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Self-organized three-band structure of the doped fermionic Ising spin glass
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The fermionic Ising spin glass is analyzed for arbitrary filling and for all temperatures. A self-organized
three-band structure of the model is obtained in the magnetically ordered phase. Deviation from half-filling
generates a central nonmagnetic band, which becomes sharply separated atT50 by ~pseudo!gaps from upper
and lower magnetic bands. Replica symmetry breaking effects are derived for several observables and corre-
lations. They determine the shape of the three-band density of states, and, for given chemical potential,
influence the fermion filling strongly in the low-temperature regime.
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I. INTRODUCTION

Frustrated magnetic correlations in fermionic systems
the subject of current and promising research in mod
condensed-matter theory. Generalized~fermionic! spin glass
models and certain Hubbard models form two model clas
for theoretical investigations of these phenomena in dis
dered and clean systems, respectively. The coupling to a
ticle reservoir allows to control important parameters such
fermion concentration or effective spin density by means o
chemical potential. The important experimental tool of do
ing often leads to quantum phase transitions~QPT!, metal-
insulator transitions, or magnetic phase transitions be
prominent and standard examples thereof. The chemical
tential m ~or, alternatively, the fermion fillingn) is thus a
relevant variable for the phase diagram. In quantum s
glass theory, a well-known model showing a QPT as
effect of a disordering transverse fieldh' is the transverse
field Ising model; in the present paper, the chemical poten
m is considered instead, playing the role of a generali
transverse field:m couples to the charge, whileh' couples to
transverse spin degrees of freedom. Since particle num
operators and Ising spin operators commute, the chem
potential does not generate quantum spin dynamics. On
other hand, single fermion operators do not commute w
the spin interaction and hence quantum dynamics always
ists in the fermionic spin glass models. This kind of dynam
cal behavior is reflected for example in the fermion propa
tor and its spectral density determines the band structure

A famous example for doping effects on magnetism is
breakdown of antiferromagnetic order in Hubbard-ty
models.1 The doped fermionic Ising spin glass contains
couple of close relationships with the Hubbard model. Co
parable phenomena in the band structures appear and w
discussed. However, it must also be noted that problem
perturbative expansions of the Hubbard model leave v
controversial the theory of doping effects2 in contrast to the
present case of an insulating fermionic spin glass. A hig
interesting comparison of central bands emerging in
~infinite-dimensional! Hubbard model and in Kondo lattices
including a discussion of implications for transport in ge
eral and the Mott transition in particular, was given
Nozières.3
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A. Aim of the paper

It has been the purpose of the present work to explore
detail the dependence on the chemical potentialm, and to
improve thus the understanding of the low-temperat
glassy phase. The effects of particle hole symmetry break
and of replica symmetry breaking~RSB! on the band struc-
ture are derived for all temperatures and chemical poten
within the ordered phase. It is found that breaking these s
metries splits up a spin glass pseudogap into two sim
pseudogaps, which delimit a central nonmagnetic band,
upper gap accommodating the Fermi level. Strong reacti
to doping such as crossover and possible new transit
deep in the ordered phase, still far below the critical dop
which destroys random magnetic order in favor of the pa
magnetic phase, are also reported in this paper. Usu
magnetically interacting systems realize saturated magn
order in the ground state at zero temperature, even if
interaction is frustrated and random such that magnetic o
consists of randomly oriented frozen-in magnetic momen
But doping must be expected to reduce the magnetic orde
all temperatures as an effect of the diminished effective s
density. It is well known that spin glass order requires
mean-field theory with more than one order parame
q1 ,q2 , . . . ,qk11 in case ofk RSB steps, which, fork→`,
form the Parisi order-parameter function4–7 q(x) defined on
an interval 0<x<1. It is a very important question to se
how the breakdown of frozen magnetic order at critical do
ing is approached in the presence of such a relatively c
plicated order parameter. For this purpose it is the neces
to achieve a full description of the ordered phase including
particular theT50 limit. This is done in the present pape
The results of the paper also show that not only the sim
box-shaped form ofq(x) at T50, with a box height that
equals the saturated Edwards-Anderson order parameter
also the low-temperature behavior of the order parame
which was intensively studied once for the standard
model,6 plays a role for the band structure of the doped f
mionic Ising spin glass.

B. Relations to preceding publications

In previous papers, the density of states of the fermio
Ising spin glass (ISGf) was analyzed in detail for hal
filling.8 A pseudogap was obtained in a solution with in
9030 ©2000 The American Physical Society
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nitely many steps of replica symmetry breaking~RSB!.
Hence the effect of this infinite breaking of the discrete sy
metry resembled the one of breaking a continuous symme
which commonly leads to soft modes. In the present ca
soft single particle excitation energies were created, un
lated to the existence of two-particle soft modes, for wh
the single particle density of states~DOS! appears only as a
weight.

Replica symmetry breaking introduces a sort of statist
fluctuation effects in fermionic spin glasses, which determ
the band shape. In particular the softening of gap ener
occurs like a one-dimensional quantum critical phenomen

This single dimension can be viewed as the replica
mension, while a similar role is played by the time in t
dynamic mean-field theory of the infinite-dimensional Hu
bard model. It was, however, also found for the ISGf that the
finer structures induced by symmetry breaking in repl
space were directly felt in the quantum dynamic behavior
the subclass of fermionic correlations.

