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Particle-hole doping asymmetry in PSr,YCu;Og¢-class superconductors
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Charge transfer in BBrLYCuz;Og (PSYCO compounds is evaluated using the self-consistent bond/charge
model. When C&* or Am** replaces Y3, the resultingn-type material does not superconduct. When the
rare-earth replacing Y is trivalerie.g., Y3, Tb*3, or Pr*3) and the PSYCO compound is dopedype (e.g.,
with >15% Cg, PSYCO exhibits superconductivity. This lack mfp doping symmetry is inconsistent with
most cuprate-plane models of high-temperature superconductivity, but is consistent with oxygen models.

I. INTRODUCTION [which are both+3 (Ref. 24], and(ii) with Ca'? partially
replacing Y"2.2° This allows continuous variation of the
The compound PSYCO (RBr,YCu;0g) (Refs. 1-3is  doping on the rare-earth sites fromtype to n type. We
structurally similar to YBaCu;O; (Y123-7), except that(i)  predict that only thep-type materials superconduct in the
its Ba ions are replaced by isoelectronic Sr ions, éndts  charge-reservoir oxygen model. Since bottype andp-type
CuO chain layers are replaced by /PbO/Cu/PbO/ layers in thematerials superconduct in the cuprate-plane model, analyses
crystal structurg” (Fig. 1%%. Pure PSYCO homologues of potential n-type superconductors should reveal if a
themselves probably'* do not superconduct, but the cuprate-plane model or a charge-reservoir model is appropri-
PSYCO compounds withtrivalent rare-earth ions do ate for high-temperature superconductivity.

supercondu¢?’ with T, in the range of 50-84 R1112
when the rare-earth site is doped with more than 0.1%%Ca. Il. PARTICLE-HOLE SYMMETRY IN PSYCO
Here we consider PSYCO to be the compound without
oxygen in its Cd® layer, and with eight oxygen ions total, ~ In a charge-reservoir oxygen modéf;* the pure com-

while recognizing that between 8 and 9.4 oxygen have beepounds PESrL,RCu;0g, WhereR is atrivalent rare-earth ion,
observed per unit cell, with much of the extra oxygen adja-should not superconduct because their ionic charges all bal-

cent to the Ciit. 1417 ance when O is assumed to be Dthey apparently do not
The conventional cuprate-plane viewpoint is that the
charge-reservoirs dope its cuprate-plaf@sO, layers with Pb 2Sr2YCu 308
holes or electrons, causing these planes to superconduct,
with critical temperatures in the range of 50 to over 86°K. Cu
The combination of PSYCO’s /PbO/Cu/PbO/ layers and its PbO
SrO layers are its charge reservoirs. Hole doping occurs for
most rare earths, namely the trivalent ones, for modest
amounts of C&? co-doped with therare-earth" ions, but Sro
electron doping is associated with rare-earth ions “Cer
Am™ [evenn-type material can be co-doped with as much CuO,
as ~30-50% Ca? (Ref. 13]. The n-type materials should
superconduct in the cuprate-plane models. Y
Opposing this conventional viewpoint is the charge-
reservoir oxygen pictur®23which assigns the primary su- CuO
perconductivity to the charge-reservoir layers, rather than to 2
the cuprate planes, and only allows holes as carriers of cu- SrO
prate superconductivity. In this model, trivalent rare-earth
ions co-doped with as little C& as 0.15 should produce PbO
p-type superconductivity, but tetravalent rare-earth ions,
whether co-doped with C& or not, should not produce su- Cu
perconductivity, because the materiahisype.
PSYCO represents a wonderful comparative testing
ground for these two models, since it can be dofiedy ‘ O ‘ e o
different rare-earth ions than Y, including Gehich as- Pb Y Sr Cu O
sumes thet4 ionic staté®) and actinide Am{which also is
+4 (Ref. 24], as well as by such rare-earth ions as Th and Pr FIG. 1. Crystal structure of BBr,YCugOg.
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TABLE |. Bond-valence-sum chargd# units of |e|) and Madelung potentialéfor ideal integral va-
lences (in V) for PhSKLYCus0; (PSYCO, extracted from the data of Ref. 2, and computed using the
self-consistent bond/charge meth@kf. 21). The absolute values of the ionization potenti&sf. 329 of the
relevant ions are listed in the last colurtin V), with the final charge-state of the ionization process. Clearly
the cations are in the charge-states"$8r2Y "3,Cu*? (in the cuprate-plane and Cu? (in the charge-
reservoij. The oxygen anions are all nearly ® The holes are mainly in the SrO and PbO layers. On the Y
site, all rare-earth ions will be in the3 charge state, except Ce, which will be'¢eActinide Am may also
be in the+4 charge-state, because its ionization potential to"Aim between 36.76 V and 38.98 \The fact
that it is Am'# indicates that its ionization potential is between 36.76 V and 37.85 V, the Madelung

