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Self-organized three-band structure of the doped fermionic Ising spin glass
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The fermionic Ising spin glass is analyzed for arbitrary filling and for all temperatures. A self-organized
three-band structure of the model is obtained in the magnetically ordered phase. Deviation from half-filling
generates a central nonmagnetic band, which becomes sharply sepaf&ted by (pseudagaps from upper
and lower magnetic bands. Replica symmetry breaking effects are derived for several observables and corre-
lations. They determine the shape of the three-band density of states, and, for given chemical potential,
influence the fermion filling strongly in the low-temperature regime.

I. INTRODUCTION A. Aim of the paper

It has been the purpose of the present work to explore in
Frustrated magnetic correlations in fermionic systems aréetail the dependence on the chemical potentialand to
the subject of current and promising research in moderfimprove thus the understanding of the low-temperature
condensed-matter theory. Generalizégtmionic) spin glass glassy phase. The effects of particle hole symmetry breaking
models and certain Hubbard models form two model classeand of replica symmetry breakir@kSB) on the band struc-
for theoretical investigations of these phenomena in disorture are derived for all temperatures and chemical potentials
dered and clean systems, respectively. The coupling to a pawithin the ordered phase. It is found that breaking these sym-
ticle reservoir allows to control important parameters such ag1etries splits up a spin glass pseudogap into two similar
fermion concentration or effective spin density by means of gseudogaps, which delimit a central nonmagnetic band, the
chemical potential. The important experimental tool of dop-Upper gap accommodating the Fermi level. Strong reactions
ing often leads to quantum phase transiti¢@¥T), metal- 1O doping such as crossover and possible new transitions
insulator transitions, or magnetic phase transitions bein§€ep in the ordered phase, still far below the critical doping
prominent and standard examples thereof. The chemical pdthich destroys random magnetic order in favor of the para-
tential x (or, alternatively, the fermion filling) is thus a Magnetic phase, are also reported in this paper. Usually,
relevant variable for the phase diagram. In quantum Spirmagnetlcally interacting systems realize saturated magnetic

glass theory, a well-known model showing a QPT as theorder in the ground state at zero temperature, even if the

effect of a disordering transverse fidid is the transverse interaction is frustrated and random such that magnetic order

field 1sing model: in the present paper. the chemical potenti onsists of randomly oriented frozen-in magnetic moments.
: 9! " b L baper, potel ut doping must be expected to reduce the magnetic order at
u is considered instead, playing the role of a generalize

) . Il temperatures as an effect of the diminished effective spin
transverse fieldu couples to the charge, whife. couples 0 gensity. It is well known that spin glass order requires a

transverse spin degrees of freedom. Since particle NUMb&kean field theory with more than one order parameter,
operators and Ising spin operators commute, the chemic 1,02, - .. Oysq in case ofk RSB steps, which, fok— o,
potential does not generate quantum spin dynamics. On th@grm the Parisi order-parameter functfohq(x) defined on
other hand, single fermion operators do not commute withan interval G=x<1. It is a very important question to see
the spin interaction and hence quantum dynamics always e¥row the breakdown of frozen magnetic order at critical dop-
ists in the fermionic spin glass models. This kind of dynami-ing is approached in the presence of such a relatively com-
cal behavior is reflected for example in the fermion propagaplicated order parameter. For this purpose it is the necessary
tor and its spectral density determines the band structure. to achieve a full description of the ordered phase including in
A famous example for doping effects on magnetism is theparticular theT=0 limit. This is done in the present paper.
breakdown of antiferromagnetic order in Hubbard-typeThe results of the paper also show that not only the simple
models! The doped fermionic Ising spin glass contains abox-shaped form ofj(x) at T=0, with a box height that
couple of close relationships with the Hubbard model. Com-equals the saturated Edwards-Anderson order parameter, but
parable phenomena in the band structures appear and will 5#so the low-temperature behavior of the order parameter,
discussed. However, it must also be noted that problems dfhich was intensively studied once for the standard SK
perturbative expansions of the Hubbard model leave verjnodel? plays a role for the band structure of the doped fer-
controversial the theory of doping effetis contrast to the ~Mionic Ising spin glass.
present case of an insulating fermionic spin glass. A highly
interesting comparison of central bands emerging in the
(infinite-dimensionagl Hubbard model and in Kondo lattices,
including a discussion of implications for transport in gen- In previous papers, the density of states of the fermionic
eral and the Mott transition in particular, was given by lsing spin glass (IS§ was analyzed in detail for half
Nozieres?® filling.® A pseudogap was obtained in a solution with infi-

B. Relations to preceding publications
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nitely many steps of replica symmetry breakifiBSB). part of the paper, Sec. lll, presents numeridal all tem-
Hence the effect of this infinite breaking of the discrete sym-peraturesand analytical result&at T=0) for the fermionic
metry resembled the one of breaking a continuous symmetrylensity of states. Intermediate results for order parameters,
which commonly leads to soft modes. In the present casdermion concentration, and relevant susceptibilities, interest-
soft single particle excitation energies were created, unreng in its own right, are in contrast to the dynamical propa-
lated to the existence of two-particle soft modes, for whichdator determined from the free energy. In the first part of
the single particle density of staté®0S) appears only as a S€c- Il the replica symmetric approximation is solved, the
weight. three-band structure being already revealed, yet with a crude
Replica symmetry breaking introduces a sort of statisticaPPProximation of gaps. The second part presents one-step

fluctuation effects in fermionic spin glasses, which determinéYmTﬁtry br?lh<en solu_tionts_, which %rovi?le i; comparisont
the band shape. In particular the softening of gap energie : € zeroth approximation a good outiook on theé exac

occurs like a one-dimensional quantum critical phenomenor?omt'on‘ The extension to infinite breaking and of its key
> - . ) . .features is discussed and can be visualized rather easily by
This single dimension can be viewed as the replica di-

mension, while a similar role is played by the time in the comparing, e.9., Fig. 2 with Fig. 7, and also Fig. 4 with Fig.

