
nd

PHYSICAL REVIEW B 1 OCTOBER 2000-IVOLUME 62, NUMBER 13
Phase diagrams in the SO„5… quantum rotor theory of high- Tc superconductivity
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Using the spherical approach for the three-dimensional quantum rotor we have studied the thermodynamic
properties of Zhang’s SO~5! quantum rotor theory. We have performed a non-mean-field treatment of the
lattice version of the nonlinear quantums model and discussed possible scenarios for temperature-doping
phase diagrams. The model considered can contain large SO~5! anisotropy parameters~like spin, charge, and
so-called ‘‘p ’’ susceptibilities which regulate the strength of the quantum fluctuations!. It is found that the
topology of the temperature-chemical-potential (T-m) phase diagrams assumes different forms depending on
the strength of the quantum fluctuations. In the SO~5!-symmetric kinetic energy model we established the
condition for the existence of the quantum critical point separating anitiferromagnetic and superconducting
states at zero temperature. In the intermediate quantum fluctuation regime there is a first-order transition
between the antiferromagnetic and superconducting phases. For the class of models with an asymmetric kinetic
energy parts we found no evidence for the existence of the intermediate mixed so-called ‘‘spin bag’’ phase in
the T-m phase diagram.
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I. INTRODUCTION

The unified theory of antiferromagnetism~AF! and super-
conductivity ~SC! proposed for the high-Tc cuprates by
Zhang1 and based on the SO~5! symmetry between AF and
SC states offers a unified description of the global ph
diagram of this class of materials. The AF phase is descri
by a three-dimensional order parameter~the staggered mag
netization!, while a spin-singletd-wave SC phase is de
scribed by a complex order parameter~with two real compo-
nents!. The idea of the SO~5! theory is to group these five
components into an object called ‘‘superspin’’ and to intr
duce a well-defined rotation operator, which can transfo
AF into SC and vice versa. This SO~5! symmetry contains as
subgroups the SO~3! symmetry of spin rotations~which is
spontaneously broken in the AF phase! and the electromag
netic SO~2! invariance ~whose breaking defines the S
phase!. In Zhang’s theory both ordered phases arise o
SO~5! is spontaneously broken and the competition betw
antiferromagnetism and superconductivity is related to
direction of the ‘‘superspin’’ in the five-dimensional spac
The low-energy dynamics of the system is determined
terms of Goldstone bosons and their interactions specifie
the SO~5! symmetry. The kinetic energy of the system is th
of a SO~5! rigid rotor and the system is described by a SO~5!
nonlinear quantums model (NLQsM). The SO~5! quantum
rotor model offers a Landau-Ginzburg-like~LG-like! theory
for the high-Tc problem. However, it goes much beyond tr
ditional LG theory, since it captures dynamics.

While the SO~5! symmetry was originally proposed in th
context of an effective field-theory description of the high-Tc
superconductors, its prediction can also be tested within
croscopic models.2–7 For example, numerical evidence for a
approximate SO~5! symmetry of the Hubbard model cam
from the exact diagonalization of small-sized clusters.8 Ulti-
mately one should compare the prediction from SO~5! theory
with experimentally observed phase diagrams. While
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global features of the phase diagram deduced from SO~5!
theory based on a mean-field-type treatment1 agree reason-
ably with the general topology of the observed phase d
gram of high-Tc superconductors, systematic thermodynam
studies of the SO~5! theory are called for. Very recently th
temperature vs chemical-potential phase diagrams of
SO~5! model for high-Tc cuprates were calculated by Mon
Carlo simulations.9,10 A bicritical point was found, where the
AF and SC transition lines merge into a first-order lin
However, quantum fluctuations, which may reduce the
critical point, were not included in this calculation. Whe
quantum fluctuations are gradually increased ordering
some phases might be destroyed. In order to include qu
tum effects properly one has to treat the kinetic and poten
energies on an equal footing. Very recently a quantum ve
spin model based on the spinor representation of the SO~5!
group, in which the SO~5! symmetry is weakly broken into
U(1)3SO(3), wasproposed as a model for systems wi
strong correlations between superconductivity a
antiferromagnetism.11

Because the superspin vector in the SO~5! theory is af-
fected by thermalandquantum fluctuations, the effect on th
competition between them is highly nontrivial. Therefor
investigation of the SO~5! theory, which takes into accoun
both of them in the rotation of superspins between AF a
SC subspaces, is of paramount importance. This issue is
of great interest from the general viewpoint of the theory
quantum phase transitions and related critical phenomena
special interest is the possibility of the SO~5!-symmetric
quantum critical point to account for the non-Fermi-liqu
normal-state properties,d-wave superconductivity, and
strong doping dependence of the superconducting crit
temperature.12,13

It is the goal of the present paper to explore the poss
scenarios for the phase diagrams within the SO~5! theory by
focusing on the role of thermal and quantum effects. A s
tematic formulation of the quantum problem is complicat
9059 ©2000 The American Physical Society
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by two factors:~1! the problem has a dynamical nature fro
the outset, and~2! the role of thermal and quantum fluctu
tions precludes the implementation of mean-field-type
proaches. Therefore, it is essential to find a way of syst
atic parametrization of quantum and thermal effects. To
end we introduce in the present paper a mapping of the q
tum SO~5! Hamiltonian onto the lattice version of th
NLQsM and subsequently onto the spherical quantum ro
model ~SQRM! in three-dimensional~3D! space which of-
fers the remarkable opportunity of being exactly solvable

The outline of the remainder of the paper is as follows.
Sec. II we begin by setting up the quantum Hamiltonian a
the corresponding Euclidean Lagrangian. In Sec. III the c
sical approximation yielding the effective energy is e
ployed to reveal the structure of the ground state as a fu
tion of doping. Subsequently, in Sec. IV we introduce a no
mean-field treatment of the lattice version of the NLQsM in
a form of a spherical approach for 3D quantum rotors a
discuss possible scenarios for temperature-doping phase
grams. Finally, in Sec. V we summarize the conclusions
be drawn from out work. Some supplementary material
garding the construction of the effective quantum Lagrang
and SQRM approach appears in the Appendixes.

II. QUANTUM HAMILTONIAN AND THE EFFECTIVE
LAGRANGIAN

We have considered the low-energy Hamiltonian p
posed by Zhang on a discrete lattice~the lattice quantum
nonlinears model1!:

H5
1

2 (
i

(
m,n

~xmn!21Li
mnLi

mn2V~n!22m(
i

L i
15

2(
i , j

~Ji j
AFnAF,i•nAF, j1Ji j

SCnSC,i•nSC, j !, ~1!

where i 51, . . . ,N (N is the number of lattice sites!. The
fundamental quantity in the SO~5! theory is the locally de-
fined five-component superspin vector ni
5(n1 ,n2 ,n3 ,n4 ,n5) i describing the local antiferromagnet
nAF,i5(n2 ,n3 ,n4) i and superconductingnSC,i5(n1 ,n5) i pa-
rameters, respectively. In Zhang’s formulation these
treated as mutually commuting coordinates and their dyn
ics is given by their conjugate momenta:

pm i5 i
]

]nm i
,

@nm ,pn#5 idmn . ~2!

