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Using the spherical approach for the three-dimensional quantum rotor we have studied the thermodynamic
properties of Zhang's S@B) quantum rotor theory. We have performed a non-mean-field treatment of the
lattice version of the nonlinear quantum model and discussed possible scenarios for temperature-doping
phase diagrams. The model considered can contain larg® S6isotropy parametei$ike spin, charge, and
so-called “m” susceptibilities which regulate the strength of the quantum fluctuatidhss found that the
topology of the temperature-chemical-potenti@t£) phase diagrams assumes different forms depending on
the strength of the quantum fluctuations. In the(S5&ymmetric kinetic energy model we established the
condition for the existence of the quantum critical point separating anitiferromagnetic and superconducting
states at zero temperature. In the intermediate quantum fluctuation regime there is a first-order transition
between the antiferromagnetic and superconducting phases. For the class of models with an asymmetric kinetic
energy parts we found no evidence for the existence of the intermediate mixed so-called “spin bag” phase in
the T-u phase diagram.

[. INTRODUCTION global features of the phase diagram deduced front550
theory based on a mean-field-type treatrhegree reason-
The unified theory of antiferromagnetistAF) and super- ably with the general topology of the observed phase dia-
conductivity (SC) proposed for the higfi cuprates by gram of highT. superconductors, systematic thermodynamic
Zhand and based on the $8) symmetry between AF and studies of the S() theory are called for. Very recently the
SC states offers a unified description of the global phaséemperature vs chemical-potential phase diagrams of an
diagram of this class of materials. The AF phase is describe80(5) model for highT . cuprates were calculated by Monte
by a three-dimensional order parametitve staggered mag- Carlo simulations:*° A bicritical point was found, where the
netization, while a spin-singletd-wave SC phase is de- AF and SC transition lines merge into a first-order line.
scribed by a complex order parameteith two real compo- However, quantum fluctuations, which may reduce the bi-
nentg. The idea of the S®) theory is to group these five critical point, were not included in this calculation. When
components into an object called “superspin” and to intro-quantum fluctuations are gradually increased ordering in
duce a well-defined rotation operator, which can transforrsome phases might be destroyed. In order to include quan-
AF into SC and vice versa. This $8) symmetry contains as tum effects properly one has to treat the kinetic and potential
subgroups the S@) symmetry of spin rotationgwhich is  energies on an equal footing. Very recently a quantum vector
spontaneously broken in the AF phased the electromag- spin model based on the spinor representation of th€6S0
netic SA2) invariance (whose breaking defines the SC group, in which the S®) symmetry is weakly broken into
phase. In Zhang's theory both ordered phases arise onc&(1)x SO(3), wasproposed as a model for systems with
SQ(5) is spontaneously broken and the competition betweestrong correlations between  superconductivity —and
antiferromagnetism and superconductivity is related to thentiferromagnetisnt
direction of the “superspin” in the five-dimensional space. Because the superspin vector in the(S5Ctheory is af-
The low-energy dynamics of the system is determined irfected by thermahnd quantum fluctuations, the effect on the
terms of Goldstone bosons and their interactions specified byompetition between them is highly nontrivial. Therefore,
the S@5) symmetry. The kinetic energy of the system is thatinvestigation of the S®) theory, which takes into account
of a SA5) rigid rotor and the system is described by a(50 both of them in the rotation of superspins between AF and
nonlinear quantuna model (NLQrM). The SQ5) quantum  SC subspaces, is of paramount importance. This issue is also
rotor model offers a Landau-Ginzburg-likeG-like) theory  of great interest from the general viewpoint of the theory of
for the highT . problem. However, it goes much beyond tra- quantum phase transitions and related critical phenomena. Of
ditional LG theory, since it captures dynamics. special interest is the possibility of the &Psymmetric
While the S@5) symmetry was originally proposed in the quantum critical point to account for the non-Fermi-liquid
context of an effective field-theory description of the high- normal-state propertiesd-wave superconductivity, and
superconductors, its prediction can also be tested within mistrong doping dependence of the superconducting critical
croscopic model&:” For example, numerical evidence for an temperaturé?*3
approximate S() symmetry of the Hubbard model came It is the goal of the present paper to explore the possible
from the exact diagonalization of small-sized clustetditi- scenarios for the phase diagrams within the®3Gheory by
mately one should compare the prediction from(®@heory  focusing on the role of thermal and quantum effects. A sys-
with experimentally observed phase diagrams. While théematic formulation of the quantum problem is complicated
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by two factors:(1) the problem has a dynamical nature from
the outset, ang2) the role of thermal and quantum fluctua- are the generators of $8§ algebra and.'® is a charge op-
tions precludes the implementation of mean-field-type aperator, whose expectation value yields the doping concentra-
proaches. Therefore, it is essential to find a way of systemtion (u is the chemical potential measured from the half-
atic parametrization of quantum and thermal effects. To thisiling). The parameterg,, measure the kinetic energy of
end we introduce in the present paper a mapping of the quaghe rotors (moment of inertia They describe the charge
tum SQ5) Hamiltonian onto the lattice version of the (X15=Xc), SPIN (Y23= X24= X34=Xs), and so-called %"
NLQoM and subsequently onto the spherical quantum rotosuysceptibilities K1(23.47 X(23.4)5=X=). Furthermore, the
model (SQRM) in three-dimensiona(3D) space which of-  corresponding stiffness in the chargaﬁf) and spin O{?F)
fers the remarkable opportunity of being exactly solvable. channel has also been introduced. This quantum nonlinear
The outline of the remainder of the paper is as follows. Inmadel can be derived from a microscopic (BBsymmetric
Sec. Il we begin by setting up the quantum Hamiltonian andy,qe|25 Then, the superspin coordinates { p;) are micro-
the corresponding Euclidean Lagrangian. In Sec. lll the clasgcopically constructed using latti¢eard-corg bosond® and

sical approximation yielding the effective energy is em-JﬁF(sq terms stand for their hopping and spontaneous cre-
ploye?c}o reveal tge StrUCtTre.Of the ground Sta;e as a funcyiion (destruction. In the presence of S6) symmetry
tion o doping. Subsequently, in Sec. I\( we introduce a non'breaking, a quadratic term of the form

mean-field treatment of the lattice version of the NEQ in

a form of a spherical approach for 3D quantum rotors and

discuss possible scenarios for temperature-doping phase dia- 9 5 9 o

grams. Finally, in Sec. V we summarize the conclusions to Vim)=3 Z (ngi+ng+ng) (4)

be drawn from out work. Some supplementary material re-

garding the construction of the effective quantum Lagrangian

and SQRM approach appears in the Appendixes. . . .
Q bp PP PP is also allowed. The anisotropy constanselects either the