. . AR : . 8. The splitting of the spin glass generated charge gap under
dynamic mean-field theory of the infinite-dimensional HUb'particIe-hoIe symmetry breakinginite ) and the related
bard model. It was, however, also found for the |3t the  contral nonmagnetic band are the important results, which

finer structures induced by symmetry breaking in replicanst have implications on the behavior of weakly itinerant
space were directly felt in the quantum dynamic behavior ofyeneralized modeléo be studied in the futuye
the subclass of fermionic correlations. The reader, who is interested primarily in the currently
The extension to doping and of general arbitrary filling, most advancednalytical results (in 1RSB approximation
which affects size, position, and splitting of gaps as demay jump to Eq.(28), using the definitiong6) and (23)
scribed by the results of this paper, has been a nontrivialogether with the free energy of E(®2), which is sufficient
task. First, the numerical calculations for arbitrary temperato determine self-consistently and uniquely all parameters
tures are rather involved. Moreover, in contrast to half fill-needed in Eq(28). Intermediate results are also given. A
ing, the analytical low-temperature expansion required a diffirst experience with the numerical and analytical nonpertur-
ferent technique which consists in a combination of thebative technical difficulties may, however, be sought at the
saddle-point technique with a generalized Sommerfeld exlevel of replica symmetric equations given in Sec. Il A up to
pansion as introduced by da Costatal® The Eg.(21). . .
Sommerfeld—da Costa method is built on a low-temperature !N Sec. IV the spin glass effect on the averaged fermion
(formal) analogy between a Fermi distribution and an concentration is shown: magnetic order introduces rather

effective-field distribution in spin glasses: the role of ener-Stfong replica symmetry breaking effects into this simplest

ies close to the Fermi level is in the present case played bgarge related quantity. The one-step symmetry broken ap-
g P play Oy:ommatmn shows a kind of transition inside the ordered

the modulus of the effective spin glass field being close t bhase, as can be seen in Figs. 9 andlef). Moreover, a

p—x/2. This quantity, wherey stands for the Thouless- pjce agreement is found with an independent numerical so-

Anderson-Palme(TAP) susceptibility:® is negative or zero |ution of the corresponding TAP problem fe( ). The re-

(hence ineffective aT:O) for half fllllng and pOSitive in the sult shows how RSB effects, caused by the frustrated Spin

doped case. The transition through x/2 is continuous. interactions alone, are also felt in charge variables because of
The results of this paper are finally obtained by combinedhe coupled charge and spin fluctuations.

(rather than purely complementanyumerical and analytical

analysis. This “numerico-analytical” study is based on a

replicated field-theoretical treatment of the random Ising in- Il. DOPED FERMIONIC ISING SPIN GLASS

teraction problem. The I1SG and some of its extensions have been discussed
The present paper also involves and revisits earlier resultig preceding publication¥'*'°For this reason we only in-

for the tricritical phase diagrathaway from half filling. clude in this introductory section an overview over those
The low-temperature limit of the non-half-filled model features of the model and of the technicalities that are nec-

and the way the phase transition into the paramagnetic phagssary to understand the present work.

takes place had still been an open problem. This was related The grand canonical Hamilton operator

to several problems: first, information about the full replica-

broken solution[removing a negative Almeida-Thouless

(AT) eigenvalug¢ was only available at half filling, and sec- K= _gj Jii"izaiz_ﬂzi ni @)

ondly, another AT eigenvalue turns complex due to the rep-

lica limit and the question of stability is raised again. In thisintroduces the many-body interaction of fermionic spins with

article we assume that the solution according to standargllly frustrated random couplingd; . Stripping off the fac-

replica symmetry breaking is stable throughout the orderegor #/2, the spin and occupation number operaiofsandn

phase(see a more detailed discussion of the stability properare given by the fermion operators aé= a¥aT—a’[al and

ties in Refs. 12 and 13 n=aja;+ala,, respectively. We choose the random inter-

action couplings to be distributed by

C. Outline of the paper and a guide to the reader
e %@, )

Section Il is devoted to a concise presentation of the P(J;j)=
model and of some of the formalism used here. The main NeT
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This generates magnetic correlations independent of time
and of infinite range in real space. For the sake of clarity we
will below keep the variancé® as a parameter in the formu-
las, whereas it is set equal to unity in the numerical evalua-
tions.

Particle-hole transformation and thg <« — u symmetry T
The Hamiltonian (1) is invariant under the particle-hole
transformatiora«—a' only atx=0, but up to a constant it is
invariant under §—a', u«< —u) for all x. Thus we can
restrict the discussion of the density of states to the case of .
non-negative chemical potential, which implies a filling fac- ARSB__ ~J
tor v=1. Results for hole doping can be obtained by substi- 0.2 0.4 0.6 0.8 1.0
tuting w by —uw andv by 2—v. K

The average over the interaction distribution is performed G, 1. phase diagram of the ISGT and x displayed in units
by means of the replica trick. The averaged replicated partiof J). The straight line connecting the tricritical point a (
tion function can be obtained in terms of Grassmann fields-0.961, T=J/3) with the T=0 first order transition atu
i, Z, being the usual anticommuting eigenvalues of the=0.881) approximates linearly the thermodynamic first-order tran-
original fermion operatora anda’ in the fermionic coherent sition into the paramagnetic phaseM). The dashed lines locate

states. Including also generatifanticommuting fields ,7,;’ the crossover line?f/3q?=0 connected to the appearance of a

the partition function in these fieldgenerating functionais ~ central density-of-states peak in replica symme(fR§) and in one-
given by step symmetry broke(1RSB approximation, respectively. At

RSB this line will reach the pointT=0,u.=0).