The kinetic energy of the system is simply that of a SO~5!
rigid rotor (ni

251, pi•ni50; see Ref. 14! and is given by the
first part of Eq.~1!. Here

Li
mn5nm i pn i2nn i pm i ~3!
-
-

is
n-

r

d
s-
-
c-
-

d
ia-
o
-
n

-

e
-

are the generators of SO~5! algebra andLi
15 is a charge op-

erator, whose expectation value yields the doping concen
tion (m is the chemical potential measured from the ha
filling !. The parametersxmn measure the kinetic energy o
the rotors ~moment of inertia!. They describe the charg
(x15[xc), spin (x235x245x34[xs), and so-called ‘‘p ’’
susceptibilities (x1(2,3,4)5x (2,3,4)5[xp). Furthermore, the
corresponding stiffness in the charge (Ji j

SC) and spin (Ji j
AF)

channel has also been introduced. This quantum nonlines
model can be derived from a microscopic SO~5!-symmetric
model.15 Then, the superspin coordinates (ni , pi) are micro-
scopically constructed using lattice~hard-core! bosons16 and
Ji j

AF(SC) terms stand for their hopping and spontaneous c
ation ~destruction!. In the presence of SO~5! symmetry
breaking, a quadratic term of the form

V~ni !5
g

2 (
i

~n2i
2 1n3i

2 1n4i
2 ! ~4!

is also allowed. The anisotropy constantg selects either the
‘‘easy plane’’ in the SC space (n1 ,n5), or an ‘‘easy sphere’’
in the AF space (n2 ,n3 ,n4), depending on the sign ofg. At
half-filling (m50) g.0 is chosen so that the superspin pr
fers the AF state.

We express the partition functionZ5Tre2H/kBT using the
functional integral in the Matsubara ‘‘imaginary time’’t for-
mulation (0<t<1/kBT[b, with T being the temperature!.
We obtain

Z5E )
i

@Dni #E )
i

FDpi

2p Gd~12ni
2!d~ni•pi !

3expS 2E
0

b

dtL@p,n# D , ~5!

with the Euclidean Lagrangian

L@p,n#5 ip~t!•
d

dt
n~t!1H~n,p!. ~6!

We note that the path integral in Eq.~5! is Gaussian in mo-
mentapi . Due to the rigid nature of the quantum rotors, o
must be careful and integrate only over the transverse c
ponents toni with fixed length. This can be implemented b
the introduction of a secondd function to maintain the loca
constraintpi•ni50 andni

251. Performing the path integra
tion over the momenta~see Appendix A! we obtain

Z5E )
i

@Dni #d~12ni
2!expS 2E

0

b

dtL@n# D , ~7!

where
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L5
1

2 (
i

F 1

nSC,i
2 S xp2

1

xc
21nSC,i

2 1xp
21nAF,i

2 D S 1

2

]nSC,i
2

]t D 2

1
1

xc
21nSC,i

2 1xp
21nAF,i

2 S ]nSC,i

]t D 2G
1

1

2 (
i

F 1

nAF,i
2 S xp2

1

xp
21nSC,i

2 1xs
21nAF,i

2 D S 1

2

]nAF,i
2

]t D 2

1
1

xp
21nSC,i

2 1xs
21nAF,i

2 S ]nAF,i

]t D 2G
2

1

2 (
i

1

xc
21nSC,i

2 1xp
21nAF,i

2 F4m2~n1i
2 1n5i

2 !14imS ]n1i

]t
n5i2n1i

]n5i

]t D G
2(

i , j
Ji j

AFnAF,i•nAF, j2(
i , j

Ji j
SCnSC,i•nSC, j2

g

2 (
i

~n2i
2 1n3i

2 1n4i
2 ! ~8!
ec

m
o
e

ve
F

xist

s at
is the effective Lagrangian written in terms of superspin v
tors.

III. EFFECTIVE CLASSICAL POTENTIAL AND STATIC
SOLUTIONS

The classical path extremizing the path integral@see Eqs.
~7! and~8!# is the static solutions. For the static and unifor
solutions@ni(t)[ni #, the only nonvanishing contribution t
the kinetic energy is the chemical potential term, which giv
us the effective potential energy per superspin,

E~u,m![
1

bNE0

b

dtL@ni~t![n#, ~9!

in the form17

E~u,m!52
2m2~n1i

2 1n5i
2 !

xp
21nAF

2 1xc
21ni ,SC

2
2

g

2
~n2i

2 1n3i
2 1n4i

2 !.

~10!

Without loss of generality one can choose the superspin
tor n5(sinu, cosu,0,0,0) which tilts between SC and A
states according to the angular parameteru ~for u50 the
superspin lies on the AF sphere, foru5p/2 in the SC plane!.
Then the energy~10! reads

E~u,m!52
2m2 sin2u

xp
21 cos2u1xc

21 sin2u
2

g

2
cos2u. ~11!

Depending on the relative magnitude of the parameters (xp ,
xc) the following cases are in order.

A. Symmetric case„xcÄxpÄx…

The effective potential energy~11! reduces to

E~u,m!522m2x sin2u2
g

2
cos2u. ~12!

The energy reaches its local extrema

]E~u,m!

]u
5cosu sinu@24xm21g#50 ~13!

for
-

s

c-

u50; u5
p

2
or m5A g

4x
. ~14!

Inspection of the second derivative

]2E~u,m!

]u2
5~g24xm2!cos 2u ~15!

leads us to the conclusion that the minima of the energy e
for

u50, when m,A g

4x
,

u5p/2, when m.A g

4x
. ~16!

Consequently, atm5Ag/(4x) there is a superspin ‘‘flop’’
between the anglesu50 and u5p/2; i.e., there is a first-
order transition between AF and SC states. This happen
the chemical potential given by

E~0,mc!5ES p

2
,mcD⇒mc5A g

4x
. ~17!

The corresponding doping concentrationx for AF and SC
phases is given by

in the AF state,

xAF~m!52
1

2

]E~0,m!

]m
50 for m,A g

4x
,

in the SC state,

xSC~m!52
1

2

]E~p/2,m!

]m

52xm for m.A g

4x
. ~18!

That is, at the transition point there is a discontinuity inx,
which jumps fromxAF(mc)50 to xSC(mc)5Agx @see Fig.
1~a!#.
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B. Asymmetric case„xcÅxp…

The extremum condition for the classical effective potential is

]E~u,m!

]u
5cosu sinuF 4m2 sin2u~xc

212xp
21!

