover betw
these two scenarios we introduce dimensionless variablef
5Kt, k5rd2, and x05N0d3. These variables have
simple meaning, namely,f is the total irradiation dose~ex-
pressed in units of displacement per atom!, k is the measure
of transparency of the dislocation network for on
dimensionally moving clusters, andx0 is the dimensionless
volume density of growing cavities. Introducing also the
mensionless radius of cavitiesr (f)5a(t,0)/pd, we obtain

dr

df
5

1

p2kF1

r S 1

Zv14p2x0r /k
2

12e

Zi14p2x0r /k D
2

e

114p2x0r 2/kG . ~12!

Analysis of solutions of this equation given in Appendix
shows that in the case whereZi2Zv.eZi and where the
volume density of cavities is sufficiently large, the size
cavities given by Eq.~12! increases indefinitely in the limi
of high irradiation dose as

r ~f!;
k1/4

A2p3x0
1/2@Zi2Zv2eZi #

1/4f1/4. ~13!

However, if Zi2Zv!eZi then the growth of cavities satu
rates in the limitf→` at r'1. Swelling of the material also
saturates in this limit approaching the maximum value giv
by

S~f!5
4

3
p4x0r 3~f!umax'1.33104x0 @%#. ~14!

In most cases the cluster formation ratioe is large~typically
e;1) in comparison with the difference between dislocat
bias factorsZi and Zv @values of (Zi2Zv)/Zi lie in the in-
terval between 1% and 3%~Ref. 25!#. This shows that keep
ing the dislocation bias terms in the model described ab
is unnecessary, and in what follows we only consider
case whereZi5Zv51.

B. Spatially inhomogeneous case

We now investigate solutions of Eqs.~1!–~8! describing
the nucleation and growth of cavities in the vicinity of
grain boundary. The boundary is assumed to have the f
of a plane situated atz50. This plane is able to absorb poin
defects and interstitial clusters that approach it. Since vac
cies and interstitial atoms interact with grain boundaries
long-range elastic fields,26 the rate of absorption of intersti
tial atoms by the boundary is expected to be higher than
rate of absorption of vacancies. However, in relative ter
the interaction between point defects and grain boundarie
not as strong as it is between point defects and dislocati
Therefore, in order to ensure the consistency of our mo
where the absorption of point defects by dislocations is
sumed to be unbiasedZi5Zv , we must assume that there
n-
-

en

-

f

n

e
e

m

n-
a

e
s
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no difference in the effective rates of absorption of vacanc
and interstitials by the grain boundary. In this case Eqs.~6!
acquire the form

Di

d2

dz2 ci~z,t !1K~12e!2@r1v~z,t !#Dici~z,t !

2aci~z,t !cv~z,t !5Dici~z,t !Qd~z!,

Dv

d2

dz2 cv~z,t !1K2@r1v~z,t !#Dvcv~z,t !

2aci~z,t !cv~z,t !5Dvcv~z,t !Qd~z!, ~15!

whereQ characterizes the rate of absorption of point defe
by the grain boundary. Since concentrations of vacancies
interstitial atoms enter Eq.~5! in the form of a linear combi-
nation P(z,t)5Dvcv(z,t)2Dici(z,t), we subtract the sec
ond of Eqs.~15! from the first one and obtain a closed equ
tion on P(z,t)

d2

dz2 P~z,t !1Ke2@r1v~z,t !#P~z,t !5P~z,t !Qd~z!.

~16!

In the limit Q→` thed function term in the right-hand side
of this equation is equivalent to the boundary conditi
P(0,t)50.

We begin by considering the limit of low density of grow
ing cavitiesv(z,t)!r. In this case Eq.~16! has stationary
solution

P~z!5
Ke

r
~12e2Arz!. ~17!

Substituting this into Eq.~5!, we arrive at

Fda~z,t,t!

dt G
point defects

5
Q~ t2t!

a~z,t,t!

Ke

r
@12exp~2Arz!#.

~18!

In the limit of low density of cavities integration in Eq.~8!
can be done analytically

Fda~z,t,t!

dt G
interst clusters

52
Ke

2prd
Q~ t2t!F22

1

M (
i 51

M

expS 2
p

4

rd

ucosg i u
zD G .

~19!

Combining Eqs.~18! and~19! we obtain that the radius of a
cavity nucleated at distancez from the grain boundary a
time t satisfies the differential equation of the form

da~z,t,t!

dt
5

Ke

r
Q~ t2t!H 12exp~2Arz!

a~z,t,t!
2

1

2pd

3F22
1

M (
i 51

M

expS 2
p

4

rd

ucosg i u
zD G J .

~20!