“easy plane” in the SC spacen(,ns), or an “easy sphere”
in the AF spacerf,,n3,n,), depending on the sign af At
Il. QUANTUM HAMILTONIAN AND THE EFFECTIVE half-filling («=0) g>0 is chosen so that the superspin pre-
LAGRANGIAN fers the AF state.
i i —H/kgT | ai
We express the partition functiad=Tre B' using the
We have considered the low-energy Hamiltonian pro-functional integral in the Matsubara “imaginary time*for-
posed by Zhang on a discrete lattite lattice quantum mulation (0<7<1/kgT=p, with T being the temperatuye
nonlinearoc modetf): We obtain

:E =1y pvyp pv_ _ 15 Do
H 2 EI MZV (X,uv) L| L| V(n) ZMEI I—| sz l_ll [Dnl]f l_II [Ti}g(l_n?)g(nlpl)

i<j

_Z (JﬁFnAF’i.nAij+JﬁCnsc,i'nsc,j)a oY) ><exp( - fﬁdfﬁ[p,n]>, (5)
0

wherei=1,... N (N is the number of lattice sitgsThe
fundamental quantity in the 36) theory is the locally de- \jth the Euclidean Lagrangian
fined five-component superspin vector n;
=(n¢,Nn5,N3,N4,N5); describing the local antiferromagnetic
Nar.i=(N2,N3,ny4); and superconductingsc;=(n,Ns); pa-
rameters, respectively. In Zhang's formulation these are
treated as mutually commuting coordinates and their dynam-
ics is given by their conjugate momenta:

d
E[p,n]=ip(r)-d—Tn(r)+H(n,p)- (6)

We note that the path integral in E(p) is Gaussian in mo-
mentap; . Due to the rigid nature of the quantum rotors, one

D= i must be careful and integrate only over the transverse com-
K an,! ponents tan; with fixed length. This can be implemented by
the introduction of a second function to maintain the local
[Ny,P,]=i08,,. (2 constraintp;-n;=0 andni2=1. Performing the path integra-

tion over the momentésee Appendix Awe obtain
The kinetic energy of the system is simply that of a(50

rigid rotor (ni2:1, pi-N;=0; see Ref. 14and is given by the Z:f H [Dn-]é(l—n-z)exp( 3 j%rﬁ[n]) @
first part of Eq.(1). Here i ' ' 0 '

LiMV:n,uipvi_nVip,u,i (3) where
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_;j JﬁFnAF,i'nAF,j_gj Jﬁcnsc,i'nsoj_i E. (ng+n5+nZ) 8

is the effective Lagrangian written in terms of superspin vec- -
or u= 4_

tors. 0=0: 0= —

5 (14

. EFFECTIVE CLASSICAL POTENTIAL AND STATIC Inspection of the second derivative
SOLUTIONS

2
E
The classical path extremizing the path intedsae Eqgs. Lﬁ”u)

(7) and(8)] is the static solutions. For the static and uniform 96°
solutl_ons_[ni(r)zni_], the only _nonvanlsh!ng contrlbu_tlon to leads us to the conclusion that the minima of the energy exist
the kinetic energy is the chemical potential term, which gives
us the effective potential energy per superspin,

(g—4xu?)cos 29 (15)

1 (8 _ ]9
E(G-M)E[mfo drL[n(7)=n], 9 6=0, when u< 4y’
in the formt’ g
0=m/2, when u>\/-—. (16)
4x
2/ 2 4 2
_ zlu‘ (nli+n5i) g 2 2 2 . .
E(Opu)=——7 _§(n2i+n3i+n4i)- Consequently, ap=+/g/(4x) there is a superspin “flop”

-1.2
Xr Mar+ Xe Misc (10) between the angleé=0 and §==/2; i.e., there is a first-
order transition between AF and SC states. This happens at
Without loss of generality one can choose the superspin vedhe chemical potential given by
tor n=(sin#, cos,0,0,0) which tilts between SC and AF
states according to the angular parameteffor 6=0 the T g
superspin lies on the AF sphere, o+ /2 in the SC plang E(Ouc)= E(E:/"c) =uc="\ Iy (17)

Then the energyl0) reads

The corresponding doping concentratinrfor AF and SC
2u?sifg phases is given by
- gcos’-o. (11)

X5 1cog0+ x; tsirtg 2 in the AF state,

E(O,u)=—

Depending on the relative magnitude of the parameters (

xc) the following cases are in order. __10EQOw) _ /9
Xar( 1) 2 om 0 foru< 2y

A. Symmetric case(x;=X-=X)

The effective potential energyll) reduces to in the SC state,

g 1 9E(w/2,1)
E(6,u)=—2u%x sirfg— EcosZy. (12) Xscdp)=— 2 om
The energy reaches its local extrema _ 9
=2xu for u> \/4X. (18
IE(O, 1) . ) _ - _ _ _ o
g _cosfsing[—4xu+g]=0 (13)  That is, at the transition point there is a discontinuityxin

which jumps fromxar(ue) =0 to Xxs(uc) = Vgx [see Fig.
for 1(a)].
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B. Asymmetric case(xc# X )
The extremum condition for the classical effective potential is

IE(#, A4u?sirfd(x: *—x.h 4y
(—mzcosesina i Xc_l)_( g — ’ ————|=0, (19
a0 (x,'cogo+ x; *sirth) X1 cogh+ x; tsirto
which gives
™ Xe= 2XcMN X719
0=0; 60=—; sinf= . (20
2 X~ Xn
From the second-derivative analysis
PE(6,1) BXexX x4 [2(Xct X7)COS 20+ (Xc— X-) (3—COS 40) ]
————> —=gcos2%— 3 , (21
a6 [XcT Xt (Xe™ X7)COS 2]
|
we find that the minima of the energy exist for P /
0< GM:arcsir( \/M) <wl2, (25
AR g Xc™ Xnr
9=0 when p<pc = N2y’ the energy of which is
OX 7~ 4XNOX T AXcX 71t
_ sc_  JX=_ | 9 E(Oy, )= ) 26
o=z when u>puSo=\2TN[7 (1) 20t x7) (20