~xp
21 cos2u1xc

21 sin2u!2
1g2

4m2

xp
21 cos2u1xc

21 sin2u
G50, ~19!

which gives

u50; u5
p

2
; sinu5Axc22xcmAxp /g

xc2xp

. ~20!

From the second-derivative analysis

]2E~u,m!

]u2
5g cos 2u2

8xc
2xpm2@2~xc1xp!cos 2u1~xc2xp!~32cos 4u!#

@xc1xp1~xc2xp!cos 2u#3
, ~21!
b

d
t

nd

n

y

am
ion
as-

her
the
i-
we find that the minima of the energy exist for

u50 when m,mc
AF[A g

4xp
,

u5p/2 when m.mc
SC[Axp

xc
A g

4xc
,

sinu5Axc22xcmAxp /g

xc2xp

when xp.xc . ~22!

As a result, forxp,xc there is the superspin ‘‘flop’’ be-
tween the anglesu50 andu5p/2, similarly as in the sym-
metric case. In analogy, the first-order transition point can
obtained from the condition of the energy equality:

E~0,mc!5ES p

2
,mcD⇒mc5A g

4xc
. ~23!

However, we notice that for the chemical potential regim
mc

SC,m,mc
AF the energy has two local minima correspon

ing to u50 andu5p/2 states. Although the transition poin
is atmc , for mc,m,mc

AF there is a metastable AF state a
for mc

SC,m,mc a metastable SC state@see Fig. 1~b!#. The
charge concentration in the corresponding phases is give

in the AF state, xAF~m!52
1

2

]E~0,m!

]m

50 for m,A g

4xp
,

in the SC state, xSC~m!52
1

2

]E~1,m!

]m

52xcm for m.
xp

xc
A g

4xp
.

~24!

For xp.xc a mixed phase~M! exists for
e

e
-

by

0,uM5arcsinSAxc22xcmAxp /g

xc2xp
D ,p/2, ~25!

the energy of which is

E~uM ,m!5
gxp24xcAgxp14xcxpm2

2~xc2xp!
. ~26!

The transition points between AF~SC! and M states are,
respectively,

AF⇔M : E~uM ,mc1!5E~0,mc1!⇒mc15A g

4xp
5mc

AF ,

SC⇔M : E~uM ,mc2!5ES p

2
,mc2D

⇒mc25
xp

xc
A g

4xp
5mc

SC. ~27!

The charge concentration for the mixed phase is given b

xM~m!52
1

2

]E~uM ,m!

]m
5

Agxpxc12xcxpm

xp2xc
. ~28!

At the transition points (mc
AF andmc

SC) there are discontinui-
ties in x, which jumps atmc

AF from xAF(mc
AF)50 to

xM~mc
AF!5

2Agxpxc

xp2xc
~29!

and atmc
SC from

xM~mc
SC!5

Agxp~xc1xp!

xp2xc
~30!

to xSC(mc
SC)5Agxp @see Fig. 1~c!#.

Before attempting to construct the global phase diagr
from SO~5! theory, we must remember that the discuss
above is based merely on the classical approximation by
suming that quantum effects are negligible. On the ot
hand, quantum fluctuations may have a strong effect on
long-range order. In the limit when the kinetic energy dom
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nates, the first term of the Eq.~1! can be no longer treated a
a perturbation. In the following section we address the is
of quantum effects by establishing a theoretical framew
for treating interacting quantum rotors.

IV. SPHERICAL QUANTUM ROTOR MODEL

A. Models with a SO„5…-symmetric kinetic part

If xc5xs5xp5x, then the kinetic part of the energy
symmetric and the Lagrangian simplifies to the form

L@n#5(
i

x

2 F S ]ni

]t D 2

24m2~n1i
2 1n5i

2 !

14imS ]n1i

]t
n5i2n1i

]n5i

]t D G2
g

2 (
i

~n2i
2 1n3i

2 1n4i
2 !

2(
i , j

~Ji j
AFnAF,i•nAF, j1Ji j

SCnSC,i•nSC, j !. ~31!

FIG. 1. Doping concentration vs chemical potential depende
from the classical effective energy. Shown are~a! the symmetric
casexc5xp with first-order phase transition,~b! the asymmetric
casexc.xp with first-order phase transition, and~c! the asymmet-
ric casexc,xp with mixed region.
e
k

From the definition of the superspin variablesni the rigid
constraintni

251 implies that a weaker conditions also a
plies, namely,

(
i 51

N

ni
25N. ~32!

The main idea of our approach is to attempt to generate
effective partition function, which incorporates the co
strained nature of the original variables. This leads us to
formulation of the problem in terms of the spherical mode18

by implementing the constraint~32!. The name of the mode
comes from the observation that in Eq.~32! the allowed
states are all points on the surface of a hypersphere~in di-
mensiond55N) of radiusAN. The model defined by Eq
~32! is in fact a hybrid of the genuine spherical model a
five-component vector model. Therefore, with the repla
ment

)
i

d~12ni
2!→dS N2(

i
ni

2D , ~33!

the global constraint in Eq.~5! may be implemented by usin
the functional analog of the Diracd function:

dS N2(
i

ni
2D 5E

c2 i`

c1 i`F dl

2p i G
3expF E

0

b

dtl~t!S N2(
i

ni
2~t! D G ,

~34!

whereni(t) are c-number fields which satisfy the quantu
periodic boundary conditionni(b)5ni(0) and are taken as
continuousvariables, i.e.,2`,ni(t),`, but constrained
@on average, due to Eq.~32!# to have unit length. This intro-
duces the Lagrange multiplierl(t), adding an additional
quadratic term~in ni fields! to the Lagrangian~8!. We obtain

Z5E dl

2p i
e2Nf(l), ~35!

where the functionf(l) is defined as

f~l!52E
0

b

dtl~t!2
1

N
ln E )

i
@Dni #

3expF2(
i
E

0

b

dt~ni
2l~t!2L@n# !G . ~36!

In the thermodynamic limitN→` the method of steepes
descents is exact and the saddle pointl(t)5l(0) will sat-
isfy the condition

df~l!

dl~t!
U

l5l0

50. ~37!

Therefore, we finally arrive at the following expression f
the free energy per superspinf 52(bN)21 ln Z:

e
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f 52l02
1

bN
ln E )

i
@Dni #

3expF2(
i
E

0

b

dt~l0ni
22L@n# !G . ~38!

This expression is ready for evaluation of the free energy
the system after performing the remaining functional integ
tion over the superspin variablesni . In the next sections we
shall deal with various SO~5! models resulting from differen
choices of parameters in the Hamiltonian~1!.

Substituting the Lagrangian from Eq.~31!, the free energy
is equal to

f 52l2
1

bN
ln E )

i
@Dni #expS 2E

0

b

dtH 2l(
i

ni
2~t!