Initial condition for this equation isa(z,t,t)50.
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If we assume thata(z,t,t)5pd in the denominator of the
first term in curly brackets in the right-hand side of Eq.~20!,
we obtain an equation which is similar to Eq.~15! of Ref. 20.
The treatment developed in Ref. 20 is based on the assu
tion that the rate of growth of cavities near a grain bound
is independent of their size. This assumption is not consis
with the the initial conditiona(z,t,t)50. Moreover, in the
vicinity of a grain boundary the saturation radiusa(z,`,t)
turns out to be a function of the distancez between the cente
of the cavity and the grain boundary. Therefore, to obtai
correct solution of Eq.~20! we have to retain the dependen
of the right-hand side of this equation on the radiusa(z,t,t)
of growing cavities.

Solution of Eq.~20! satisfying the appropriate initial con
dition can be represented in a parametric form as

a~z,t,t!12pd
A~z!

B~z!
lnF12

a~z,t,t!

2pd

B~z!

A~z!G
52Q~ t2t!

Ke

2prd
B~z!~ t2t!, ~21!

whereA(z) andB(z) are dimensionless functions ofz given
by

A~z!512exp~2Arz!,

and

B~z!522
1

M (
i 51

M

expS 2
p

4

rd

ucosg i u
zD .

Formula~21! shows that at smallt2t!rd2/Ke the radius of
the growing cavity increases as the square root of the t
elapsed from the moment of nucleation

a~z,t,t!5Q~ t2t!A2Ke

r
A~z!~ t2t!. ~22!

Therefore, the rate of growth of cavities at small times
independent of the second term in the right-hand side of
~20!, or, in other words, the growth of small cavities is n
affected by the bombardment of cavities by one dimensi
ally moving interstitial clusters. Mathematically, this is
simple corollary of the fact that the first term in the righ
hand side of Eq.~20! is singular in the limita(z,t,t)→0.

For larget2t@rd2/Ke the growth of cavities saturate
and their radiusa(z,t,t) approaches the maximum valu
given by

lim
t2t→`

a~z,t,t!5amax~z!52pd
A~z!

B~z!
. ~23!

This equation shows that forz5z* ;r21/2 andrd2!1 cavi-
ties are able to reach sizeamax(z* )52pd, which is twice the
maximum sizeamax5pd that cavities reach in the interio
region of the grain. This implies that the peak value of swe
ing of the material in the vicinity of a grain boundary can
up to eight times higher than the maximum value characte
ing swelling in the grain interior.

Figure 1 shows the dependence of the saturation ra
amax(z) on the distancez from the grain boundary. Cavitie
growing near a grain boundary can reach substantially la
p-
y
nt

a

e

s
q.

-

-

s-

us

er

sizes than cavities growing in the grain interior~for d510
nm the saturation radius of cavities growing in the inter
region of the grain is approximately equal to 31.4 nm!. The
position of the peak of swellingz* corresponding to the
maximum of functionamax(z) decreases monotonically as
function of the density of dislocation linesr.

Equations~18!–~20! describe the case where the volum
density of growing cavities was assumed to be low. In t
case dislocations are primarily responsible for the absorp
of mobile point defects and interstitial clusters, and the eff
of nonlinear terms describing the influence of the ‘‘atm
sphere’’ of growing cavities on the rate of cavity growth
negligible. In the next section we investigate the part play
by these nonlinear terms and the limit of high density
growing cavities.

C. Nucleation of cavities and the high density limit

In this section we study solutions of a general nonline
self-consistent system of equations describing the nuclea
and growth of cavities near a grain boundary. If the volum
density of cavities exceeds the limit defined by the condit
4p*0

t n(z,t)a(z,t,t)dt5r, the approach described in th
preceeding section is no longer valid and the presence
cavities affects concentrations of freely moving vacanc
and interstitial atoms. Furthermore, if the volume density
cavities is large enough so thatp*0

t n(z,t8)a2(z,t,t8)dt
>(p/4)rd, the one-dimensional motion of interstitial clus
ters is also affected by their interaction with cavities. In th
case integral~8! can no longer be approximated by expre
sion ~19! corresponding to the low cavity density limit.