The extension to doping and of general arbitrary fillin
which affects size, position, and splitting of gaps as
scribed by the results of this paper, has been a nontri
task. First, the numerical calculations for arbitrary tempe
tures are rather involved. Moreover, in contrast to half fi
ing, the analytical low-temperature expansion required a
ferent technique which consists in a combination of
saddle-point technique with a generalized Sommerfeld
pansion as introduced by da Costaet al.9 The
Sommerfeld–da Costa method is built on a low-tempera
~formal! analogy between a Fermi distribution and
effective-field distribution in spin glasses: the role of en
gies close to the Fermi level is in the present case played
the modulus of the effective spin glass field being close
m2x̄/2. This quantity, wherex̄ stands for the Thouless
Anderson-Palmer~TAP! susceptibility,10 is negative or zero
~hence ineffective atT50) for half filling and positive in the
doped case. The transition throughm5x̄/2 is continuous.

The results of this paper are finally obtained by combin
~rather than purely complementary! numerical and analytica
analysis. This ‘‘numerico-analytical’’ study is based on
replicated field-theoretical treatment of the random Ising
teraction problem.

The present paper also involves and revisits earlier res
for the tricritical phase diagram11 away from half filling.

The low-temperature limit of the non-half-filled mod
and the way the phase transition into the paramagnetic p
takes place had still been an open problem. This was rel
to several problems: first, information about the full replic
broken solution @removing a negative Almeida-Thoules
~AT! eigenvalue# was only available at half filling, and sec
ondly, another AT eigenvalue turns complex due to the r
lica limit and the question of stability is raised again. In th
article we assume that the solution according to stand
replica symmetry breaking is stable throughout the orde
phase~see a more detailed discussion of the stability prop
ties in Refs. 12 and 13!.

C. Outline of the paper and a guide to the reader

Section II is devoted to a concise presentation of
model and of some of the formalism used here. The m
-
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part of the paper, Sec. III, presents numerical~for all tem-
peratures! and analytical results~at T50) for the fermionic
density of states. Intermediate results for order parame
fermion concentration, and relevant susceptibilities, intere
ing in its own right, are in contrast to the dynamical prop
gator determined from the free energy. In the first part
Sec. III the replica symmetric approximation is solved, t
three-band structure being already revealed, yet with a cr
approximation of gaps. The second part presents one-
symmetry broken solutions, which provide in comparis
with the zeroth approximation a good outlook on the ex
solution. The extension to infinite breaking and of its k
features is discussed and can be visualized rather easil
comparing, e.g., Fig. 2 with Fig. 7, and also Fig. 4 with F
8. The splitting of the spin glass generated charge gap un
particle-hole symmetry breaking~finite m) and the related
central nonmagnetic band are the important results, wh
must have implications on the behavior of weakly itinera
generalized models~to be studied in the future!.

The reader, who is interested primarily in the curren
most advancedanalytical results~in 1RSB approximation!
may jump to Eq.~28!, using the definitions~6! and ~23!
together with the free energy of Eq.~22!, which is sufficient
to determine self-consistently and uniquely all paramet
needed in Eq.~28!. Intermediate results are also given.
first experience with the numerical and analytical nonpert
bative technical difficulties may, however, be sought at
level of replica symmetric equations given in Sec. III A up
Eq. ~21!.

In Sec. IV the spin glass effect on the averaged ferm
concentration is shown: magnetic order introduces rat
strong replica symmetry breaking effects into this simpl
charge related quantity. The one-step symmetry broken
proximation shows a kind of transition inside the order
phase, as can be seen in Figs. 9 and 10~left!. Moreover, a
nice agreement is found with an independent numerical
lution of the corresponding TAP problem forn(m). The re-
sult shows how RSB effects, caused by the frustrated s
interactions alone, are also felt in charge variables becaus
the coupled charge and spin fluctuations.

II. DOPED FERMIONIC ISING SPIN GLASS

The ISGf and some of its extensions have been discus
in preceding publications.12,14,15For this reason we only in-
clude in this introductory section an overview over tho
features of the model and of the technicalities that are n
essary to understand the present work.

The grand canonical Hamilton operator

K52(
i , j

Ji j s i
zs j

z2m(
i

ni ~1!

introduces the many-body interaction of fermionic spins w
fully frustrated random couplingsJi j . Stripping off the fac-
tor \/2, the spin and occupation number operatorssz andn
are given by the fermion operators assz5a↑

†a↑2a↓
†a↓ and

n5a↑
†a↑1a↓

†a↓ , respectively. We choose the random inte
action couplings to be distributed by

P~Ji j !5
1

A2pJ
e2Ji j

2 /(2J2). ~2!



im
w
-
ua

e

e
c-
st

e
r
ld

th
t

s
he
a
-
a

-
o

e
to

ia

l

a

n
d

v-

e
-
the

en-
the

the

er-

si-
ow
ob-

ght

n-

a

t

9032 PRB 62H. FELDMANN AND R. OPPERMANN
This generates magnetic correlations independent of t
and of infinite range in real space. For the sake of clarity
will below keep the varianceJ2 as a parameter in the formu
las, whereas it is set equal to unity in the numerical eval
tions.

Particle-hole transformation and them↔2m symmetry.
The Hamiltonian ~1! is invariant under the particle-hol
transformationa↔a† only atm50, but up to a constant it is
invariant under (a↔a†,m↔2m) for all m. Thus we can
restrict the discussion of the density of states to the cas
non-negative chemical potential, which implies a filling fa
tor n>1. Results for hole doping can be obtained by sub
tuting m by 2m andn by 22n.