1(
i

x

2 F S ]ni

]t D 2

24m2~n1i
2 1n5i

2 !24imS ]n1i

]t
n5i

2n1i

]n5i

]t D G2(
i , j

~Ji j
AFnAF,i•nAF, j1Ji j

SCnSC,i•nSC, j !

2
g

2 (
i

~n2i
2 1n3i

2 1n4i
2 !J D . ~39!

Note that the integrations over the superspin variables
now Gaussian and the corresponding quadratic form ca
diagonalized. We introduce the Fourier transform fie
n(k,v l):

ni~t!5
1

bN (
k

(
l 52`

`

ni~k,v l !e
2 i (v lt2k"r i )

J~k!5
1

N (
Ri

J~Ri !e
2 iRi•k, ~40!

with v l52p l /b ( l 50,61,62, . . . ) being the~Bose! Mat-
subara frequencies andJAF(SC)(Ri)5JAFSC)(ur i2r j u)
[Ji j

AF(SC) . We finally obtain for the free energy

f 5
3

bN (
l

(
k

ln@2l02JAF~k!2g1xv l
2#

1
1

bN (
l

(
k

ln@2l02JSC~k!1x~v l12im!2#

1
1

bN (
l

(
k

@2l02JSC~k!1x~v l22im!2#2l0 .

~41!
f
-

re
be
s

In the presence of a uniform order parameter fie
hÄ(h1 ,h2 ,h3 ,h4 ,h5), which adds a termh( ini to the
Hamiltonian~1!, the saddle-point equation~37! and the free
energy~41! are modified~see Appendix B!. Then the ‘‘mag-
netization’’ m5(m1,m2 ,m3 ,m4 ,m5)52,hf singles out the
corresponding AF @mAF[(m1 ,m5)# and/or SC @mSC
5(m2 ,m3 ,m4)# state.

Criticality conditions and phase diagrams

The critical lines for the AF and SC states in the spheri
model are obtained by setting corresponding ‘‘magneti
tions’’ to zero (mAF50 for AF andmSC50 for SC!. Alter-
natively we may define the critical lines using order para
eter susceptibilities given by the following correlatio
functions:

Gi j
AF~t!5^nAF,i~t!•nAF, j~0!&,

Gi j
SC~t!5^nSC,i~t!•nSC, j~0!&, ~42!

where the averagê•••& is defined as

^ . . . &5
d f 1

ZE )
i

@Dni #E )
i

FDpi

2p G
3dS N2(

i
ni

2D d~ni•pi !•••expS 2E
0

b

dtL@p,n# D .

~43!

Using the Lagrangian from Eq.~31! we obtain for the
Fourier-transformed quantities

GAF~k,v l !5
3

2l2JAF~k!1xv l
22g

,

GSC~k,v l !5
1

2l2JSC~k!1x~v l12im!2

1
1

2l2JSC~k!1x~v l22im!2
. ~44!

At criticality corresponding susceptibilities becomes infini

GAF
21~k50,v l50!50,

GSC
21~k50,v l50!50, ~45!

which allows one to find Lagrange multipliers as
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l0
AF5

1

2
JAF~k50!1

g

2
,

l0
SC5

1

2
JSC~k50!12xm2. ~46!

Furthermore, it is convenient to introduce the density
states defined as

r~z!5
1

N (
k

d@z2«~k!#, ~47!

where«(k)5coskx1cosky1coskz is the structure factor for
the simple cubic lattice in three dimensions.19 Explicitly,

r~z!5
1

p3Emax(21,222z)

min(1,22z)

du
1

A12u2

3K FA12S z1u

2 D 2GQ~32uzu!, ~48!

whereK (x) is an elliptic integral of the first kind.20 Intro-
ducing
l
.
si

e,

s

f

J[JSC and k5
JAF

JSC
⇒JAF[

JAF

JSC
J5kJ, ~49!

the free energy~41! can be written then

f ~l0 ,m!52l01
2

bE2`

`

dzr~z!

3 lnH F2 sinhS b

2
A2l02kJz2g

x D G3

32 sinhFb

2 SA2l02Jz

x
12m D G

32 sinhFb

2 SA2l02Jz

x
22m D G J . ~50!

Using the saddle-point condition and the appropri
Lagrange multipliers (l0

AF , l0
SC) we obtain equations for the

second-order transition critical lines separating AF~SC! and
quantum-disordered~QD! phases:
QD⇔AF: 15E
2`

`

r~z!dzH 3

cothS b

2
A3kJ2kJz

x
D

Ax~3kJ2kJz!

12

cothFb

2
SA3kJ2Jz1g

x
12m D G1cothFb

2
SA3kJ2Jz1g

x
22m D G

2Ax~3kJ2Jz1g!

J ;

QD⇔SC: 15E
2`

`

r~z!dzH 3

cothS b

2
A3J2kJz2g14xm2

x
D

Ax~3J2kJz2g14xm2!

12

cothFb

2
SA3J2Jz14xm2

x
12m D G1cothFb

2
SA3J2Jz14xm2

x
22m D G

2Ax~3J2Jz14xm2!

J . ~51!
on

on
xist

las-
ario
The self-consistent equations~51! determine the externa
phase boundariesTc(m) between AF~SC! and QD phases
The above expressions give the dependence of the phy
quantities in terms of the chemical potentialm. From Eq.
~50! it follows that the free energy of the AF phas
f (l0

AF ,m), assumes real values form<mcrit , whereas the
free energy of the SC phase,f (l0

SC,m), assumes real value
for m>mcrit . Moreover,
cal

f ~l0
AF ,mc!5 f ~l0

SC,mc!, ~52!

which is just a condition for the first-order phase transiti
between AF and SC phases atm5mc @see Figs. 2 and 3~a!#.
As a consequence, there is no intermediate mixed region
theT-m phase diagram, where AF and SC states can coe
in contrast to the findings in Sec. III based on the quasic
sical approximation. Therefore, it appears that the scen
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depicted in Fig. 1~b! in Zhang’s paper,1 where there are two
second-order phase transitions with an intermediate ‘‘sp
bag’’ phase and tetracritical point, is ruled out. The dep
dence of parameter interplay on system ordering can be
found from investigation of the zero-temperature grou
state of the system~see Figs. 4 and 5!. Depending on the
kinetic energy parameterx ~which regulates the strength o
the quantum fluctuations! we can identify the following sce
narios for the possible phase diagrams.

FIG. 2. kBT/J-m/J-xJ phase diagram for the SO~5!-symmetric
kinetic energy part model.

FIG. 3. Phase diagram for the SO~5!-symmetric kinetic energy
part model (g/J50.5, Jx510, andk51). Plotted is the critical
temperature vs~a! chemical potentialm/J and~b! charge dopingx.
~a! The AF and SC phases are separated by the first-order trans
line, and~b! the first-order transition line spreads, forming a mix
~M! region with constant chemical-potential value.
-
-
so
d

~i! There is a first-order phase transition that can be
scribed as a superspin flop transition (x,xcrit) at the critical
line,

mc5Ag13J~k21!