To investigate the high-density case we introduce an
ditional simplifying approximation in our model~1!–~8!. In-

FIG. 1. Dependence of the saturation radiusamax(z) of cavities
nucleated at distancez from a grain boundary in an irradiated ma
terial. Calculations were performed for several values of the dis
cation densityr spanning fromr5108 cm22 ~a well annealed ma-
terial! to a high dislocation density material characterized byr
51011 cm22. The effective radius of absorption of interstitial clu
ters by dislocationsd is assumed to be equal to 10 nm, and t
saturation radius of cavities growing in the interior region of t
grain pd equals 31.4 nm.
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stead of performing summation over directions of motion
interstitial clusters in the crystal lattice, we introduce an a
erage quantitŷ cosg& characterizing the ‘‘average’’ angl
between the direction of motion of clusters and thez axis.
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Using dimensionless variables, we obtain equations desc
ing how the radius of a cavity growing in a dense spatia
inhomogeneous environment varies with the irradiation d
f,
d

df
r ~z,f,f8!5Q~f2f8!

e

p2kH P~z,f!

r ~z,f,f8!
2

1

2E0

` dz8

^cosg&
expF2E

0

z8 dz9

^cosg& S 11
4p2

k E
0

f

df9x~z1z9,f9!

3r 2~z1z9,f,f9! D G2
1

2E0

z dz8

^cosg&
expF2E

0

z8 dz9

^cosg& S 11
4p2

k E
0

f

df9x~z2z9,f9!r 2~z2z9,f,f9! D G J .

~24!
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Heref5Kt is the irradiation dose andf85Kt is the dose
corresponding to the moment of nucleation.z5(p/4)zrd is
the dimensionless distance between the cavity and the g
boundary.x(z,f8)5(K/d3)n(z,t) is the dimensionless cav
ity nucleation rate, andk5rd2 is the parameter characteriz
ing the transparency of the dislocation atmosphere for o
dimensionally moving clusters.r (z,f,f8) is the cavity
radius expressed in unitspd, and functionP(z,f) satisfies
equation

p2

16
k

d2

dz2 P~z,f!11

2F11
4p2

k E
0

f

df9x~z,f9!r ~z,f,f9!GP~z,f!

50. ~25!

The boundary condition for Eq.~25! has the formP(0,f)
50. The magnitude of local swelling associated with ca
ties nucleating and growing at distancez from the grain
boundary is related to the solution of Eq.~24! via

S~z,f!5
4

3
p4E

0

f

df8x~z,f8!r 3~z,f,f8!. ~26!

Equation~24! has a simple meaning. It shows that the ra
of growth of a cavity situated at pointz is proportional to the
difference between two terms, where the first one is sing
in r (z,f,f8) and describes diffusional growth by the attac
ment of single vacancies and interstitial atoms. The sec
term ~which itself is a sum of two integrals! describes colli-
sions between the cavity and gliding interstitial clusters.

The evaluation of the first term in Eq.~24! requires solv-
ing inhomogeneous diffusion equation~25! for a dimension-
less functionP(z,f), which describes the dependence of t
concentration of point defects on the distance from the g
boundary. A rigorous approach to solving Eq.~25! is de-
scribed in Appendix D. A detailed analysis of numerical s
lutions of Eq. ~25! shows that these solutions may be a
proximated by expression
in

e-
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e

ar
-
d
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P~z,f!5
1

11
4p2

k E
0

f

df9x~z,f9!r ~z,f,f9!

3H 12expS 2
4z

pAk
F11

4p2

k

3E
0

f

df9x~z,f9!r ~z,f,f9!G1/2D J . ~27!

Numerical evaluation of integrals in Eq.~24! can be per-
formed using finite difference algorithms.27 The fact that the
asymptotic behavior of the radius of growing cavities in t
grain interior is known from the solution of Eq.~10! makes it
possible to evaluate the tails of integral terms analytica
therefore avoiding lengthy numerical integration over a la
range of variation of variablesz9 and z8. According to the
classical theory of nucleation,28–30 the rate of nucleation of
cavitiesx(z,f) is a functional of the local concentration o
vacancies. In what follows we assume that the rate of nu
ation has the formx(z,f)5x̄Ph(z,f), where x̄ is a con-
stant andh is an integer. This simple approximation makes
possible to investigate a number of cases ranging from
limit of continuous nucleation corresponding toh50, to the
limit of almost instanteneous nucleation of cavities at t
onset of growth,h@1.

We begin by investigating the instanteneous nucleat
case where all the cavities are assumed to nucleate att50.
This case corresponds tox(z,f)5x0d(f). The volume
density of cavities in this case remains constant and indep
dent of either the dosef or the distancez. The formation of
spatially inhomogeneous profile of swelling in this case
associated entirely with the fact that the rate of growth
cavities depends on the distancez from the boundary.

Figure 2 illustrates the formation and the development
profiles of inhomogeneous swellingS5S(z,f) in the vicin-
ity of a grain boundary. At any given dosef the profile has
a characteristic shape with a maximum situated at a cer
charateristic distancez* from the boundary. This distanc
z* , considered as a function of the dosef, decreases mono
tonically with increasingf. This agrees well with experi-
mental observations.12
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In all the cases investigated in this work swelling profil
exhibited saturation in the limit of large irradiation dosesf.
For f@1 any further increase of the dose results in
change either in the magnitude of swelling or in the shape
the swelling profile. This result is entirely consistent wi
Eq.s~24!–~27!. Integrals overf entering Eqs.~24! and~26!
for the instanteneous nucleation case are proportional to
radius of cavities. Since the radius of cavities saturates in
limit t→`, so does the swelling profile. The dosef required
to reach saturation tends to be smaller in the case of
density of dislocations~very small values ofk) in compari-
son with the case of high dislocation density~intermediate
values ofk).