The average over the interaction distribution is perform
by means of the replica trick. The averaged replicated pa
tion function can be obtained in terms of Grassmann fie
c, c̄, being the usual anticommuting eigenvalues of
original fermion operatorsa anda† in the fermionic coheren
states. Including also generating~anticommuting! fieldsh,h̄,
the partition function in these fields~generating functional! is
given by

^Zn&av5E $DJi j %E $Dc̄ is
atDc is

at%S) P~Ji j ! D
3expE

0

1/T

dt~2c̄ is
at]tc is

at2K1h is
atc̄ is

at2h̄ is
atc is

at!.

~3!

In the grand canonical HamiltonianK the Grassmann field
c and c̄ also replaced the original fermion operators. In t
exponent of Eq.~3! the summation convention over replic
index a, spin indexs, and site indexi is assumed. The sub
sequent steps, which are described in detail in Refs. 14
15, are listed by: explicit Gaussian integration over theJi j ,
transformation from imaginary timest to fermionic Matsub-
ara frequenciese l5(2l 1 1

2 )pT, and two consecutive decou
pling procedures. An eight-fermion correlation term is br
ken down by a matrix fieldQ. The saddle-point solution
^Qab& is chosen in accordance with Parisi’s replica symm
try breaking~RSB! scheme, before a second decoupling
bilinear Grassmann terms can be achieved using auxil
(c-number! decoupling fieldszi . The ^Q& matrix stands for
the spin correlationŝsasb&, introducing the off- diagona
~replica-overlap! order parametersq1 ,q2•••qk11 according
to the Parisi scheme4,5 and the diagonal oneq̃[^Qaa& which
takes care of the spin autocorrelation function fora5b.

After all, the replicated partition function is expressed

^Zn&av5expS 2
J2

4T2
Tr Q2D E $Dc̄s

alDcs
al%

3H)
k
E

zk

GJ exp~ c̄s
algals

21cs
al1hs

alc̄s
al2h̄s

alcs
al!,

~4!

where the site index has disappeared due to the infinite-ra
assumption and the resulting space-homogeneous sa
point. The abbreviations
e
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gal↑
215H̃a1 i e l1m,

gal↓
2152H̃a1 i e l1m, ~5!

H̃a5JAqkzk111JAqk212qkzk1•••1JAq̃2q0z0
a

illustrate the evolution of a fermion, described by the nona
eraged inverse propagatorg21, in a realization of the random
effective field H̃a @spatial propagation is excluded by th
definition of model~1!#. The Gaussian integrals, which ap
pear frequently throughout the paper and which describe
probability of the realizations of the effective fieldH̃, has
been reduced to the short form

E
z

G

f~z![
1

A2p
E

2`

`

dze2(1/2)z2
f~z!. ~6!

After this field-theoretical setup the free energy and the g
erating functional, respectively, are obtained by means of
replica trick, f 5 limn→0(T/n)(12^Zn&uh50). For fermionic
correlation functions the derivatives with respect to theh
fields are taken prior to then→0 limit, e.g., for the Green’s
function

Gs
aa~ i e l !5 lim

n→0

1

^Zn&av

d

dhs
al

d

dh̄s
al ^Z

n&av. ~7!

Using standard criteria of thermodynamics, one obtains
phase diagram of the ISGf as shown in Fig. 1.~We setkB ,
and\ equal to 1 everywhere in the paper, and display en
gies in all figures in units ofJ.!

A tricritical point separates a line of second order tran
tion at high temperatures from first order transitions at l
temperatures. The latter phase boundary is very hard to
tain numerically. We therefore approximated it as a strai
line down to the best known estimate for theT50 transition,
which is obtained below.

FIG. 1. Phase diagram of the ISGf (T andm displayed in units
of J). The straight line connecting the tricritical point at (m
50.961J, T5J/3) with the T50 first order transition atm
50.881J approximates linearly the thermodynamic first-order tra
sition into the paramagnetic phase~PM!. The dashed lines locate

the crossover line]2f /]q̃250 connected to the appearance of
central density-of-states peak in replica symmetric~RS! and in one-
step symmetry broken~1RSB! approximation, respectively. A
`RSB this line will reach the point (T50,m50).
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III. MAGNETIC AND NONMAGNETIC BANDS

A. Replica symmetric results

Despite its instability against RSB the replica symmet
solution is nontrivial and must be understood in detail, sin
it forms the basis for the improved solution presented bel
Moreover, in a relatively simple description, this approxim
tion contains features of the self-organized transition fr
single-band structure above freezing temperature to ei
two bands for half filling or a three-band structure, whi
occur below freezing of the magnetic moments. The qua
of this approximation decreases in the low-temperature
gime, as the next section will show. The role of symme
breaking amounts to a softening of the gaps and to a rem
of sharp dropoffs of the density of states at low temperatu
as demonstrated earlier for the case of half filling.8 At half
filling, a pseudogap results between upper and lower m
netic band.

In this section we first present self-consistent numer
solutions for the temperature range from the fillin
dependent freezing temperature down to very lowT of order
1024J. The evaluation of the density of states employs n
merical solutions of the self-consistency equations for s
glass order parameterq and linear susceptibilityx as a func-
tion of temperature and parametrized by the chemical po
tial m. The fermion concentration is also calculated as
function of m. This analysis is supplemented by an exacT
50 calculation.

1. Free energy and resulting self-consistency equations
at finite temperatures

The following results are derived from the effective L
grangian and from a generating functional for general fer
onic correlation functions of the model. Analytical solutio
are found in the sense that the number of nested integra
becomes minimized before, in a final step, the observa
are evaluated numerically. In order to facilitate the ze
temperature limit, it is useful to change variables by int
ducing the linear susceptibilityx5(J/T)(q̃2q). Since q̃
2q decays linearly withT in this limit, the finite linear sus-
ceptibility is a helpful quantity which reduces the degree
1/T divergences~which need to be compensated!. For this
reasonf is better expressed in terms ofq andx than in terms
of q and q̃.