potential)

Site Charge Potential lonization potentials
Pb 2.00 —16.25 15.08+2), 31.94+3), 42.32+4)
Sr 1.63 —25.99 11.08+2), 42.89+3)

Y 2.83 —37.87 12.24+2), 20.52+3), 60.64+4)
Cu in charge-reservoir: Q) 1.17 —6.74 7.73+1), 20.29+2), 36.34+3)
Cu in cuprate plane: GQ) 2.24 —34.62

O in CuG, layer: Q1) —2.06

O in Sr layer: @2) —-1.82

O in Pb layer: @3) —1.64

superconduct when their ionic charges all balance, namelgoint is needed, because, if it is true, then the major theoret-

when they are pure and undop@d. ical picture of high-temperature superconductivity, the
The introduction of C&? to thetrivalent rare-earth sites cuprate-plane model, is wrong: there is no particle-hole dop-

of these PSYCO compounds should lead to an average vaag symmetry in the P4SLRCu;05 experiments.

lence on the rare-earth site betwee8 and+2 and top-type

conductivity and superconductivit{for Ca doping>0.15). I1l. BOND VALENCE SUM METHOD

In both the charge-reservoir oxygen picture and in the ] ]

cuprate-plane picture, Ca-doped PSYCO compounds with In order to verify that our statements about the sizes of

trivalent rare-earth ions are expected to superconduct—antPnic charges of PSYCO are valid, we executed bond va-
do. lence sum computatiofsof the ionic charges. The bond

For tetravalentrare-earth ion&, such as C&* or Am*4, ~ Vvalence sum method follows the empirical chemical binding