The transition points between AFSC) and M states are,

\/Xc— 2y eiNx 19 respectively,
sing=

when y.>x.. (22

XC X’IT . g AF
) ) AF=M: E(Oy,pmc) =E(Ouct) = pe1= 4_: Mc

As a result, fory,<x. there is the superspin “flop” be- X

tween the angle#=0 and 6= #/2, similarly as in the sym-

metric case. In analogy, the first-order transition point can be SceM:  E(6y, , ue0) = E(Z,Mcz)

obtained from the condition of the energy equality: 2

X= | 9
T g B Y SC_
E(O,MC)ZE(E,Mc)ﬁMF \/W' (23) THeT N gy e @9
C

. . . . The charge concentration for the mixed phase is given by
However, we notice that for the chemical potential regime

wSC< < uhF the energy has two local minima correspond- 1 IE(Oy i) NOX Xt 2XeX nht
ing to #=0 and = /2 states. Although the transition point Xm(p)=—5 P Y—x (28
T Cc

is atuc, for uc<u<ui there is a metastable AF state and

for M§C<M<Mc a metastable SC stafeee Fig. {b)]. The At the transition points/(L’éF and,ufc) there are discontinui-

charge concentration in the corresponding phases is given Higs inx, which jumps atus™ from xap(167) =0 to

1 9E(0, 2NOX X
in the AF state, Xar(u)=—3 ;—MM) Xm(pe )= ﬁ (29
T C
9 and atu> from
=0 for u< v
X so. VIXA(XctXx)
Xm(ue )= —————— (30)
in the SC stat __1EUw e
inthe SCstate, Xsdw)==3 "7u to xs (159 = \ox,, [see Fig. 1)].
Before attempting to construct the global phase diagram
—2yu  for M>& 9 from SQ5) theory, we must remember that the discussion
¢ xe Viax, above is based merely on the classical approximation by as-

(24) suming that quantum effects are negligible. On the other
hand, quantum fluctuations may have a strong effect on the
For x> x. @ mixed phaséM) exists for long-range order. In the limit when the kinetic energy domi-
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nates, the first term of the E€{L) can be no longer treated as From the definition of the superspin variablesthe rigid

a perturbation. In the following section we address the issueonstraintn?=1 implies that a weaker conditions also ap-
of quantum effects by establishing a theoretical frameworkplies, namely,

for treating interacting quantum rotors.

N
;1 n?=N. (32

IV. SPHERICAL QUANTUM ROTOR MODEL L .
The main idea of our approach is to attempt to generate an

effective partition function, which incorporates the con-

A. Models with a SO(5)-symmetric kinetic part strained nature of the original variables. This leads us to the
If xo=Xs=X.=x, then the kinetic part of the energy is forr_nulatlon of_ the problem in terms of the spherical md@el
symmetric and the Lagrangian simplifies to the form by implementing the constraiii82). The name of the model

comes from the observation that in E2) the allowed
5 states are all points on the surface of a hyperspkiardi-
(ﬂ) —4p2(n2 +n2) mensiond=5N) of radius VN. The model defined by Eq.
ar p T s (32) is in fact a hybrid of the genuine spherical model and
five-component vector model. Therefore, with the replace-

=3 5

. (9”1' (9I’I5- g ment
+4IM(&_TIn5i—nli(?_Tl) —EZ (n3+n3+n3)
II 5<1—n?>~6(N—E n?), (33)
_iE<j (JﬁFnAF,i'nAF,j"‘JﬁCnsci'nscj)- (3D ' i

the global constraint in Ed5) may be implemented by using
the functional analog of the Diraé function:

X A (a) Xc= XTE
c+ie| dN
_ 2| _ _
5(N an> fc—im 2’7T|:|
xex;“ dT)\(T)(N—Z n?(r)> :
AF SC 0 '
K f (34)
wheren;(7) arec-number fields which satisfy the quantum
Xa © %>Y periodic boundary condition;(8)=n;(0) and are taken as
continuousvariables, i.e.,—o<n;(7)<o, but constrained
[on average, due to E¢32)] to have unit length. This intro-
Xsc(Msc) duces the Lagrange multipliex(7), adding an additional
quadratic termiin n; fields) to the Lagrangiaii8). We obtain
xSC(“c)
xSC(MAF) j AF [, — SC Z: 2d_7);ie—N¢()\), (35)
e K Pz H where the functionp()\) is defined as
< B 1
Yy @ XX ¢(>\)=—f dﬁ\(r)——mfl'[ [Dn;]
0 N i
Xu(Hsc)
B
FsclHsc) Xex;{ -3 f dr(n\(n)— L] |. (36
X Har) L0
In the thermodynamic limiN—o the method of steepest
AF:. M SC descents is exact and the saddle paifit) =\ (0) will sat-
— - > isfy the condition
Mae Msc L

FIG. 1. Doping concentration vs chemical potential dependence S¢(N)
from the classical effective energy. Shown @& the symmetric ON(7)
casey.= x, with first-order phase transitiorip) the asymmetric
casey.> x., With first-order phase transition, arid) the asymmet-  Therefore, we finally arrive at the following expression for
ric casey.< x ., With mixed region. the free energy per supersgirs — (8N) " 1InZ:

=0. (37)

A=Xq
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In the presence of a uniform order parameter field
h=(hq,h,,h3,h,,hs), which adds a termhX;n; to the
Hamiltonian(1), the saddle-point equatidi37) and the free
energy(41) are modifiedsee Appendix B Then the “mag-
netization” m=(my m,,ms,m,,ms) = — Vf singles out the
corresponding AF [mag=(m;,mg)] and/or SC [mgc
=(m,,m5,m,)] state.

This expression is ready for evaluation of the free energy of

the system after performing the remaining functional integra-

tion over the superspin variables. In the next sections we
shall deal with various S(B) models resulting from different
choices of parameters in the Hamiltoniéi).