The free energy~density! f is obtained in the replica sym
metric approximation as

f 5
1

4
JxS xT

J
12q22D2T ln 22m2TE

z

G

ln C ~8!

with

C5coshS JAqz

T D 1coshS m

T De2(1/2T)Jx. ~9!

Extremalization of expression~8! with respect toq, x, andm
yields the coupled self-consistency equations

05]qf 5]x f ~10!

and allows us to determine the filling factor
e
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n52]m f . ~11!

The results are finally used in the band-structure calculat

2. Energy and self-consistency equations in the TÄ0 limit

The zero temperature limit deserves separate attention
several reasons. As can be seen from the thermal free en
divergences in this limit trouble the numerical work at lo
temperatures, but nondivergent analytical results provid
control.

In this case, an analytical approximation was also o
tained, applying an expansion in powers ofm2x/2. Good
agreement was found almost up to the magnetic breakdo

The equations forT50 were obtained by a variant9 of the
Sommerfeld method. For the density of states the stee
descent method is used in addition. As usual, this limit
lows to simplify the equations. We obtain form, 1

2 Jx

E[ f ~T50!5
1

2
Jx~q21!2m2A2

p
JAq ~12!

while for m. 1
2 Jx, theT50 energy becomes

E5
1

2
Jx~q21!2m2S m2

1

2
Jx DerfF 1

A2q
S m

J
2

x

2D G
2JA2q

p
e2(1/2q)(m/J2x/2)2. ~13!

Extremalization of these energies yields self-consiste
equations which couple the magnetic correlationsq and x
with the filling factor as a charge average.

For m/J.x/2 we derive the following relations betwee
zero-temperature parameters:

q512erfF 1

A2q
S m

J
2

x

2D G , x5
2

A2pq
e2(1/2q)(m/J2x/2)2,

~14!

n511erfF 1

A2q
S m

J
2

x

2D G , q5q̃522n. ~15!

One may derive these solutions as a function of eithern or
m. The T50 relationsq5q̃ and q̃522n hold also for 0
<m/J,x/2, whereas in this interval one simply obtains

n522q̃51, x5
2

A2pq
. ~16!

3. Density of states

The density of states is obtained as usual from the M
subara Green’s function by analytic continuation

r~e!52
1

p
Im G~e1 i0! ~17!

at any order of RSB. In terms of the shifted variableE5e
1m the DOS is symmetric and reads in RS approximatio



e

a-

9034 PRB 62H. FELDMANN AND R. OPPERMANN
FIG. 2. Density of states
r(T,E5e1m) shown as a func-
tion of all T below the freezing
temperature, as calculated in th
replica symmetric approximation
at specific chemical potentialsm
~in units ofJ). The bold front line
represents the independent an
lytical T50 result.
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r~E!5

cosh
m

T
1cosh

E

T

A2pTJx
E

z

G1

C expS 2
~E2JAqz!2

2TJx
2

Jx

2TD .

~18!

The solutions forq(m,T) and x(m,T) are employed in the
calculation of the electronic density of states for the wh
spin glass phase. The set of Fig. 2 shows that a central b
emerges for high enough chemical potentials. In the RS
proximation the band gap discussed previously for h
filling8 is visible up tom5 1

2 Eg
(0)5J/A2p. When the chemi-

cal potential approaches the band-gap value~we show for
example the DOS atm50.39J), a tiny central band shows u
at low temperatures, but loses its weight again completel
theT→0 limit in favor of the magnetic side bands. One c
connect this feature to a line given by]2f /]q̃250, which,
starting at the tricritical point of the phase diagram, ben
into the gap edge12 at T50. This line, which is also shown in
the phase diagram in Fig. 1, wraps this small precursor of
central band~see Fig. 1!. For chemical potentials exceedin
the gap edge valueJ/A2p, the central band emerges alrea
at higherT and survives atT50, where it becomes a pur
Gaussian function ofE5e1m with finite height and sym-
metric cutoffs. In the RS approximation both the cent
band and the magnetic bands are sharply cut off and s
rated by gaps of identical widthx. As replica symmetry
breaking will show, the gap size is given by the nonequil
rium susceptibilityx̄, which agrees withx only in this low-
est order approximation—in this section we continue to d
cuss the gap in terms ofx. This quantity which separate
central from upper band and central from lower magne
band begins to vary withm for m. 1

2 Eg
(0) .

Figure 2 combines the numerical finite temperature ca
lations of r(T.0,e) with the exactly calculated function
r(T50,e) given below, making use of the numerical sol
e
nd
p-
lf

in

s

e

l
a-

-

-

c

-

tions for order parameter and susceptibility. As emphasi
by the thick lines, theT50 density of states can be decom
posed into isolated contributions of the three bands. Tak
advantage of the symmetry one may use the energy vari
E[e1m,

r~T50,E!5r2~0,E!1rc~0,E!1r1~0,E!, ~19!

where the central charge band is given by

rc~0,E!5
1

JA2pq
e2E2/(2J2q)Q~m/J2x/22uEu/J!.

~20!

Upper and lower magnetic bands contribute

r6~0,E!5
1

JA2pq
e2(uEu/J2x)2/(2q)Q@ uEu/J2~m/J1x/2!#.

~21!