An interesting question that we can now address on
basis of the model described above concerns the depend
of the positionz* of the peak of swelling on thevolume
densityof growing cavities. In the case where the nucleat
of voids is assumed to be instanteneous, the volume den
of cavities N0 is related tox0 via x05N0d3. Equations
~24!–~27! show that the behavior that the model exhibits a
function of x0 becomes highly nonlinear forx0.k/2p. To

FIG. 2. Profiles of inhomogeneous swelling near a grain bou
ary calculated for the high cavity density case assuming spat
homogeneous and instanteneous nucleation of cavities. Cu
shown in the upper part of the figure correspond to lower densit
dislocations than the curves shown in the lower part of the figu
Note the high values of swelling characterizing the growth of ca
ties in the vicinity of the grain boundary. Calculations were p
formed using Eqs.~24!–~27! for e50.6, ^cosg&50.8, and x0

50.001.
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investigate the functional dependencez* (x0) in this case we
have to refer to numerical solutions of the model similar
those shown in Fig. 2.

Figure 3 illustrates the dependence of the position of
maximum of the swelling curve on the volume density
growing cavities. In the limit of small densitiesx0!k/2p
the coordinate of the maximumz* is nearly independent on
the density of cavities. However, in the case wherex0
>k/2p the dependence ofz* on x0 proves to be very
strong. Approximating the functionz* (x0) by a power law
we obtain that the best fit is given byz* ;x0

21/3. In dimen-
sional units this is equivalent toz* ;N0

21/3, or, in other
words, the distance between the peak of swelling and
grain-boundary scales approximately as the average dist
between the cavities. This type of scaling is very similar
the one observed experimentally.19

So far in this section we have been studying the case
instanteneous nucleation of cavities. Now we consider
case where cavities continue to nucleate even after the o
of growth. In the case where the nucleation of cavities p
ceeds in parallel with their growth, Eqs.~24!–~27! become
nonlocal only in space, but also in time. Formally, this no
locality manifests itself in the form of the appearance in E
~24! of two types of integral terms. Integrals overz describe
the nonlocality associated with the long-range transport
interstitial atoms by mobile clusters. The second type of n
locality is the temporal nonlocality, which is associated w
the fact that the growth of cavities nucleated at a cert
moment of timet ~corresponding to a certain value of th
irradiation dosef85Kt) is affected by the presence of cav
ties nucleated at earlier timest<t. This means that at an an
given time the population of cavities at a given distancez
from the grain boundary is characterized by adistributionof
sizes rather than by a certain value of their radius.

Figure 4 illustrates the effect of the mode of nucleation
cavities on the shape of the swelling curve. Continuo
nucleation of cavities~curves shown in the left column!
tends to lead to higher swelling than that obtained in the c
where the initial sharp drop in the concentration of vacanc

-
ly
es
f
.

-
-

FIG. 3. Dependence of the position of the maximum of t
swelling curvez* on the dimensionless volume densityx05N0d3

of cavities. Numerical calculations were performed using E
~24!–~27! for e50.6, ^cosg&50.8, andk50.001. The solid line is
a power-law fit to the set of points calculated numerically.
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suppresses further nucleation of cavities~curves shown in the
right column!. The shape of the curve depends on a num
of parameters including the density of dislocation and
dose, and also on the volume density of cavities accumul
over the time elapsed since the onset of growth.

In Fig. 5 we compare swelling profiles calculated usi
Eqs. ~24!–~27! in the continuous nucleation approximatio
and profiles observed experimentally. Experimental data

FIG. 4. Profiles of inhomogeneous swelling calculated for
case of continuous nucleation of cavities. The rate of nucleatio
cavities was assumed to be proportional to the concentratio

vacanciesx(z,f)5x̄Ph(z,f). All the curves shown in this figure

were calculated forx̄51024. Profiles shown in the top row wer
calculated fork50.001. Profiles shown below correspond tok
50.01.

