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Inhomogeneous nucleation and growth of cavities in irradiated materials
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The origin of the effect of inhomogeneous swelling observed near grain boundaries in irradiated materials is
examined taking into account both nucleation and diffusional growth of cavities, and the interaction of cavities
with mobile interstitial clusters produced in collision cascades. The model shows the formation of a charac-
teristic profile of inhomogeneous swelling that exhibits features similar to those observed experimentally. The
rate of swelling is found to be strongly dependent on the size of cavities, with cavities growing near the
boundary being able to reach substantially larger sizes than those growing in the interior area of the grain. The
distancez* between the peak of swelling and the grain boundary scales with the density of chljtes
z*~N,?, whereg is close to 1/3.

[. INTRODUCTION number of interstitial atoms in a cluster increases, its Brown-

ian motion becomes nearly one dimensional. One dimension-

The kinetics of phase transformations in materials driverally moving clusters are able to propagate in the atmosphere
far from equilibrium has recently attracted considerable atof randomly distributed lattice defects through larger dis-

tention stimulated by the need to develop better understandances than single vacancies or interstitial atoms. At the same
ing of how materials behave in a hostile environme#t. time lattice defects affect the motion of one dimensionally
typical example of an evolving nonequilibrium system is diffusing clusters in a more substantial way than they influ-
given by a material irradiated by a flux of energetic ence the motion of single vacancies and interstitials since
particles? and this is rapidly becoming one of the issuesone dimensionally moving clusters cannot avoid obstacles by

central to the design of a fusion power statfdh. changing their direction of propagation.

The evolution of the microstructure of an irradiated ma- | is in the dependence of the rate of growth of cavities on
terial is characterized by the presence of dynamic quasieqy{heir size where the difference between contributions from

librium between the generation of lattice defects by the inCiitfsing point defects and from one dimensionally moving
dent energetic particles and the annihilation of these defecrausters manifests itself in the most notable way. For rela-

by dislocatiqns, grain boundaries, and cayi_ties in the matet"lvely small cavities growing by the attachment of vacancies,
rial. A chemical reaction-type theory describing the temporal

evolution of spatially averagedtoncentrations of vacancies the ratea(t) of varle_mon of cavity radiusa(t) is inversely
and interstitial atoms in the presence of randomly distributedProportional toa(t), a(t) ~ 1/a(t), while the(negative con-
mesoscopic lattice defects was formulated 30 years ago hyibution toa(t) resulting from the bombardment of cavities
Brailsford and Bullough. Recent theoretical advances have by interstitial clusters exhibits no singularity as a function of
been associated with the development of a more accuratgt). Given that extended lattice defects, for example, grain
treatment of effects of cascade damage. Effects of cascadmundaries, affect the motion of point defects and defect
damage are described by either the molecular dynakics, clusters in a radically different way, we may expect that in
the kinetic Monte Carldor the continuui models. One of  the vicinity of those extended defects the growth of cavities
the important aspects that emerges from recent theoretic& going to be characterized by features that are different
studies concerns the importance of taking into account spdrom those characterizing the growth in the interior area of
tial fluctuations of concentrations of defects in the materialthe grains. It has been observed experimentally that in
see, e.g., Refs. 10-13. the vicinity of grain boundaries the distribution of growing
Spatially inhomogeneous concentration profiles naturallycavities becomes highly inhomogeneous. The growth of
appear in the treatment of kinetics of nucleation and growtttavities is suppressed in the immediate vicinity of a grain
where growing cavities act as sources or sinks for the diffuboundary and the rate of growth is maximum at a certain
sion fields describing moving vacancies and interstitialdistance from the boundary, decreasing again in the interior
atoms'*!® Extended lattice defects absorb mobile point de-region of the grain. A theoretical model explaining the ob-
fect, too, reducing concentration of vacancegr,t) and served effects was proposed in Refs. 20 and 21 where the
interstitial atomsc;(r,t) in the vicinity of each sink and sup- formation of the zone of inhomogeneous swelling was inter-
pressing both the nucleation and diffusional growth of cavi-preted as being associated with the dependence of the swell-
ties in the vicinity of each sink. ing rate on the distance from the boundary. However, the
Clustering of defects in collision cascades brings a newnodel considered 9% neither takes into account the de-
important element in the dynamics of microstructural evolu-pendence of the rate of swelling on the size of growing cavi-
tion of irradiated materials. The mobility of certain types of ties (where the size represents probalig most important
clusters of interstitial atoms produced in collision cascadeparameter of the mode) nor it accounts for the nucleation
turns out to be higher than that of point defetsAs the  of new cavities. The significance of the latter effect stems

PRB 62 9325



9326 S. L. DUDAREV PRB 62

directly from experimental observatiofsee, e.g. Fig. 22 of which is a dimensionless parameter characterizing the local
Ref. 12. swelling of the material. The swellintate is found by the

In this paper we introduce a model describing the evoludifferentiation of Eq.(2)
tion of a population of cavities nucleating and growing in the
vicinity of a planar sink and interacting with the binary dif- dS(r,t)
fusion field of single vacancies and interstitial atoms and dt
with mobile interstitial clusters. We show that the competi- o . ]
tion between the nucleation and growth of cavities and thavhere it is taken into account thatr,t,t)=0. Equation(3)
dependence of the rate of growth on the size of cavities give§hows that to characterize the magnitude of local swelling at
rise to the formation Of a zone of h|gh|y inhomogeneousp(ﬂ”tf at timet we need to knOW the time dependence of the
swelling where at maximum the magnitude of swelling is uphucleation ratev(r,7) for 7e[0t] and also the equation
to eight times higher than that in the grain interior. We finddescribing the rata(r,t,7) of variation of the radius of a
that cavities growing near the grain boundary are able ta@avity nucleated at att= 7.
reach substantially larger sizes than those growing in the There are two competing processes giving rise to the
interior area of the grain. We also show that the position ofvariation of the radius of cavities considered as a function of
the peak of swelling depends on the density of growing cavitime t. The first process is associated with the attachment to
ties and that the distance between the peak and the boundahe surface of the cavity of single vacancies and interstitials,
scales approximately as the inverse cubic root of the volumand the second one is due to the bombardment of growing
density of cavities, in agreement with experimental observaeavities by mobile interstitial clusters, see e.g., Ref. 22,
tions.

The paper is organized as follows. First we introduce ada(r,t,7)
self-consistent set of equations describing the evolution of a  (t a
spatially inhomogeneous distribution of growing cavities.