Let us first discuss the numerical results in the RS
proximation. Figure 3 shows the redistribution of spect
weight asT decreases for certain fixed values of the chemi
potential:

~i! Within the hard gap regime 0,m,J/A2p, where
n(T50)51, a pronounced central band is absent; only in
small range of low but finite temperatures a tiny midg
peak is observed. We find that its existence is clearly link
to the characteristic line mentioned above. This line se
rates the domain of the phase diagram, where the free en
is minimized as a function ofq̃, from the one where it is
maximized. This latter property is unrelated to the we
known maximization off by the SG order parameterq; in
turn the presence ofq is needed to render a solution wit
]2f /]q̃2,0 stable. For the present case we find a comp
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Almeida-Thouless eigenvalue~for replica-diagonal perturba
tion!, which does at least not exclude stability apart from
Parisi RSB.

~ii ! For chemical potentials large enough to sustain fillin
different from one electron per site, i.e.,m.J/A2p, three
bands develop as the temperature falls belowTf and become
separated asT→0. The Fermi level lies between the centr
charge band and the upper magnetic band. The area u
the central peak belongs to the deviation from half fillin
described byn21. The lowT results~see Fig. 4! confirm the
numerical observation that the central band width is given
Ecb

(0)52m2Jx at T50, that both left and right gap width
obey Eg

(0)5Jx, while at half filling the relation readsEg
(0)

52Jx.
One may compare this approximate solution with an it

FIG. 3. Density of states: evolution of central peak and therm
band-gap filling for temperaturesT50.3J,0.1J,0.01J at various
chemical potentials~displayed in units ofJ).

FIG. 4. Density of states as a function of energyE and chemical
potential m at T50 ~all quantities shown in units ofJ). For m
.J/A2p the central charge band appears in the middle of the h
gap atE50. In this case, the Fermi level lies between the cen
and the upper magnetic band.
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ated perturbation theory solution of the half filled Hubba
model at zero temperature:1 there a hopping generated ban
shows up within the Hubbard gap insulating phase. We
not attempt to discuss any result for itinerant models~in the
sense that fermionic hopping terms are allowed in the Ham
tonian!, but it is nevertheless clear that the density of sta
derived here for the insulating model, can have implicatio
on itinerant systems and their transport behavior. RSB
fects, as worked out in the next section, scatter some spe
weight into the hard gap region, exempting the Fermi lev
A strong depletion of states remains, however, in the h
gap regions of 0RSB, even for moderate finite temperatu
where RSB effects become negligible. In disordered syste
regions of very small density of states often imply Anders
localized states and in this sense correspond to a hard
region of a disorder-free model. A metal insulator transiti
could then occur also as the effect of a dynamical resona
peak ~at the Fermi level! generated by a transport mech
nism. The present nonitinerant model moreover offers
chance to study how statistical RSB effects shape the ce
band, and compare this with a dynamical mechanism
disorder-free interaction models.3 Of course, there are differ
ences between the physical character of these central ba
but it is important to study the similarities too, not only b
cause of the impurity analogy of thed5` Hubbard model.3

A complete comparison will, however, require solutions
the doped Hubbard model and of the itinerant extension
the present spin glass model.

We note that the density of states can be used to de
mine all one particle observables and excitations. For
ample the fermion concentration, which was given in E
~11! as a derivative of the free energy, can be rederived fr
the Green’s function~see Sec. IV below! and may serve as a
self-consistency check. It should be remarked that as usu
random systems, the reduction of averaged two particle
erators to the averaged one particle Green’s function is
possible in general: in particular the Heisenberg equation
motion for a fermion field involves a random interaction
the present case and this must be taken into account in
ting up, for example, a relation between thermodynamic
tential and one particle Green’s function. We remark that
charge gap seen in the density of states implies only ex
nentially small corrections to the entropy of the SK mod
Thus theT50 entropy in 0RSB is negative, it become
much less negative in the improved 1RSB solution belo
and~still identical to the one of the SK model! is believed to
become zero in the full Parisi solution. The finite part of t
entropy atT50 stems from the power-law thermal decay
the order parameter~s!, while the charge gap affects th
~replica-diagonal! spin autocorrelation and charge correl
tion, which are related by an operator identity.

B. Improved solutions with broken replica symmetry
and strong low-temperature effects

1. Free energy and order parameters

One-step replica symmetry breaking yields a large s
towards the exact solution: it allows us to guess propertie
it quite frequently. At the beginning of this section, it
useful to rewrite the 1RSB approximation of the free ene
in terms of parameters which also allow to obtain finite ze

l
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temperature limits. In this way all self-consistent equatio
derived from the stationarity condition for the free energ
contain aT50 limit for meaningful finite physical quanti
ties. It is therefore convenient to use the nonequilibrium s
ceptibility, linear susceptibility, and ~temperature-
normalized! Parisi parameter denoted, respectively, byx̄

5(J/T)(q̃2q1), x5x̄1a(q12q2), anda5Jm/T ~we have
chosenx̄, x, anda as dimensionless!.

In these terms the free energy density reads

f 5
1

4
JF x̄S x̄T

J
12q122D 1a~q1

22q2
2!G2T ln 22m

2
J

aEz2

G

ln E
z1

G

C aT/J ~22!

with

C5coshS J

T
~Aq12q2z11Aq2z2! D1coshS m

T De2(J/2T)x̄.

~23!