FIG. 5. Comparison between swelling profiles measured exp
mentally~see Fig. 22 in Ref.@12#! and calculated numerically usin

Eqs. ~24!–~27!. Calculations were performed assumingx̄5
1.231024, k50.001, h50, ande50.6. The incubation dose cor
responding to the onset of growth was assumed to be equal to
dpa. The asymmetry of the calculated profiles is associated with
difference between the spatial scales characterizing the diffusio
point defects and the one-dimensional Brownian motion of inter
tial clusters, and also with the effect of saturation of swelling in
grain interior.
r
e
ed

e-

ported in Ref. 12 indicate that swelling was accompanied
the continuous nucleation of new cavities, and the latter
fect was taken into account in the calculations. Both the sc
of the curves and the position of maxima of experimenta
measured and calculated profiles agree reasonably wel
the same time Fig. 5 shows the presence of a notable de
tion of calculated profiles from experimental data in the
gion of largez, where the tails of calculated profiles decrea
more slowly than the tails of profiles measured experim
tally. This effect reflects the presence of a somewhat hig
degree of absorption of mobile interstitial clusters in the
terior region of the grain than that predicted by Eqs.~24!–
~27!. It is possible to speculate that the additional contrib
tion to the absorption coefficient may come from scatter
by immobile interstitial clusters, but the exact microscop
origin of the phenomenon remains unclear.

The fact that cavities continue to nucleate after the on
of growth leads to the situation where at any given irrad
tion dosef the population of cavities is characterized by
relatively wide distribution of sizes. At any given moment
time this distribution can be found using formula~1!. The
presence of thed-function term in Eq.~1! makes this formula
somewhat inconvenient for numerical calculations. Howev
the difficulties can be readily circumvented by replacing t
integral by a sum over a finite number of points, and
approximating thed function by the Kroneckerd symbol.
Figure 6 shows cavity size distributions corresponding
three different distances between the pointz, where the size
distribution is evaluated, and the grain boundary. All thr
distributions correspond to the swelling profile shown in F
5 by the dash-dotted line. The shape of all the distributio
turns out to be remarkably similar and nonanalyticf (a,z)
;@amax(z)2a#21. The presence of a sharp peak on the rig
edge of all distributions is associated with the fact that
radius of cavities saturates in the limit of large doses. T
point shows that an experimental investigation of the dis
bution of cavities as a function of their size may offer
interesting insight into the microscopic mechanisms of th
formation and growth.

IV. SUMMARY

In this paper we investigated the formation and devel
ment of profiles of spatially inhomogeneous growth of ca
ties near a planar lattice defect~a grain boundary!. The
model describes both the nucleation and growth of cavit
and takes into account competing processes of diffusio
growth of cavities by the attachment of point defects and
destruction of cavities in collisions with interstitial cluster
The model shows the formation of a characteristic profile
inhomogeneous swelling, where the maximum of the pro
drifts towards the grain boundary as a function of time. Ca
ties growing in the vicinity of a grain boundary are shown
be able to reach substantially larger sizes than cavities gr
ing in the interior region of the grain. The magnitude
swelling at maximum is found to be up to eight times high
than the value characterizing swelling in the grain interi
Profiles calculated numerically by solving the nonlinear se
consistent equations describing the evolution of the spati
inhomogeneous population of cavities are shown to comp
well with profiles measured experimentally. The positionz*
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of the maximum of swelling profiles is found to scale wi
the density of cavitiesN0 as z* ;N0

21/3 in agreement with
experimental observations.
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APPENDIX A

To evaluate the rate of absorption of point defects
randomly distributed cavities we consider an inhomogene
diffusion equation

FIG. 6. Distribution of sizes of cavities nucleated and grown
the vicinity of a grain boundary. Calculations were performed
the same values of parameters as those used in Fig. 5. The irr
tion dosef50.65 dpa. Note that the growth of cavities in th
interior region of the grain saturates ata/pd51.
-
.
.

d
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y
s

D
]2

]r2
G~r ,r 8!5d~r2r 8!, ~A1!

the solution of which is

G~r ,r 8!52
1

4pDur2r 8u
. ~A2!

Consider a spherical cavity of radiusa growing by the at-
tachment of diffusing particles to its surface. The concen
tion of diffusing particles around the cavity is given by23

c~r !5c`2
a

r

~av/D !

11~av/D !
@c`2c(eq)~a!#, ~A3!

wherev is the effective velocity, which is a parameter ente
ing the boundary condition for the rate of attachment of p
ticles to the surface of the cavity

D
]c

]r U
r 5a

5v@c`2c(eq)~a!#. ~A4!

Generalizing Eq.~A3! to the case of a weakly inhomoge
neous distribution of diffusing particles, we arrive at

c~r !5c0~r !14pDa
~av/D !

11~av/D !
E dRdr 8G~r2R!