Then we illustrate properties of these equations by analyzing

several limiting cases where analytical treatment is possible. The first term in the right-hand side of E@) equals the

In what follows we develop a numerical scheme and invesdifference between fluxes of single vacancies and interstitial
tigate the self-consistent problem of inhomogeneous swellatoms integrated over the surface of the cavity. For suffi-
ing of the material in the vicinity of a grain boundary. We ciently large cavitiegsee Ref. 23 and Appendix A for more
compare the calculated swelling curves with those observedetai) this term can be expressed as

experimentally, and analyze the dependence of solutions of

=47Tftv(r,7)a2(r,t,T)Wd7, (3)
0

da(r,t,7)
dt

da(r,t,7)

M

point defects

interst clusters

the model on parameters typically addressed in an experi- |da(r,t,7) 1
mental investigation of the problem. dt _ —W[Dvcv(r,t)—Dici(r,t)]
point defects T
XO(t—17), (5

Il. THE MODEL

To characterize the population of cavities nucleating an hereD, andD; are the diffusion coefficientsl), <D;) of
L i pop -'eating acancies and interstitials, respectively, aog(r,t) and
growing in a spatially inhomogeneous system it is conve-

. . L T . .~ ¢ci(r,t) are the local concentrations of vacancies and intersti-
nient to introduce the cavity size distribution function, which . ; . )
) . ; o . . tial atoms. Functior® (t— 7) entering Eq.(5) is defined as
is a function of the cavity radiug, its coordinate and time

t O(t—7)=1fort=7and®(t—7)=0 fort<r.

The time-dependent concentrations of vacancies and in-
terstitial atoms satisfy a system of two nonlinear equations
describing the generation, diffusion, recombination and ab-

t
flarn= fo v(r,m)dla=a(r.t7]dr. @ sorption of point defects in the presence of a sink

2

J J
Eci(r,t)zDiPci(r,t)JrK(l—e)

Here 7 denotes the nucleation tima(r,t,7) is the radius of
a cavity nucleated at poimtat the moment= 7, andv(r,7)
is the number of cavities nucleating per unit volume per unit

time. Function(1) satisfies the normalization condition of the —[Zip+ w(r,t) ]Djc;i(r,t) — aci(r,t)c,(r,t)
form
_O'i(r,t),
- ‘ P P
JO f(a,r,t)da= JOV(I',T)dT:N(r,t)a Ecv(r,t)=DUﬁcv(r,t)+K—[va+w(r,t)]DUcU(r,t)
r
whereN(r,t) is the number density of growing cavities. Us- —ac;(r,t)c,(r,t)—o,(r,t). (6)

ing Eq. (1) we find the total volume of cavities ) ) ) )
In these equation& is the effective rate of generation of

4 e 4 [t point defects in the material by energetic particles and
S(r,t)= _Wf a3f(a,r,t)da= _Wf v(r,7)a%(r t,7dr, the density of randomly distributed dislocation lines. Dislo-
3 Jo 3 Jo cations absorb vacancies and interstitial atoms at slighly dif-
(2) ferent rates, and this effect is described by the bias factors
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Zi~1 andZ,~1, Z;>Z,. o(r,t) describes the absorption interstitial atoms. Analysis given below shows that clusteri-

of point defects by growing cavitie@n explicit expression sation_of interstitial atoms has a very significapt effect on the
for this term is derived in Appendix Yand « is the recom- g\(olutlon of the population of cavities. In pgrncular, compe-

bination constant. Here we are interested in following thefition between growth by attachment of point defects to the
evolution of the binary diffusion fieldc;(r,t),c,(r,t)} in the sgrfa_\ce of _c_aV|t|es and the bombardment of (_:avmes_ by mo-
vicinity of an extended lattice defe grain boundary and bile interstitial clu_sters com_plemented by radmall_y different

functionso,(r,t) and o;(r,t) represent the rates of absorp- tr_anqurt propert!es of point defects and mobile clugters
tion of vacancies and interstitial atoms by this defect. gives rise to a highly inhomogeneous pattern of swelling,

Equations(6) show that the rates of generation of inter- Where peak values are up to eight times higher than values
stitial atoms and vacancies are unequal. This inequality igharacterizing swelling in the interior region of the grain.
associated with the formation of clusters of interstitial atoms
in collision cascades, anelis the cluster formation ratice lll. ANALYSIS OF THE MODEL
~1.

The second term in Ed4) is associated with the bom- 7 .
bardment of growing cavities by mobile interstitial clusters. We start by considering a solution of Ed4)—(8) corre-
To assess the contribution of this process to the rate of vari@Ponding to the case of spatially homogeneous distribution
tion of the radius of growing cavities we need to average th&f cavities. The characteristic scale of spatial fluctuations of
flux of interstitial atoms transported by clusters to cavitiesconcentrations;(r,t) andc,(r,t) equalsz~ p~ Y2 and there-
over the positions and orientations of dislocation lines andore the temporal variation of concentrations is characterized
over the coordinates of centres of cavities. For the case dfy the time scalé~(Dp) *~10 sforD~10"° cn?/s and
spatially homogeneousdistribution of cavities, where ,~10° cm 2. Since the time scale characterizing the
a(zt,7) is independent of, the second term in Ed4) is  growth of cavities is many times this value, the time deriva-
given by tives of concentrations entering the left-hand side of By.
may be neglected. Assuming also that the defect production

A. Spatially homogeneous case

da(t,7) __ Ke rate satisfies the conditidh<pD;D,/«, we neglect the re-
dt |, erst clusters Wpd+4ﬂftv(7')az(t,7’)d7’ combination term and obtain
0 K- v N
X O(t—7), @ Ci(t)——Di pZi+47Tf0v(7' )a(t,7’)dr ,

whered is the effective radius of absorption of one dimen- K .
sionally moving clusters by dislocations. A more general ex- c, ()= _{pz +47rf v(ra(t, 7 )dr’
pression valid for the case of a spatially inhomogeneous dis- 0 D, 0 0 '
tribution of cavities near a plain grain boundary is derived in
Appendix B. It has the form

-1

(€)