The stationarity condition onf leads to the saddle-point equ
tions for the parametersx̄, q1 , q2, anda, which need to be
determined as functions ofm and T. The derivation of the
thermal self-consistency equations is lengthy. For mode
temperatures, only the numerical solutions are instruct
We present them in Fig. 5 as a function ofm for three char-
acteristic temperatures. In order to facilitate the calculat
of the density of states, we have determined the neces
parameters almost continuously on a grid of (Dm/J,DT/J)
5(1022,1022).

The above formulation of the free energy allows to obt
the zero-temperature limit in terms of finite quantities

f 5
1

2
Jx̄~q121!1

1

4
Ja~q1

22q2
2!2m2

J

aEz2

G

lnE
z1

G

C aT/J.

~24!

The zero temperature limit of the internal integral is obtain
as

FIG. 5. Order parametersq1 ,q2, nonequilibrium susceptibility

x̄, and normalized Parisi parametera[Jm/T, shown for one-step
replica symmetry breaking~1RSB!, as a function of the chemica
potential m at selected temperaturesT50.05J ~solid lines!, T
50.15J ~dashed lines!, andT50.3J ~dotted lines!.
,
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s-
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d

E
z1

G

C aT/J→ 1

A2p
E

2`

`

dz1e2(z1
2/2)eauAq12q2z11Aq2z2u

5
1

2
eaAq2z21(1/2)a2(q12q2)

3F11erfS Aq2z21a~q12q2!

Aq12q2A2
D G

1
1

2
e2aAq2z21 ~1/2! a2(q12q2)

3F11erfS 2Aq2z21a~q12q2!

Aq12q2A2
D G ~25!

for m/J,x̄/2 and

E
z1

G

C aT/J5
1

2
eaAq2z21(1/2)a2(q12q2)

3F 11erfS Aq2z22S m

J
2

x̄

2
D 1a~q12q2!

Aq12q2A2
D G

1
1

2
ea(m/J2x̄/2)F erfS S m

J
2

x̄

2
D 2Aq2z2

Aq12q2A2
D

1erfS S m

J
2

x̄

2
D 1Aq2z2

Aq12q2A2
D G

1
1

2
e2aAq2z21(1/2)a2(q12q2)

3F 11erfS 2Aq2z22S m

J
2

x̄

2
D 1a~q12q2!

Aq12q2A2
D G
~26!

for m/J.x̄/2.
The precedingT50 results are the basic ingredien

which we use analytically to get the self-consistency eq
tions at zero temperature in terms of finite parameters.
sults of our final numerical evaluation are collected in Fig.

All of these parameters show a remarkable variation
fore the first order transition regime to the paramagnetic s
is approached atmc1(T50)'0.881J. Evenq1, which agrees
with the spin autocorrelation functionq̃ at T50, contains
interesting behavior. This will be extracted below in terms
the change of the fermion filling under one-step replica sy
metry breaking.

2. Density of states

The filling factor is an integrated quantity over the dens
of states folded with the Fermi distribution. We can al
exploit the solutions, given so far for the order parameters
order to determine the fermionic density of states itse
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Using similar techniques as in the RS calculation which led to Eq.~17!, the DOS in 1RSB approximation is obtained a

r~E!5
1

A2p
A 1

TJx̄
FcoshS m

T D1coshS E

TD Ge2Jx̄/2TE
z2

G
E

z1

G

C (aT/J)21e2[ 2E1(JAq2z21JAq12q2z1)] 2/(2TJx̄)

E
z1

G

C aT/J

. ~27!

In the T50 limit, the saddle-point method allows us to solve the internal integrals exactly, which results in

r~E!5
1

A2p

1

JAq12q2

¦

0 for m,J
x̄

2
and uEu,Jx̄

e(a/J)uEu2ax̄E
z2

Ge2~1/2!~ uEu2Jx̄2JAq2z2)2/J2(q12q2)

E
z1

G

C m for m,J
x̄

2
and Jx̄,uEu

ea(m/J2x̄/2)E
z2

Ge2 ~1/2! ~JAq2z22E)2/J2(q12q2)

E
z1

G

C m for m.J
x̄

2
and uEu,m2

Jx̄

2

0 for m.J
x̄

2
and m2

Jx̄

2
,uEu,m1

Jx̄

2

e(a/J)uEu2ax̄E
z2

Ge2 ~1/2! ~ uEu2Jx̄2JAq2z2)2/J2(q12q2)

E
z1

G

C m for m.J
x̄

2
and m1

Jx̄

2
,uEu

~28!
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where the solutions given by Eqs.~25! and ~26! should be
substituted.

Figure 7 displays the DOS obtained by exact se
consistent evaluation at one-step replica symmetry break
The analytical intermediate solutions described before
lowed us to include theT50 solution into the figure~given
as bold solid lines!. The ensemble of figures shows the ba
structure at all temperatures below the freezing tempera
Tf . The chosen values ofm characterize the evolution of th
bands in the range from almost half filling atm50.05J to a
filling m50.7J not far from magnetic breakdown
(;0.88J).

FIG. 6. Order parametersq1 ,q2, nonequilibrium susceptibility

x̄, and normalized Parisi parametera in 1RSB calculation as a
function of the chemical potential~in units of J) at zero tempera-
ture.
-
g.
l-

re

A comparison with the lowest order approximatio
shown in Fig. 2, combined with analytical results for`RSB,
gives a clear hint at the exact ISGf solution. Only the first
part form50.05J, 1

2 Eg
(1)'0.119J does not contain the cen

tral band, sincen(m50.05J,T50)51 in 1RSB. ForEg
(1)

50.119J,m,Eg
(0)5A2/pJ the central band is present i

1RSB, while it was absent in RS in this interval. This effe
sets in at low temperatures, corresponding to the sma
magnetic energy scales set by the new additional order
rameter of 1RSB.