(2" J [Py} J {DE?;W?;}(H P(J”)) gt=Fetia+

exp ' dr(— 4279 — ~1 ~a
T T T T T T — +
Xex fo ( lﬂﬁr T ﬁr K+ 7]? f‘a ﬂﬁ;‘pﬁr)- Jar] H i€+ u, (5)

(3) Ha=3Vouzi 1+ IO 1~ Gzt - - +IVa— oz

In the grand canonical Hamiltoniali the Grassmann fields illustrate the evolution of a fermion, described by the nonav-
~ . 71 . . .
¢ and ¢ also replaced the original fermion operators. In theeraged inverse propaga@r -, in a realization of the random

exponent of Eq(3) the summation convention over replica effective field H? [spatial propagation is excluded by the
index a, spin indexa, and site index is assumed. The sub- definition of model(1)]. The Gaussian integrals, which ap-

sequent steps, which are described in detail in Refs. 14 arRga" frequently throughout the paper and which describe the
15, are listed by: explicit Gaussian integration over dhe probability of the realizations of the effective field, has
transformation from imaginary timesto fermionic Matsub-  been reduced to the short form

ara frequencies,= (21 + 3) =T, and two consecutive decou-

pling procedures. An eight-fermion correlation term is bro- G 1= _ 2

ken down by a matrix fieldQ. The saddle-point solution L d’(z):E _ dze WA (2). (6)
(Q?®) is chosen in accordance with Parisi’s replica symme-

try breaking(RSB) scheme, before a second decoupling toAfter this field-theoretical setup the free energy and the gen-
bilinear Grassmann terms can be achieved using auxiliargrating functional, respectively, are obtained by means of the
(c-numbey decoupling fields; . The(Q) matrix stands for replica trick, f=lim,_o(T/n)(1—(Z")|,-,). For fermionic

the spin correlation§a?a®), introducing the off- diagonal correlation functions the derivatives with respect to the
(replica-overlap order parameterg;,d,- - - x4+, according fields are taken prior to the— 0 limit, e.g., for the Green’s

to the Parisi schentéand the diagonal ong=(Q?%) which  function
takes care of the spin autocorrelation function det b.

i i on i s 8
After all, the replicated partition function is expressed as G¥%(i¢)= lim e (Z™ . @)
n—0 <Zn>av 0Ny 0N,
J? —
(ZM) o= exp( ——Tr QZ) f {Dy2 Dy} Using standard criteria of thermodynamics, one obtains the
4T phase diagram of the ISGs shown in Fig. 1(We setkg,

G - o and7 equal to 1 everywhere in the paper, and display ener-
x{ 11 f }exm/,i'g;hlr(/,gbr 773',/,3'_ 7]3'4,3'), gies in all figures in units of.)
ko Jz A tricritical point separates a line of second order transi-
(4) tion at high temperatures from first order transitions at low
temperatures. The latter phase boundary is very hard to ob-
where the site index has disappeared due to the infinite-randgain numerically. We therefore approximated it as a straight
assumption and the resulting space-homogeneous saddiee down to the best known estimate for fhe: O transition,
point. The abbreviations which is obtained below.
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I1l. MAGNETIC AND NONMAGNETIC BANDS
A. Replica symmetric results

Despite its instability against RSB the replica symmetric
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v=-24,f.

M (11)

The results are finally used in the band-structure calculation.

solution is nontrivial and must be understood in detail, since 2. Energy and self-consistency equations in the=D limit

it forms the basis for the improved solution presented below
Moreover, in a relatively simple description, this approxima-
tion contains features of the self-organized transition fro
single-band structure above freezing temperature to eith
two bands for half filling or a three-band structure, which

occur below freezing of the magnetic moments. The quality
of this approximation decreases in the low-temperature =

gime, as the next section will show. The role of symmetry

breaking amounts to a softening of the gaps and to a remova
of sharp dropoffs of the density of states at low temperaturesg |

as demonstrated earlier for the case of half filffngt half
filling, a pseudogap results between upper and lower ma
netic band.

In this section we first present self-consistent numerica
solutions for the temperature range from the filling-
dependent freezing temperature down to very Towf order

10 4J. The evaluation of the density of states employs nu-
merical solutions of the self-consistency equations for spin

glass order parametgrand linear susceptibility as a func-

tion of temperature and parametrized by the chemical poten-
tial w. The fermion concentration is also calculated as a

function of u. This analysis is supplemented by an exact
=0 calculation.

1. Free energy and resulting self-consistency equations
at finite temperatures

The following results are derived from the effective La-
grangian and from a generating functional for general fermi
onic correlation functions of the model. Analytical solutions

are found in the sense that the number of nested integratio

temperature limit, it is useful to change variables by intro-
ducing the linear susceptibility=(J/T)(q—q). Sinceq
—q decays linearly withT in this limit, the finite linear sus-
ceptibility is a helpful quantity which reduces the degree of
1/T divergenceqwhich need to be compensajedror this
reasorf is better expressed in terms @and y than in terms
of g andq.