4x
, ~53!

whereJxcrit5g2 with

g5E
2`

`

dzr~z!S 3

A3k2kz
1

2

A3k2kz1g
D . ~54!

Here the second-order critical lines merge at the (mc , Tc)
bicritical point @see Fig. 3~a!#.

~ii ! Increasing the strength of quantum fluctuations~the
value of thex parameter!, we arrive at the phase diagram
with x5xcrit , where there is a single second-order pha
transition at the quantum critical point (T50,mc) @see Fig.
6~a!#.

~iii ! For x.xcrit we arrive finally at the scenario depicte
at the Fig. 7~a!, where there are two second-order quantu
phase transitions with an intermediate quantum-disorde
phase.

However, it would be more useful if phase diagrams we
expressed in terms of the physically measured quantity—

ion

FIG. 4. Zero-temperature phase diagram for the SO~5!-
symmetric kinetic energy part model: parameterxJ vs chemical
potentialm/J for different values ofg/J parameter.
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doping~or charge concentration! x. The charge concentrationx5^L15&[2 1
2 ] f /]m can be deduced from the free energy~50!.

We obtain explicitly
in

r

he
tu
b

C
e
as
io
ic

er
a
at
re
p

ee

-
ture

e
tly.
ace

he
wherexAF , xSC, andxQD describe the charge density with
the AF, SC, and QD phases, respectively, andl0 is deter-
mined by the self-consistent equation~37!. In the zero-
temperature limit, the charge densities are

xAF50for m,mc5Ag13J~k21!

4x
,

xSC52xmcmSC
2 for m>mc5Ag13J~k21!

4x
, ~56!

wheremSC
2 is the superconducting order parameter~see the

next subsection and Appendix B! nonvanishing within the
ordered phases. Therefore at zero temperature and fom
,mc the charge density vanishes, form.mc it is finite, and
a discontinuous jump of the density is proportional to t
superconducting order parameter. By raising the tempera
the discontinuous jump diminishes and vanishes at the
critical point on theT-m phase diagram, where AF and S
critical lines merge~see Fig. 8!. As a consequence, if th
phase diagram is plotted with the charge density rather
m variable, the phase diagram will contain a mixed reg
with the coexistence of two phases with a constant chem
potential pined atm5mc @see Fig. 3~b!#. This implies an
infinite compressibility~which defined asdx/dm). This be-
havior can be explained by a two-phase mixture with diff
ent densities at the first-order phase transition. In this c
the system globally phase separates into two different sp
regions with different charge densities, but the same f
energy. As a result, the added charges only change the
re
i-

a
n
al

-
se
ial
e
ro-

portion of the mixture of the two phases, but not the fr
energy ~and therefore,dm/dx50).21 With increasing the
strength of quantum fluctuations~i.e., by raising thex pa-
rameter!, the mixed region on theT-x phase diagram dimin-
ishes and disappears forx>xcrit @see Figs. 3~b! and 6~b!#. In
this case the AF phase on theT-x phase diagram is pro
foundly suppressed with a characteristic reentrant fea
@see Figs. 7~b! and 7~c!#.

B. Models with broken SO„5… symmetry of
the kinetic energy part

When xcÞxpÞxs , the Lagrangian~8! no longer has
quadratic form in theni variables. Therefore it is not possibl
to evaluate the free energy of the spherical model exac
Hence, a further approximation is necessary. We repl
nAF,i

2 andnSC,i
2 by their averagevalues^nAF,i

2 & and ^nSC,i
2 &,

according to

nSC,i
2 ~t!→^nSC,i

2 &,

nAF,i
2 ~t!→^nAF,i

2 &. ~57!

Using Eq.~42! we observe that

^nAF(SC),i
2 ~t!&5Gi j

AF(SC)~t501! ~58!

is independent of ‘‘imaginary time.’’ As a consequence t
two quartic~in ni field! terms in the Lagrangian vanish:
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S 1

2

]nSC,i
2

]t D 2

⇒
nSC,i

2 →^nSC,i
2 &

S 1

2

]^nSC,i
2 &

]t D 2

50,

FIG. 5. Zero-temperature phase diagram for the SO~5!-
symmetric kinetic energy part model: parameterg/J vs chemical
potentialm/J. Solid lines correspond to AF and SC phases forxJ
57, dashed line forxJ58. Ordered regions exist above~below!
the corresponding lines.

FIG. 6. Phase diagram for the SO~5!-symmetric kinetic energy
part model (g/J5226.5, Jx53.054 725, andk510). Plotted is
the critical temperature vs~a! chemical potentialm/J and~b! charge
dopingx. Here, two second-order phase transition lines meet at
quantum critical pointxc (T50).
S 1

2

]nAF,i
2

]t D 2

⇒
nAF,i

2 →^nAF,i
2 &

S 1

2

]^nAF,i
2 &

]t D 2

50. ~59!

Therefore the Lagrangian simplifies to the form

e

FIG. 7. Phase diagram for the SO~5!-symmetric kinetic energy
part model (g/J5226.5, Jx53.054 65, andk510). Plotted is the
critical temperature vs~a! chemical potentialm/J and ~b! charge
dopingx. Here, the ordered AF and SC phases are separated
nonordered intermediate region.

FIG. 8. ~a! Generic phase diagram with AF and SC regio
separated by the first-order transition line with five chosen const
temperature lines.~b! Doping charge densityx vs chemical potential
m/J for the temperatures from the plot~a!.
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L5
1

2 (
i

FxSC,i S ]nSC,i

]t D 2

1xAF,i S ]nAF,i

]t D 2G
2

1

2 (
i

xSC,iF4m2~n1i
2 1n5i

2 !

14imS ]n1i

]t
n5i2n1i

]n5i

]t D1g(
i

~n2i
2 1n3i

2 1n4i
2 !G

1
1

2 (
i , j

~Ji j
SCnSC,i•nSC, j1Ji j

AFnAF,i•nAF, j !, ~60!
which is now quadratic inni fields, allowing one to perform
Gaussian integrations~7! over ni variables exactly.

Here,

xAF,i~l0!5
1

xp
211~xs

212xp
21!^nAF,i

2 &
,

xSC,i~l0!5
1

xp
211~xc

212xp
21!^nSC,i

2 &
, ~61!

with
ed
^nAF
2 &53E

2`

`

r~z!dz

cothFb2AxAF
21~2l02kJz2g!G

AxAF~2l02kJz2g!
,

^nSC
2 &52E

2`

`

r~z!dz

cothH b

2
@AxSC

21~2l02Jz!12m#J 1cothH b

2
@AxSC

21~2l02Jz!22m#J
2AxSC~2l02Jz!