3d~R2r 8!@c0~R!2c(eq)~a!#, ~A5!

where r 8 is the coordinate of the center of the cavity a
c0(r ) is the diffusion field corresponding to the case whe
the perturbation associated with the cavity may be neglec
In what follows we assume that the average concentratio
diffusing particles is many times their equilibrium concentr
tion c(eq)(a). In this case the evaporation term in the righ
hand side of Eq.~A5! may be neglected and this equatio
becomes identical to the equation defining theT matrix in the
theory of scattering31,32

c~r !5c0~r !1E dRdr 8G~r2R!T~R,r 8!c0~r 8!.

~A6!

To average Eq.~A5! over the positions of centres of cavitie
we now follow the procedure developed for Eq.~A6! by
Lax33,34 and obtain

c~r !5c0~r !14pDa
~av/D !

11~av/D !
E dr 8G~r2r 8! f ~r 8!c~r 8!,

~A7!

where f (r 8) is the volume density of cavities at pointr 8.
Representing this function in the form of the integral ov
the cavity size distribution functionf (a,r 8) as f (r 8)
5*0

`da f(a,r 8), we arrive at

c~r !5c0~r !14pDE
0

`

daa
~av/D !

11~av/D !
E dr 8

3G~r2r 8! f ~a,r 8!c~r 8!. ~A8!

Finally, acting on both sides of this equation by opera
D(]2/]r2) and comparing the result with Eq.~6!, we find

r
ia-



m

o

-
ion

lis

ar
er

s

h

e

r-

ts
-

o-

9334 PRB 62S. L. DUDAREV
v~r ,t !54pE
0

`

daa
~av/D !

11~av/D !
f ~a,r ,t !. ~A9!

Combining Eqs.~1! and ~A9!, we obtain

v~r ,t !54pE
0

t

n~r ,t!a~r ,t,t!
@a~r ,t,t!v/D#

11@a~r ,t,t!v/D#
dt.

~A10!

As the radius of the growing cavity increases~in practice this
means that the cavity contains more than just a few ato!
we approach the limita(r ,t,t)v/D@1 where Eq.~A10! can
be further simplified as

v~r ,t !54pE
0

t

n~r ,t!a~r ,t,t!dt. ~A11!

This limit corresponds to the expression for the rate
growth given by Eq.~5!.

APPENDIX B

In this Appendix we show how to derive Eq.~8! describ-
ing the~negative! contribution to the rate of growth of cavi
ties due to the bombardment of cavities by one dimens
ally moving interstitial clusters. We assume thatall the
interstitial clusters produced in collision cascades are g
sile.

Consider a problem of one-dimensional motion of a p
ticle along thez axis. We assume that the particle encount
obstacles that are distributed along thez axis with density
n(z). In other words,n(z)dz is the total number of obstacle
situated betweenz and z1dz. Consider now an arbitrary
point z0. The probabilityPR(XR ,z0) of finding the nearest to
z0 obstacle at a certain distanceXR from z0 in the positive
direction of thez axis~i.e., on the right ofz0), is given by the
solution of equation

PR~XR ,z0!5S 12E
0

XR
PR~X8,z0!dX8D n~z01XR!.

~B1!

We assume that the density of obstacles does not vanis
the limit XR→` and therefore limXR→`*0

XRdX8n(z01X8)

5`. In this case we can transform integral Eq.~B1! into a
differential equation

d

dx S PR~XR ,z0!

n~z01XR! D52n~z01XR!S PR~XR ,z0!

n~z01XR! D , ~B2!

and obtain

PR~XR ,z0!5n~z01XR!expS 2E
0

XR
dX8n~z01X8! D .

~B3!

To prove that this probability distribution is normalized w
integratePR(XR ,z0) over a semi-infinite interval of variation
of XR and obtain

E
0

`

dXRn~z01XR!expS 2E
0

XR
dX8n~z01X8! D 51.

~B4!
s

f

-

-

-
s

in

Similarly, the probability of finding an obstacle that the nea
est toz0 and that is situated on the left-hand side ofz0 at a
distanceXL , is given by

PL~XL ,z0!5n~z02XL!expS 2E
0

XL
dX8n~z02X8! D .

~B5!

The concentrationC(z) of particles moving along thez axis
in a given configuration if obstacles situated at poin
z1 ,z2 . . . zN . . . is given by the solution of the time
independent diffusion equation

D
d2

dz2 C~z!1Kc50

satisfying boundary conditions of the formC(z1)5C(z2)
5 . . . 5C(zN) . . . 50. This solution has the form

C~z!5
Kc

2D
@~z2z1!~z22z!Q~z2z1!Q~z22z!

1~z2z2!~z32z!Q~z2z2!Q~z32z!1 . . . #.

~B6!

A graphical illustration of Eq.~B6! is given in Fig. 7. The
averageconcentration of particles at a certain pointz equals

^C~z!&5
Kc

2D
^~z2zL!~zR2z!&5

Kc

2D
^XL&^XR&. ~B7!