The free energydensity f is obtained in the replica sym-
metric approximation as

1 xT G
f=—Jx|—=—+29-2 —TInZ—M—Tf InC (8)
4 J 2
with
J\Vgz
C=cos}‘( \_/I_a +cosl<$) —(@2m)x, 9)

Extremalization of expressiai8) with respect ta, x, andu
yields the coupled self-consistency equations
0=2d4f=0,f (10

and allows us to determine the filling factor

n
becomes minimized before, in a final step, the observables
are evaluated numerically. In order to facilitate the zero-

The zero temperature limit deserves separate attention for
several reasons. As can be seen from the thermal free energy,

mHivergences in this limit trouble the numerical work at low

Emperatures, but nondivergent analytical results provide a
control.
In this case, an analytical approximation was also ob-
ned, applying an expansion in powers @f x/2. Good
a]greement was found almost up to the magnetic breakdown.
The equations fof =0 were obtained by a variahtf the
mmerfeld method. For the density of states the steepest
descent method is used in addition. As usual, this limit al-

Yows to simplify the equations. We obtain fpr<1Jy

|
1 2
E=f(T=0)=53x(a-D)—u- \/;Nq (12)

hile for > 3Jy, the T=0 energy becomes

E—lJ 1 1J il L.
=5x(@=D—u—|n=5Jx|er 413 2
2q —(1/2q) (ulI— xI2)?
—3\ e w3 =x2)?, (13)

Extremalization of these energies yields self-consistency
equations which couple the magnetic correlatignand y
with the filling factor as a charge average.

For u/J> x/2 we derive the following relations between

zsero-temperature parameters:

1 (p X 2 2
q:l—erf{\/—_ ___) . X= g~ (M) (wlI=xI2)"
2q\J 2 J2mq
(14
MmoX ~
v—1+erf\/?q(j—§) , q—q—2—v. (15)

One may derive these solutions as a function of either

. The T=0 relationsq=q and'q=2—» hold also for 0
=< ulJ<x/2, whereas in this interval one simply obtains

(16)

3. Density of states

The density of states is obtained as usual from the Mat-
subara Green’s function by analytic continuation

(17)

p(e) —%ImG(e-i—iO)

at any order of RSB. In terms of the shifted variable €
+ u the DOS is symmetric and reads in RS approximation
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FIG. 2. Density of states
p(T,E=€+pu) shown as a func-
tion of all T below the freezing
0.0 temperature, as calculated in the
replica symmetric approximation
at specific chemical potentialg
(in units ofJ). The bold front line
represents the independent ana-
lytical T=0 result.
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m E tions for order parameter and susceptibility. As emphasized
cosh+coshe (E-3Vgq2? Jy by the thick lines, th& =0 density of states can be decom-
p(E)= —f — exp( _ posed into isolated contributions of the three bands. Taking
V27T Ix 2 € 2TJx 2T advantage of the symmetry one may use the energy variable

(18 E=etpu,

The solutions forgq(w,T) and y(«,T) are employed in the
calculation of the electronic density of states for the whole p(T=0F)=p_(0E)+pc(0E)+p.(0F), (19
spin glass phase. The set of Fig. 2 shows that a central baghare the central charge band is given by

emerges for high enough chemical potentials. In the RS ap-

proximation the band gap discussed previously for half

filling® is visible up tou=3E{”=J/\27. When the chemi- p(0E)= ;e*Ezl(ZJZQ)®(M/J_X/2_|E|/J)_
cal potential approaches the band-gap valwe show for V2mq
example the DOS gi=0.39)), a tiny central band shows up (20

at low temperatures, but loses its weight again completely i
the T—0 limit in favor of the magnetic side bands. One can

connect this feature to a line given B#f/9q?=0, which, 1

starting at the tricritical point of the phase diagram, bends , _ —([E|13-x)?/(2q) _ _

into the gap edgéat T=0. This line, which is also shown in p=(0F) J\2mq © OLENI= (¥ x12)]

the phase diagram in Fig. 1, wraps this small precursor of the (21

central bandsee Fig. 1. For chemical potentials exceeding

the gap edge valu@/ \2, the central band emerges already ~ Let us first discuss the numerical results in the RS ap-

at higherT and survives aT =0, where it becomes a pure proximation. Figure 3 shows the redistribution of spectral

Gaussian function oE= e+ u with finite height and sym- Weight asT decreases for certain fixed values of the chemical

metric cutoffs. In the RS approximation both the centralpotential:

band and the magnetic bands are sharply cut off and sepa- (i) Within the hard gap regime Qu<J/2m, where

rated by gaps of identical widtly. As replica symmetry »(T=0)=1, a pronounced central band is absent; only in a

breaking will show, the gap size is given by the nonequilib-small range of low but finite temperatures a tiny midgap

rium susceptibilityy, which agrees withy only in this low- ~ Peak is observed. We find that its existence is clearly linked

est order approximation—in this section we continue to dis{© the characteristic line mentioned above. This line sepa-

cuss the gap in terms of. This quantity which separates "ates the domain of the phaseid|agram, where the free energy

central from upper band and central from lower magnetids minimized as a function of|, from the one where it is

band begins to vary with for ,u>%E(gO)- maximized. This latter property is unrelated to the well-
Figure 2 combines the numerical finite temperature calcuknown maximization off by the SG order parameteg in