Combining Eqgs(9) and(5), we obtain the contribution to the
rate of variation of the cavity radius associated with the flux
of point defects arriving on its surface

da(zt,7)
dt interst clusters d a(t, 7.) B m
= Ke O(t—1) dt point defects_ a(t,7)
8M .
X

t
pZU+4ﬂTj v(7")a(t,7")dr’
0

X% fx dz’ fz' dz' (z+72' 1)
—exg— | ——vuv(z+7Z,
<1 | Jo |cosy] 0 |C057i|v

z dzZ' 2 dZ’
+ | ——exp— | —v(z—272",1)
o|cosy,| o |cosy|

wherev (z,t) = m/dpd+ 7 [{v(z,7')a%(z,t,7')d7’ and sum-
mation is performed over possible directions of one- (10
dimensional motion of interstitial clusters in a given crystal
structure M=4 for the bcc andM=6 for the fcc
structuré®®) , is the angle between the direction of motion
gf cllustershandI the axish, which |bs aszumed to be perpen- 3(t,0) 1 { K K(1—e)
icular to the plane of the grain boundary. = -
Expressiong1)—(8) form a closed self-consistent set of dt  a(t,0[pZ,+47Noa(t,0) pZi+4mNoa(t,0)
equations, the solution of which describes the evolution of a Ke
spatially i_nho_mogen_equ_s distributipn of cavitie_s nuc_leating - 7pd+47Nya2(t,0) " (11
and growing in the vicinity of a grain boundary in an irradi-
ated material. Equatior(4)—(8) describe the case where col- Depending on the choice of bias paramet&rsZ, and the
lision cascades lead to the formation of mobile clusters oftluster formation ratioe, solutions of Eq.(11) show two

K(l—e)

], ®) - :
pZi+4'n'J v(7')a(t,7")d7r’
0

In the case of instanteneous nucleation of caviti€s)
=Nyd(t) Egs.(10) and(7) transform into equatici
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radically different types of asymptotic behavior. One of themno difference in the effective rates of absorption of vacancies
corresponds to the case where the growth of cavities everand interstitials by the grain boundary. In this case K.
tially saturates, while the other describes growth which conacquire the form

tinues indefinitely as a function of irradiation tinteTo in-
vestigate conditions corresponding to the crossover between
these two scenarios we introduce dimensionless variables
=Kt, k=pd?, and yo=Nyd3. These variables have a
simple meaning, namelyp is the total irradiation doséex-

2
D, ;_chi(z,t)+ K(1—e)—[p+ w(z,1)]Dici(z,t)

—aci(z,t)c,(z,t)=D;ici(z,1) Q4(2),

pressed in units of displacement per ajporis the measure 42
of transparency _of the dislocatio_n netV\_/ork f_or one- DU—ZZCU(Z,t)JrK—[p+w(Z,t)]Dva(Z,t)
dimensionally moving clusters, ang, is the dimensionless d

volume density of growing cavities. Introducing also the di- _ _
mensionless radius of cavitie§¢) =a(t,0)/7d, we obtain aCi(z,0)e,(2,)=D,¢,(21) Q5(2), (15
where Q characterizes the rate of absorption of point defects

1 1-€ by the grain boundary. Since concentrations of vacancies and
Z,+ 47l Kk Zi+amoxol K interstitial atoms enter E@5) in the form of a linear combi-
nationII(z,t)=D,c,(z,t)—Djci(z,t), we subtract the sec-
ond of Egs.(15) from the first one and obtain a closed equa-
tion onII(z,t)

dr 1 [1
a6~ w2t

€

B 1+47T?X0r2/K ' (12)

Analysis of solutions of this equation given in Appendix C d_ _ _

shows that in the case whek—Z,>e€Z; and where the dzzn(z’t)+KE [p+©(z O]z, =11(z1)Qd(2).
volume density of cavities is sufficiently large, the size of (16
cavities given by Eq(12) increases indefinitely in the limit

of high irradiation dose as In the limit Q— o the 6 function term in the right-hand side

of this equation is equivalent to the boundary condition

Ua I1(ot)=0.
F( )~ K (77, €Z.]MpY (13) We begin by considering the limit of low density of grow-
2 ? 1/2 : ' ing cavitiesw(z,t)<p. In this case Eq(16) has stationary
solution

However, if Z,—Z,<eZ; then the growth of cavities satu-
rates in the limitp— oo atr ~1. Swelling of the material also (z2)= ﬁ(l_e_ ey (17)
saturates in this limit approaching the maximum value given '
by Substituting this into Eq(5), we arrive at

4 da(z,t,7) _O(t—1) Ke

S(¢)= 77X *(d) | ma= 1.3 10% [%]. (14 it
37 Xo max 0 n =azis —[1—exp—p2)].

point defects

In most cases the cluster formation ratiés large(typically (18
e~1) in comparison with the difference between dislocationin the limit of low density of cavities integration in E¢8)
bias factorsZ; andZ, [values of g;—Z2,)/Z; lie in the in-  can be done analytically

terval between 1% and 3¢Ref. 25]. This shows that keep-

ing the dislocation bias terms in the model described aboveda(z.t,7)
is unnecessary, and in what follows we only consider th dt
case wherg;=27,=1.

interst clusters

M
Ke 1 T pd
=———0(t—7|2—-— 2 exp ———2]|.
B. Spatially inhomogeneous case 2mpd (t=m) M .21 4 |cosy;| )

We now investigate solutions of Egkl)—(8) describing (19

the nucleation and growth of cavities in the vicinity of ar(;rombmlng Eqs(18) and(19) we obtain that the radius of a

of a plane situated &= 0. This plane is able to absorb point cavity nucleated at distancefrom the grain boundary at

defects and interstitial clusters that approach it. Since vacar#'—me 7 safisfies the differential equation of the form
cies and interstitial atoms interact with grain boundaries via _ _
long-range elastic field® the rate of absorption of intersti- da(z—,t,r)_ Ke.( _ T){ 1—expl ‘/’—)Z) _ 1
tial atoms by the boundary is expected to be higher than the dt P a(zt,7) 2md
rate of absorption of vacancies. However, in relative terms 1 q
T P

M2 '{ 4 |cosy| )]
Therefore, in order to ensure the consistency of our model,
where the absorption of point defects by dislocations is as-

the interaction between point defects and grain boundaries is
sumed to be unbiasefi=Z,, we must assume that there is Initial condition for this equation is(z,7,7)=0.

not as strong as it is between point defects and dislocations.
(20)
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If we assume thad(z,t,7) = 7vd in the denominator of the 60
first term in curly brackets in the right-hand side of E20),
we obtain an equation which is similar to EG5) of Ref. 20.
The treatment developed in Ref. 20 is based on the assum(g AN \
tion that the rate of growth of cavities near a grain boundary%
is independent of their size. This assumption is not consisten3
with the the initial conditiora(z,7,7)=0. Moreover, in the
vicinity of a grain boundary the saturation radiagz,~, 7)
turns out to be a function of the distanzbetween the center

ion cavity ra

of the cavity and the grain boundary. Therefore, to obtain a_f 20 — p=10’ cm”

correct solution of Eq(20) we have to retain the dependence £ — E:}g"’cc'ﬁ.-*

of the right-hand side of this equation on the radigs,t,7) & —— p=10"cm”

of growing cavities.