Substituting the Lagrangian from E@1), the free energy
is equal to

f=—)\——InJH [Dn]ex;{ foﬁdT[—kz ni(7)

x| [ an; 2 . ang;
+Ei E[(E) —4M2(n§i+”§i)—4lﬂ(ﬁnsi

aNg;
e

Z (I Ak Narj+ 35 Nsci Nsc)

-5 S (ne+nnd) ) (39

Note that the integrations over the superspin variables are
now Gaussian and the corresponding quadratic form can be
diagonalized. We introduce the Fourier transform fields

n(k,w):
n(r)= IB_N zk: I;w ni(k7wl)efi(w|r—k-ri)
1 .
=5 2 IR, (40
with w=2#l/8 (1=0,+£1,£2,...) being the(Bose Mat-

subara frequencies andJAFSO(R,)=J*FS9(|r;—r||)
=J7F59 . We finally obtain for the free energy

2 Z In[2Xo— JAF(K) — g+ x?]

~ BN
b= > > In[2ng—ISKK) + x( @+ 2i p)?]
BN T %
b= > 2 [20—359K) + x(@— 2i 1) %] No.
,BN T X

(41)

Criticality conditions and phase diagrams

The critical lines for the AF and SC states in the spherical
model are obtained by setting corresponding “magnetiza-
tions” to zero (ma=0 for AF andmgc=0 for SQ. Alter-
natively we may define the critical lines using order param-
eter susceptibilities given by the following correlation
functions:

GSF(T):<nAF,i(T) : nAF,j(0)>v
(42)

G4 =(nsci(7) - Nsc;(0)),

where the averagé - -) is defined as

3 o 11[2

S|N- niz)ﬁ(nrpiyo~exp<—foﬁdr£[p,n]>.

(43

Using the Lagrangian from Eq(31) we obtain for the
Fourier-transformed quantities

3
20— J*F(K) + yoP—g’

Gar(k, )=

1
2N —JI5YK) + x (o, +2i w)?

Gsdk,w)=

1

44
+2)\—JSC(k)+X(w (49

—2ip)? .
At criticality corresponding susceptibilities becomes infinite:
Gap(k=0,0,=0)=0,

Gsd(k=0,w,=0)=0, (45)

which allows one to find Lagrange multipliers as
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)\AF:EJAF(k=O)+g
) 2’

1
N5 =535 (k=0)+2xu? (46)

Furthermore, it is convenient to introduce the density of

states defined as

1
p(2)=5 2 dz=e(k], (47)

wheree (k) = cosk,+cosk,+cosk, is the structure factor for

the simple cubic lattice in three dimensiofi<Explicitly,

1 (min(1,2-2) 1

Z)=— du
p(2) w3 ) max(-1,-2-2) 1-u?

L z+u\?

2
whereK (x) is an elliptic integral of the first kind Intro-
ducing

x K 0(3—|z)), (48)
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JAF JAF

—:JAFE J?:JZKJ, (49)

— 1SC _
J=J and k= J5¢

the free energy41) can be written then

2 ©
f(Ao, ) =—Not+ 7 - dzp(z)

B
xln[

_’_(,8 /ZAO—KJz—g)r
2sinf z\/———
2 X
B [2Nog—J2Z
><25|m{§( X +2,u”
B [2No—Jz
><25|n}{§( X —ZM)

Using the saddle-point condition and the appropriate
Lagrange multipliersXy™, A5 we obtain equations for the
second-order transition critical lines separating (&) and
guantum-disorderetQD) phases:

] . (50

%B Bu—uﬂ
coth — E—
o) 2 X

QD&AF: 1=f

p(2)dz| 3

Vx(3xJ—kJz)

B 3kJ—Jz+g
coth — —+2u
2 X

B 3kd—Jz+g
+coth — —2u
2 X

+2

2\x(3kd—Jz+g) '

[

B [3)—kIz—g+4xu?
cot E

X

QD=SC 1=f p(z)dz| 3

Vx(31— kdz—g+4xu?)

B 3J—Jz+4yu?
coth — —+2u
2 X
+2

3J—Jz+4yxu?
— 2u
X

{ﬁ
+ coth —
2

(52)

2Vx (33— Jz+4yu?)

The self-consistent equatioiS1) determine the external
phase boundarie§ (u) between AF(SC) and QD phases.

fONg ) =F(NGC o), (52

The above expressions give the dependence of the physicg,;q, i just a condition for the first-order phase transition

quantities in terms of the chemical potentjal From Eq.

between AF and SC phasesat u. [see Figs. 2 and(3d)].

(5O)AFit follows that the free energy of the AF phase, a5 5 consequence, there is no intermediate mixed region on
f(No",u), assumes real values fQr<pucq, whereas the theT-4 phase diagram, where AF and SC states can coexist
free energy of the SC phasg\ 5, «), assumes real values in contrast to the findings in Sec. Il based on the quasiclas-

for u= it Moreover,

sical approximation. Therefore, it appears that the scenario
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FIG. 2. kgT/J-ulJ-xJ phase diagram for the $8-symmetric
kinetic energy part model.
0.10 A
=
depicted in Fig. lb) in Zhang's papet,where there are two :m
second-order phase transitions with an intermediate “spin- 0.05 |
bag” phase and tetracritical point, is ruled out. The depen- )
dence of parameter interplay on system ordering can be also QD
found from investigation of the zero-temperature ground 000 - e auos
state of the systenfsee Figs. 4 and)5 Depending on the 0.00 - - ,
kinetic energy parametey (which regulates the strength of 0.00 0.04 0.08 0.2 0.16
the quantum fluctuationsve can identify the following sce- x

narios for the possible phase diagrams.

FIG. 4. Zero-temperature phase diagram for the (550

0.18 (@ symmetric kinetic energy part model: paramejel vs chemical
QD potential /J for different values ofy/J parameter.
0.12 |
= (i) There is a first-order phase transition that can be de-
:m scribed as a superspin flop transitiop<( x.;) at the critical
| )
0.06 | line,
AF I SC
|
| lg+3J(k—1)
0.00 : . - Me= 4y (53
0.00 0.04 008 p/Joaz 0.16
Wi ,
018 whereJy =y~ with
(b)
0.12 1 QD Y= fw dzp(z) + 2 (54)
_ ' - V3k—kz 3k—kz+g
Z AF sc
0.06 1 // \ Here the second-order critical lines merge at thg ,(T,)
/ \ bicritical point[see Fig. 8a)].
/ M (ii) Increasing the strength of quantum fluctuatidtise
X, ,‘Lxcz value of they parameter, we arrive at the phase diagram
0'000 i ' ‘ with x=x¢it, Where there is a single second-order phase
.00 0.16 0.32 0.48 0.64 X - ) ;
transition at the quantum critical poinT €0,u.) [see Fig.
X

6(a)].