lations of p(T>0,€) with the exactly calculated function turn the presence of is needed to render a solution with

p(T=0,e) given below, making use of the numerical solu- 9*f/9g?<0 stable. For the present case we find a complex

rﬂJpper and lower magnetic bands contribute
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ated perturbation theory solution of the half filled Hubbard
model at zero temperatutethere a hopping generated band
shows up within the Hubbard gap insulating phase. We do
not attempt to discuss any result for itinerant modeisthe
sense that fermionic hopping terms are allowed in the Hamil-
tonian, but it is nevertheless clear that the density of states,
derived here for the insulating model, can have implications
on itinerant systems and their transport behavior. RSB ef-
fects, as worked out in the next section, scatter some spectral
weight into the hard gap region, exempting the Fermi level.
A strong depletion of states remains, however, in the hard
gap regions of ORSB, even for moderate finite temperatures,
where RSB effects become negligible. In disordered systems,
regions of very small density of states often imply Anderson
localized states and in this sense correspond to a hard gap
region of a disorder-free model. A metal insulator transition
could then occur also as the effect of a dynamical resonance
=8 = peak (at the Fermi level generated by a transport mecha-
nism. The present nonitinerant model moreover offers the
chance to study how statistical RSB effects shape the central
band, and compare this with a dynamical mechanism in
disorder-free interaction model©f course, there are differ-

FIG. 3. Density of states: evolution of central peak and thermalences between the physical character of these central bands,
band-gap filling for temperature$=0.31,0.13,0.01 at various  put it is important to study the similarities too, not only be-
chemical potentialsdisplayed in units of). cause of the impurity analogy of the= Hubbard modef.

A complete comparison will, however, require solutions of

Almeida-Thouless eigenvaluéor replica-diagonal perturba- the doped Hubbard model and of the itinerant extension of
tion), which does at least not exclude stability apart from thethe present spin glass model.
Parisi RSB. We note that the density of states can be used to deter-

(i) For chemical potentials large enough to sustain fillingsmine all one particle observables and excitations. For ex-
different from one electron per site, i.qu>J/\2m, three  ample the fermion concentration, which was given in Eq.
bands develop as the temperature falls belqvand become  (11) as a derivative of the free energy, can be rederived from
separated a§— 0. The Fermi level lies between the central the Green’s functiorisee Sec. IV beloyand may serve as a
charge band and the upper magnetic band. The area undsslif-consistency check. It should be remarked that as usual in
the central peak belongs to the deviation from half filling, random systems, the reduction of averaged two particle op-
described by —1. The lowT results(see Fig. 4confirm the  erators to the averaged one particle Green’s function is not
numerical observation that the central band width is given byyossible in general: in particular the Heisenberg equation of
Eg%)=2,u—\])( at T=0, that both left and right gap widths motion for a fermion field involves a random interaction in
obey Eg’):JX, while at half filling the relation readEg’) the present case and this must be taken into account in set-
=2Jy. ting up, for example, a relation between thermodynamic po-

One may compare this approximate solution with an itertential and one particle Green’s function. We remark that the
charge gap seen in the density of states implies only expo-
nentially small corrections to the entropy of the SK model.
Thus theT=0 entropy in ORSB is negative, it becomes
much less negative in the improved 1RSB solution below,
and(still identical to the one of the SK modeak believed to
become zero in the full Parisi solution. The finite part of the
entropy atT=0 stems from the power-law thermal decay of
the order paramet@), while the charge gap affects the
(replica-diagonal spin autocorrelation and charge correla-
tion, which are related by an operator identity.
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B. Improved solutions with broken replica symmetry
and strong low-temperature effects

‘%,
2%

1. Free energy and order parameters

FIG. 4. Density of states as a function of eneEgygnd chemical One-step replica symmetry breaking yields a large step
potential  at T=0 (all quantities shown in units of). For x  towards the exact solution: it allows us to guess properties of
>J/\J27 the central charge band appears in the middle of the hardt quite frequently. At the beginning of this section, it is
gap atE=0. In this case, the Fermi level lies between the centraluseful to rewrite the 1RSB approximation of the free energy
and the upper magnetic band. in terms of parameters which also allow to obtain finite zero-
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FIG. 5. Order parameters, ,q,, nonequilibrium susceptibility
X, and normalized Parisi paramet=Jm/T, shown for one-step
replica symmetry breakinlRSB), as a function of the chemical
potential u at selected temperatureB=0.05) (solid liney, T
=0.15] (dashed lines andT=0.3J (dotted lines.

X | 1+ erf

— gz, + a(Ql_%)) 1 (25
\/Q1_QZ\/§

for w/J<x/2 and

G 1 ,
f CaT/J:_ea\/qzzer(l/Z)a (a1—ap)
temperature limits. In this way all self-consistent equations,’ % 2
derived from the stationarity condition for the free energy,
contain aT=0 limit for meaningful finite physical quanti-
ties. It is therefore convenient to use the nonequilibrium sus-
ceptibility, linear susceptibility, and (temperature-
normalized Parisi parameter denoted, respectively, by
=(JIT)(Q—0ay), x=x+a(q;—9y), anda=Im/T (we have
choseny, x, anda as dimensionlegs

In these terms the free energy density reads

xT

Jrc G
— _f In f CaT/J (22)
alz, 7y

22 ¢
@22_(3_94'3((11_%)
V(ll_(lz\/E
Y
j—;)—@zz
Va1 - 242
MmX
j_;)‘i”@zz
\/(11_(12\/E