Also in this approximation, the appearance of the cen
peak in the spectral weight is linked to a random field cro
over line, determined by]2f /]q̃250 ~see Fig. 1!. At m
50.5J, the central band is already well developed for lo
enough temperatures. Here, the lowest order approxima
leads only to a very small band, sincem50.5J exceeds only
by little the RS gap edge.

As for half filling the ratio between the gap widths and t
~finite! DOS at the gap edge is constant. For higher or
symmetry breaking the gap shrinks and the spectral weigh
the edge diminishes correspondingly; thus spectral weigh
moved into parts of the gap region, as the approximation
improved step by step.

The crossover from finite lowT to the exactT50 solu-
tions, shown by fat lines in the three-dimensional~3D! plots,
redistributes considerably the spectral weight. At higherm,
for examplem50.7J as shown in Fig. 7, the central ban
shows a maximum also as a function of temperature. T
DOS height in the center decreases again at lowest temp
tures, the band becomes broader atT50.
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FIG. 7. Density of states a
finite and at zero temperatur
in 1RSB shown form/J50.05,
0.2, 0.5, and 0.7 as a function o
energyE5e1m and temperature
T (m, E, andT displayed in units
of J).
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Comparing theT50 limit of Figs. 2 and 4, which show
the RS approximation, with that of Fig. 7 for the first im
proved 1RSB approximation, one finds that replica symm
try breaking leads to a refinement of the band structure. E
further RSB step, until the exact̀RSB solution is reached
will modify magnetic and nonmagnetic bands according
the still smaller scales and magnetic order parameters. H
ever, although one step RSB does not yet yield the ex
solution of this model, further refinements are much sma
in size and it is possible to imagine the exact result from
Fig. 7. For zero temperature, as a function of a continuou
varying chemical potential, the 1RSB solution for the dens
of states is displayed in Fig. 8. The tendency of RSB effe
is obvious by comparison with Fig. 4.

The central band maintains the wedgelike shape alre
observed in the replica symmetric result. Its thick end ho
ever shows a new structure near the discontinuous mag
breakdown, while the other end progressed by a large
towardsm50. The distance fromm50 will be further re-
duced inkRSB with k.1 and vanishes fork→`.

FIG. 8. DOS atT50 for 1RSB. The central band appears abo
m'0.119J ~DOS,E, andm shown in units ofJ).
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3. Infinite breaking of replica symmetry

The top of the wedge reachesm50 in `RSB and at the
same time the gap widths approach zero; the DOS still v
ishes at6m but stays finite yet very small in the vicinity o
E56m. The derivation of this feature is analogous to t
one presented in Ref. 8: The ratio between gap width
DOS size at the gap edge is invariant under RSB and he
both quantities decay together to zero in the limit of infin
RSB. Here it is assumed that the nonequilibrium suscepti
ity, which determines the gap width at any orderk of the
RSB, approaches zero fork→` as in the half filled case. The
latter result was inferred from the work of Thouless, Ande
son, and Palmer.10

IV. CONNECTION BETWEEN
FERMION CONCENTRATION

AND REPLICA SYMMETRY BREAKING

The filling factor can be described by the summation o
the imaginary frequency Green’s functionG by

n5T (
en ,s

Gs~en!ei e01. ~29!

The Green’s function is related to the density of states d
cussed before by the usual spectral representationG(e l)
5*de@r(e)/ i e l2e# @and by r(e)52(1/p)Im„GR(e)…#,
which means that the whole fermion propagator changes
der RSB. Still the summation over all frequencies could
ther wipe out or maintain this dependence. Indeed, what
find is a transition between these two alternatives inside
ordered phase.

We have emphasized the role of replica symmetry bre
ing for quantum dynamics and low-energy excitations. D
spite the absence of quantum dynamics in charge corr
tions, and despite the absence of spin-charge couplings in
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Hamiltonian, we find that replica symmetry breaking affe
spin-correlations and charge-average in a qualitatively dif
ent way.

In one-step breaking we report in this section a crosso
line, which separates a regime of almost invisible RSB

fects in the filling factor and inq̃ from one with large RSB
effects in these quantities. The magnetic order param
does not show any sign of this crossover. The announcem
of these effects evokes on one hand the old, resol
problem16 of absence of RSB below the freezing tempe
ture, and on the other hand the phenomenon of a Ga
Toulouse line,17 followed by a crossover to a region wit
RSB effects in all order parameters.18

The first case bears no relation with our case: the pre
model is static in charge and spin correlation and the part
lar role of dynamic effects,16 which occurred in the trans
verse field Ising model, do not exist here. The crossover
describing the onset of RSB in transversal correlations o
Heisenberg spin glass in a magnetic field, however, ha
vague resemblance, provided we imagine charge degree
freedom as transversal with respect to spin. The chem
potential then roughly corresponds to the magnetic field

FIG. 9. Results for the temperature dependence of the fil
factors in RS and 1RSB are grouped together for 0.1<m/J<0.8
with Dm/J50.1 (T,Dm given in units ofJ). The right endpoints of
all pairs of lines denote the freezing temperaturesTf(m), while at
the intermediate pointsT* , displayed for the pair atm50.8J, the
fillings nRS and n1RSB differ by only O(1024). Zeros of nRS

2n1RSB exist within T* (m),T,Tf(m) and at lowT for m.0.7J.
s
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the standard case. However, a detailed mapping between
two models does not seem feasible.