(iii) For x> x it we arrive finally at the scenario depicted
part model ¢/J=0.5, Jy=10, andx=1). Plotted is the critical at the Fig. Ta), where there are two second-order quantum
temperature v$a) chemical potentiak/J and(b) charge doping. phase transitions with an intermediate quantum-disordered
(@) The AF and SC phases are separated by the first-order transitigghase.

line, and(b) the first-order transition line spreads, forming a mixed  However, it would be more useful if phase diagrams were
(M) region with constant chemical-potential value. expressed in terms of the physically measured quantity—the

FIG. 3. Phase diagram for the 8)-symmetric kinetic energy
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doping(or charge concentratipix. The charge concentration=(L,s)=— 3 df/du can be deduced from the free ener§).

We obtain explicitly
B 3kJ—Jz+g B 3kJ—Jz+g
SIV———— 2 LNV ———"2u]|(=xar,
2 X 2 X

j p(z)dz[coth
1 (= 4 B 3J—Jz+4xu?
—f p(z)dz | Axu— i RV )
2w [3T—Jz+4xu? 2 X
X
4p

B 3J—Jz+4xu?
- +2 | coth| — —+2u
3J—Jz+4yu? 2 X
x= _— (55)
X

B \/3J—KJz—g+4XM2
X
=Xsco
\/3J—KJz—g+4XM2

X

B 2hg—Jz+g B 2Ng—Jz+g

— —2u — —+2u
2 X 2 X

™~

—coth

—2 | coth

12 wcoth

—coth

JEXQD ,

wherexag, Xsc, andxqp describe the charge density within portion of the mixture of the two phases, but not the free
the AF, SC, and QD phases, respectively, andis deter- energy (and therefore du/dx=0).2> With increasing the
mined by the self-consistent equatidB7). In the zero- strength of quantum fluctuatior{ge., by raising they pa-
temperature limit, the charge densities are rametey, the mixed region on th&-x phase diagram dimin-
ishes and disappears foE xi: [see Figs. @) and Gb)]. In
this case the AF phase on tfiex phase diagram is pro-

fw p(z)dz[coth
L J e

g+3J(k—1) foundly suppressed with a characteristic reentrant feature
Xap=0for u<pc=\/ T Ay [see Figs. () and 70)].
+3J(k—1) :
_ 2 = —+/Y B. Models with broken SO(5) symmetry of
XsC= 2X teMscfor u= e 4y . 59 the kinetic energy part

When x.# x.# Xs, the Lagrangian(8) no longer has

wherem?.. is the superconducting order paramefgee the guadratic form in then; variables. Therefore_ it is not possible
next subsection and Appendix) Bronvanishing within the to evaluate the free energy o_f th(_a spherical model exactly.
ordered phases. Therefore at zero temperature angk for Hzfance, a ;urther approximation s necessary. Wf replace
< u. the charge density vanishes, fob> . it is finite, and ~ Nar,; @ndnsc; by their averagevalues(ny ;) and(nsc,),

a discontinuous jump of the density is proportional to theaccording to
superconducting order parameter. By raising the temperature

the discontinuous jump diminishes and vanishes at the bi-

critical point on theT-u phase diagram, where AF and SC

critical lines merge(see Fig. 8 As a consequence, if the

phase_ diagram is plotteq with the.charge .densny rather as a n,zl-\F,i(T)_><nf\F,i>' (57)
u Vvariable, the phase diagram will contain a mixed region

with the coexistence of two phases with a constant chemical

potential pined atw=pu. [see Fig. 8)]. This implies an Using Eq.(42) we observe that

infinite compressibility(which defined asix/du). This be-
havior can be explained by a two-phase mixture with differ-
ent densities at the first-order phase transition. In this case
the system globally phase separates into two different spatial
regions with different charge densities, but the same freés independent of “imaginary time.” As a consequence the
energy. As a result, the added charges only change the prowo quartic(in n; field) terms in the Lagrangian vanish:

néc,i(T)_’<n§C,i>'

(Mrso,(M) =G *9(7=0") 58
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FIG. 5. Zero-temperature phase diagram for the (550
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FIG. 6. Phase diagram for the 8)-symmetric kinetic energy

part model §/J=—26.5, Jy=3.054 725, anck=10). Plotted is
the critical temperature &) chemical potential/J and(b) charge

dopingx. Here, two second-order phase transition lines meet at th?

quantum critical poink, (T=0).
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FIG. 7. Phase diagram for the E)-symmetric kinetic energy
part model §/J=—26.5,Jx=3.054 65, andc=10). Plotted is the
critical temperature v$a) chemical potentiaju/J and (b) charge
dopingx. Here, the ordered AF and SC phases are separated by a
nonordered intermediate region.

(1 3”%F,i)2 - (1 I Mak.i)
2 2

2
2 o7 2 Jr >_O' (59

Mari — (A
Therefore the Lagrangian simplifies to the form

0.24

0.18 -

k,T/1

0.06 1

0.00 : . —
0.00 0.05 0.10 0151 /7 0.20
wi
0.8 :
KT/ =0 (b) /
——— kK, T/J =0.05 Ny
0.6 1 T =074 y
.......... N =(. /
kyT/T =0.1 /'
= 04 4|—— ks T/) =02 /
Ve
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T e
0.0 = . al
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FIG. 8. (a) Generic phase diagram with AF and SC regions
separated by the first-order transition line with five chosen constant-
emperature linegb) Doping charge densityvs chemical potential
wlJ for the temperatures from the pl@d).
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Nsgi |2 INag,i |2
——| tXar,i