. ~62!

In this case the order parameter susceptibilities take the form

GAF~k,v l !5
3

2l2JAF~k!1xAFv l
22g

,

GSC~k,v l !5
1

2l2JSC~k!1xSC~v l12im!2
1

1

2l2JSC~k!1xSC~v l22im!2
, ~63!

and from the criticality condition

GAF
21~kÄ0,v l50!50, GSC

21~kÄ0,v l50!50, ~64!

one can obtain the corresponding Lagrange multiplier for AF and SC phases, respectively:

l0
AF5

1

2
JAF~kÄ0!1

g

2
, l0

SC5
1

2
JSC~kÄ0!12xSCm2. ~65!

The saddle point condition~37! can be put in a very simple form~see Appendix B!:

^nAF,i
2 &1^nSC,i

2 &512mAF
2 2mSC

2 . ~66!

The second-order transition critical lines, separating ordered~AF or SC! and QD high-temperature regions, can be obtain
using the appropriate Lagrange multiplier~AF or SC! and putting the superspin ‘‘magnetization’’m25mAF

2 1mSC
2 equal to

zero. For the disordered to AF~SC! transition we obtain

QD⇔AF: ^nAF,i
2 &ul05l

0
AF1^nSC,i

2 &ul05l
0
AF51; QD⇔SC: ^nAF,i

2 &ul05l
0
SC1^nSC,i

2 &ul05l
0
SC51, ~67!

explicitly
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QD⇔AF: 15E
2`

`

r~z!dzH 3

cothS b

2A3kJ2kJz

xAF
a D

AxAF
a ~3kJ2kJz!

12

cothFb

2 SA3kJ2Jz1g

xSC
a

12m D G1cothFb

2 SA3kJ2Jz1g

xSC
a

22m D G
2AxSC

a ~3kJ2Jz1g!
J ;

QD⇔SC: 15E
2`

`

r~z!dzH 3

cothS b

2A3J2kJz2g14xSC
s m2

xAF
s D

AxAF
s ~3J2kJz2g14xSC

s m2!

12

cothFb

2 SA3J2Jz14xSC
s m2

xSC
s

12m D G1cothFb

2 SA3J2Jz14xSC
s m2

xSC
s

22m D G
2AxSC

s ~3J2Jz14xSC
s m2!

J , ~68!
se
th

n

he

for

al

s in
tion.
an-
x-

e

um
where

xAF(SC)
a(s) [xAF(SC)~l0

AF(SC)!. ~69!

The set of self-consistent equations~68! with Eqs. ~61! and
~62! determines the external phase boundariesTc(m) be-
tween AF ~SC! and QD phases. The internal critical pha
boundaries can be obtained in a similar fashion. On
AF (SC)⇔M phasemSC(AF) is nonzero. For the SC⇔M
transitionmAF50 andl05l0

AF . From Eq.~66! the equation
for the critical line reads

@^nAF
2 &1^nSC

2 &#l05l
0
AF512mSC

2 . ~70!

On the other hand, the equation for the order parametermSC
~within the AF state! follows from the equation of state~66!
with l05l0

SC:

@^nAF
2 &1^nSC

2 &#l05l
0
SC512mSC

2 . ~71!

Both equations can be combined to give

@^nAF
2 &1^nSC

2 &#l05l
0
AF5@^nAF

2 &1^nSC
2 &#l05l

0
SC. ~72!

Similarly, for the AF⇔M transitionmSC50 andl05l0
SC.

Correspondingly, we obtain

@^nAF
2 &1^nSC

2 &#l05l
0
SC512mAF

2 . ~73!

The order parametermAF is, in turn, defined by the equatio
for the AF state:

@^nAF
2 &1^nSC

2 &#l05l
0
AF512mAF

2 . ~74!

Equating the right-hand side~RHS! of the Eqs.~73! and~74!
we obtain

@^nAF
2 &1^nSC

2 &#l05l
0
AF5@^nAF

2 &1^nSC
2 &#l05l

0
SC. ~75!

Subsequently, comparing the Eqs.~72! and ~75! we can de-
duce
e

@^nAF
2 &1^nSC

2 &#l05l
0
AF5@^nAF

2 &1^nSC
2 &#l05l

0
SC⇒mAF

2

5mSC
2 ⇒l0

AF5l0
SC. ~76!

From the equality of the Lagrange multipliers we obtain t
equation for the critical line:

m25
g13J~k21!

4
@xp

211~xc
212xp

21!^nSC
2 &#. ~77!

This equation turns out to be the equation for asingle line.
From the inspection of the free energy we havel0

AF

5l0
SC⇒ f (l0

AF)5 f (l0
SC), implying that the critical line~77!

refers to the first-order transition line. It is easy to see that
the xp5xc5x, Eq. ~77! simplifies to

m5Ag13J~k21!

4x
, ~78!

as in the case of the model with a SO~5!-symmetric kinetic
energy part@see Eq.~53!#. Similarly as in the case from the
previous subsection we found no evidence for theT-m phase
diagram with four critical lines merging at the tetracritic
point @phase diagram in Fig. 1~b! from Ref. 1#.

By varying the kinetic energy parametersxp , xc , andxs
we arrive basically at the same type of phase diagrams a
the symmetric case described at the previous subsec
However, the line of the first-order superspin-flop phase tr
sition on theT-m phase diagram will not be in general e
actly vertical for the case of different susceptibilitiesxp ,
xc , andxs . The first-order superspin flop will occur at th
m(T) line described by

m5Ag13J~k21!

4xSC~T!
. ~79!

Furthermore, the corresponding condition for the quant
critical point (T50,mcrit) now reads
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mcrit5Ag13J~k21!

4xSC
U

l05l
0
AF5l

0
SC

~80!

@see Figs. 9~a! and 10~a!#.
Similarly we can obtain the phase diagram as a funct

of doping concentrationx and temperature. Here the char
density is given by

x5^L15&55
2

1

2

d f~l0
AF!

dm
[xAF ,

2
1

2

d f~l0
SC!

dm
[xSC,

2
1

2

d f~lQD!

dm
[xQD ,

~81!

and theT-x phase diagrams with mixed regions are p
sented in Figs. 9~b! and 10b.