Solution of Eq.(20) satisfying the appropriate initial con-

dition can be represented in a parametric form as 0/ . L ]

A( Z) a(z,t, T) B(Z) distance from the grain boundary (micron)
a(z,t,7)+2xd Inf1— . . .
B(z) 2md  A(2) FIG. 1. Dependence of the saturation radiyg,(z) of cavities
nucleated at distancefrom a grain boundary in an irradiated ma-
€ terial. Calculations were performed for several values of the dislo-
=—0(t-17) 2mpd B(z)(t—1), @) cation densityp spanning fromp=10° cm™2 (a well annealed ma-

) ) ) . terial) to a high dislocation density material characterized by
whereA(z) andB(z) are dimensionless functions pfjiven - 1011 ¢m2, The effective radius of absorption of interstitial clus-
by ters by dislocationsl is assumed to be equal to 10 nm, and the

saturation radius of cavities growing in the interior region of the
A(z)=1-exp—p2), grain d equals 31.4 nm.

and
sizes than cavities growing in the grain interidor d=10
Z pd z) nm the saturation radius of cavities growing in the interior
4 |cosy;] region of the grain is approximately equal to 31.4)nithe
position of the peak of swelling* corresponding to the
aximum of functiona,,5(2) decreases monotonically as a
unction of the density of dislocation lings
Equations(18)—(20) describe the case where the volume

2K e density of growing cavities was assumed to be low. In this
a(z,t,1)=0(t—7) \| —A2)(t—1). (22 case dislocations are primarily responsible for the absorption
P of mobile point defects and interstitial clusters, and the effect
Therefore, the rate of growth of cavities at small times isof nonlinear terms describing the influence of the “atmo-
independent of the second term in the right-hand side of Egsphere” of growing cavities on the rate of cavity growth is
(20), or, in other words, the growth of small cavities is not negligible. In the next section we investigate the part played
affected by the bombardment of cavities by one dimensionpy these nonlinear terms and the limit of high density of
ally moving interstitial clusters. Mathematically, this is a growing cavities.
simple corollary of the fact that the first term in the right-
hand side of Eq(20) is singular in the limita(z,t,7)—0.
For larget— 7> pd?/Ke the growth of cavities saturates C. Nucleation of cavities and the high density limit
and their radiusa(z,t,7) approaches the maximum value

1 M
B(z)=2—— >, exp —
M =1

Formula(21) shows that at smatl- 7< pd?/K e the radius of
the growing cavity increases as the square root of the tim
elapsed from the moment of nucleation

In this section we study solutions of a general nonlinear

given by _ ' d c
self-consistent system of equations describing the nucleation

) A(z) and growth of cavities near a grain boundary. If the volume

lim a(zt,7)=ama(z)=2md B(2)’ (23)  density of cavities exceeds the limit defined by the condition

t—7—

47 ftv(z,7)a(z,t,7)dr=p, the approach described in the
This equation shows that fa=z* ~p~ Y2 andpd?<1 cavi-  preceeding section is no longer valid and the presence of
ties are able to reach sizg,,(z*)=2=d, which is twice the cavities affects concentrations of freely moving vacancies
maximum sizea,,=md that cavities reach in the interior and interstitial atoms. Furthermore, if the volume density of
region of the grain. This implies that the peak value of swell-cavities is large enough so thaif{,v(z,r’)az(z,t,r’)dr

ing of the material in the vicinity of a grain boundary can be =(w/4)pd, the one-dimensional motion of interstitial clus-
up to eight times higher than the maximum value characteristers is also affected by their interaction with cavities. In this
ing swelling in the grain interior. case integral8) can no longer be approximated by expres-

Figure 1 shows the dependence of the saturation radiusion (19) corresponding to the low cavity density limit.

ama{2 on the distance from the grain boundary. Cavities To investigate the high-density case we introduce an ad-
growing near a grain boundary can reach substantially largeditional simplifying approximation in our modél)—(8). In-
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stead of performing summation over directions of motion ofUsing dimensionless variables, we obtain equations describ-
interstitial clusters in the crystal lattice, we introduce an av-ing how the radius of a cavity growing in a dense spatially

erage quantity{cosy) characterizing the “average” angle
between the direction of motion of clusters and thaxis.

d I — _ Yy M—E m—dgl
%r(§,¢,¢ )_®(¢ 4))71_2’< r(§’¢’¢/) ZJO <C03'y>ex%:
" " 1 §—dgl ¢
Xr2({+ "¢, ¢ ))}_EJ()(cos;/)eX’{_fo (

Here ¢=Kt is the irradiation dose an@’' =K r is the dose
corresponding to the moment of nucleatidgr: (7/4)zpd is

the dimensionless distance between the cavity and the grain

boundary x(¢,¢') = (K/d®) v(z,7) is the dimensionless cav-
ity nucleation rate, ana = pd? is the parameter characteriz-

ing the transparency of the dislocation atmosphere for one-

dimensionally moving clusterst({,¢,¢’) is the cavity
radius expressed in unitgd, and functionll({, ¢) satisfies
equation

m?  d?
EKd—é,zH(g,QS)-i—l

472 (¢
1+Tf de"x(£, ") (L, ¢,¢") |I1(L, )
0

(29

The boundary condition for Eq25) has the formlI(0,¢)
=0. The magnitude of local swelling associated with cavi
ties nucleating and growing at distangefrom the grain
boundary is related to the solution of E&4) via

4 ¢
S, ¢)= §7T4J do'x(8,¢)r%(¢d, "), (26)
0

inhomogeneous environment varies with the irradiation dose

b,

{/ dg,, 47T2 ¢ " " "
—JO —<cos,y>(1+_,< JO d"x({+"¢")
dg” 47T2 (b " " ” " "
—COS)/><1+_K fo A" x({ =" "3~ b ))H

(24)

1
H(§v¢): 4’7T2 &
1+TJ de"x(£, ¢ (L, b d")
0
e p(_ﬁ 1+4_772
ex W& P

@ 12
3 d¢”x(§,¢”)r(§,¢,¢”)} )] @7)

Numerical evaluation of integrals in ER4) can be per-
formed using finite difference algorithm&The fact that the
asymptotic behavior of the radius of growing cavities in the
grain interior is known from the solution of E(LO) makes it
possible to evaluate the tails of integral terms analytically
therefore avoiding lengthy numerical integration over a large
range of variation of variableg” and {’. According to the
classical theory of nucleaticfi; %’ the rate of nucleation of
cavitiesx(¢,¢) is a functional of the local concentration of
vacancies. In what follows we assume that the rate of nucle-

ation has the formy(¢, #)= xI1"(¢,¢), wherey is a con-
stant anch is an integer. This simple approximation makes it
possible to investigate a number of cases ranging from the
limit of continuous nucleation correspondinghie- 0, to the
limit of almost instanteneous nucleation of cavities at the
onset of growthh>1.