which is now quadratic im; fields, allowing one to perform

1
£:§E

= | XscCi| "1 97 Gaussian integrationg) over n; variables exactly.
' Here,
1 2/ A2 2
) Z Xsci| 4pn“(ng+ng;) aei(hg) = 1
AF,i\A0)— _ _ ’
. . Y 2 S (!
. 1i 5i
+4|M(a_7_ln5i_nli(9_7_l)+92i (n5+n3+n3) 1 o
Xsci(No)=— - - , 61
1@ e e | Xat+ (Xe "= X g
+§i2’j (Jij Nsci-Nscj+Jij Nar,i NaF,j), (60) with
B =1
. coth 5\ xar(2ho— k2= 9)
(4 >=3f p(z)dz
A —o VXar(2No— Iz~ Q)
B — B —
" cot E[VXsc(z)\o_JZ)“'ZM] +cot E[\/Xsc(Z)\o_JZ)_Z,U«]
2
n =2[ (z)dz . (62
NsI=2) e 2\xsd2ho J2)
In this case the order parameter susceptibilities take the form
Gar(K, o)) °
1w = L
AR N = 3F(K) + xapel g
Gsdk, ) ! + ! (63
lw = L
SO T N —359K) + ysd @+ 2i )% 2N —35Y(K) + ysd @ — 2i )2
and from the criticality condition
Gap(k=0,0,=0)=0, Ggi(k=0,0,=0)=0, (64)
one can obtain the corresponding Lagrange multiplier for AF and SC phases, respectively:
AF 1 AF 9 SC 1 SC, 2
No' =5 (k=0)+ 5, A§O=53%(k=0)+2xscu’ (65)
The saddle point conditiofB87) can be put in a very simple forifsee Appendix B
(e T (NG =1-mie—mgc. (66)

The second-order transition critical lines, separating ordét&dor SO and QD high-temperature regions, can be obtained
using the appropriate Lagrange multipli&xF or SO and putting the superspin “magnetizatiomﬁzsz\F+ méc equal to
zero. For the disordered to ASC) transition we obtain

QD= AF: <niF,i>|}\O=)\é‘F+<néc,i>|7x0=)\§’:=1; QD= SC: <niF,i>|>\0=>\§C+(néc,i>|xo=x§°=1, (67)

explicitly
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: (68)

9070
B [3kI—kIz
cot E —
- XAF
DeAF: 1=j z)dz| 3
© L VXar(3kI— kJ2)
3kJ—Jz+ 3kJ—Jz+
cotr{g( \/fg-‘rZ,u, +cotr{§( \/%—Z,u
) Xsc Xsc .
2\x3d(3kI—-Jz+Q) ’
B [3)—KkIz—g+4xEou?
. cot E XS
AF
QD&SC 1=f p(z)dz| 3
- VXAF(3— kIZ—g+4xEu?)
3J—Jz+ 4y i u? 3J—Jz+ 4y u?
cot}'{g( \/ s Xsct +2u +cotr{§( \/ s Xsct —ZM)
42 Xsc Xsc
2Vx3d(33—Jz+ 4xgcu?)
I
where

Xz(FSZSC)EXAF(SC)(}\I(L)\F(SC))- (69

The set of self-consistent equatiof@d) with Eqgs.(61) and
(62) determines the external phase boundaiigéu) be-

tween AF(SC) and QD phases. The internal critical phase

[(n&e) +<n§c>]>\0:>\§F: [(nZe) + <n§c>]>\0:>\§°:>miF
=mi=NF=25C. (76)

From the equality of the Lagrange multipliers we obtain the
equation for the critical line:

boundaries can be obtained in a similar fashion. On the

AF (SC)y=M phasemggr) is nonzero. For the S&M
transitionm=0 and\y=\5" . From Eq.(66) the equation
for the critical line reads

[(nae)+ <n§c>]>\o=>\§F: 1-mgc.

On the other hand, the equation for the order parammetgy
(within the AF statg¢ follows from the equation of stat@6)
with Ag=\3<:

(70

[(NZe) + (NS Ty =pse=1—m&c. (7D

Both equations can be combined to give
[<nf\F>+<néc>])\0:)\é'::[<n,2AF>+<n§C>])\o:>\§C- (72

Similarly, for the AR=M transitionmgc=0 andAy=\3°.
Correspondingly, we obtain
[<n§\F>+<n§C>])\0:>\(S)CZ 1-mie. (73

The order parametan,g is, in turn, defined by the equation
for the AF state:

[(MAe)+ <n§c>]>\0=>\§F: 1-mge.

Equating the right-hand sid®HS) of the Eqs(73) and(74)
we obtain

[(Nae)+ <n§c>]x0=>\§F= [(MAe)+ <néc>]xo=>\§c- (75)

Subsequently, comparing the Eqg2) and (75) we can de-
duce

(749

+3J(k—1
M2=¥[x;l+<x;1—x;1><néc>]. (77)
This equation turns out to be the equation fosiagle line.
From the inspection of the free energy we haxg"
=A5=f(A ) =f(A59), implying that the critical ling77)
refers to the first-order transition line. It is easy to see that for
the x .= xc.=x, EQ. (77) simplifies to

3 g+3J(k—1)
m= \/T,

as in the case of the model with a @psymmetric kinetic
energy parfsee Eq(53)]. Similarly as in the case from the
previous subsection we found no evidence forThg phase
diagram with four critical lines merging at the tetracritical
point [phase diagram in Fig.(ft) from Ref. 1].

By varying the kinetic energy parameteys, x., andys
we arrive basically at the same type of phase diagrams as in
the symmetric case described at the previous subsection.
However, the line of the first-order superspin-flop phase tran-
sition on theT-u phase diagram will not be in general ex-
actly vertical for the case of different susceptibilitigs,
Xc. andys. The first-order superspin flop will occur at the
w(T) line described by

_ [J9+33(xk-1)
HZN T ayedm

Furthermore, the corresponding condition for the quantum
critical point (T=0,u) Now reads

(78)

(79
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FIG. 9. Phase diagram for the E)-nonsymmetric kinetic en-

ergy part model ¢/J=0.5, Jx,=100, Jxs=8, Jx.=12, andk

=1). Plotted is the critical temperature V@ chemical potential

FIG. 10. Phase diagram for the 8pnonsymmetric kinetic en-
ergy part model ¢/J=0.5, Jxy,=12, Jxs=8, Jx.=1000, andx
=1). Plotted is the critical temperature ¥& chemical potential

ulJ and (b) charge doping. (a) The AF and SC phases are sepa- #/J and(b) charge doping. (&) The AF and SC phases are sepa-

rated by the first-order transition line, afig) the first-order transi-
tion line spreads, forming a mixedM) region with constant

chemical-potential value.