In Fig. 9 the fermion filling factor is shown. Pairs o
@nRS(m) ,n1RSB(m)# are grouped together for m/J
50.1,0.2, . . . ,0.8. The detailed plots contain two interestin
features: each pair of lines seems to merge asymptotic
but the lines still cross each other at aT0* (m), staying close
together forT0* (m),T,Tf(m). Since the lines cross, havin
almost identical slope, it is difficult to determine with suffi
cient numerical precision the lineT0* (m) of crossings. We
therefore chose pointsT* (m) where RS and 1RSB lines dif
fer only by 1024. In between these points and the end poi
at the freezing temperature corresponding to them parameter
of each curve, the RS and 1RSB curves cross at least o

The interesting fact now is that there is a region below
freezing temperature, where replica symmetry breaking
fects in the fermion filling factor almost vanish. While th
occurs in the charge related quantity, the magnetic obs
ables such as order parameters show large RSB effects.
may find it surprising that RSB effects appear at all in t
fermion concentration.

In addition to the separation of magnetic and nonmagn
bands described before for the ordered phase, one also
a different exposure of charge- and spin-related quantitie
the effects of replica symmetry breaking. None of the qu
tities is excluded from this, despite the fact that the mo
does not contain a spin-charge interaction. The only coup
is mediated by the chemical potential.

At zero temperature, this crossover is most pronounc
Beyond the crossing point of the two approximations atm*
'0.7J both lines stay close together as if no symmet
breaking effect would occur at all betweenm* and the dis-
continuous breakdown of magnetic order atm1'0.881J. On
the other side, form,m* the RSB effect is large. Moreover
the right-hand side of Fig. 10 shows for comparison the
merical result for the corresponding TAP equation of fini
size systems.19 This generalized TAP result should corr
spond to the full Parisi solution with̀ RSB. At T50 the
filling n starts to differ from one, when the chemical pote
tial moves through the gap edge. The gap size depend
the number of RSB steps and decreases to zero in the`RSB
solution. Thus it is clear that the left end point of the fillin
curve n(m) moves into (n51,m50). The change from the

g

f
ations is
FIG. 10. The filling factor atT50, shown as a function of the chemical potentialm (T,m in units of J). The RS and 1RSB results o
this paper are included in the figure on the left-hand side, while on the right the numerical solution of the corresponding TAP equ
taken from Ref. 18 for comparison. There,N denotes the system size.
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calculated one-step RSB solution to this exact one is m
smaller than the one from RS to 1RSB. The shape of
1RSB solution resembles almost perfectly the one found
merically from the generalized TAP equation. Also quanti
tive agreement is obtained form,0.5J. The nonvanishing
kRSB corrections fork52 and higher can be expected to
almost invisibly small. Deviations in the high-m region
might be due to numerical problems of the algorithm in R
19 either because of the vicinity of the first order phase tr
sition or due to finite-size effects.

In general, however, the TAP solution is already in go
agreement with the analytical 1RSB solution, whose ext
sion to the full RSB solution is obvious. The flat increase
the integrated quantityn(m) from 1 ~probably with slope
zero! in the generalized Parisi solution is consistent with
fact that for rare nonmagnetic regions the central band d
not start as ad peak, but as function with finite height and
width increasing smoothly from zero asm becomes finite.

V. SUMMARY AND OUTLOOK

We presented a complete analysis of the band structur
the fermionic Ising spin glass for arbitrary doping. The n
merical study for finite temperatures was accompanied
analytical results forT50, all evaluated up to first step rep
lica symmetry breaking. A three-band structure formed
two magnetic side bands and a central nonmagnetic b
was obtained in the ordered phase. The nonmagnetic ce
band shows rapid growth as the temperature decreases
also nonmonotonic behavior. Its becomes particularly p
nounced in the low-temperature regime below a crosso
line defined by]2f /]q̃250. While a random-field-like insta
bility is prevented by the off-diagonal order paramete
qaÞb, the sign change of this second derivative of the f
energy implies a strong increase of the deviation from h
filling, which is of course related to the central band.

At T50 we found a complete separation of the bands,
separation being finite in any approximation using a fin
number of RSB steps and finally zero in the exact soluti
d
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This was concluded by means of an exact relation
infinite-step symmetry breaking.

We thus demonstrated strong RSB effects on the magn
order parameters, on the density of states~DOS!, on quantum
dynamics included in the fermion Green’s function, and ev
on the integrated DOS, which equals the fermion concen
tion at T50 ~seen as a function of chemical potential!.

It is interesting to compare the evolution of central no
magnetic bands in disorder-free Hubbard and Kondo lat
models3 with the one of the present random interacti
model: the role of spin glass order as the source for b
gaps and the Parisi symmetry forming their shape-giv
mechanism can then be particularly appreciated.

Our present results for the nonitinerant spin glass a
imply important questions and suggestions on itinerant
tensions. If one speculates that a pseudogap is filled by c
pling to a conduction band, for example, the question
Anderson localized states around the Fermi level must
raised. The more fundamental questions will, however,
whether replica symmetry breaking survives in the prese
of transport. In Hubbard models the hopping expans
around the atomic limit is singular, but this does not seem
be the case in the itinerant spin glass. If so, the possibility
localization in the pseudogap regime of small DOS will n
only be decisive for ac and dc conductivity but will als
carry signs of replica symmetry breaking.

Since exact mean-field solutions of metallic spin gla
models are at least as hard to find as thed5` solution of the
Hubbard model, meaningful approximate solutions are w
come in both cases. In particular, a comparison with the fu
frustrated Hubbard model in infinite dimensions20 would be
of high interest.
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