We begin by investigating the instanteneous nucleation

Equation(24) has a simple meaning. It shows that the ratecase where all the cavities are assumed to nucleate @t
of growth of a cavity situated at poiigtis proportional to the  This case corresponds t9({,¢)=xo5(¢). The volume
difference between two terms, where the first one is singuladensity of cavities in this case remains constant and indepen-
inr(Z,¢,¢") and describes diffusional growth by the attach-dent of either the dosé or the distance. The formation of
ment of single vacancies and interstitial atoms. The secondpatially inhomogeneous profile of swelling in this case is

term (which itself is a sum of two integralglescribes colli-
sions between the cavity and gliding interstitial clusters.
The evaluation of the first term in ER4) requires solv-
ing inhomogeneous diffusion equati@@5) for a dimension-
less functionlI(¢, ¢), which describes the dependence of the

associated entirely with the fact that the rate of growth of
cavities depends on the distang¢drom the boundary.

Figure 2 illustrates the formation and the development of
profiles of inhomogeneous swellirg= S(Z, ¢) in the vicin-
ity of a grain boundary. At any given doggthe profile has

concentration of point defects on the distance from the graita characteristic shape with a maximum situated at a certain

boundary. A rigorous approach to solving BE@5) is de-
scribed in Appendix D. A detailed analysis of numerical so-

charateristic distancé* from the boundary. This distance
Z*, considered as a function of the dogedecreases mono-

lutions of Eq.(25 shows that these solutions may be ap-tonically with increasing¢. This agrees well with experi-

proximated by expression

mental observation¥.
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40 j 0.025
—— ¢=0.03 dpa, k=0.001 £
—— ¢=0.6 dpa, k=0.001 3 020
—-— ¢=3.0 dpa, x=0.001 £
_ — ¢=9.0 dpa, k=0.001 E | C*=7'49x104x0-1/3
g\‘i 2 015
q’ o
H S 001
3 c \)\
K=l
—_— ] a 0005 Oz
___________ “h - O
40 8000 0.002 0.004 0.006 0.008 0.610 0.012
cavity density y, (r.u.)
—— ¢=0.03 dpa, k=0.01
~ ¢=0.6 dpa, k=0.01 FIG. 3. Dependence of the position of the maximum of the
30 [ - $:g'g gs:’ K”:g-g: swelling curve?* on the dimensionless volume densjgy= Nod?
. - i of cavities. Numerical calculations were performed using Egs.
&2 (24)—(27) for €e=0.6, {cosy)=0.8, andx=0.001. The solid line is
2 \ a power-law fit to the set of points calculated numerically.
= 20 3
2 S 3 investigate the functional dependent¥ y,) in this case we
have to refer to numerical solutions of the model similar to
10 those shown in Fig. 2.
E— Figure 3 illustrates the dependence of the position of the
maximum of the swelling curve on the volume density of
0 growing cavities. In the limit of small densitiegy<«/2m

0 0.1 0.2 0.3

. . the coordinate of the maximuid¥ is nearly independent on
distance from the grain boundary  (r.u.)

the density of cavities. However, in the case wheig
FIG. 2. Profiles of inhomogeneous swelling near a grain bound= kl2m the dependence of* on x, proves to be very
ary calculated for the high cavity density case assuming spatiallptrong. Approximating the functioti* (xo) by a power law
homogeneous and instanteneous nucleation of cavities. Curvage obtain that the best fit is given bfy~)(51’3. In dimen-
shown in the upper part of the figure correspond to lower density oional units this is equivalent ta* ~ Nam, or, in other
dislocations than the curves shown in the lower part of the figurewords, the distance between the peak of swelling and the
Note the high values of swelling characterizing the growth of CaVi-grain_boundary scales approximately as the average distance
ties in the vicinity of the grain boundary. Calculations were per-petween the cavities. This type of scaling is very similar to
formed using Egs.24)—(27) for €=0.6, (cosy)=0.8, and xq the one observed experimentaify.
=0.001. So far in this section we have been studying the case of
instanteneous nucleation of cavities. Now we consider the
In all the cases investigated in this work swelling profilescase where cavities continue to nucleate even after the onset
exhibited saturation in the limit of large irradiation dosgs  of growth. In the case where the nucleation of cavities pro-
For ¢>1 any further increase of the dose results in noceeds in parallel with their growth, Eq&4)—(27) become
change either in the magnitude of swelling or in the shape ohonlocal only in space, but also in time. Formally, this non-
the swelling profile. This result is entirely consistent with locality manifests itself in the form of the appearance in Eq.
Eq.s(24)—(27). Integrals overp entering Eqs(24) and(26) (24) of two types of integral terms. Integrals ovedescribe
for the instanteneous nucleation case are proportional to thitae nonlocality associated with the long-range transport of
radius of cavities. Since the radius of cavities saturates in thmterstitial atoms by mobile clusters. The second type of non-
limit t—o0, so does the swelling profile. The dogeequired  locality is the temporal nonlocality, which is associated with
to reach saturation tends to be smaller in the case of lokhe fact that the growth of cavities nucleated at a certain
density of dislocationgvery small values ok) in compari- moment of timer (corresponding to a certain value of the
son with the case of high dislocation densfigtermediate irradiation dosep’ =K 7) is affected by the presence of cavi-
values ofk). ties nucleated at earlier timés: 7. This means that at an any
An interesting question that we can now address on thgiven time the population of cavities at a given distadce
basis of the model described above concerns the dependenftem the grain boundary is characterized bglistribution of
of the position{* of the peak of swelling on th&olume sizes rather than by a certain value of their radius.
densityof growing cavities. In the case where the nucleation Figure 4 illustrates the effect of the mode of nucleation of
of voids is assumed to be instanteneous, the volume densigavities on the shape of the swelling curve. Continuous
of cavities N, is related toy, via xo=Nyd®. Equations nucleation of cavities(curves shown in the left column
(24)—(27) show that the behavior that the model exhibits as aends to lead to higher swelling than that obtained in the case
function of yo becomes highly nonlinear fofo> «/27. To  where the initial sharp drop in the concentration of vacancies
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h=0 ' =2 ported in Ref. 12 indicate that swelling was accompanied by
the continuous nucleation of new cavities, and the latter ef-
i e fect was taken into account in the calculations. Both the scale
oY === ¢=3.0dpa of the curves and the position of maxima of experimentally
N, measured and calculated profiles agree reasonably well. At
5 R the same time Fig. 5 shows the presence of a notable devia-
------ N tion of calculated profiles from experimental data in the re-
——————— gion of largez, where the tails of calculated profiles decrease
more slowly than the tails of profiles measured experimen-
tally. This effect reflects the presence of a somewhat higher
10 degree of absorption of mobile interstitial clusters in the in-
s SN terior region of the grain than that predicted by E@s)—
20 T T s et IR (27). It is possible to speculate that the additional contribu-
/ /" """""" tion to the absorption coefficient may come from scattering