Merit™ 4XSC

[see Figs. @) and 1@a)].

g+3J(k—1)

—\AF_,SC
No=AGF=23

(80

rated by the first-order transition line, afio) the first-order transi-
tion line spreads, forming a mixedM) region with constant
chemical-potential value.

a non-mean-field treatment of the lattice version of the
NLQoM using the spherical approach for 3D quantum rotors
and discussed possible scenarios for temperature-doping
phase diagrams. The model considered can contain large
SQO(5) anisotropy parameteréspin, charge, and so-called

Similarly we can obtain the phase diagram as a function 7 susceptibilities which regulate the strength of the quan-
of doping concentratiox and temperature. Here the chargetum fluctuations We found out that the topology of the

density is given by

[ 1df(AGF)
T2 du AR
1 df(A59
x=(Lig= _ETEXSQ
1 df(AQP)
—_— — =X ,
| 2 du Qb

(81)

temperature-chemical-potential phase diagrams assumes dif-
ferent forms depending on the strength of the quantum fluc-
tuations. In the S®) symmetric kinetic energy model we
established the condition for the existence of the quantum
critical point, where the AF state goes to the SC state
through the second-order phase transition. For strong quan-
tum fluctuations the region between AF and SC phases be-
comes quantum disordered and both transitifinem the
guantum-disordered phase to AF and) e of second or-
der, respectively. In the intermediate quantum regime there

and theT-x phase diagrams with mixed regions are pre-is a first-order superspin-flop transiti¢gwhere the direction

sented in Figs. ®) and 10b.

V. SUMMARY AND CONCLUSIONS

of the superspin changes abruptl¥inally, for the general
class of models with symmetric and asymmetric kinetic en-
ergy parts we found no evidence for the existence of a phase
diagram, where four second-order lines merge at the tetrac-

In the present paper we have studied the thermodynamidtical point (T,.,ux:.) and two of them enclose an interme-
properties of the S®B) quantum rotor theory which accounts diate “spin-bag” phasdphase diagram from the Fig(d
for both thermal and quantum effects in the rotation of su-from Zhang’s papéi. This is in contrast to the quasiclassical
perspins between SC and AF subspaces. We have performa@proach where this scenario appears to be possible. There-
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fore, we conclude that quantum fluctuations are responsibles the above-mentioned long-range Coulomb interation

for the destruction of the “spin-bag” phase on tieu study how spatially inhomogeneous states can emerge. Fi-
phase diagram. However, a phase separation region will ogrally, it would be very important to see whether there will be
cur on thetemperature-charge concentrationxXTphase dia-  a dynamicalrestoration of the S®) symmetry at the quan-
gram for intermediate quantum fluctuations. In this regiontum (bi)critical point even when the model defined at the
the long-range Coulomb interaction can lead presumably t@hort length scales is not exactly @Dinvariant i.e., with

the formation of a stripe order with alternating AF and SCdifferent susceptibilities along different directions quan-
phases. To compare theoretical predictions with experimenigm version of the Polyakov-Migdal low-temperature expan-
it is important to establish precisely the high-phase dia-  sjon for the NLoM combined with a renormalization group
grams in the AF-SC transition regime. Unfortunately, this istreatment around lower critical dimensionafitywould be
complicated by the fact that charge doping is the experimenmnstrumental to address these issues.

tally tunable parameter. Nevertheless, there is experimental

evidence that in the vicinity of the AF-SC transition region

the highT superconductors exhibit an increased sensitivity ACKNOWLEDGMENT

to disorder and inhomogeneity. Presumably, in order to un-

derstand the precise nature of the intermediate AF-SC re- This work has been supported by the Polish Science Com-
gime it is important to include other perturbing effects suchmittee (KBN) under Grant No. 2P03B—-02415.

APPENDIX A: CONSTRUCTION OF THE EFFECTIVE LAGRANGIAN

1. SQ(5)-symmetric kinetic energy part
The kinetic energy of the system is simply that of a(SQigid rotor given by

1 1 J J d J
_ mYy v _— - N — S — . —
1 2
:2_ | /;} |,up|v nl,u valp,plv 2 [z 'ME pl,u (% ni,upi,u)
l 2
o 2 [nZpZ—(n;-pi)?]. (A1)

Therefore, the partition function is

- [Tom [ 11[22

B . on; 1
:eXF(_fo dT{Z ['pu _+Z n? __(nu Pi) } 2 (J” NaF,i-Nar,j I Cnsc| Nscj) — Z (n5+n%+n3)

B
5(1—ni2)5(ni-pi)exp( — fo drc[p,n])

—2u> LF’]). (A2)

The integral over momenta reads then

B 1 .n)?2
I—f H 5(n p)expr fo dr| > (n-p)

S ip, ey L ene 5 _
P ar an p 2 #(Ngps—nNsp;)
Due to the constraint on integrating over the momeégteen by thes function), one must be careful and integrate only over
momenta perpendicular to superspms We can split the momentum into longitudinalp| and transverse momenfa ,
which obey the conditiop, n=0:

} . (A3)

p=p.+pP,

1 Na(n-p)
p; == E % LabNp=Pa— B 2 (A4)

Therefore, for an arbitrary function&[p, ,np] we have the identity
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J dp&(n-p)F[m,n-pFJdpLF[pl,O]- (A5)

As a consequence of E¢A3), the integrall reads

_ Dp.. J’B ) an, 1 )

|—f 1;[ exp[— o dr % WPur 5 +EPL_2M(n1p5L_n5p1L)

B X (B, [(on\? —, , L, [dng ang

—exp{ Ejo dr (E’) 4,LL (n1+n5) 4|,LL anj nlg . (A6)

This leaves us with a Lagrangian of the form

an;\ 2 - anyi ans;
T —4pP(nfi+ng) —4ip| —= g7 NsiT i~

E (J” NaF,i-Nar,j I CnSC,i'nSC,j)

1<]

g
-5 Z (n3+n3+n3). (A7)

2. SQ(5)-asymmetric kinetic energy part
In this case the first term in the Hamiltoniéb) is

1
SZE 2 (X'uv)*lLiMVL{LV:_E E pi,uA,quiv! (A8)
I u<v 2 I,y
where the matriA ,, is given by
A/.LV: 5;1,1/2 nizs(st)il_ni,u,(X/.LV)ilniV' (Ag)

Analogous to Eq(A3), the integral over momenta reads

I=J 5(ni-pi)exp{—J dr

Due to the constraint; - p;=0, one has to integrate over the momenta, which are transvense kor a given direction of the
vectorn; we choose a new basfg,,a=1, ...,3 which obeys the following conditions:

op
2

c?ﬂ
ipi—= 2 p, Apu” (A10)