1
.|_Ee*aV’QZZﬁ(l/Z)az(Qr(lz)

x| 1+erf

+ % ea(ulI=x12)| erf

=13
T4

+a(Qf—Q§)}—Tln2—M

+erf

with

22 ¢
APy _@22_(3_94'3(%_(12)
+cos T e . x| 1+erf

(23 Va1 — 242

The stationarity conditi@ ofileads to the saddle-point equa- _
tions for the parameterg, ds, q,, anda, which need to be OF #/I>x/2. o ,
The precedingT=0 results are the basic ingredients

determined as functions gf and T. The derivation of the hich wticall h " _
thermal self-consistency equations is lengthy. For moderat@nich we use analytically to get the seli-consistency equa-
fions at zero temperature in terms of finite parameters. Re-

temperatures, only the numerical solutions are instructive. . ) ; S
We present them in Fig. 5 as a function sffor three char- sults of our final numerical evaluation are collected in Fig. 6.
acteristic temperatures. In order to facilitate the calculatiOrI? All of these parameters show a remarkable variation be-

J
C= cos)’(f( NO1— 02+ @Zz)

(26)

of the density of states, we have determined the necessal re the first order transition regime to the paramagnetic state

parameters almost continuously on a grid &fu/J,AT/J) 'S approached gi.,(T=0)~0.881). Evenq,, which agrees

=(10"2,1072). with the spin autocorrelation functiog at T=0, contains
The above formulation of the free energy allows to obtaininteresting behavior. This will be extracted below in terms of

the zero-temperature limit in terms of finite quantities the change of the fermion filling under one-step replica sym-
metry breaking.

— 1 — 1 2 2 J[e ¢ aT/J i
f—EJX(Q1—1)+ ZJa(qi_qz)_’u_EL InjZ Ccav-. 2. Density of states

? ' (24) The filling factor is an integrated quantity over the density

of states folded with the Fermi distribution. We can also

The zero temperature limit of the internal integral is obtainedexploit the solutions, given so far for the order parameters, in

as order to determine the fermionic density of states itself.
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Using similar techniques as in the RS calculation which led to(Eg), the DOS in 1RSB approximation is obtained as

G o _
J C@TI)—1g—[~E+ (I a2+ a1~ 052y)] 21(2T Jx)
Z

1 1 W E — (G
)=—\/—_[cosr(— +cosl‘(—) e‘JX’ZTf (27)
V27 ¥ TJy T T L) fGCaT/J
Z
In the T=0 limit, the saddle-point method allows us to solve the internal integrals exactly, which results in
0 for M<Jg and |E|<Jy
— ce~ (L2)(E|- Ix—3I\A22) 21331~ d) _
eld ax J _
2 f om for M<J§ and Jy<|E|
— ree (112 3Gz~ E)415%(a1-qp)
. EE < a(u3=x2) f G Y . M
p(E — 2, f for u>J= and |E|<u— =
‘/ JV cm 2 2
q:— 02 "
_ i i
0 for M>J§ and ,LL—?X<|E|<M+7X
Lol Ge~ (1/2) (|E|=3x—3\T22)%19%(a1~ 42) _ _
a ay J
LZ fGCm for M>J§ and u+ 7X<|E|
\ 2
(28)
|
where the solutions given by Eq&5) and (26) should be A comparison with the lowest order approximation,
substituted. shown in Fig. 2, combined with analytical results foRSB,

Figure 7 displays the DOS obtained by exact self-gives a clear hint at the exact 1$Golution. Only the first
consistent evaluation at one-step replica symmetry breakingpart for x=0.081<3 E(l)~0 119 does not contain the cen-
The analytical intermediate solutions described before altral band, smcev(,u 005] T=0)=1 in 1RSB. ForE(l)
lowed us to include thd =0 solution into the figurégiven ~ =0.119< u<EL)=/2/7J the central band is present in
as bold solid lines The ensemble of figures shows the band1RSB, while it was absent in RS in this interval. This effect
structure at all temperatures below the freezing temperaturgets in at low temperatures, corresponding to the smaller
T;. The chosen values gf characterize the evolution of the magnetic energy scales set by the new additional order pa-
bands in the range from almost half filling at=0.05) to a  rameter of 1RSB.
filing w=0.7J not far from magnetic breakdown Also in this approximation, the appearance of the central
(~0.88)). peak in the spectral weight is linked to a random field cross-
over line, determined by?f/dq?=0 (see Fig. 1 At u
=0.5J, the central band is already well developed for low

A5t x(1) 1'0- enough temperatures. Here, the lowest order approximation
35 F 08} leads only to a very small band, sinpe=0.5J exceeds only
F ] by little the RS gap edge.
25 ] 0.6 ] ; As for half filling the ratio between the gap widths and the
00 02 04 06 08 0003 0406 08 (finite) DOS at t_he gap edge is constant. For higher prder
S symmetry breaking the gap shrinks and the spectral weight at
0.55F 5.0¢ alu) the edge diminishes correspondingly; thus spectral weight is
] moved into parts of the gap region, as the approximation is
0'45: 3.0t 3 improved step by step.
0.35 ] 3 The crossover from finite low to the exactT=0 solu-

tions, shown by fat lines in the three-dimensio(&D) plots,
redistributes considerably the spectral weight. At higher

FIG. 6. Order parameters; ,q,, nonequilibrium susceptibility ~for examplex=0.7] as shown in Fig. 7, the central band
X, and normalized Parisi parametarin 1RSB calculation as a Shows a maximum also as a function of temperature. The
function of the chemical potentigin units of J) at zero tempera- DOS height in the center decreases again at lowest tempera-
ture. tures, the band becomes broadei at0.