/ / by immobile interstitial clusters, but the exact microscopic

01’ ——t

© o1 02 03 04 0 01 02 03 04 05 origin of the phenomenon remains unclear.
distance from the grain boundary ¢ (r.u.) The fact that cavities continue to nucleate after the onset

FIG. 4. Profiles of inhomogeneous swelling calculated for thec,)]c growth leads to the situation where at any given irradia-

case of continuous nucleation of cavities. The rate of nucleation OF'On qose¢_the pop_ula’glon of (_:aVItles 1S cha_lracterlzed by a
cavities was assumed to be proportional to the concentration d€latively wide distribution of sizes. At any given moment of

vacanciesy(Z, )= xTI"(£, ). All the curves shown in this figure time this distribution can be found using formgl;h). The
were calculated fo=10"%. Profiles shown in the top row were presence of thé-function term in Bq((1) makes this formula

calculated fork=0.001. Profiles shown below correspond #o some_vv_hat i_nconvenient for_numerical calculations. quever,
—00L the difficulties can be readily circumvented by replacing the
integral by a sum over a finite number of points, and by
. , , approximating thed function by the Kroneckew$ symbol.
suppresses further nucleation of cavitiesrves shown in the Figure 6 shows cavity size distributions corresponding to
right column). The shape of the curve depends on a numbefnee different distances between the panivhere the size
of parameters including the density of dislocation and theyistribution is evaluated, and the grain boundary. All three
dose, and also on the volume density of cavities accumulategistributions correspond to the swelling profile shown in Fig.
over the time elapsed since the onset of growth. 5 by the dash-dotted line. The shape of all the distributions
In Fig. 5 we compare swelling profiles calculated usingi,rns out to be remarkably similar and nonanalyfi@, z)
Egs. (24)_—(27) in the continu_ous nucleation _approximation ~[amad2)—a] "% The presence of a sharp peak on the right
and profiles observed experimentally. Experimental data régqge of all distributions is associated with the fact that the
radius of cavities saturates in the limit of large doses. This
‘ _ point shows that an experimental investigation of the distri-
A2 oxperiment, 4013 dpa bution of cavities as a function of their size may offer an

8 V— experiment, ¢=0.26 dpa interesting insight into the microscopic mechanisms of their
O—O0 experiment, ¢$=0.65 dpa

15

~——

swelling (%)

A ~—~ theory, 6=0.13 dpa formation and growth.
/ N --== theory, =0.26 dpa
= I RN —-— theory, ¢=0.65 dpa
* h ~
I > IV. SUMMARY
2 | ~
= ! . . . . .
s i el In this paper we investigated the formation and develop-
!
H

\\\\\\\\\\\\ ment of profiles of spatially inhomogeneous growth of cavi-
""""" ties near a planar lattice defe¢a grain boundary The
model describes both the nucleation and growth of cavities,
and takes into account competing processes of diffusional
---- growth of cavities by the attachment of point defects and the
- destruction of cavities in collisions with interstitial clusters.

5 10 15 20 25 The model shows the formation of a characteristic profile of
distance from the grain boundary (micron) inhomogeneous swelling, where the maximum of the profile

FIG. 5. Comparison between swelling profiles measured experidrifts towards the grain boundary as a function of time. Cavi-
mentally(see Fig. 22 in Ref.12]) and calculated numerically using i€S growing in the vicinity of a grain boundary are shown to
Egs. (24-(27). Calculations were performed assuming= be able to reach substantially larger sizes than cavities grow-
1.2%10°% x=0.001. h=0. ande=0.6. The incubation dose cor- NG in the interior region of the grain. The magnitude of

responding to the onset of growth was assumed to be equal to 0.g8Vvelling at maximum is found to be up to eight times higher
dpa. The asymmetry of the calculated profiles is associated with théhan the value characterizing swelling in the grain interior.
difference between the spatial scales characterizing the diffusion dfrofiles calculated numerically by solving the nonlinear self-
point defects and the one-dimensional Brownian motion of intersticonsistent equations describing the evolution of the spatially
tial clusters, and also with the effect of saturation of swelling in theinhomogeneous population of cavities are shown to compare
grain interior. well with profiles measured experimentally. The positiain

---------
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pr
D—G(r,r")=6(r—r"), Al
0.01 | 2=-40 micron 1 ar? (rri= ) (A1)

the solution of which is

1

0.005 | 1 G(r,ur')y=———. (A2)
(r.r) 47D|r—r’|

Consider a spherical cavity of radiesgrowing by the at-

tachment of diffusing particles to its surface. The concentra-

@
=
c
3
2
% 0 tion of diffusing particles around the cavity is given?dy
L=
= 0005 | . ] a (av/D)
z=3 micron —Cc ———— "~ rc —cled
% i c(r)=c.— 1+(‘,jw/D)[cm cYa)], (A3
§ whereuv is the effective velocity, which is a parameter enter-
"E ing the boundary condition for the rate of attachment of par-
g 00025 | I ticles to the surface of the cavity
5
£ p - (eq) A4
£ o =vlea—c®V @], (A4)
;a 0 I r=a
Q Generalizing Eq(A3) to the case of a weakly inhomoge-
D . _ neous distribution of diffusing particles, we arrive at
"E 0.005 | z=1 micron ] (av
8 c(r)=co(r)+4wDamf dRdr'G(r—R)

0.0025 |- i X(S(R—r')[CO(R)—C(eq)(a)], (AS)
wherer’ is the coordinate of the center of the cavity and
co(r) is the diffusion field corresponding to the case where

o the perturbation associated with the cavity may be neglected.
% 05 2 In what follows we assume that the average concentration of
cavity rad|us (units of wud) diffusing particles is many times their equilibrium concentra-

tion c®@(a). In this case the evaporation term in the right-
FIG. 6. Distribution of sizes of cavities nucleated and grown inhand side of Eq(A5) may be neglected and this equation

the vicinity of a grain boundary. Calculations were performed forhecomes identical to the equation defining Thmatrix in the
the same values of parameters as those used in Fig. 5. The irradigreory of scattering}*?

tion dose$=0.65 dpa. Note that the growth of cavities in the
interior region of the grain saturatesatmd=1.