Taking into account the fact that

^XR&5E
0

`

dXXn~z1X!expS 2E
0

X

dX8n~z1X8! D
5E

0

`

dXXF2
d

dX
expS 2E

0

X

dX8n~z1X8! D G
5E

0

`

dX expS 2E
0

X

dX8n~z1X8! D , ~B8!

and deriving a similar expression for^XL&, we obtain

FIG. 7. Sketch illustrating the solution~B6! of the diffusion
equation describing the one-dimensional Brownian motion of m
bile interstitial clusters.
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^C~z!&5
Kc

2D F E
0

`

dX expS 2E
0

X

dX8n~z1X8! D G
3F E

0

`

dX expS 2E
0

X

dX8n~z2X8! D G . ~B9!

We now consider how to evaluate the probability of fin
ing an obstacle that is the nearest to a given pointz0.0 in a
configuration where the position of the obstacle situated
z50 is stationary. In this case the expression forPR(XR ,z0)
remains unchanged but instead of Eq.~B5! we obtain

PL~XL ,z0!5n~z02XL!expS 2E 0
XLdX8n~z02X8! D

1d~z02XL!expS 2E
0

z0
dX8n~z02X8! D .

~B10!

The average concentration of moving particles is now giv
by

^C~z!&5
Kc

2D F E
0

`

dX expS 2E
0

X

dX8n~z1X8! D G
3F E

0

z

dX expS 2E
0

X

dX8n~z2X8! D G .
~B11!

For example, in the case wheren(z)5n05const we obtain

^C~z!&5
Kc

2Dn0
2 @12exp~2n0z!#. ~B12!

Now consider the solution of Eq.~B7! on a given interval
@zL ,zR#. If we place an absorbing probe at a pointz
P@zL ,zR# and calculate the total fluxJ of particles towards
this probe from the both sides of the interval, we find tha

J5D
d

dz
C~z!uz202D

d

dz
C~z!uz10

5
Kc

2
~zR2zL!

5
Kc

2
~XR1XL!, ~B13!

where XR5zR2z and XL5z2zL are the distances to ob
stacles that are nearest to the probe located at pointz. Inte-
grating Eq. ~B13! with probability distributions~B3! and
~B10!, we arrive at

^J&5
Kc

2 F E
0

`

dX expS 2E
0

X

dX8n~z1X8! D
1E

0

z

dX expS 2E
0

X

dX8n~z2X8! D G . ~B14!

To establish a connection between Eq.~B14! and the rate of
at

n

variation of the radius of a cavity we note that the effecti
production rate Kc of interstitial atoms moving one
dimensionally as a part of gliding clusters, is related to
volume production rate of clusters via~note that all the in-
terstitial clusters produced in collision cascades are assu
to be glissile!

Kc5
Ke

M

s'

a0
3

, ~B15!

where M is the number of possible directions of on
dimensional motion in a crystal lattice of a given symmet
a0 is the lattice constant ands' is the area of the projection
of the Wigner-Seitz cell on the chosen direction of on
dimensional motion.

Now consider a spherical cavity containingN vacancies.
The volume of the cavity is equal to

Na0
35

4

3
pa3~ t !. ~B16!

The rate of variation of the number of vacancies in a cavity
related to the current of interstitials via

dN
dt

52^J&
pa2~ t !

s'

. ~B17!

Multiplying both sides of this equation bya0
3 and noting that

d

dt
~Na0

3!54pa2~ t !
da~ t !

dt
,

we arrive at Eq.~8!. The expression for the effective densi
of obstaclesy(z) is equal to the sum of contributions o
scattering by spherical cavities@where the cross section o
scattering by an individual cavity is equal topa2(z,t,t)# and
scattering by randomly distributed dislocation lines. Coe
cientp/4 results from averaging the cross sectionrd sinu of
scattering by a dislocation line over all possible orientatio
of the line,

p

4
rd5

1

4pE0

2p

dcE
0

p

du sinu~rd sinu!.

APPENDIX C

We start from Eq.~12!

dr

dF
5

1

r S 1

Zv1pr
2

12e

Zi1pr D2
e

11pr2 , ~C1!

where F5f/p2k5Kt/r(pd)2 and p54p2x0 /k
54p2N0d/r. This equation is equivalent to
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dr

dF
5

p@~Zi2Zv!2eZi #r
21e~p2ZiZv!r 1@~Zi2Zv!1eZv#

r ~Zi1pr !~Zv1pr !~11pr2!
. ~C2!
in

s

i
n

i

th

d

e-

-

ent.

ng

-
as

of
of

val

e

It is evident that inequality (Zi2Zv)2eZi.0 represents a
necessarycondition that has to be satisfied in order to obta
a solution that grows in the limitF→`. Note that if Zi
5Zv then the above condition is not satisfied. In this ca
any solution of Eq.~C2! corresponding to initial condition
r 50 at F50 saturates towardsr 51 in the limit F→`.