both of which prove to be stable ionic charge-states in a{d€as of Pauling? the charge on theth ion is a function of
least Ce-PSYCO and Am-PSYCO compounds, the cupratdoth (i) the bond lengthsr, ,| to those neighboring ions
plane picture predicts that Ca-doped,®bRCu,0g Will be n (q’) directly boncjed to therth ion ar}d(lll) the site occupan-
type and will superconduct, while the charge-reservoir oxy-CieSW,, according to the expressfor?
gen model predicts that suaitype PBSLRCuU;Og cannot _
superconductfor R=Ce"* or Am™), even if heavily doped |Qol=lel2 Wy exq[R, =1, o[1/ B},
with Ca™?. (Ce"™* and Am™ have ionization potentials of where one hag=0.37 A, and the parameteRs, are known
36.76 V and perhaps abbll V more, respectively, while the in terms of the bond lengths of many chemical compounds—
Madelung potential at the rare-earth site is approximatelysee the tabulation of Ref. 31. Therefore using a table of ideal
37.85 V2% bond lengths, it is straightforward to extract ionic charges
In contrast to the charge-reservoir oxygen model, allfrom neutron diffraction data—with a typical absolute accu-
cuprate-plane theories that feature particle-hole doping synracy of ~+0.1/e|.
metry assume that thetype, electron-doped materials will Results obtained by applying the self-consistent bond/
superconduct, especially if the correspondirdoped mate- charge modéf to PSYCO are presented in Tabl&land are
rials also superconduct. This is what is meant by particlesimilar to those reported previously for various PSYCO
hole doping symmetry: both thetype and thep-type mate-  compounds.
rials will superconduct, provided the number of carriers is To an adequate approximation, PSYCO containg?Pb
sufficient. Hence all cuprate-plane models with particle-holeSrt?, Y*3, cuprate plane Cif, Cu-layer Cu?, and oxygen
doping symmetry predict implicitly that BBL,RCu;Og com-  ions in the SrO, PbO, and Cy@ayers, which are all nearly
pounds will superconducttype forR=M,_,Ca,, whereM O~2. The oxygen ions in the PbO layers and the SrO layers
is any tetravalentrare-earth or actinide ioffe.g., CE* or  are somewhat electron deficient, however, being hypo-
Am*t4), charged: 04, where we hav€<2: Z=1.64 and 1.82 for
Experimentally, the particle-hole doping symmetry ex-the PbO and SrO layers, respectively. In the PSYCO com-
pected of a cuprate-plane model does not occunfdoped  pounds, the demonstration that there are holes in the vicinity
cuprate-planes, as in Fr,RCu;0g with R=Ce"* or Am™. of the oxygen in the PbO and the SrO layers is afforded by
Instead, these materials behave as expected in a chargbe fact that in these layers, the oxygen ions have too few
reservoir oxygen model: thp-type materials superconduct, electrons, when the simple valence rules would have them be
and then-type materials do not. Further investigation of thisO™2 (see Table ). As expected, the charge reservoirs in
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PSYCO are in the vicinity of the PbO layers, where thesinglet ground state. All of these three materials supercon-
hypocharged O*%4is found, and quite possibly also in the duct. This means that the magnetic state of the rare earth
SrO layers, where oxygen ions are charged td+8, This  does not play a major role in determining whether the mate-
means that there are 0.36 holes per oxygen ion in the Pb@al superconducts. It also implies that the usual models of
layer, for example. hybridization in PrBgCu;0O;, which involve coupling of the
Although PBSKLY,_,Ca,0, (doped PSYCQis known to  cuprate-plane oxygen to the Pr, are not generally valid for
experience a wide variety of oxygen concentrations, rangingxplaining either the occurrence or nonoccurrence of high-
from x~8 to aboutx~9.4 per unit celt*1" most of the temperature superconductivity.
oxygen ions beyonk=8 end up in the /PbO/SrO/PbO/

charge-reservoir layer@bout 8 A from the rare-earth sife V- ALL HIGH-TEMPERATURE SUPERCONDUCTORS
where they may change the valences of the cations Pb or Cu ARE p TYPE

(e.g., PB?—Pb™ or Cu™*—Cu"). (Room for O is lack- In summary, the superconducting PSYCO compounds are
ing in the layers closer to a rare-earth ipSuch cation dop- 4|  type, and superconduct in the charge reservoirs, which
ing in the charge-reservoir layers of PSYCO normaly- 516 mainly in the PbO layers, and perhaps also in the SrO
creases T while possibly removing the affected cations |ayers. The Sr-O bonds are stretched, and dopant oxygen can
from the superconducting condensate. If we assim@r-  ¢ometimes be found in the Cu layefwhich complicates
rectly) that these oxygen ions are uncompensgted by a high%{nalyses of the structureThe PBSKR; _,Ca,CuOq Struc-
valence cation such as Pb a singly charged ion provides e is rigid enough that pair breaking defects such as Pr
an additional voltage of only-1.7 V at the rare-earth site. gefects are rather rare, and the PSYCO materials appear to
With compensation by other defects in the charge-reservoigs natural superconductors of rather high

layers, the net voltage at the rare-earth site is further reduced Thege findings complement the demonstration that perfect
so that the rare earth is not significantly altetbding still at Nd,_,Ce,CuQ, also lacks particle-hole doping symmetfy

a site with a voltage of about 36.8—37.8 V for Ce and)Am and has Ce in the C8 charge state rather than the Ce
Therefore, despite considerable uncertainties in the data a'?é]quired forn-type doping? Instead Ce appears to form

variations both in the oxygen content and g, PSYCO (Ce, Quersiiia) PAIrs®2%2233yhich makes Ngl_,Ce,Cu0, a
’ nterstitia ! z

should still superconduct in its /PbO/SrO/PbO/ layers, bey  na sunerconductdf-36
cause the main superconductor in this and all high-p P P '

temperature cuprate superconductors is hypocharged oxygen. ACKNOWLEDGMENTS
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