V. SUMMARY AND CONCLUSIONS

In the present paper we have studied the thermodyna
properties of the SO~5! quantum rotor theory which accoun
for both thermal and quantum effects in the rotation of
perspins between SC and AF subspaces. We have perfo

FIG. 9. Phase diagram for the SO~5!-nonsymmetric kinetic en-
ergy part model (g/J50.5, Jxp5100, Jxs58, Jxc512, andk
51). Plotted is the critical temperature vs~a! chemical potential
m/J and ~b! charge dopingx. ~a! The AF and SC phases are sep
rated by the first-order transition line, and~b! the first-order transi-
tion line spreads, forming a mixed~M! region with constant
chemical-potential value.
n

-

ic

-
ed

a non-mean-field treatment of the lattice version of t
NLQsM using the spherical approach for 3D quantum roto
and discussed possible scenarios for temperature-do
phase diagrams. The model considered can contain l
SO~5! anisotropy parameters~spin, charge, and so-calle
‘‘ p ’’ susceptibilities which regulate the strength of the qua
tum fluctuations!. We found out that the topology of th
temperature-chemical-potential phase diagrams assumes
ferent forms depending on the strength of the quantum fl
tuations. In the SO~5! symmetric kinetic energy model w
established the condition for the existence of the quan
critical point, where the AF state goes to the SC st
through the second-order phase transition. For strong qu
tum fluctuations the region between AF and SC phases
comes quantum disordered and both transitions~from the
quantum-disordered phase to AF and SC! are of second or-
der, respectively. In the intermediate quantum regime th
is a first-order superspin-flop transition~where the direction
of the superspin changes abruptly!. Finally, for the general
class of models with symmetric and asymmetric kinetic e
ergy parts we found no evidence for the existence of a ph
diagram, where four second-order lines merge at the tet
ritical point (Ttc ,m tc) and two of them enclose an interme
diate ‘‘spin-bag’’ phase@phase diagram from the Fig. 1~b!
from Zhang’s paper1#. This is in contrast to the quasiclassic
approach where this scenario appears to be possible. Th

FIG. 10. Phase diagram for the SO~5!-nonsymmetric kinetic en-
ergy part model (g/J50.5, Jxp512, Jxs58, Jxc51000, andk
51). Plotted is the critical temperature vs~a! chemical potential
m/J and ~b! charge dopingx. ~a! The AF and SC phases are sep
rated by the first-order transition line, and~b! the first-order transi-
tion line spreads, forming a mixed~M! region with constant
chemical-potential value.
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fore, we conclude that quantum fluctuations are respons
for the destruction of the ‘‘spin-bag’’ phase on theT-m
phase diagram. However, a phase separation region will
cur on thetemperature-charge concentration T-x phase dia-
gram for intermediate quantum fluctuations. In this reg
the long-range Coulomb interaction can lead presumabl
the formation of a stripe order with alternating AF and S
phases. To compare theoretical predictions with experim
it is important to establish precisely the high-Tc phase dia-
grams in the AF-SC transition regime. Unfortunately, this
complicated by the fact that charge doping is the experim
tally tunable parameter. Nevertheless, there is experime
evidence that in the vicinity of the AF-SC transition regio
the high-Tc superconductors exhibit an increased sensitiv
to disorder and inhomogeneity. Presumably, in order to
derstand the precise nature of the intermediate AF-SC
gime it is important to include other perturbing effects su
le

c-

n
to

ts

n-
tal

y
-

e-

as the above-mentioned long-range Coulomb interaction22 to
study how spatially inhomogeneous states can emerge
nally, it would be very important to see whether there will
a dynamicalrestoration of the SO~5! symmetry at the quan
tum ~bi!critical point even when the model defined at t
short length scales is not exactly SO~5! invariant ~i.e., with
different susceptibilities along different directions!. A quan-
tum version of the Polyakov-Migdal low-temperature expa
sion for the NLsM combined with a renormalization grou
treatment around lower critical dimensionality23 would be
instrumental to address these issues.
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APPENDIX A: CONSTRUCTION OF THE EFFECTIVE LAGRANGIAN

1. SO„5…-symmetric kinetic energy part

The kinetic energy of the system is simply that of a SO~5! rigid rotor given by

1

2x (
i

(
m,n

Li
mnLi

mn52
1

2x (
i

(
m,n

S nim

]

]nin
2nin

]

]nim
D S nim

]

]nin
2nin

]

]nim
D

5
1

2x (
i

(
m,n

~nim
2 pin

2 2nimninpimpin!5
1

2x (
i

F(
n

nim
2 (

m
pim

2 2S (
m

nimpimD 2G
5

1

2x (
i

@ni
2pi

22~ni•pi !
2#. ~A1!

Therefore, the partition function is

Z5E )
i

@Dni #E )
i

FDpi

2p Gd~12ni
2!d~ni•pi !expS 2E

0

b

dtL@p,n# D
5expS 2E

0

b

dtH(
i

F ipi•
]ni

]t
1

1

2x
ni

2pi
22

1

2x
~ni•pi !

2G2(
i , j

~Ji j
AFnAF,i•nAF, j1Ji j

SCnSC,i•nSC, j !2
g

2 (
i

~n2i
2 1n3i

2 1n4i
2 !

22m(
i

L i
15J D . ~A2!

The integral over momenta reads then

I 5E )
m

FDpm

2p Gd~n•p!expH 2E
0

b

dtF(
m

ipm

]nm

]t
1

1

2x
n2p22

~n•p!2

2x
22m~n1p52n5p1!G J . ~A3!

Due to the constraint on integrating over the momenta~given by thed function!, one must be careful and integrate only ov
momenta perpendicular to superspinsni . We can split the momentump into longitudinalpuu and transverse momentap' ,
which obey the conditionp'n50:

p5p'1puu ,

pa
'52

1

n2 (
b

Labnb5pa2
na~n•p!

n2
. ~A4!

Therefore, for an arbitrary functionalF@p' ,np# we have the identity
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E dpd~n•p!F@p' ,n•p#5E dp'F@p',0#. ~A5!

As a consequence of Eq.~A3!, the integralI reads

I 5E )
m

FDpm'

2p GexpH 2E
0

b

dtF(
m

ipm'

]nm

]t
1

1

2x
p'

2 22m~n1p5'2n5p1'!G J
5expH 2

x

2E0

b

dtF S ]n

]t D 2

24m2~n1
21n5

2!24imS ]n1

]t
n52n1

]n5

]t D G J . ~A6!

This leaves us with a Lagrangian of the form

L5(
i

x

2 F S ]ni

]t D 2

24m2~n1i
2 1n5i

2 !24imS ]n1i

]t
n5i2n1i

]n5i

]t D G2(
i , j

~Ji j
AFnAF,i•nAF, j1Ji j

SCnSC,i•nSC, j !

2
g

2 (
i

~n2i
2 1n3i

2 1n4i
2 !. ~A7!

2. SO„5…-asymmetric kinetic energy part

In this case the first term in the Hamiltonian~1! is

S5(
i

(
m,n

~xmn!21Li
mnLi

mn5
1

2 (
i

(
m,n

pimAmnpin , ~A8!

where the matrixAmn is given by

Amn5dmn(
«

ni«
2 ~x«n!212nim~xmn!21nin . ~A9!

Analogous to Eq.~A3!, the integral over momenta reads

I 5E FDpi

2p Gd~ni•pi !expH 2E
0

b

dtF ipi•
]ni

]t
1

1

2
pi

T
•Ap i G J . ~A10!