Does inequality (Zi2Zv)2eZi.0 represent asufficient
condition for the absence of saturation of growth in the lim
of large doses? To answer this question we note that eve
the first and the third terms in the numerator of Eq.~C2! are
positive, the numerator may still have two roots situated
the vicinity of the point

r 052
e~p2ZiZv!

2p@~Zi2Zv!2eZi #
. ~C3!

The requirement that the numerator of Eq.~C2! remains non-
negative atr 0 leads to inequality

p.ZiZv1
2

e2@~Zi2Zv!1eZv#@~Zi2Zv!2eZi #

3H 12A11
ZiZve2

@~Zi2Zv!1eZv#@~Zi2Zv!2eZi #
J .

~C4!

If the latter condition, as well as inequality (Zi2Zv)2eZi
.0, are satisfied, then in the limit of largeF we obtain

dr

dF
;@~Zi2Zv!2eZi #p22r 23. ~C5!

The solution of the latter equation does not saturate in
limit F→` and is given by r (F)5A2@(Zi2Zv)
2eZi #

1/4F1/4/p1/2.

APPENDIX D

In this Appendix we describe a rigorous approach to fin
ing solutions of Eq.~25!. Consider an auxilliary equation

d2f ~z!

dz2 2V2~z! f ~z!5const. ~D1!

The correspondinghomogeneousequation has two linearly
independent solutionsf 1(z) and f 2(z). f 1(z) vanishes ex-
ponentially in the limit z→`, and f 2(z) vanishes in the
limit z→2`. Consider a function

F~z!5 f 1~z!E
0

z

dz8 f 2~z8!1 f 2~z!E
z

`

dz8 f 1~z8!.

~D2!

This function satisfies equation
e

t
if

n

e

-

d2F~z!

dz2 2V2~z!F~z!5 f 18 ~z! f 2~z!2 f 28 ~z! f 1~z!.

~D3!

The linear combination of two solutions of Eq.~D1! of the
form f 18 (z) f 2(z)2 f 28 (z) f 1(z) is their Wronskian, and is
therefore a quantity that is independent of coordinatez. This
shows that by choosing the normalization ofF(z) in a suit-
able way, we obtain the required solution of the inhomog
neous Eq.~D1!. To satisfy the boundary condition atz50
we should add toF(z) a suitable solution of the correspond
ing homogeneous equation. The addition off 1(z) multiplied
by an appropriate numerical factor satisfies this requirem

To find functionsf 1(z) and f 2(z) we need to develop a
numerical approach to eliminating exponentially growi
terms from solutions of the homogeneous Eq.~D1!. A pow-
erful algorithm for eliminating exponentially growing solu
tions of systems of second-order differential equations w
developed by Zhao and Tong35 in the theory of reflection
high-energy electron diffraction. To find a regular solution
Eq. ~D1! we rewrite this equation in the form of a system
two linear equations

dg

dz
5V2~z! f ~z!,

d f

dz
5g~z!. ~D4!

Assuming thatz.0, we consider how a solution of Eq.~D4!
behaves on an~arbitrarily chosen! interval@z1 ,z2#, which we
assume to be sufficiently small so that inside this inter
function V(z) can be approximated by a constantV(z,t)
'V(z* ,t)5V* , wherez* P@z1 ,z2#. The matrix that relates
solutions of Eq.~D4! at both ends of the interval has th
form

S g~z2!

f ~z2!
D 5S MD~z22z1!, MT~z22z1!

MB~z22z1!, MD~z22z1!
D S g~z1!

f ~z1!
D ,

~D5!

where

MD~z!5cosh~V* z!,

MT~z!5V* sinh~V* z!,

MB~z!5
sinh~V* z!

V* z
, ~D6!

and det M̂5MD
2 2MTMB51. Introducing theR matrix by

the relationg(z)5R(z) f (z), we obtain
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R~z1!5
MD~z22z1!R~z2!2MT~z22z1!

MD~z22z1!2MB~z22z1!R~z2!
. ~D7!

This equation defines the rule according to which theR ma-
trix propagates from a distant pointz→` to the origin z
lib
i,
-

n

:

c

o-
50. The entire profile of the functionf (z) can now be re-
stored recurrently by using a relation similar to Eq.~D7!

f ~z2!5@MD~z22z1!2MB~z22z1!R~z2!#21f ~z1!.
~D8!
ol-

cl.

o-

er.

,
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