P(r)= ¢0(r)+f dRAr'G(r—R)T(R,r")io(r’").

of the maximum of swelling profiles is found to scale with (AB)

1/3
the density of cavitiedN as z* ~Ng =~ in agreement with  Tg average Eq(A5) over the positions of centres of cavities
experimental observations. we now follow the procedure developed for E#\6) by

Lax®*3*and obtain
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C(r)=Co(r)+4TrDa—/f dr'G(r—r")f(r")c(r’),
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for comments and suggestions. This work was jointly fundedhe cavity size distribution functionf(a,r’) as f(r’)

by the UK Department of Trade and Industry and by EURA-:fgdaf(a,r’)’ we arrive at
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B 4 wad (av/D) fd'
c(r)y=co(r)+4m . aa 1+ (av/D)
APPENDIX A

X _ ! ! ! .
To evaluate the rate of absorption of point defects by Glr=rif(are(r’) (A8)
randomly distributed cavities we consider an inhomogeneoukinally, acting on both sides of this equation by operator
diffusion equation D(d%/dr?) and comparing the result with E¢6), we find
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(7. (avlD) I\
w(r,t)—477JO daamf(a,r,t). (Ag)

Combining Eqgs(1) and(A9), we obtain

¢ a(r,t,7)v/D
w(r,t)=477J0v(r,7)a(r,t,r) 15[(a(r tT):)v/g)] T

(A10)

As the radius of the growing cavity increagaspractice this
means that the cavity contains more than just a few atoms
we approach the limia(r,t,7)v/D>1 where Eq(A10) can

be further simplified as

concentration of mobile clusters

-3 -2 -1 0 1 2 3
coordinate in the direction of one-dimensional motion

t
w(l’,t)=477f v(r,7)a(r,t,7)d7. (A11)
0 FIG. 7. Sketch illustrating the solutio(B6) of the diffusion
This limit corresponds to the expression for the rate ofequation describing the one-dimensional Brownian motion of mo-
growth given by Eq(5). bile interstitial clusters.

Similarly, the probability of finding an obstacle that the near-
est tozy and that is situated on the left-hand sidezgfat a
In this Appendix we show how to derive E(B) describ-  distanceX, , is given by
ing the (negative contribution to the rate of growth of cavi-
ties due to the bombardment of cavities by one dimension- _ _ (M oy
ally moving interstitial clusters. We assume that the PLXL.20)=n(20 XL)eXF{ L dX'n(zo—X )>'
interstitial clusters produced in collision cascades are glis- (B5)
sile. . . . .
Consider a problem of one-dimensional motion of a par-?'—he concentratioi©(z) of particles moving along the axis
ticle along thez axis. We assume that the particle encounterdn @ given configuration if obstacles situated at points

APPENDIX B

obstacles that are distributed along thexis with density Z1:Z2---2Zn--. IS given by the solution of the time-
n(z). In other wordsn(z)dz is the total number of obstacles independent diffusion equation

situated betweerz and z+dz. Consider now an arbitrary 42

pointzy. The probabilityPr(Xg,zp) of finding the nearest to D @C(ZH K.=0

Z, obstacle at a certain distang from z; in the positive
direction of thez axis(i.e., on the right of,), is given by the

solution of equation satisfying boundary conditions of the for@(z,)=C(z,)

=...=C(zy) . ..=0. This solution has the form

C

XR
PR(XR’ZO)Z(l_L Pr(X' 200X )”(Z°+XR)' C(2)= 22 [(z—21) (2o~ 2)® (2~ 2,)O (2o~ 2)

(B1) 2D
We assume that the density of obstacles does not vanish in t(2-2)(23-2)0(2-2)0(z5—2)+ ... ].
the limit Xg—o and therefore Iir;aRﬂwfg(RdX’n(zoﬂLX’) (B6)

=, In this case we can transform integral EB1) into a

differential equation A graphical illustration of Eq(B6) is given in Fig. 7. The

averageconcentration of particles at a certain pamrgquals

i PR(XR:ZO)):_ PR(XRaZO)) K K
ax| n(zgt X |~ "R Ry | B2 (C(@) = 5 (2= 20)(Za=2) =5 (X)(Xe). (B7)
and obtain

Taking into account the fact that
(B3)
To prove that this probability distribution is normalized we o d X
=f dXx —ﬁex —f dX'n(z+X")
0 0

X
PR(xR,zo)zn(zo+xR)ex;n( —f "dX'n(zo+X")
0

% X
(Xg)= fo dxxmz+X)exp( - fo dX'n(z+X")

integratePr(Xg,zp) over a semi-infinite interval of variation
of Xg and obtain

o X
* Xr =f dX ex;{—f dX'n(z+X")
f dXgn(zo+ Xg)ex —f dX'n(zy+X")|=1. 0 0
0 0

(B4) and deriving a similar expression f0X, ), we obtain

|

: (B8)
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production rate K, of interstitial atoms moving one-
dimensionally as a part of gliding clusters, is related to the

K[ (= X
(C(z)>=ﬁU0 dX exp( —fo dX'n(z+X")

0 X
J dX ex;{—j dX'n(z—X")
0 0

We now consider how to evaluate the probability of find-
ing an obstacle that is the nearest to a given pnjnt0 in a
configuration where the position of the obstacle situated at
z=0 is stationary. In this case the expressionRa(Xg,zp)
remains unchanged but instead of E§5) we obtain

} variation of the radius of a cavity we note that the effective

volume production rate of clusters viaote that all the in-
. (B9 terstitial clusters produced in collision cascades are assumed
to be glissile

X

Ke SL

WM 2 (B15)

where M is the number of possible directions of one-
B _ | Xy oy dimensional motion in a crystal lattice of a given symmetry,

PLXL.20)=N(2g X,_)ex;{ J o dX'n(zo—X )) ap is the lattice constant argl is the area of the projection
of the Wigner-Seitz cell on the chosen direction of one-

“ di ional motion
+8(z9— X )ex —f dX'n(ze—X") |. imensiona | o _ i ,

(20=%X0) p( 0 (Z )) Now consider a spherical cavity containingvacancies.