10
0.0 0.2 04 0.6 0.8 0.0 0.2 0.4 0.6 08
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Comparing theT =0 limit of Figs. 2 and 4, which show 3. Infinite breaking of replica symmetry

the RS approximation, with that of Fig. 7 for the first im- 41,4 top of the wedge reachgs=0 in =RSB and at the
proved 1RSB approximation, one finds that replica symmegme time the gap widths approach zero: the DOS still van-
try breaking leads to a refinement of the band structure. Eacj,og at+ u but stays finite yet very small in the vicinity of
further RSB step, until the exaetRSB solution is reached, g_ + 4. The derivation of this feature is analogous to the
will modify magnetic and nonmagnetic bands according one presented in Ref. 8: The ratio between gap width and
the still smaller scales and magnetic order parameters. HoWy g size at the gap edge is invariant under RSB and hence
ever, although one step RSB does not yet yield the exagfy, quantities decay together to zero in the limit of infinite
solution of this model, further refinements are much smalleizgg Here it is assumed that the nonequilibrium susceptibil-
in size and it is possible to imagine the exact result from ouri,[y which determines the gap width at any ordeof the

Fig. 7. For zero temperature, as a function of a continuouslhs'B, approaches zero flar> as in the half filled case. The

varying chemical potential, the 1RSB solution for the densityj e result was inferred from the work of Thouless, Ander-
of states is displayed in Fig. 8. The tendency of RSB effect§On and Palmé?®

is obvious by comparison with Fig. 4.
The central band maintains the wedgelike shape already

observed in the replica symmetric result. Its thick end how- IV. CONNECTION BETWEEN
ever shows a new structure near the discontinuous magnetic FERMION CONCENTRATION
breakdown, while the other end progressed by a large step AND REPLICA SYMMETRY BREAKING

towardsu=0. The distance fronu=0 will be further re-

duced iNkRSB withk>1 and vanishes fok—s o The filling factor can be described by the summation over

the imaginary frequency Green’s functighby

v=TY, G, (€€ (29)

€n.0

D

0

Y
iy %

J
l,:;

&
7

The Green’s function is related to the density of states dis-
cussed before by the usual spectral representafiQn)
=Jde[p(e)/ie—€] [and by p(e)=—(1/m)Im(G%(e))],
which means that the whole fermion propagator changes un-
der RSB. Still the summation over all frequencies could ei-
ther wipe out or maintain this dependence. Indeed, what we
find is a transition between these two alternatives inside the
ordered phase.

We have emphasized the role of replica symmetry break-
ing for quantum dynamics and low-energy excitations. De-

FIG. 8. DOS aff=0 for 1RSB. The central band appears abovespite the absence of quantum dynamics in charge correla-
p~0.119 (DOS, E, and x shown in units ofJ). tions, and despite the absence of spin-charge couplings in the
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Y T* the standard case. However, a detailed mapping between the

14 two models does not seem feasible.
1RSB

In Fig. 9 the fermion filling factor is shown. Pairs of
[VrRgu) ¥1rsdu)] are grouped together for u/J
=0.1,0.2...,0.8. The detailed plots contain two interesting
features: each pair of lines seems to merge asymptotically,
but the lines still cross each other afg(u), staying close
together forTg (u) <T<T;(u). Since the lines cross, having
11 : almost identical slope, it is difficult to determine with suffi-
cient numerical precision the lin€j (w) of crossings. We
L . therefore chose poinf6* (1) where RS and 1RSB lines dif-

0 0.1 02 03 04 05 06 fer only by 10 4. In between these points and the end points
at the freezing temperature corresponding toghgarameter
%f each curve, the RS and 1RSB curves cross at least once.

The interesting fact now is that there is a region below the
freezing temperature, where replica symmetry breaking ef-
the intermediate points*, displayed for the pair at=0.8J, the fects in'the fermion filling factor almost vanish. While this
filings vgs and vygsg differ by only O(10~%). Zeros of vgg ~ OCCUrS in the charge related quantity, the magnetic observ-
— virsp €Xist Within T* (1) <T<T;(x) and at lowT for x>0.7).  ables such as order parameters show large RSB effects. One

may find it surprising that RSB effects appear at all in the
o ] ] ) fermion concentration.
Hamiltonian, we find that replica symmetry breaking affects | gddition to the separation of magnetic and nonmagnetic
spin-correlations and charge-average in a qualitatively differhangs described before for the ordered phase, one also finds
ent way. a different exposure of charge- and spin-related quantities to

In one-step breaking we report in this section a crossovethe effects of replica symmetry breaking. None of the quan-
line, which separates a regime of almost invisible RSB ef+ities is excluded from this, despite the fact that the model
fects in the filling factor and i from one with large RSB does not contain a spin-charge interaction. The only coupling
effects in these quantities. The magnetic order parametds mediated by the chemical potential.
does not show any sign of this crossover. The announcement At zero temperature, this crossover is most pronounced.
of these effects evokes on one hand the old, resolveBeyond the crossing point of the two approximationgat
problent® of absence of RSB below the freezing tempera-~0.7J both lines stay close together as if no symmetry-
ture, and on the other hand the phenomenon of a Gabayreaking effect would occur at all betwegrf and the dis-
Toulouse line’ followed by a crossover to a region with continuous breakdown of magnetic orderngt~0.881]. On
RSB effects in all order parametéfs. the other side, fou<u* the RSB effect is large. Moreover,