Due to the constraintni•pi50, one has to integrate over the momenta, which are transverse toni . For a given direction of the
vectorni we choose a new basis$ha ,a51, . . . ,5% which obeys the following conditions:

ha•hb5dab , (
a

hmahna5dmn , ha•n5d1a . ~A11!

That is, the basis is orthonormal and complete and its first basis vectorh1 is parallel ton. This is always possible, since th
last condition in Eq.~A11! leaves the freedom to perform SO~4! rotation on the transverse basis. In the new basis
momentum vectorp8 can be written as

p85(
a

pa8ha , ~A12!

wherepa85ha•p. As a result the parallelpuu8 and perpendicularp'8 ~to n) momenta are given by

puu85p1h1 ,p'8 5 (
a52

5

paha . ~A13!

Using the completeness relation@Eq. ~A11!# we can invert the relation~A12! and write original momentum components
term of new ones:
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pn5(
a

pa8hna[(
a

pa8@ĥ#na . ~A14!

Explicitly, in terms of the components of the unit vectorn,

As a consequence, the constrained functional integration of a functionalF@p,n# becomes

E @Dp#d~n"p!F@p,n#5E @Dp'8 #F@p'8 ,puu850,n#. ~A16!

The Gaussian integral~A10! can be now written as

I 5E @Dp'#expF2E
0

b

dtS ip'
T
•ĥ'

Tc1
1

2
p'

T
•ĥ'

TAĥ'p'D G5expH 1

2E0

b

dtcT
•@ĥ'~ĥ'

TAĥ'!21ĥ'
T #cJ , ~A17!

where

~A18!

The matrix appearing in the exponent of the RHS of Eq.~A17! reads

@ĥ'~ĥ'
TAĥ'!21ĥ'

T #mn52xpnmnn1~dm11dm5!~dn11dn5!
nmnn

nSC
2 S xp2

1

xc
21nSC

2 1xp
21nAF

2 D
1~dm1dn11dm5dn5!

1

xc
21nSC

2 1xp
21nAF

2
1~dm21dm31dm4!~dn21dn31dn4!

nmnn

nAF
2

3S xp2
1

xp
21nSC

2 1xs
21nAF

2 D 1~dm2dn21dm3dn31dm4dn4!
1

xp
21nSC

2 1xs
21nAF

2
. ~A19!

Performing the summation over the components of vectorci @see Eq.~A18!#, we find
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cT
•@ĥ'~ĥ'

TAĥ'!21ĥ'
T #c[(

m,n
cm

T@ĥ'~ĥ'
TAĥ'!21ĥ'

T #mncn

[2
1

nSC
2 Sxp2

1

xc
21nSC

2 1xp
21nAF

2 D S 1

2

]nSC
2

]t D 2

2
1

xc
21nSC

2 1xp
21nAF

2 S ]nSC

]t D 2

2
1

nAF
2 Sxp2

1

xp
21nSC

2 1xs
21nAF

2 D S 1

2

]nAF
2

]t D 2

2
1

xp
21nSC

2 1xs
21nAF

2 S ]nAF

]t D 2

1
1

2 (
i

1

xc
21nSC

2 1xp
21nAF

2 F4m2~n1i
2 1n5i

2 !24imS ]n1i

]t
n5i2n1i

]n5i

]t D G .
~A20!

Finally, the Lagrangian takes the form

L5
1

2 (
i

F 1

nSC,i
2 S xp2

1

xc
21nSC,i

2 1xp
21nAF,i

2 D S 1

2

]nSC,i
2

]t D 2

1
1

xc
21nSC,i

2 1xp
21nAF,i

2 S ]nSC,i

]t D 2G
1

1

2 (
i

F 1

nAF,i
2 S xp2

1

xp
21nSC,i

2 1xs
21nAF,i

2 D S 1

2

]nAF,i
2

]t D 2

1
1

xp
21nSC,i

2 1xs
21nAF,i

2 S ]nAF,i

]t D 2G
2

1

2 (
i

1

xc
21nSC,i

2 1xp
21nAF

2 F4m2~n1i
2 1n5i

2 !14imS ]n1i

]t
n5i2n1i

]n5i

]t D G2(
i , j

~Ji j
AFnAF,i•nAF, j1Ji j

SCnSC,i•nSC, j !

2
g

2 (
i

~n2i
2 1n3i

2 1n4i
2 !. ~A21!

It is easy to see that for the symmetric model (xc5xp5xs5x) the Lagrangian~A21! reduces to Eq.~A7!.

APPENDIX B: ORDER PARAMETER IN THE SPHERICAL QUANTUM ROTOR MODEL

Introducing a uniform order parameter fieldh in the Hamiltonian,

H5
1

2 (
i

(
m,n

~xmn!21Li
mnLi

mn2(
i , j

~Ji j
AFnAF,i•nAF, j1Ji j

SCnSC,i•nSC, j !2
g

2 (
i

~n2i
2 1n3i

2 1n4i
2 !22m(

i
L i

152(
i

h"ni

~B1!

the free energy can be written as follows:

f ~l0 ,m!52l01
2

bE2`

`

dzr~z!lnH F2 sinhS b

2
A2l2kJz2g

xAF
D G3

2 sinhFb

2 SA2l2Jz

xSC
12m D G

32 sinhFb

2 SA2l2Jz

xSC
22m D G J 2F hAF

2

8l024kJ22g
1

hSC
2

8l024J28xm2G . ~B2!

The superspin ‘‘magnetization’’m is defined as

m5
d f

2,hf 5~m1 ,m2 ,m3 ,m4 ,m5!. ~B3!

We can introduce also order parameters which refer to AF and SC states, respectively, in the form

mAF5
d f

2,hAF
f 5~m2 ,m3 ,m4!, mSC5

d f

2,hSC
f 5~m1 ,m5!, ~B4!

wherehAF5(h2 ,h3 ,h4) andhSC5(h1 ,h5). Using Eq.~B2! for the free energy, we obtained

m5
2hAF

8l024kJ22g
1

2hSC

8l024J28xSCm2
5mAF1mSC. ~B5!

Applying the saddle-point condition, one obtains
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12m25E
2`

`

r~z!dzF 3

cothS b

2
A2l02kJz2g

xAF
D

AxAF~2l02kJz2g!
12

cothFb

2 SA2l02Jz

xSC
12m D G1cothFb

2 SA2l02Jz

xSC
22m D G

2AxSC~2l02Jz!
G

~B6!

and find the equation for the order parameter in the spherical model:

12^n2&5m2,

12^nAF
2 &2^nSC

2 &5mAF
2 1mSC

2 . ~B7!

In the nonordered phase the average superspin length is constant, and in ordered 1 is decreased by the presence o
order parameter.
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