(B10) The volume of the cavity is equal to

The average concentration of moving particles is now given 4
by /\/a8=§7-ra3(t). (B16)

KC - X ! !
(C(2))= ﬁ[ fo dX ex;{ B fo dX'n(z+X") } The rate of variation of the number of vacancies in a cavity is
related to the current of interstitials via

fzdx eXp( - fxdx’n(z—x’)”.
0 0 dV ma’(t)
(B11) ¢ s, (B17)

X

For example, in the case wheméz) = ny,=const we obtain o ) ) ) _
Multiplying both sides of this equation b;é and noting that

c

2Dn}

(C(2))= =S5 1—exp( —ng2)]. (B12)

d 3 ) da(t)

. . . . &(Nao):4773 (t)T'

Now consider the solution of EGB7) on a given interval

[z, ,zr]. If we place an absorbing probe at a point

e[z ,zr] and calculate the total fluk of particles towards Wwe arrive at Eq(8). The expression for the effective density

this probe from the both sides of the interval, we find that of obstaclesy(z) is equal to the sum of contributions of
scattering by spherical cavitigsvhere the cross section of
scattering by an individual cavity is equal t@?(z,t,7)] and

J=Dd—ZC(Z)|z—o—Dd—ZC(Z)|z+o scattering by randomly distributed dislocation lines. Coeffi-
cient 7r/4 results from averaging the cross sectighsin 8 of

c scattering by a dislocation line over all possible orientations
=5 (Zr—2) of the line,
K°(x +X)) (B13) 1 (2
=5 (At AL, K f” . .
4pd py B dy . dosiné(pdsing).
where Xg=2zgr—z and X, =z—z_ are the distances to ob-
stacles that are nearest to the probe located at pointe-
grating Eq.(B13) with probability distributions(B3) and APPENDIX C

(B10), we arrive at

w X
j dXexr{—f dX'n(z+X")
0 0 dr 1

z X @:F
+J’OdXexr<—J’0 dX'n(z—X )” (B14)

where ®=¢/m?k=Kt/p(wd)?2 and p=4nix,/k
To establish a connection between E814) and the rate of =4m?Nyd/p. This equation is equivalent to

We start from Eq(12)
J=—
(9 2

1 1—€
Z,+pr Z+pr

€
1+pr?’

(CD
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dr  pl(Zi=Z,)—eZ]]r?+ e(p—ZZ,)r +[(Zi=Z,) + €Z,]

dd r(Z+pr)(Z,+pr)(1+pr?) (€2
|
It is evident that inequality 4;—Z,) — €Z;>0 represents a d’F(z) )
necessarygondition that has to be satisfied in order to obtain iz Y (DF@2)= flL(2)f (2)—f_(2)f 1 (2).
a solution that grows in the limitb—o. Note that if Z; (D3)

=Z, then the above condition is not satisfied. In this case
any solution of Eq(C2) corresponding to initial condition The linear combination of two solutions of E(P1) of the
r=0 at®=0 saturates towards=1 in the limit & —o. form ' (2)f_(2)—f' (2)f.(2) is their Wronskian, and is
Does inequality Z;—Z,) — €Z;>0 represent aufficient  therefore a quantity that is independent of coordirafEhis
condition for the absence of saturation of growth in the limitgpows that by choosing the normalizationFfz) in a suit-
of large doses? To answer this question we note that even ie way, we obtain the required solution of the inhomoge-
the first and the third terms in the numerator of BQ2) are  neous Eq(D1). To satisfy the boundary condition at=0
positive, the numerator may still have two roots situated inye should add t¢(z) a suitable solution of the correspond-
the vicinity of the point ing homogeneous equation. The additiorf ofz) multiplied
by an appropriate numerical factor satisfies this requirement.
S e(p—ZZ,) 3 To find functionsf , (z) andf_(z) we need to develop a
0 2p[(Zi—2,)—€Z;]" numerical approach to eliminating exponentially growing
terms from solutions of the homogeneous Hyl). A pow-
The requirement that the numerator of £§2) remains non-  erful algorithm for eliminating exponentially growing solu-
negative ar leads to inequality tions of systems of second-order differential equations was
developed by Zhao and Totgin the theory of reflection
high-energy electron diffraction. To find a regular solution of
Eqg. (D1) we rewrite this equation in the form of a system of
two linear equations

2
p>ZZ,+ ?[(Zi_zv)+ €Z,[(Zi—Z,)— €Z;]

X r 1 \/1+ 2Z,e
[(Zi_zv)+EZU][(Zi_ZU)_EZi] . dg 2
- =0%(2)f(2),
(C4 dz

If the latter condition, as well as inequalitZ(—Z,) — €Z; df
>0, are satisfied, then in the limit of large we obtain d_z:g(z)' (D4)

d

d?r)w[(zi —Z,)—€Zp % 3. (c5  Assuming thaz>0, we consider how a solution of E@4)

behaves on atarbitrarily chosehinterval[ z;,z,], which we
ssume to be sufficiently small so that inside this interval
unction (z) can be approximated by a constdn{z,t)

~0(z*,1)=Q*, wherez* €[z;,z,]. The matrix that relates

The solution of the latter equation does not saturate in th
limt &—ow and is given by r(<b)=\/§[(2i—zv)

_ 7. 1UAF 14y 112
ZA solutions of Eq.(D4) at both ends of the interval has the
form
APPENDIX D
In this Appendix we describe a rigorous approach to find- 9(z2)| (Mp(z2—21), M+(z2—2z1) ) (9(z1)
ing solutions of Eq(25). Consider an auxilliary equation f(z,)] \Mg(zo—2z1), Mp(z,—2y)/\ f(z) )’
(D5)
d’f(z2)
—02(z)f(z)=const. (D) where
dz
The correspondingnpomogeneougquation has two linearly Mp(z)=coshQ*z),
independent solutionk, (z) andf_(z). f,(z) vanishes ex-
ponentially in the limitz—c, and f_(z) vanishes in the M1(z)=0Q* sinhQ*2)
limit z— —oo. Consider a function T ’
, " sinh(Q* z)
F(z)=f+(z)f dz’f_(z’)+f_(z)f dz'f.,(2)). Me(2)=—qs, (D)
0 z

(D2) .
and detM =M3—M{Mg=1. Introducing theR matrix by

This function satisfies equation the relationg(z) =R(z)f(z), we obtain
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Mp(z,—21)R(Z2) —M(2,—29)
Mp(2,—21) —Mg(2,—21)R(Z)

This equation defines the rule according to which fhema-
trix propagates from a distant poiat-cc to the originz

R(zy)=

(D7)
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=0. The entire profile of the functiofi(z) can now be re-
stored recurrently by using a relation similar to ED7)

f(22)=[Mp(z—21) —Mg(Z,—21)R(2,) ] *(2y).
(D8)
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