The first case bears no relation with our case: the presetihe right-hand side of Fig. 10 shows for comparison the nu-
model is static in charge and spin correlation and the particumerical result for the corresponding TAP equation of finite-
lar role of dynamic effects® which occurred in the trans- size system$® This generalized TAP result should corre-
verse field Ising model, do not exist here. The crossover linspond to the full Parisi solution witbPRSB. At T=0 the
describing the onset of RSB in transversal correlations of dilling v starts to differ from one, when the chemical poten-
Heisenberg spin glass in a magnetic field, however, has @#al moves through the gap edge. The gap size depends on
vague resemblance, provided we imagine charge degrees thfe number of RSB steps and decreases to zero im REB
freedom as transversal with respect to spin. The chemicaolution. Thus it is clear that the left end point of the filling
potential then roughly corresponds to the magnetic field ircurve v(u) moves into ¢=1,.=0). The change from the

FIG. 9. Results for the temperature dependence of the fillin
factors in RS and 1RSB are grouped together for<Qu1J<0.8
with Au/J=0.1 (T,Ax given in units ofJ). The right endpoints of
all pairs of lines denote the freezing temperatufg&u), while at

v
1.6
1.5}
1.4} 1.6 _ ................................ ................ wq .............. -
N s :
1.3
14
1.2
1.2
1.1} : s
A ; ;
1M 0 0.2 04 ope 0.8 1 1.2

FIG. 10. The filling factor aif =0, shown as a function of the chemical potenga(T, in units ofJ). The RS and 1RSB results of
this paper are included in the figure on the left-hand side, while on the right the numerical solution of the corresponding TAP equations is
taken from Ref. 18 for comparison. Thef¢,denotes the system size.
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calculated one-step RSB solution to this exact one is mucfihis was concluded by means of an exact relation for

smaller than the one from RS to 1RSB. The shape of thénfinite-step symmetry breaking. _

1RSB solution resembles almost perfectly the one found nu- We thus demonstrated strong RSB effects on the magnetic
merically from the generalized TAP equation. Also quantita-order parameters, on the density of std®S), on quantum

tive agreement is obtained fqr<0.5). The nonvanishing dynamics included in the fermion Green’s function, and even

kRSB corrections fok=2 and higher can be expected to be 0N the integrated DOS, which equals the fermion concentra-
almost invisibly small. Deviations in the high-region ~ tion atT=0 (seen as a function of chemical potential

might be due to numerical problems of the algorithm in Ref. It IS intéresting to compare the evolution of central non-

19 either because of the vicinity of the first order phase tranM2dnetic bands in disorder-free Hubbard and Kondo lattice
sition or due to finite-size effects. model$ with the one of the present random interaction

In general, however, the TAP solution is already in goodm:dseI;:\Zetrrlzlep(;fri;p '2 ﬂ%séror?grrmeilﬁ thtflesifusrﬁ: ZJ_r it\)/ﬁ]nd
agreement with the analytical 1RSB solution, whose extendaP y y g pe-giving

) S . . mechanism can then be particularly appreciated.
sion to the full RSB solution is obvious. The flat increase of Our present results for the nonitinerant spin glass also

the integrated quantity(u) from 1 (probably with slope jqh1y important questions and suggestions on itinerant ex-
zerg in the generalized Parisi solution is consistent with theiansions. If one speculates that a pseudogap is filled by cou-
fact that for rare nonmagnetic regions the central band doe@ing to a conduction band, for example, the question of
not start as & peak, but as function with finite height and a Anderson localized states around the Fermi level must be
width increasing smoothly from zero asbecomes finite.  raised. The more fundamental questions will, however, be
whether replica symmetry breaking survives in the presence
V. SUMMARY AND OUTLOOK of transport. In Hubbard models the hopping expansion
) around the atomic limit is singular, but this does not seem to
We presented a complete analysis of the band structure ¢fe the case in the itinerant spin glass. If so, the possibility of
the fermionic Ising spin glass for arbitrary doping. The nu-|ocalization in the pseudogap regime of small DOS will not
merical study for finite temperatures was accompanied bynly be decisive for ac and dc conductivity but will also
analytical results foif =0, all evaluated up to first step rep- carry signs of replica symmetry breaking.
lica symmetry breaking. A three-band structure formed by Since exact mean-field solutions of metallic spin glass
two magnetic side bands and a central nonmagnetic banaodels are at least as hard to find asdkex solution of the
was obtained in the ordered phase. The nonmagnetic centrdlubbard model, meaningful approximate solutions are wel-
band shows rapid growth as the temperature decreases, m@me in both cases. In particular, a comparison with the fully
also nonmonotonic behavior. Its becomes particularly profrustrated Hubbard model in infinite dimensihsvould be
nounced in the low-temperature regime below a crossove®f high interest.

line defined by#?f/dq?=0. While a random-field-like insta-
bility is prevented by the off-diagonal order parameters
q2*®, the sign change of this second derivative of the free We are indebted to M. Kiselev, E. Nakhmedov, and D.
energy implies a strong increase of the deviation from haliSherrington for discussions. This work was supported by the
filling, which is of course related to the central band. Deutsche Forschungsgemeinschaft under Contract No.

At T=0 we found a complete separation of the bands, thedp28/5-1 and by the SFB410. Further support by the Villigst
separation being finite in any approximation using a finitefoundation (H.F.) and by the EPSRCGR.O) is gratefully
number of RSB steps and finally zero in the exact solutionacknowledged.
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