M2 Mo= Oap, Ea: Nuallva™ 5,4.LV1 M2 N= 01, (A11)

That is, the basis is orthonormal and complete and its first basis vggtisrparallel ton. This is always possible, since the
last condition in Eq.(A1l) leaves the freedom to perform $f) rotation on the transverse basis. In the new basis the
momentum vectop’ can be written as

p'= za: pé”a ) (A12)
wherep,= n,-p. As a result the parallqj|" and perpendiculap| (to n) momenta are given by

Pj=P17,PL= 2 Pata- (A13)

Using the completeness relatipBq. (A11)] we can invert the relatiolA12) and write original momentum components in
term of new ones:
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py=§ pgmazg P 7]a- (A14)

Explicitly, in terms of the components of the unit vector

n%+n§+nﬁ 1
nl s e———— _nsﬁ 0 0
n%+n§ Vni+n;
, [ ni+n? 0 " 1 —nNyh,
- S . 5 5 g
n 2 ni+n3+n’ Vni+nd \ni+niyni+ni+n?
n
=LA = | s | i N 0 0 i
= Llallm=]m .= -\ 50— ——
| g n, n%+n§+nﬁ \/m
ns " / ni+ni 0 " 1 —n3ny
- S . 5 5 2
V24 n24n? Nn3+ni  Nnj+nini+ni+nl
, n5+ni+n; " 1 0 0
1
L _5 n%+n§ \/n%+n§ —
(A15)
As a consequence, the constrained functional integration of a functgpah] becomes
f [Dp]f?(n-p)F[p,n]=f[Dpi]F[pi,p(fo,n]. (A16)
The Gaussian integrdA10) can be now written as
I 1 . . . 1(8 A A
|:f [Dpﬂexi{_fo dr IpI'nIC+§pI'7’IA7’LpL) :eXp{EJO drc’-[ 7. (g An) 'nllc, (A17)
where
anjy }
l&—;—ZMn,s
on;,
Yo
. onj3
C;= IW . (A18)
dnl4
: aT
on;
l.&_:‘i‘zﬂ/nil
The matrix appearing in the exponent of the RHS of &dL7) reads
[ I AR 1= = X+ (8,04 8 5)(51+5s)w<x -
AN an AN AN v T v v v T _ _
: S nsc Xe Méct Xz Mar
1 n,n,
+(6,10,11 6,u50,5)—7 5 T (842t 8,3 8,4) (8,21 S5+ 8,0)—5—
Xc Nsct Xz Nar Nar
X +(8,28,0F6,30,3+8,46,4) ! (A19)
B

Performing the summation over the components of vectpsee Eq.(A18)], we find
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I (g Ag) tglle=2 cilm (gl An) *n) 1.,
M,V

1 1 )(1 (?nsc> 1 (ﬁnsc) 1 1 )(1 aniF)z
==\ Xam —C _ a5 B _ S | XaT T _ Py
2 12 12 12 12 2 12 12

Nsc Xe M&ct X5 Mag/ \2 T Xe Nsct X, Mag! 97 NAF XaNect Xs Mag/ |2 97
1 (?nA,:>2 1 1 ang; INs;
- + = Ap2(n%+n2)—4iu| —ng—ny —

—-1.2 —-1,.2 1.2 1i 5i 5i 1i

X7 Nsctxs Mag! 97 2T xg '3t x,nae o7 a7

(A20)

Finally, the Lagrangian takes the form

1 )(1 5néc,i)2+ 1 (msc,i)z]
~1,.2 “1,2 ) ~1,2 ~1,2
N&ci Xc N&cit Xy Nagi/ \2 97 Xc Mscit Xy NMapi! 97

1 1 anag; )2 1 INpg; )2
-1.2 2 ar T T
AF| X nSC,I+XS nAFl X nSC|+Xs nAF|

=33 |

1
3200

1 . dny;j dNs;
52 1 4M2(nii+ngi)+4lﬂ(a_n5i_nliT Z (J” NaF,i- NaF,j +Ji] CnSC,i'nSC,j)
T X Mgt Xn Mar T T 1<l
g
-5 2 (nG+ng+ng). (A21)
I

It is easy to see that for the symmetric modgl€ x .= xs= x) the LagrangiarfA21) reduces to Eq(A7).

APPENDIX B: ORDER PARAMETER IN THE SPHERICAL QUANTUM ROTOR MODEL

Introducing a uniform order parameter fididin the Hamiltonian,

1
H:2 E E (X;w) 1|—MV|—#V 2 (Ju AR nAFJ+JI] Nsci nSC.J 2 (n2|+n3|+n4|) 2#2 L15 2 hnl

(B1)
the free energy can be written as follows:
O )= —hort 2foc d2p(2) ”2 , ’_(,8 /2x—KJz—g”32 _ ’_{/3( /2)\—Jz+2 ”
)= - zp(2)Iny|2sinf 5 \/————— sinh =
ot ot gl 2 XAF 2 Xsc "
_ /3( [2\ -3z )” har hgc
X2 sinh—= -2 — + B2
{2 xse M| T Broaka20 " ang 438y (52
The superspin “magnetizationin is defined as
df
m=—Vf=(my,my,mz,my,ms). (B3)
We can introduce also order parameters which refer to AF and SC states, respectively, in the form
df df
Mar= =V, f=(Mp,mz,my),  mge=—Vp f=(mg,ms), (B4)
wherehae= (h,,hs,h,) andhge=(hy,hs). Using Eq.(B2) for the free energy, we obtained
2h 2h
m= AP + ¢ :mAF+ Mgc. (BS)

8ho—4KkJ—29  8N\y—4J—8yseu?

Applying the saddle-point condition, one obtains
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2\No— KkJZ— 2\o—Jz
cotf(?x/o—g cot}‘{g( Y R
XAF 4o X

sc
VXar(2ho— kJIZ—Q)
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B [2Ng—J2z
+C0ﬂ‘{§( Xsc _ZM”

2\X8d2)\0_~.]z)

1—m2=f p(2)dz| 3

(B6)
and find the equation for the order parameter in the spherical model:
1—(n%y=m?,
1—(nkp) — (g =Mze+m3c. (B7)

In the nonordered phase the average superspin length is constant, and in ordered 1 is decreased by the presence of a nonzel
order parameter.
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